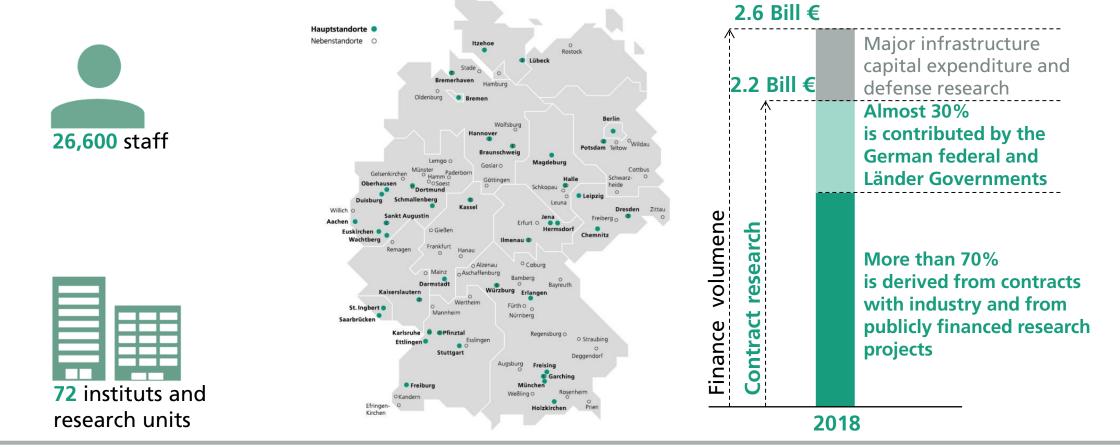
ComCarbon[®] technology Melt spinning of a new class of PAN copolymers for carbon fibers

6th International Forum Composites Without Borders, Moscow, October 17th, 2019

André Lehmann Dr. rer. nat. Fraunhofer Institute for Applied Polymer Research Germany

lehmann@iap.fraunhofer.de +49 331 568 1510


Prof. Dr. Johannes Ganster, Dr. Antje Lieske, Dr. Jens Erdmann

The Fraunhofer-Gesellschaft at a Glance

Largest applied research organization in Europe

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society

Fraunhofer Institute for Applied Polymer Research – IAP

Potsdam

Biopolymers

Prof. Dr. Johannes Ganster

biopolymers (cellulose, starch, lignin), biobased plastic, blends, composites, fibers, films, nonwovens, injection molded parts

Life Science and Bioprocesses Prof. Dr. Alexander Böker

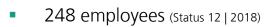
keratin fibers, protein conjugates, biotechnological processes, self-assembly techniques, "smart" materials for medical applications

Center for Applied Nanotechnology CAN Prof. Dr. Horst Weller

quantum materials, nano-medical applications, nanoscale energy and structure elements

Functional Polymer Systems Dr. Armin Wedel

materials with specific optical and electronic properties, polymeric OLEDs, polymer electronic components, organic solar cells, chromogenic materials



Pilot Plant Center PAZ

Prof. Dr.-Ing. Michael Bartke

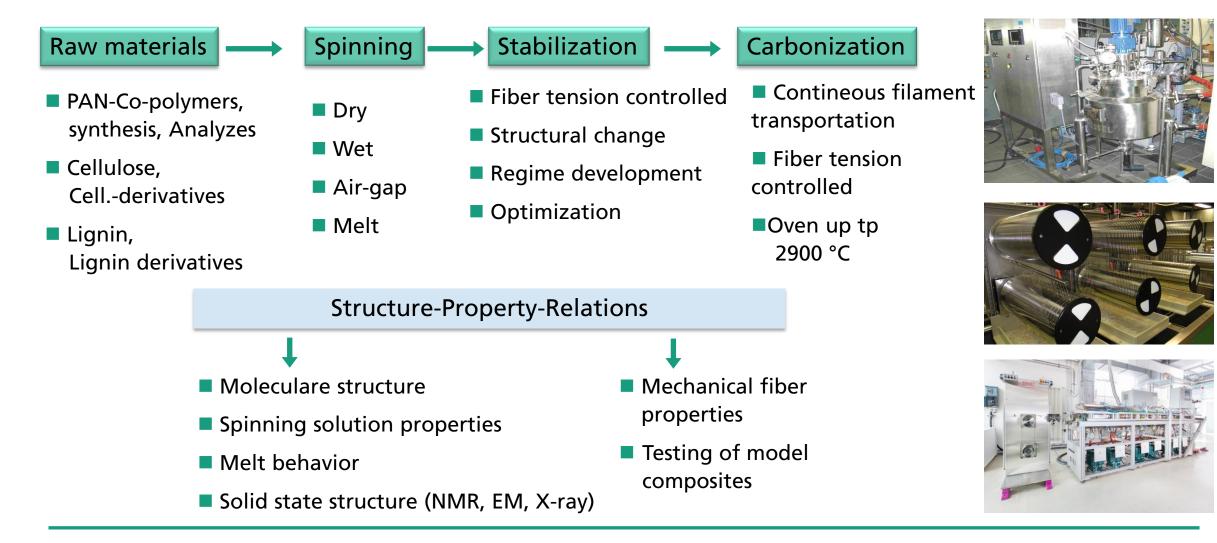
polymer synthesis and processing, scale-up to ton scale

