Fast Discovery of Relevant Subgroups using a Reduced Search Space

Henrik Grosskreutz and Daniel Paurat
Fraunhofer TAIS
Schloss Birlinghoven, 53754 Sankt Augustin, Germany
{henrik.grosskreutz,daniel.paurat } Qiais.fraunhofer.de

October 11, 2010

Abstract

We consider a modified version of the local pattern
discovery task of subgroup discovery, where subgroups
dominated by other subgroups are discarded. The ad-
vantage of this modified task, known as relevant sub-
group discovery, is that it avoids redundancy in the
outcome. Although it was considered in many appli-
cations, so far no efficient and exact algorithm for this
task has been proposed. One particular problem is that
the correctness is not guaranteed if the standard prun-
ing approach is applied. In this paper, we devise a new
algorithm based on two ideas: For one, we use the the-
ory of closed sets for labeled data to reduce the can-
didate space; for another we introduce a special search
space traversal which allows the use of optimistic es-
timate pruning while guaranteeing the correctness of
the solution. We show that although our algorithm
solves a more valuable task than other (classical) ap-
proaches, it outperforms all existing subgroup discovery
algorithms.

1 Introduction

Subgroup discovery [12, 23] is a local pattern discov-
ery task that searches for interesting sub-populations
in labeled data. A typical application is medical data
analysis (e.g. [11]), where the label represents some
medical condition, e.g. dementia, and a subgroup is a
conjunction of features characterizing a sub-population
with high positive rate. Unlike in classical association
rule mining, in subgroup discovery all subgroups are
ranked by a quality function which takes into account
both the support of the subgroup and its distributional
unusualness. Based on this ranking, subgroup discov-
ery algorithms search for the top-k subgroups, which
are presented to the domain experts for manual exami-
nation, or are forwarded to the next step of a complex
data-mining process [13, 6].

One important issue in subgroup discovery is the
avoidance of redundancy in the output [7, 5]. Redun-

dant output is undesirable both because it wastes the
human experts precious time (in case of manual exami-
nation), and because it can push valuable patterns out
of the top-k subgroups. In the case of binary labeled
data—the most common setting—a particularly appeal-
ing remedy to this issue is the theory of relevance [16, 8.
The idea is to remove all subgroups that are dominated
(or covered) by another subgroup, in the sense that the
dominating subgroup covers at least all positives (i.e.
target-class individuals) in the dominated subgroup, but
no additional negative (i.e. non target-class individual).
The theory of relevance not only allows to get rid of
multiple equivalent descriptions for the same subgroup,
but also of trivial specializations which provide no ad-
ditional insight over their generalizations.

Due to these advantages, relevance has been used
as a filtering criterion in several applications [16, 14, 2
and can already be considered a standard approach.
Up to now, however, no algorithm has been developed
that efficiently and ezactly solves the task of relevant
subgroup discovery. Although several ad-hoc solutions
have been proposed that extend a classical algorithm
with a relevance check (e.g. [16, 18]), these cannot
guarantee the correctness of the result. The problem
is that relevance is a property not defined locally, but
with respect to the set of all other subgroups. As a
result, approaches which traverse the space of candidate
subgroups and only keep track of the highest-quality
subgroups thereby visited can run into situations where
they erroneously add an irrelevant subgroup to their
result queue, with the effect that relevant subgroups
are missing in the output (we will elaborated on these
pitfalls in Sections 1.1 and 3.2).

The only non-trivial algorithm which computes
a provably correct solution is that of Garriga et al.
[8]. This approach exhaustively collects a superset of
the relevant subgroups, and removes every subgroup
dominated by some other member of that collection.
This is only feasible because the superset considered,



the set of so-called closed-on-the-positives (which are
characterized by some special closure operator), is much
smaller than the space of all subgroup descriptions.
Still, the approach suffers from the drawback that a
potentially very large number of patterns has to be
traversed and collected. This differs from all efficient
(non-relevant) subgroup discovery algorithms, which
rely on pruning techniques [23, 19, 9] to reduce the
number of candidates effectively considered and only
collect k subgroups during traversal.

In this paper, we present an algorithm that demon-
strates that an exzact solution to the task of relevant sub-
group discovery does not need to be slower than classical
subgroup discovery. On the contrary, the restriction to
relevant subgroups provides an opportunity to consider-
ably speedup the execution, without sacrificing the cor-
rectness guarantee for the result. Our approach relies
on the work from Garriga et al. [8], which showed that
the relevant subgroups are a subset of the closed-on-the-
positives (which in turn are a subset of all subgroups).
Our main contribution is to show that using a special
traversal strategy on the closed-on-the-positives, we can
efficiently verify the relevance of a subgroup the very
moment it is visited. Based thereupon, we devise the
first correct algorithm that combines a traversal on the
closed-on-the-positives with optimistic estimate prun-
ing [23], a branch-and-bound technique which is known
to result in a dramatic reduction of the execution time
[19, 9, 3].

This combination distinguishes our approach from
all existing algorithms, which can be categorized with
respect to the search space they consider and the prun-
ing strategy they apply. Figure 1 visualizes these two
dimensions: the horizontal axis lists the different search
spaces, while the vertical axis distinguishes between ap-
proaches that prune and others that don’t. In the fol-
lowing section, we review related work and categorize it
according to these dimensions. The remainder of the pa-
per is structured as follow: In Section 2, we review basic
definitions, before we illustrate, in Section 3, the task
of relevant subgroup discovery and the pitfalls that can
arise. Successively, in Section 4 we present our solution
and show its correctness, before we show, in Section 5,
that it has a superior runtime in most settings.

1.1 Related Work The classical subgroup discovery
algorithms [12, 16, 4] search for the best subgroups in
the space of all valid subgroup descriptions. Moreover,
they do not prune the candidate space, hence in the
categorization of Figure 1 they belong in the upper left
area. The algorithms differ in the data structures they
use and in their search space traversal strategy (some
apply heuristics like beam search which strongly reduce

search space
closed
sub-
groups

Explora [12], CPosSd|8]
SD [16], SD-
% Map [4]
g= DpSubgroup | imr Our ap-
2 [9], SD-Map* | [5] proach
& [3], BSD [18]

Figure 1: Classification of different subgroup discovery
algorithms wrt. to the search space they consider and
the pruning technique they apply

the execution time, at the price that the correctness of
the result is no longer guaranteed).

