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Abstract— Optical belt sorters can be used to sort a large
variety of bulk materials. By the use of sophisticated algo-
rithms, the performance of the complex machinery can be
further improved. Recently, we have proposed an extension
to industrial optical belt sorters that involves tracking the
individual particles on the belt using an area scan camera. If the
estimated behavior of the particles matches the true behavior,
the reliability of the separation process can be improved. The
approach relies on multitarget tracking using hard association
decisions between the tracks and the measurements. In this
paper, we propose to include the orientation in the assessment
of the compatibility of a track and a measurement. This allows
us to achieve more reliable associations, facilitating a higher
accuracy of the tracking results.

I. INTRODUCTION

The use of sensor-based sorters for sorting bulk materials
allows discriminating particles based on a wide range of
possible features. In particular, many particles in common
bulk material sorting tasks can be classified reliably based on
features that can be obtained using imaging sensors. Popular
applications of sensor-based sorters include waste manage-
ment, sorting industrial minerals, and ensuring quality of food.
Aside from classical RGB data, the spatial distribution of the
temperature or radioactivity can also be put in visual form and
used for the sorting process. Not only are sensor-based sorters
widely applicable, they also allow for a non-destructive and
dry sorting process [1].

An example of a camera-based sorter design is illustrated
in Fig. 1. Bulk material is applied to the conveyor belt and
the individual particles are expected to adapt to the velocity
of the belt. On the belt or after the belt, the particles are
observed by a camera. At the end of the belt, each particle
launches along a parabolic flight path that is altered for some
particles using bursts of compressed air. The particles hit by
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Fig. 1: Schematic view of an optical belt sorter showing the
essential components. We show both the area scan camera
used for the tracking-based approach and the line scan camera
currently used in industrial optical belt sorters.

the bursts no longer follow the parabolic flight path and land
in a different container than the particles that fly unobstructed.

The delays between the observation and the separation
pose a particular challenge. These delays are mainly caused
by data processing times and the activation delays of the
nozzles. Due to these delays and the high velocities of the
particles, there is a significant displacement between the
position at which the particle is observed last and the position
at which it passes the separation mechanism. To bridge this
gap, predictions based on motion models are required. Sensor-
based sorters as currently commonly used in the industry
utilize line scan cameras and assume that all particles fly
straight in the transport direction of the belt. In recent work,
we proposed a method to improve the sorting quality by the
use of an area scan camera [2], [3]. We utilize the new data
available by employing multitarget tracking to keep track of
the motion of the particles traveling along the belt. Based
on the tracking results, we can improve the predictions as
to where the particles will pass the separation mechanism,
which is why we refer to our approach as predictive tracking.
Predictive tracking can not only help improve the sorting
process, the observed trajectories of the particles can also be
used for classification purposes [4].

The multitarget tracking algorithm employed relies on,
among others, the suitability of the motion models and the
accuracy of the actual measurements. Numerous multitarget
tracking algorithms exist and they differ in key aspects
that determine their suitability to certain applications. One
important aspect is how unlabeled measurements are treated.



If the measurements are labeled, meaning, it is known which
track each measurement originated from, the multitarget
tracking problem can be split up into multiple single target
tracking problems, which eliminates the key challenge of
the general multitarget tracking problem. For applications in
which the measurements are unlabed, there are algorithms
that perform hard association decisions between tracks and
measurements, e.g., the global nearest neighbor [5, Sec. 6.4]
(GNN), and algorithms that do not focus on a specific
association decision [6]–[8]. In multi-hypothesis tracking [5,
Sec. 6.7] (MHT), multiple possible hard association decisions
are regarded over multiple time steps. This leads to a tree
of hypotheses that is pruned as new information allowing to
assess the associations more accurately comes in.

In our case, hard association decisions are useful because
they allow us to accumulate information about the track
contained in the image data that can later be used for
classification purposes. While using multi-hypothesis tracking
would be an option, real-time constraints in the sorting
task [9] do not allow for this approach. Multitarget tracking
approaches using hard association decisions rely on a measure
of compatibility of a measurement to a track. When measuring
the state, e.g., the location, directly, a distance of each track
to all individual measurements is computed. Based on this
distance, the GNN finds the association that minimizes the
sum of the distances.