- 2018: € 22.5 million institute's budget
 € 15.9 million external revenues
 - research sites: **Potsdam** Hamburg Schkopau Schwarzheide Teltow Wildau

Synthesis and Polymer Technology

Dr. Thorsten Pretsch

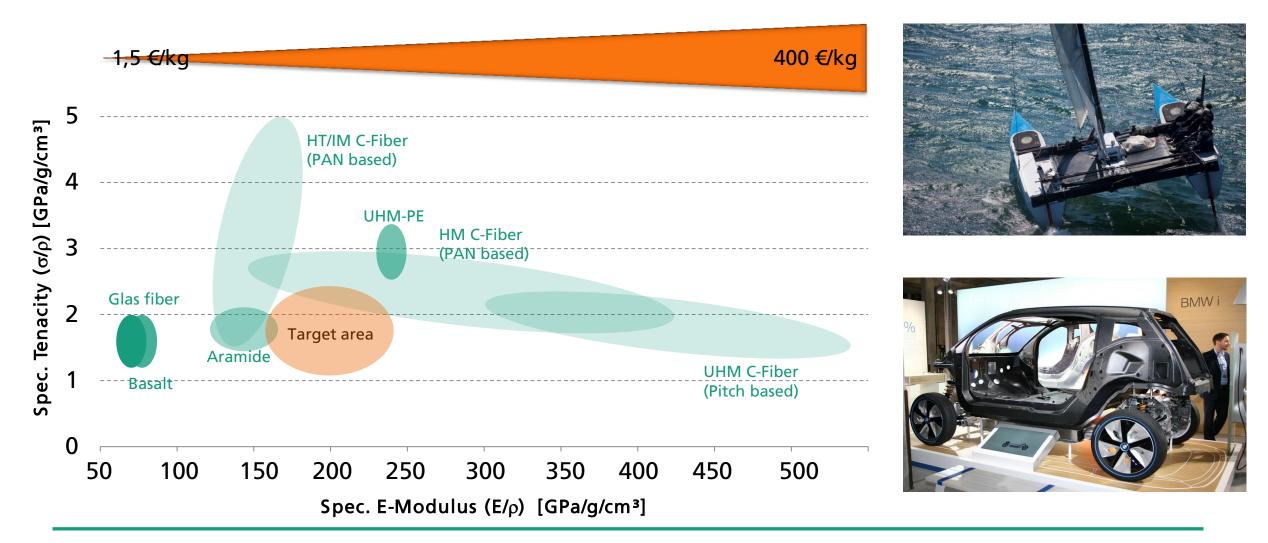
polymer synthesis and process development, microencapsulation, membranes and functional films, shape-memory polymers



Polymeric Materials and Composites PYCO Prof. Dr. Christian Dreyer

thermoset resins for applications in lightweight construction and micro- and optoelectronics

Carbon Fiber Competencies at Fraunhofer IAP


ComCarbon – Commodity Carbon fibers Project info

Acronym: ComCarbon – Commodity Carbon fibers (mid tech – mid price) for mass markets

- Funding by Fraunhofer 3.6 Million Euros
- Departments involved: »Polymer synthesis«, »Fiber technology« and »Materials development and structure characterization« of Fraunhofer IAP
- IP owner: Fraunhofer Society