These classical approaches are outperformed by al-
gorithms like DpSubgroup [9] or SD-Map* [3], which con-
sider the same search space but apply optimistic esti-
mate pruning. These approaches belong to the lower
left area of our figure. We remark that lately, so-called
4-support bounds have been proposed, which provide
improved estimates [20]; for the sake of simplicity, how-
ever, in this paper we will only consider the traditional
optimistic estimates.

The algorithm imr [5] adapts the theory of closed
itemsets [21, 22] to subgroup discovery, with the moti-
vation to avoid multiple equivalent descriptions of the
same subgroup in the output. Thus, it solves a differ-
ent, more valuable task than the earlier algorithms. It
makes use of a closure operator to directly traverse the
closed subgroup descriptions, which are a subset of all
subgroup descriptions. This is combined with optimistic
estimate pruning, which results in a reduction of the ex-
ecution time on many datasets. In our categorization,
this approach belong to the center bottom area.

Equivalent descriptions are not the only kind of
redundancy. For example, the top-k subgroups could
contain trivial specializations of other subgroups in the
result set. Different approaches have been proposed to
get rid of such redundancies. A particularly principled
approach to this issue is the theory of relevance [17, 16],
which unlike other approaches (e.g. the weighted
covering approach [15]) is parameter-free and has a clear
semantics. Due to these advantages, several authors
have equipped subgroup discovery algorithms with a
relevance constraint [16, 18, 8]. This extends the
classical task to the (more valuable) task of relevant
subgroup discovery.

Unfortunately, this task is not straightforward to
solve. The reason is that relevance is not a property



that can be checked locally, but which is defined with
respect to all other subgroups. Due to this problem,
most existing algorithms do not solve the problem ex-
actly: The algorithm SD [16] combines relevance with
beam search, which has the effect that it cannot guaran-
tee that the computed subgroups are not dominated by
some subgroup outside the beam. The algorithm BSD
[18] introduces a bitset representation of the data to
speedup the search for the relevant subgroups. Other-
wise, it performs an exhaustive traversal, keeping track
only of the k highest-quality subgroups visited so far.
Some of them can turn out to be irrelevant later. The ef-
fect is that although BSD guarantees that all subgroups
in the result set are relevant, some relevant high-quality
subgroups may be missing. That is, both algorithms
do not guarantee an exact solution. As for the search
space considered, both algorithms operate on the set of
all subgroup descriptions. Thus, in this respect they do
not improve over the classical algorithms—in fact, the
algorithm BSD becomes faster if the relevance check is
disabled [18]. In our categorization, these algorithms
thus belong into the left areas (top or bottom, depend-
ing on their use of pruning).

The work of Garriga et. al. [8] is the first that
proposes a non-trivial approach to correctly solve the
relevant subgroup discovery task. The authors inves-
tigate the relation between closure operators (cf. [21])
and relevance, and show that the relevant subgroups
are a subset of the subgroups closed on the positively
labeled data. While the focus of the paper is on struc-
tural properties and not on computational aspects, the
authors also propose a simple two-step algorithm based
on this insight. The search space considered by this al-
gorithm — the closed-on-the-positives — is a subset of
the closed subgroups, thus it operates on a smaller can-
didate space than all earlier approaches. The downside
is that it does not account for optimistic estimate prun-
ing, and that there is no easy way to use pruning in this
approach. In our categorization, it thus belongs to the
top right area.

To the best of our knowledge, no approach exists
that takes advantage of both optimistic estimate prun-
ing and the theory of closed sets for labeled data.

2 Preliminaries

In this section, we will define the task of subgroup
discovery, review the theory of relevance and discuss
its connection to closure operators.

2.1 Subgroup Discovery Subgroup discovery [12]
aims at discovering descriptions of interesting sub-
portions of a dataset. We assume all records dy,...,d,,
of the dataset to be described by a set of n binary fea-

tures (f1(di),..., fn(d;)) € {0,1}". A subgroup de-
scription sd is a subset of the feature set, i.e. sd C
{f1,.-., fn}. A data record d satisfies sd if f(d) =1 for
all f € sd, that is, subgroup descriptions are interpreted
conjunctively. Thus, we sometimes use the notation
find&e, ... &f;, instead of {fi,,..., fi, }- The subgroup ex-
tension described by sd in a database DB={dy,...,dn},
denoted by DBJ[sd], is the set of records d € DB that sat-
isfy sd.

The interestingness of a subgroup description sd in
the context of a database DB is measured by a quality
function g that assigns a real-valued quality ¢(sd, DB) to
sd. The quality functions usually combine the size of the
subgroup’s extension and its unusualness with respect
to a designated target variable, the class or label. In this
paper, we only consider the case of binary labels, that is,
the label of a record d is a special feature class(d) with
range {+, —}. The most common quality functions for
binary labeled data are of the form:

(21) | DBlsd]|" (TP(DB, sd)| TP(DB,(/J)|)

| DB]sd]| | DB

where TP(DB, sd) := {d € DBIsd]| class(d) = +} de-
notes the true positives of the subgroup sd, a is a con-
stant such that 0 < a < 1, and TP(DB, () simply de-
notes all positives in the dataset. The family of quality
functions characterized by Equation 2.1 includes some
of the most popular quality functions: for a = 1, it is
order equivalent to the Piatetsky-Shapiro quality func-
tion [12] and the weighted relative accuracy WRACC
[15], while for @ = 0.5 it corresponds to the binomial
test quality function [12]. Based on these definitions,
the task of subgroup discovery is defined as follows:

Task 1. (Classical) Top-k Subgroup Discovery
Given a database DB, a quality function q, and an inte-
ger k >0, find a set of subgroup descriptions G of size
k, such that

Vsd: sd ¢ G = q(DB,sd) < Igi% q(DB, sd).
sae

A concept closely related to quality functions is that
of an optimistic estimate [23]. This is a function
that provides a bound on the quality of a subgroup
description and of all its specializations. Formally,
an optimistic estimator for a quality function ¢ is a
function oe mapping a database DB and a subgroup
description sd to a real value such that for all DB, sd
and specializations sd D sd, it holds that oe(DB, sd) >
q(DB, sd’). Optimistic estimates allow to drastically
improve the performance of subgroup discovery by
means of pruning [19, 9], a topic we will elaborate on in
Section 3.2.



2.2 The Theory of Relevancy The theory of rel-
evance [17, 16] is aimed at eliminating irrelevant pat-
terns. A subgroup sd;.. is considered as irrelevant if it
is dominated (or covered) by another subgroup sd in the
following sense:

DEFINITION 1. The subgroup sd;. s dominated by the
subgroup sd in database DB iff.

e TP(DB, sd;r) C TP(DB, sd) and
e FP(DB, sd) C FP(DB, sd,,).

Here, TP is defined as in 2.1, while FP(DB, sd) = {c €
DBsd] | class(c) = —}. The above notion allows to dis-
tinguish between urrelevant and relevant subgroups, the
former being those dominated by a different subgroup.
The idea of the theory of relevance is to restrict con-
sideration to the relevant subgroups, because for each
of the other subgroups there is a dominating relevant
subgroup which is more valuable.

2.3 Closure Operators and their Connection to
Relevance As shown by Garriga et al. [8], the notion
of relevance can be restated in terms of the following
mapping between subgroup descriptions:

(22)  TT(X):={f|Vd e TP(DB,X): fld] = 1}.

I't is a closure operator, i.a. a function defined on the
powerset of features P({f1,..., fn}) such that for all
XY € P{f1,.--,fn}), (i) X C I'(X) (extensivity),
(i) X CY = I'(X) C I'(Y) (monotonicity), and (iii)
I'(X)=I(I'(X)) (idempotence) holds.

The fixpoints of I'", i.e. the subgroup descriptions
$dpe; such that sd. = Tt (sd.e), are precisely the
closed-on-the-positives mentioned earlier. The main
result in [8] is that

PROPOSITION 1. The space of relevant patterns consists
of all patterns sd,.e; satisfying the following:

® sd..; is closed on the positives, and

o there is no generalization sd C sd¢; closed on the
positives such that |FP(sd)| = |FP(sdye1)].

The connection between relevancy and closure op-
erators is particularly interesting because closure oper-
ators have extensively been studied in the area of closed
pattern mining (cf. [21]). However, unlike here in closed
pattern mining the closure operator is defined solely on
the support, without accounting for labels:

Poup(X) = {f|Vd € DBIX] : fld] = 1}.

The fixpoints of this closure operator are simply called
closed patterns. Many algorithms have been developed

to traverse the fixpoints of some arbitrary closure oper-
ator, e.g. LCM [22]. Making use of this fact, Garriga
et al. have proposed a simple two-step approach to find
the relevant patterns, to which we will refer as CPosSd.

3 Relevant Subgroup Discovery

As motivated in the introduction, we are not interested
in classical subgroup discovery but in the following task:

Task 2. Top-k Relevant Subgroup Discovery
Given a database DB, a quality function q, and an inte-
ger k >0, find a set of subgroup descriptions G of size
k, such that

o All subgroups in G are relevant wrt. DB, and

o All subgroups not in G either have a quality no
higher than minsseq ¢(DB, sd), or are dominated
by some subgroup in G.

We aim at an algorithm that efficiently solves this task
by taking advantage of two techniques:

e Reduced candidate space: Instead of considering the
space of all valid subgroup descriptions, we want
to only consider subgroup descriptions which are
closed on the positives. This space can efficiently
be traversed, as it is characterized by the closure
operator I't from Equation 2.2;

o Optimistic estimate pruning: To reduce the num-
ber of subgroups effectively considered, we want to
additionally apply optimistic estimate pruning.

Although the general idea is straightforward, the real-
ization raises subtle issues. In fact, the naive application
of optimistic estimate pruning can result in incorrect re-
sults. To make the problem clear, we will use a simple
example dataset, illustrate the different concepts (i.e.
relevance, closure, closure on the positives, and opti-
mistic estimate pruning), and show examples where the
naive use of optimistic estimate pruning results in in-
correct results.

3.1 An [Illustrative Example Our example
database, shown in Table 1, describes opinion polls.
There is one record for every participating person.
Beside the class, Approval, there are four features that
characterize the records: Children:yes and Children:no
indicates whether or not the participant has children;
University indicates that the participant has a uni-
versity degree, and finally High Income indicates an
above-average income. To keep the example simple,
we have not included features describing the negative
counterparts of the last two features.



(empty)

Children=yes

Children=yes University

University

Children=yes

HighIncome University

HighIncome

Children=no

Children=no

Children=no  [HighIncome
A 4
Children=yes Children=no @ niversity
Children=no University

Children=no & HighIncome & University

Figure 2: Concept lattice of the exemplary election dataset. Relevant subgroups are highlighted.

Children | Children Uni- High
Approval .
= yes = no versity | Income

+ v v v

+ v v v

+ v

- v v

- v

- N

- v

Table 1: Example: An simple opinion poll dataset

This simple example dataset induces a lattice of
candidate subgroup descriptions, containing a total of
16 nodes. These include several redundant representa-
tions: for example, both University and HighIncome &
University describe the same extension. Such redundan-
cies are avoided if we consider the sub-space of closed
subgroups. Figure 2 visualizes this space, thereby rep-
resenting both the type and the WRACC quality:

e type: The visualization distinguishes between sub-
group descriptions which are closed, closed on the
positives and relevant. Every node represents a
closed subgroup; those closed on the positives are
rendered with a double border; finally, relevant
subgroups are rendered using a rectangular shape.

e quality: The fill-color of a node corresponds to

the quality of the subgroup: higher-qualities cor-
respond to more intense gray shades.