Fibers for composites

Cost reduction potential by melt spinning

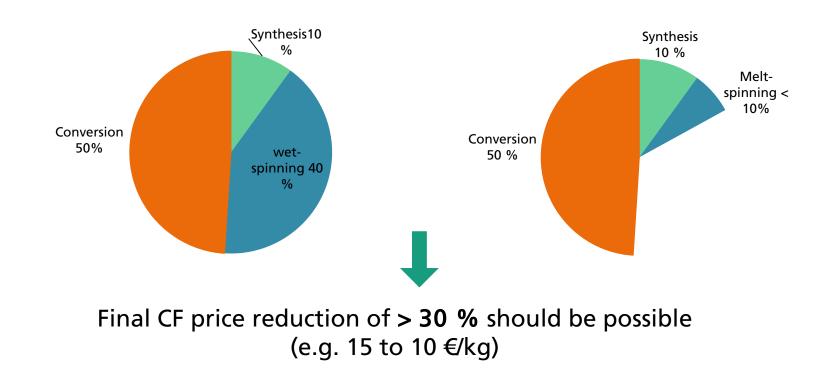
Melt spinning vs. solution spinning – PAN

Wet spinning

Melt spinning

Precursor accounts for 50 % of the CF cost

Dope	20 % PAN in DMAc	100 % PAN
Hole number	16x3k	16x3k
Spinning positions	16	16
Final titer single filament	1 dtex	1 dtex
Throughput spinning mass	6 m³/d	6.4 m³/d
Spinning speed	180 m/min	1000 m/min
Outcome fiber mass	1.2 t/d	7.5 t/d => Factor 6!


	Goss (1986)	Cohn (2001)	Kline (2004)	Harper (2011)	Trütz- schler (2012)	Das (2012)	This paper (2013)
Precursor	34%	47%	51%	31%	51%	54%	54%
Pretreatment	3%	4/%	51%	69%	49%	6%	1%
Stabilization	20%	16%	16%			13%	12%
Carbonization	23%	26%	23%			8%	21%
Surface treatm.	4%	2%	407			3%	4%
Sizing	7%	2%	- 4%			4%	4%
Winding	5%	3%	6%			9%	4%
Other	4%	4%	0%	-		3%	0%

Cost reduction potential by melt spinning

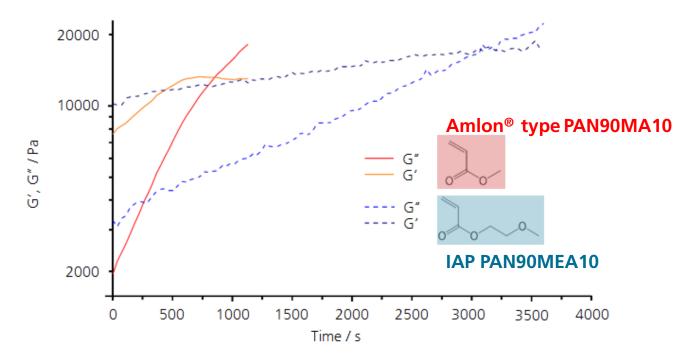
Melt spinning vs. solution spinning – PAN

Assuming melt spinning reduction factor of 4 (conversion the same)

New approach by IAP: Melt spinnable PAN-Copolymers

Challenge: Weakening the nitrile interaction

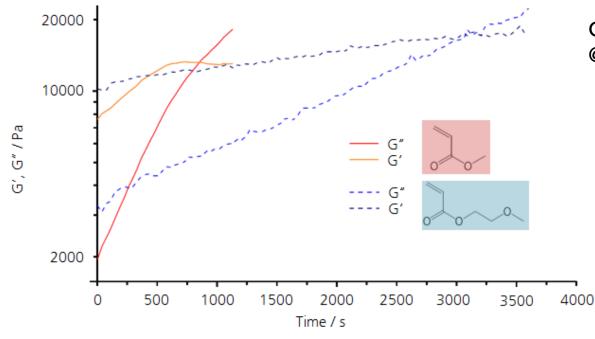
Internal plasticizing


Alkyl derivative of acrylic acid or acryl amide

Target parameters

- meltable copolymer with comonomer of ≤ 10mol%
- sufficient thermal stability for melt spinning without thermal degradation

$$\rightarrow$$
 t_{cross} (G'=G") > 30min


- Systematic screening of comonomers with regard to the effect of polarity and different functional groups
- Resulted in the identification of a suitable class of comonomers → alkoxy acrylates

Challenge: Weakening the nitrile interaction

- Systematic screening of comonomers with regard to the effect of polarity and different funtional groups
- Resulted in the identification of a suitable class of comonomers \rightarrow alkoxy acrylates
- largely improved thermal stability

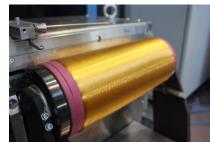
Copolymers with 10% of comonomer, $\rm M_w$ ca. 35.000g/mol, @235°C

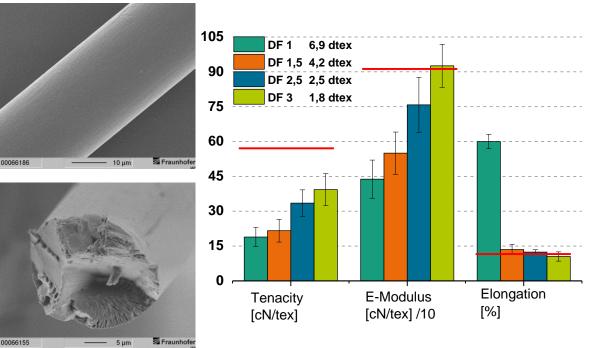
- Amlon[®] type PAN (PAN90MA10) vs. PAN90MEA10
- Time for Sol-gel transition increased by factor ~4
- PAN90MEA10 synthesized by emulsion polymerization developed by Fraunhofer IAP

Precursor Melt spinning

Melt-spinning of PAN90MEA10

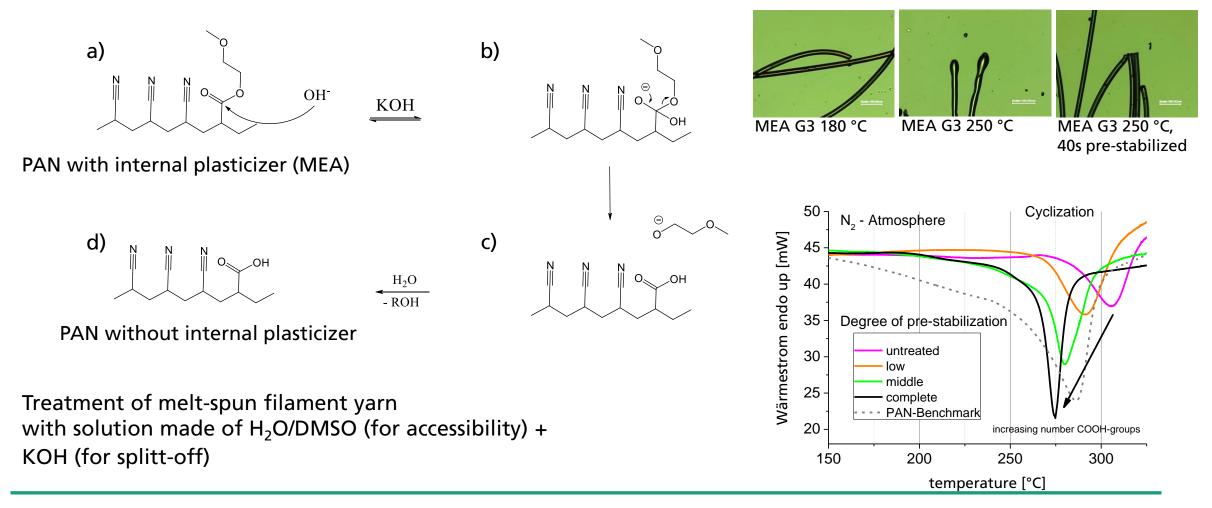
Spinning speed: 200 – 1000 m/min
 T_{Spinning}: 215 °C – 230 °C

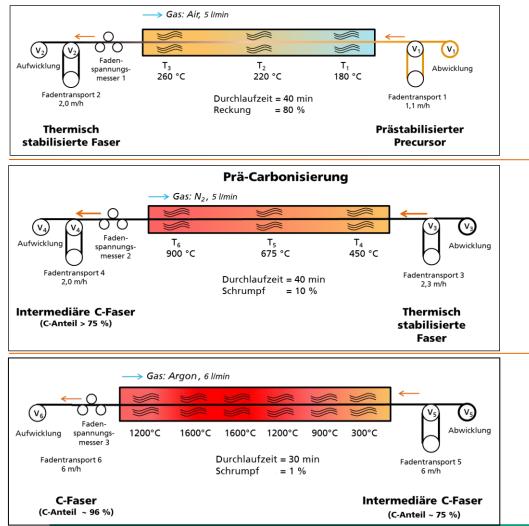

Textile-physical values


Titer: 1.8 – 7.0 dtex
Tenacity: 10 – 40 cN/tex
E-Modulus: 350 – 900 cN/tex
Elongation: 9 – 20 %