The figure illustrates several facts: First, the set
of relevant subgroups is a subset of the subgroups
closed on the positives, which in turn is a subset
of the set of closed subgroups [8]; Second, relevant
subgroups need not have a high quality, and neither
do high-quality subgroups need to be relevant. For
example, the subgroup (empty) is relevant but has a
low quality—it is simply not interesting, even though
it is not dominated. On the other hand, the two
subgroups Children:yes & Highlncome & University
and Children:no € Highlncome € University have a
high quality, but they are irrelevant as they are merely
a fragmentation of the relevant subgroup Highlncome
& University. This is why we are interested in both
relevance and high quality, as precised by Task 2.
Table 2 shows which of the top-8 subgroup descriptions
are closed, respectively relevant. It thereby illustrates
that relevant subgroup discovery provides a more dense
representation of the interesting patterns in the dataset.

3.2 Challenges and Pitfalls We will now turn to
the issues that arise if optimistic estimate pruning is to
be applied during relevant subgroup discovery. First,
we briefly review the concept of a dynamically increas-
ing quality threshold used during optimistic estimate
pruning. Recall that classical subgroup discovery al-
gorithms traverse the space of candidate subgroup de-



Subgroup description

H Classic sd ‘ Closed sd ‘ Relevant sd H WRACC Quality

HighIncome & University 1st 1st 1st 0.16
University 2nd 0.16
HighIncome 3rd 2nd 0.10
Children=yes & HighIncome €& University 4th 3rd 0.08
Children=yes & University 5th 0.08
Children=no & Highlncome & University 6th 4th 0.08
Children=no & HighIncome 7th 0.08
Children=yes 8th 5th 2nd 0.04

Table 2: Subgroups, closed subgroups and relevant subgroups in the example dataset

scriptions, collecting the best subgroups. Once at least
k subgroups have been collected, only subgroups are of
interest whose quality exceeds that of the k-th best sub-
group visited so far. The quality of the k-th subgroup
thus represents a threshold, which increases monotoni-
cally in a dynamic fashion during traversal of the search
space. The idea of optimistic estimate pruning is to
prune all branches of the search space whose optimistic
estimate does not exceed that threshold.

The use of a dynamic threshold is of key importance
in optimistic estimate pruning, as it is impossible to
calculate a suitable threshold beforehand—the only save
option would be to use a trivial threshold like 0. On the
other hand, if we search the top-1 subgroup in the space
of closed subgroups visualized in Figure 2, the dynamic
threshold can allow pruning all but the direct children
of the root node: Once these four nodes have been
visited, the threshold is set to the quality of subgroup
HighIncome € University, which allows pruning the
whole rest of the search space (because no node has
an optimistic estimate that exceeds this quality).

While optimistic estimate pruning based on the
best k subgroups visited so far is correct for classical
subgroup discovery, in the case of relevant subgroup
discovery the following problems can occur:

1. If a relevant subgroup is visited which dominates
more than one subgroup so far collected, then all
dominated subgroups have to be removed. This can
have the effect that when the computation ends,
the result queue erroneously contains less than k
subgroups.

2. If the quality threshold is increased to the quality
of the k-th subgroup in the result queue, but the
queue contains non-relevant subgroups, then some
relevant subgroups which should be part of the
result can erroneously be pruned.

The two above problems can be observed in our exam-
ple scenario. Issue 1 arises if we search for the top-2

subgroups in Figure 2, and the nodes are visited in the
following order: Children=yes, Children:yes & Highln-
come & University, Children:no & HighIncome € Uni-
versity and High Income & University. When the com-
putation ends, the result will only contain High Income
& University, but miss the second relevant subgroup,
Children=yes. Issue 2 arises if Children:yes & Highln-
come & University and Children:no & Highlncome &
University are added to the queue before Children=yes
is visited: the effect is that the minimum quality thresh-
old is increased to a level that will incorrectly prune
Children=yes.

These issues can arise no matter whether the traver-
sal is based on the closed-on-the-positives, the closed
subgroups, or all subgroup descriptions. They are pre-
cisely the reason why algorithms like BSD [18] do not
guarantee correct results. Of course, one can keep track
of all subgroups visited and never increase the thresh-
old (essentially, this is the approach of [8]). However,
without dynamically increasing threshold, optimistic es-
timate pruning cannot be effectively applied, and the
price in terms of an increased execution time can be
tremendous.

4 Our Approach

If we wish to efficiently perform optimistic estimate
pruning, using the quality of the k-th subgroup in
the queue as dynamic threshold, then we clearly need
a way to efficiently determine whether a subgroup is
relevant or not at the moment it is visited. We will now
present a traversal strategy which allows doing so, and
an algorithm built thereupon.

4.1 The Length-Aware Traversal Strategy If
we restrict ourselves to the space of subgroups which
are closed on the positives, then a subgroup can only
be dominated by a generalization, as shown in [8]. This
proposition can be extended as follows:



LEMMA 2. Let DB be a dataset and q a quality function
of the form of Equation 2.1 (with 0 < a < 1). A
subgroup sd;. closed on the positives is irrelevant if and
only if there exists a relevant subgroup sdre; such that
(1) sdrei C 8dipr, (ii) |FP(DB, sdre;)| = |FP(DB, sdir)|
and (iii) (DB, sdye;) > q(DB, sdirr).

Proof. Tt is shown in [8] that sd;.. is irrelevant
iff. (i) and (ii) hold. Thus we only need to show
if it exists, sd.; must have higher quality than
$dirr. It holds that |DB[sd.ei]| > |DB[sdi]|, be-
cause 8dqo; is a subset of sdj... Thus, to show
that sd..; has higher quality, it is sufficient to show
TP(DB, sdy¢;)/|DB|sdre1)| > TP(DB, sd;r)/|DB|sdir+]|.
From (ii), it follows that this inequality is equiv-
alent to TP(DB,sd.e;)/(|TP(DB, sd.e;)| + F) >
TP(DB, sdi)/(|TP(DB, sdi)| + F), where
F denotes the common number of false pos-
itives. All that remains to show is thus
|TP(DB, sdye;)] > |TP(DB,sdi)|. By definition
of relevance, |TP(DB, sd.¢;)| > |TP(DB, sdir)|, and
because sd,.; and sd;,, are different and closed on the
positives, the inequality must be strict which completes
the proof. [J

The above lemma is the foundation for our new relevant
subgroup discovery algorithm. The idea is to make sure
that when a subgroup description is visited, then all
its generalizations have been wvisited before. This allows
to realize an efficient relevance check based on a queue
that stores the top-k relevant subgroups visited so far:
when a new subgroup is visited whose quality exceeds
that of the k-best relevant subgroup, then this subgroup
is relevant if and only if it is not dominated by any
generalization in the queue. This follows from the above
lemma and the observation that if such a subgroup sd,¢;
exists, then it must have been visited before and must
still be in the queue (as we will prove in Section 4.3).

Thus, to devise an efficient relevance test we
need to ensure that the subgroups are traversed in a
generalization-aware order. Although at first it might
seem that a breadth-first-search will ensure that a spe-
cialization cannot be visited before any of its gener-
alizations, this is not true. The reason is that the
parent-child relation is defined wrt. the closure oper-
ator I'", which can have the effect that two children
of the same parent have different description length;
some children can even be generalizations of others.
For example, in Figure 2 the children of the root node
are Children=yes, HighIncome&University and Chil-
dren=noéHighIncomeéd University; the third child is
clearly a specialization of the second child (please re-
member that if we use I'", the search in Figure 2 con-
sists only of the nodes with a double border).

Algorithm 1 Top-k Relevant Subgroup Discovery

: database DB over features {f1;...; fn},
integer k
Output : the top-k relevant subgroups

Input

1: init toVisit = priorityQueue ordered by length
2: init result() = priorityQueue ordered by quality
3: init generated = empty set

4: init 0 = —o0

5: to Visit.enqueue(T'T(0))

6: while not toVisit.isEmpty() do

7. next= toVisit.dequeueShortest ()

. if calcQ(next) > @ and checkIsRel(next, re-
sult@) then

9: result@).insert(next)

10: if result@.ength()>k then

11: result@.removeLast()

12: if result@.length()=k then

13: 0= resultQ.getKthQuality()

14:  for all direct specializations s of next do

15: cs=T7(s)

16: if calcOE(cs) > 6 and cs¢ generated then
17: generated.add(cs)

18: to Visit.enqueue(cs)

19: return result@

20: function checkIsRel(cs, resultQ): boolean

21 if Jg € result@ :

22: 9 G es N|FP(g)| = [FP(cs)| Aq(g) > gq(cs)
23:  then return false else return true

4.2 The Algorithm Based on the above considera-
tions, our algorithm applies a special traversal strategy
that ensure that whenever a node is visited, all general-
izations have been visited before. Technically, this is re-
alized by replacing the FIFO used in standard breadth-
first-search by a priority queue which orders the nodes
by their length, and always returns a subgroup of min-
imum description length.

Algorithm 1 shows the corresponding pseudo-code.
The length-aware priority queue is referenced by the
variable to Visit, which is used to orchestrate the traver-
sal. The queue is initially with a single node, namely the
closure-on-the-positives of the empty subgroup descrip-
tion. Beside this variable, the algorithm uses a second
priority queue, result@, to collect the k£ highest-quality
relevant subgroups visited. Additionally, the set gen-
erated is used to avoid multiple visits by keeping track
of the nodes already generated. Finally, the algorithm
uses the threshold variable 6, initialized to —oo.



The traversal of the search space is done in the
while-loop starting in Line 6. The queue toVisit is
used to determine the (minimum-length) subgroup to be
considered next. Its quality is calculated and compared
with the threshold; if it exceeds the latter, the relevance
is tested, using the function checkIsRel. This function,
defined in Line 20, essentially tests the conditions
from Lemma 2. If the subgroup passes the relevance
test, it is added to the result() and the threshold
is increased (if possible). Afterwards, the closed-on-
the-positive specializations are considered. If their
optimistic estimate is sufficient and they have not
already been generated, they are added to to Visit.

4.3 Properties In this section, we will prove the cor-
rectness of our algorithm and consider some interesting
properties.

4.3.1 Correctness As first step, we show that the
search space traversal strategy ensures that generaliza-
tions are considered before their specializations:

LEMMA 3. If the relevance check is invoked for a
subgroup description sd (in Line 8), then each of
sd’s closed-on-the-positive generalizations have been de-
queued (in Line 7) at some earlier time of execution.

Proof. First, we show that for each sd considered, all
its closed-on-the-positive generalizations were enqueued
(in Line 18) at some earlier time.

(By contradiction:) Assume that there is a sub-
group description sdge, C sd violating this proposition,
i.e. which has not been enqueued before the relevance
check was invoked on sd. Neither sdg., nor sd can be
the closure of the empty set (this would directly lead
to a contradiction). Thus, there must exist a common
ancestor of these two descriptions which has been de-
queued before sd. More precisely, there must be a se-
quence sdy, ..., sd,, such that sd; 1 is a “child” of sd; (i.e.
sd;11 is the positive closure of a direct specialization of
sd;), sdy, = sdgen, and sd was generated from sd; (by
a sequence of invocations of the lines 14 and 15). By
construction, sd; has been dequeued before sd, while
by assumption sd, = sdge, has not be enqueued be-
fore sd. Thus, there must exists an index i* such that
sd;« has been dequeued before sd, while sd;y1 has not
been dequeued before sd. However, sd;.;; must have
been enqueued before sd was dequeued. This is because
8dix11 is a child of sdi. (which has been dequeued),
and sd;.41’s optimistic estimate is > ¢(sd) (because
sdix C sd) and hence greater than . But then, sd;.i1
must still have been in the queue when sd was dequeued.
This is a contradiction, because sd;«41 C $dgen, € sd and

=

hence length(sdi.+1) < length(sd).

Finally, if every closed-on-the-positives generaliza-
tion has been enqueued before the relevance check for sd
is invoked, then they must also all have been dequeued
before, because their description is shorter than sd’s. O

This peculiarity of the traversal strategy ensures the
correctness of our algorithm:

THEOREM 4. Algorithm 1 correctly solves Task 2 (“top-
k relevant subgroup discovery”).