Structural parameters

- Round cross-section
- Compact structure
- Degree of orientation OG₍₁₀₀₎: 0.8 0.9





Precursor – Pre-stabilization Splitting-off the internal plasticizer by wet chemistry

Conversion

Stabilization

- Temperature: 180, 200, 210, 220, 230, 240, 250, 260, 280 °C
- Residence time: 15, 20, 30, 35, 40, 45, 60 min
- Drawing: 0, 30, 50, 80, 100 %
- Gas flow: 2, 5, 10 l/min, (Air, N₂, Air/N₂)

Pre-Carbonization

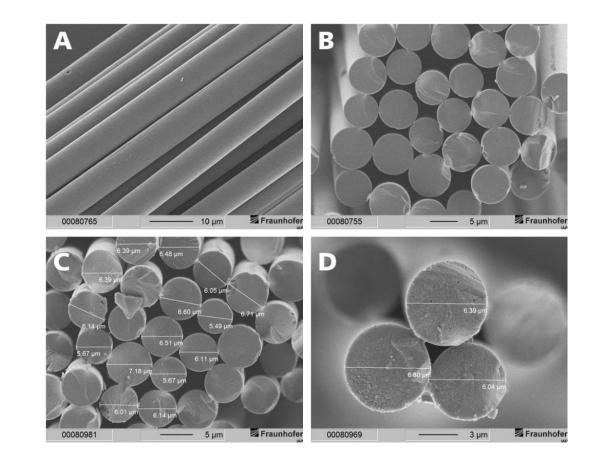
- Carbon content ~76 mass-%
- Mass loss ~ 40 % (H₂, N₂, CH₄, CO, HCN, CO₂, H₂O, NH₃)
- Heating rate ≤ 15 K/min
- Shrinkage ~ 10 %

Carbonization

- Carbon content ~ 96 mass-%
- Heating rate up to 100 K/min tested

Structure and properties of carbonized fibers Morphological characterization

Fiber cross section

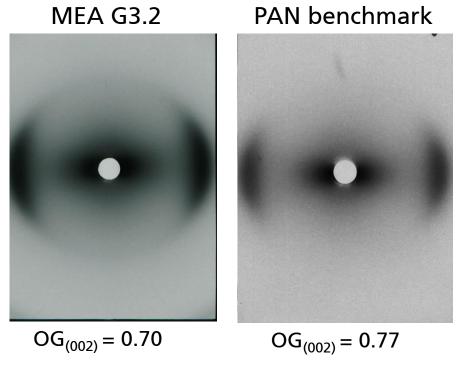

\rightarrow ideal round

- \rightarrow no voids
- \rightarrow smooth cross section area

Surface

- \rightarrow in general smooth
- → fibers partially stick together
- Average single filament diameter

ightarrow 6.4 +/- 0.4 μm



Structure and properties of carbonized fibers **Morphological characterization**

- Graphitic structure
- High graphitic content
- Highly oriented structure OG₍₀₀₂₎ = 0.7

Precursor	E-Modulus	Tenacity	Elongation
	[GPa]	[MPa]	[%]
MEA G3.2	170	1400	0.7
	± 10	± 100	± 0.1
MEA G9	143	1630	1.1
	± 16	± 185	± 0.2
PAN	220	3600	1.5
(Tenax E, HTA 5131)	± 12	± 700	± 0.3

Degree of orientation

What has been achieved

- Evaluation and synthesis of new PAN-copolymer class
 - Synthesis by emulsion polymerization in kg-scale
 - Max. 10 mol% comonomer
 - Enables thermoplastic behavior with high melt stability and finally good carbon fiber properties
- Contineous melt spinning
 - Reaching 1000 m/min spinning speed
 - High degree of orientation accessable
 - Fineness and textile-physical properties similar to wetspun precursor
- Continuous Conversion
 - Pre-stabilization to reach unmeltable stage
 - Stabilization and carbonization regime similar to wetspun precursor

What needs to be improved/solved

- Pre-stabilization by wet-chemistry no economic way to reach unmeltable state
 - Combination of external and internal plasticizer?
- Achieved carbon fiber properties need further improvement
 - Increasing degree of orientation in precursors
 - Spinning oil
 - Optimizing molecular weight

Thank you for your kind attention

Please contact: André Lehmann Dr. rer. nat. Fraunhofer Institute for Applied Polymer Research lehmann@iap.fraunhofer.de +49 331 568 1510