Proof. To prove the overall correctness, it suffices to
show the correctness of the function checkIsRel. Oth-
erwise, Algorithm 1 performs the same traversal and
pruning as other algorithms, and can thus be shown to
be correct using the same arguments (cf. [5]).

The correctness of checkIsRel needs only to hold
for subgroups cs of quality > 6. Here, the correctness
follows from Lemma 2 and Lemma 3. If c¢s is irrelevant,
then there exists a relevant generalization with higher
quality and same negative support (Lemma 2). This
generalization must have been visited earlier during the
execution (Lemma 3). The generalization must still
be enqueued in result@), because its quality exceeds 6.
Thus, if cs is irrelevant then there is a generalization
satisfying the conditions in Line 22.

The inverse implication also holds: If cs is relevant,
then by Lemma 2 there cannot be a subgroup satisfying
the conditions in Line 22. [J

4.3.2 Runtime Complexity We will now turn to
the runtime complexity of our algorithm. Let n denote
the number of features in the dataset and m the number
of records. For every node visited (i.e. dequeued in
Line 7), we compute the quality, test for relevance
and consider at most n augmentations. The quality
computation and the relevance check can be done in
O(nm) (for a fixed k). For each augmentation, we
compute the closure and check if the result was already
generated. The closure computation has complexity
O(nm), while the checks can be performed in O(n) using
a prefix tree. Finally, the costs for the enqueue/dequeue
operations are logarithmic in the size of the queue,
the latter being < 2". Altogether, the complexity is
thus O(|C,| n*m), where C, is the set of closed-on-the-
positives visited.

For comparison, let us consider the complexity of
classical and closed subgroup discovery algorithms. The
former have complexity O(|S| nm), where S is the set of
subgroups visited, while the latter are O(|C| n?m), where
C is the set of closed subgroups visited (cf. [5]). This
means that the cost-per-node of classical approaches can
be smaller by a linear factor, while for closed subgroups



they are the same. On the other hand, the number
of nodes considered can strongly differ: the set of all
subgroups can be exponentially larger than the set of
closed subgroups [5]. A similar reduction can occur
when we move from the closed subgroups to those closed
on the positives:

PROPOSITION 5. For all positives n € N there is a
dataset DB,, of size n+ 1 over n features such that the
ratio of fizpoints of T'syp to fizpoints of T is O(2™).

CONSTRUCTION 1. We construct the dataset DB, =
diy...,dn,dny1 over the n features fi,..., fn according
to the scheme illustrated in the following table:

Id Label || f1 | fo| .- | fa
dy - o\ 1|..|1
do - 110 1
- 1] 1 1
d, - 1 1.0
dnt1 + 1 1| ... 1
That is, the first n records have label “-” and all features

except the one in the diagonal have value 1; the last
record has label “+7 and all its features have value 1.

In these datasets, every mnon-empty subgroup de-
scription is closed and has positive quality. The total
number of closed subgroups is thus 2™ — 1, while there is
only one fizpoint of T'Y, namely {f1... fn}. O

4.3.3 Length Limits A common practice in sub-
group discovery is to restrict the search depth to reduce
the runtime. Adding such a restriction to our algorithm
requires only minor modifications. Essentially, one has
to make sure that a subgroup description is only en-
queued if it satisfies the length limit.

The effect of such a modification is, obviously, that
some longer subgroups may be missing in the result set.
Given that relevance is a concept that is defined with
respect to all other subgroups, however, it is not obvious
that such a length limit will preserve the property of the
algorithm to only output relevant subgroups.

Fortunately, the output consists only of relevant
subgroups, even if a length limit is applied. The reason
is that a subgroup visited via a traversal based on I'*
can only be dominated by its generalizations. These
all have a shorter description, and must thus have been
considered beforehand.

5 Experimental Results

In this section we empirically compare our new relevant
subgroup discovery algorithm with existing algorithms.
In particular, we considered the following two questions:

e How does our algorithm perform compared to
existing relevant subgroup discovery algorithms?

Dataset H target class ‘ # rec. ‘ # feat.
credit-g bad 1000 58
lung-cancer || 1 32 159
lymph mal_lymph 148 50
mushroom poisonous 8124 117
nursery recommend | 12960 27
sick sick 3772 66
soybean brown-spot 638 133
splice EI 3190 287
tic-tac-toe positive 958 27
vote republican 435 48

Table 3: Datasets

e How does our algorithm perform compared to
classical and closed subgroup discovery algorithms?

We will not investigate and quantify the advantage of
the relevant subgroups over the other approaches, as
this issue has been addressed elsewhere (cf. [8]).

5.1 Setup Our implementation is basically a JAVA
version of Algorithm 1. It uses a prefix tree to imple-
ment generated, and a binary heap to implement the
priority queue to Visit. We use conditional datasets, but
no sophisticated data structures like fp-trees [10] or bit-
sets [18]. As minor optimization, every term whose ad-
dition to a subgroup results in an optimistic-estimate-
prunable subgroup is marked as prunable in all its chil-
dren. The implementation can be downloaded under
http://g3cko.org/SubgroupDiscovery/RelSD.zip.
We performed our investigation using ten datasets
from the UCI Machine Learning Repository [1], which
are presented along with their most important prop-
erties in Table 3. All numerical attributes where dis-
cretized using minimal entropy discretization. We run
the experiments using two quality functions: the bino-
mial test quality function and the WRACC quality. For
pruning, we used the tight optimistic estimate from [9]
for the WRACC quality, while for binomial test quality
we used the function /| TP(DB, sd)| - (1 — %),
which can be verified to be a tight optimistic estimate
using some basic maths. These optimistic estimates
were used in all implementations to make sure that the

results are comparable. The experiments were run on
an Intel Core2Duo 2.4 GHz PC with 4 GB of RAM.

5.2 Comparison with relevant subgroup miners
Although several algorithms exist which tackle the task
of relevant subgroup discovery, only the approach of
Garriga et al. [8] solves this task exactly; All other
existing approaches do not guarantee the correctness of



the result, as discussed in Section 1.1. Thus, in this
paragraph we only compare our algorithm with Garriga
et al.’s. To ensure comparability of the results, we used
a JAVA reimplementation of their two-step algorithm,
which suppresses all but the k highest-quality relevant
subgroups in a post-processing step.

Figure 3a shows the number of nodes considered
by our algorithm (“RelSd”) and by the other approach
(“CPosSd”) if the binomial test quality is used, and & is
set to 10. Figure 3b shows the corresponding results if
the WRACC quality is used instead. As expected, the
plots confirm that the number of closed-on-the-positives
considered by our algorithm is considerably reduced,
sometimes by several orders of magnitude (note that
the figures are plotted using a logarithmic scale). The
number of nodes considered has a roughly linear impact
on the runtime, which will be considered in detail in
Section 5.4.

5.3 Comparison with other subgroup miners
Next, we compared our algorithm with subgroup miners
that solve a different but related task, namely classical
subgroup discovery and closed subgroup discovery. As
representative algorithms, we used DpSubgroup [9] and
imr [5] which are also implemented in JAVA. We re-
mark that these algorithms are also representative for
approaches like the algorithms SD and BSD discussed
in Section 1.1, which apply some ad-hod and possibly
incorrect relevance filtering, but otherwise operate on
the space of all subgroup descriptions.®

Figure 4a shows the number of nodes considered if
the binomial test quality function is used, while Fig-
ure 4b considers the case when the WRACC quality is
used. Again, the figures use a logarithmic scale. Please
note that for our algorithm (“RelSd”), all nodes are
closed-on-the-positives, while for the closed subgroup
discovery approach (“CloSd”) they are closed and for
the classic approach (“StdSd”) they are arbitrary sub-
group descriptions.

For several datasets, the number of nodes consid-
ered by our algorithm (“RelSd”) is considerably smaller;
however, there are some exceptions. This might seem
surprising at first, given that our algorithm considers a
smaller candidate space than the other approaches. The
reasons for this are the following:

e First and foremost, the quality of the k-th subgroup
differs for the different algorithms. For the relevant
subgroup algorithm, the k-best quality tends to
be lower, simply because this approach suppresses

TOf course, BSD makes use of more sophisticated data struc-

tures. These, however, do not affect the number of nodes consid-
ered, and could also be used in our approach.

1e+008
1e+007 -
1e+006 -
100000 *
10000 ¢

1000 ¢

100

#nodes (closed on the pos)

RelSd —<— CPosSd —+—
(a) Binomial test quality

1e+009
1e+008 G
1e+007 |
1e+006 G
100000 F
10000 ¢

1000 ¢

100

#nodes (closed on the pos)

RelSd —<— CPosSd —+—
(b) WRACC quality

Figure 3: Number of nodes considered during the task
of relevant subgroup discovery (k = 10)

high-quality but irrelevant subgroups. This effect
can be seen by reconsidering Table 2. As a result,
the threshold used by our algorithm tends to be
lower than for the other algorithms, which allows
less pruning. This effect is the price if we want to
suppress irrelevant subgroups but require the same
total number of subgroups.

e Second, the algorithms apply different traversal
strategies, and sometimes the other algorithms visit
the high-quality subgroups earlier.

5.4 Speedup Finally, in Table 4 we compare the
runtime of our algorithm with the other approaches.
Table 4a shows the speedup provided by our algorithm
when the binomial test quality is used (that is, the



1e+008
1e+007 |
1e+006 }
100000 ¢
10000 g

1000 +

100

#nodes (any)

RelSd —<— CloSd —5— StdSd —e—
(a) Binomial test quality

1e+007

1e+006 }
100000
10000 }

#nodes (any)

1000 ¢

100

RelSd —<— CloSd —5— StdSd —e—
(b) WRACC quality

Figure 4: Number of nodes considered by different
subgroup discovery algorithms (k = 10)

runtime of the other approaches divided by the runtime
of our algorithm). The table also shows the total
speedup, i.e. the speedup concerning the analysis of all
datasets. The corresponding figures for the WRACC
quality are shown in Table 4b. The tables show that
our approach outperforms the other approaches in most
settings, often by several orders of magnitude.

More specifically, the algorithm CPosSd is outper-
formed in every setting, by up to 5 orders of magnitude.
Closed subgroup discovery—which solves a less valuable
task—is outperformed in 18 out of 20 case. For bet-
ter readability, the settings where our algorithm is not
faster are printed using italics.? In total, our algorithm

2The careful reader might have noticed that the closed sub-
group discovery algorithm is also outperformed on some datasets
where it considers slightly less nodes than our algorithm. The

Speedup: RelSd vs ...
Dataset CPosSd ‘ CloSd ‘ StdSd
Credit 253 3.18 0.93
Lung 8.2 12.6 342
Lymph 37 7.38 1.1
Mushroom 58 1.36 0.5
Nursery 41 3.13 1.4
Sick 13 30.5 35.9
Soybean 35 127 | 15188
Splice 157226 0.62 0.22
TicTacToe 134 5.71 1.3
Vote 149 9.27 0.62
Total | 39207 [ 188 219
(a) Binomial test quality
Speedup: RelSd vs ...
Dataset CPosSd | CloSd | StdSd
Credit 910 4.98 1.5
Lung 11 8.52 | 28.89
Lymph 89 | 14.91 2.82
Mushroom 58 1.35 0.25
Nursery 65 4.19 1.64
Sick 44 | 2273 | 32.24
Soybean 52 50.3 1004
Splice 259089 0.56 0.34
TicTacToe 313 | 12.93 2.07
Vote 229 13 0.88
Total | 81360 | 9.6 29.7

(b) WRACC quality

Table 4: Speedup (k = 10)

outperforms the closed subgroup algorithm by (more
than) one order of magnitude. Finally, for the classi-
cal subgroup miner there is quite some variance in the
speedup. On one hand, for 7 out of 20 datasets our ap-
proach is slightly slower. On the other hand, in 13 out
of 10 datasets our approach is faster, sometimes by 3 or
4 orders of magnitude. In total, our algorithm is again
clearly faster, by more than one order of magnitude.

Summarizing, the new algorithm clearly outper-
forms CPosSd, the only other exact relevant subgroup
discovery algorithm. Moreover, it is faster than the
other (non-relevant) subgroup discovery algorithms,
while it solves a more valuable task. This is a very
positive answer to our two questions.

reason is that for both approaches, the closure computation is the
most expensive step. However, our algorithm does only need to
consider the positive records in the closure computation, unlike
the closed subgroup miner which has to consider all records.



6 Conclusions

In this paper, we have presented a new algorithm for the
task of relevant subgroup discovery. The algorithm is
the first that combines optimistic estimate pruning with
a traversal of the subgroups closed-on-the-positives.
We have described the pitfalls that arise when these
techniques are combined, and how we overcome them.
In the empirical evaluation section, we have shown that
our algorithm is on average faster than all existing
subgroup discovery algorithms, while solving a more
valuable task than the classical algorithms.

It is important to note that using the closed-on-the-
positives as candidate space not only reduces the size of
the search space, but actually is a prerequisite for the
correctness of our algorithm. In fact, it ensures the
correctness of the relevance check, which is at the heart
of our algorithm. Among other prerequisites (like the
traversal strategy), this test makes use of the fact that
closed-on-the-positive subgroups can only be dominated
by their generalizations — a property that does not hold
if we consider arbitrary subgroup descriptions.

An issue that deserves further investigations is the
space complexity of our algorithm. Our traversal strat-
egy has a rather high memory footprint, compared with
depth-first approaches. One option to reduce the mem-
ory requirements (without sacrificing the efficient rele-
vance check) would be to apply an iterative deepening
scheme. It would also be interesting to investigate the
use of the more advanced 4-support bounds [20] within
our approach, instead of the optimistic estimates used
in this study. Another interesting question is whether it
is possible to efficiently calculate equivalent minimum-
length descriptions for the relevant subgroups, as in the
case of closed subgroups [5]. We plan to investigate
these issues in future work.

References

[1] A. Asuncion and D.J. Newman. UCI machine learning
repository, 2007.

[2] M. Atzmueller, F. Lemmerich, B. Krause, and
A. Hotho. Towards Understanding Spammers - Discov-
ering Local Patterns for Concept Characterization and
Description. In From Local Patterns to Global Models,
Proc. of the Workshop at ECML-PKDD, 2009.

[3] Martin Atzmiiller and Florian Lemmerich. Fast sub-
group discovery for continuous target concepts. In IS-
MIS, pages 35—44, 2009.

[4] Martin Atzmiiller and Frank Puppe. SD-map - a
fast algorithm for exhaustive subgroup discovery. In
PKDD, pages 6-17, 2006.

[5] Mario Boley and Henrik Grosskreutz. Non-redundant
subgroup discovery using a closure system. In
ECML/PKDD (1), 2009.

(6]

(7l

(8]

[10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

21]

22]

23]

B. Bringmann, S. Nijssen, and A. Zimmermann. Pat-
tern based classification : a unifying perspective. In
LeGo worskhop colocated with ECML/PKDD, 2009.
Bjorn Bringmann and Albrecht Zimmermann. The
chosen few: On identifying valuable patterns. In
ICDM, 2007.

Gemma C. Garriga, Petra Kralj, and Nada Lavrac.
Closed sets for labeled data. J. Mach. Learn. Res.,
9:559-580, 2008.

Henrik Grosskreutz, Stefan Riiping, and Stefan Wro-
bel. Tight optimistic estimates for fast subgroup dis-
covery. In ECML/PKDD (1), pages 440-456, 2008.
Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In SIGMOD
Conference, pages 1-12, 2000.

A. Hapfelmeier, J. Schmidt, M. Mueller, R. Perneczky,
A. Drzezga, A. Kurz, and S. Kramer. Interpreting pet
scans by structured patient data: A data mining case
study in dementia research. In ICDM, 2008.

W. Klosgen. Explora: A multipattern and multistrat-
egy discovery assistant. In Advances in Knowledge Dis-
covery and Data Mining, pages 249-271. 1996.

A. Knobbe, B. Cremilleux, J. Firnkranz, and
M. Scholz. From local patterns to global models: The
lego approach to data mining. In From Local Patterns
to Global Models: Proceedings of the ECML/PKDD-08
Workshop, 2008.

Petra Kralj, Nada Lavra¢, Blaz Zupan, and Dragan
Gamberger. Experimental comparison of three sub-
group discovery algorithms: Analysing brain ischemia
data. In Information Society, pages 220 — 223, 2005.
N. Lavrac, B. Kavsek, P. Flach, and L. Todorovski.
Subgroup discovery with CN2-SD. Journal of Machine
Learning Research, 5(Feb):153-188, 2004.

Nada Lavrac and Dragan Gamberger. Relevancy in
constraint-based subgroup discovery. In Constraint-
Based Mining and Inductive Databases, 2005.

Nada Lavrac, Dragan Gamberger, and Viktor Jo-
vanoski. A study of relevance for learning in deductive
databases. J. Log. Program., 40(2-3):215-249, 1999.
Florian Lemmerich and Martin Atzmueller. Fast dis-
covery of relevant subgroup patterns. In FLAIRS,
2010.

S. Morishita and J. Sese. Traversing itemset lattice
with statistical metric pruning. In PODS, 2000.
Siegfried Nijssen, Tias Guns, and Luc De Raedt.
Correlated itemset mining in roc space: a constraint
programming approach. In KDD, pages 647-656, 2009.
Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi
Lakhal. Efficient mining of association rules using
closed itemset lattices. Inf. Syst., 24(1):25 — 46, 1999.
T. Uno, T. Asai, Y. Uchida, and H. Arimura. An
efficient algorithm for enumerating closed patterns in
transaction databases. In Discovery Science, 2004.
Stefan Wrobel.  An algorithm for multi-relational
discovery of subgroups. In PKDD. Springer, 1997.