The better the individual tracks can be discriminated, the
better the association and thus the tracking becomes. In [10], it
is proposed to integrate additional quantities (both quantities
on linear domains and on discrete domains) that are not
relevant to the motion model. In our paper, we improve the
accuracy of the associations in the multitarget tracking for
optical belt sorters by not only keeping track of the position
but also the orientation of each particle, which is a quantity on
a periodic domain. We provide details how the estimation of
the orientation can be used to support the association process.
In our application, the benefit of using the orientation is
not limited to the association problem as the separation can
also be improved. For example, when regarding an oblong
particle, the orientation can matter in the separation stage as
the particle may or may not be hit by neighboring nozzles
depending on the orientation.

In the next section, we explain the essentials of the multi-
target tracking that we employ for optical belt sorters. The
integration of the orientation in this framework is described
in the third section. In Sec. IV, we present evaluation results.
A conclusion and an outlook are provided in the last section.

II. BASICS OF PREDICTIVE TRACKING

The processing chain to derive predictions from the
obtained image data starts with image processing. Using
image processing techniques, the centroids of the particles
on the belt are determined. Afterward, a motion model is
used to determine when and where each particle will pass the
separation mechanism. For optical belt sorters using line scan
cameras, the motion model is used implicitly—one or multiple
of the nozzles available are activated after a certain delay

from the observation of the particle. While line scan cameras
can also be used to approximate the motion orthogonal to
the transport direction [11], such approaches are not yet used
in state-of-the-art industrial optical belt sorters.

The predictive tracking approach builds upon centroids
extracted from image data of an area scan camera and
treats the tracking problem as a classical multitarget tracking
problem without measurement labels. While using tracking
results in a higher complexity of the algorithms, more accurate
predictions can be achieved as more information about the
particle movement is obtained.

Let us assume for now that the number of targets measured
is equal to the number of tracks in our current estimate. When
using the GNN as the multitarget tracking algorithm, we
require a suitable distance measure. A distance measure that
is easy to employ for linear spaces such as Rn is the (squared)
Euclidean distance. However, depending on the scenario, other
distance measures may be more suitable, as becomes evident
when regarding the association likelihoods [12, Sec. 10.3]. A
likelihood `(ẑ|i) can be given that describes the compatibility
of each track to any measurement for a single vector-valued
measurement ẑ and the index of the track i [12, Eq. (10.22)]. If
both the uncertainties in the measurements and of the tracks
are normally distributed, the likelihoods can be described
using normal distributions.

To derive the best association directly from the likelihoods,
we can look for the association of the tracks to the measure-
ments that maximizes the product of the individual likelihoods.
As we do not allow one measurement to be associated with
more than one track and vice versa, our resulting association
decision can also be described by a permutation. By taking
the logarithm of the product of the likelihoods and inverting
the sign, we can transform the maximization problem into a
problem of minimizing the sum [13, Ch. 11] of the (negative)
log-likelihoods. For normal distributions, the result obtained
from taking the logarithm of a single association likelihood
and inverting the sign is very similar to a squared Mahalanobis
distance [12, Sec. 10.3.1.2], with just an additional factor
and an additive term on top. Due to this similarity, we can
instead determine the association that minimizes the sum of
the squared Mahalanobis distances for association problems
with only normally distributed noise terms. The problem of
minimizing the sum can be formulated as a classical linear
assignment problem, for which fast solvers exist. In our
implementation, we use the LAPJV algorithm [14], which
finds the optimal solution with a complexity of O(n3). Given
the association, we use one Kalman filter per particle to
estimate the position and velocity of each particle.

In our scenario, particles are regularly entering and exiting
the field of view. To take new particles into account, we
assign each measurement a likelihood that it stems from a
yet unknown track. This likelihood is high at the beginning
of the observed area. While we expect most particles to
appear within the range that an average particle moves during
one time step (for example, 6mm), a hard cutoff should
not be used due to the inherent variation of the velocities
of the individual particles. We apply a similar scheme for



the likelihood that the track is not observed again. If our
prediction indicates that the track has left the observable
area by the time of the next observation, we assign a high
likelihood that the track is not observed. To account for
missed observations and modeling uncertainties, the two
likelihoods are never set to zero. To use these scenario-
specific adjustments in the GNN framework, we convert the
likelihoods into distances to achieve the same effect. We refer
the reader to [15] for more details on the matrix generated
for the use in the assignment problem solver and a more
thorough discussion of the multitarget tracking as used in the
predictive tracking.

III. PREDICTIVE TRACKING USING THE ORIENTATION

The weakness of the GNN is that wrong associations
can have a significant impact on the performance of the
multitarget tracking. Furthermore, in our tracking problem,
wrong associations can lead to, e.g., tracks being confused
from one time step on, which can lead to significant problems
in the classification. If we accumulate visual or motion-based
features of the tracks, the decision may be wrong for tracks
that are confused as features that actually belong to a different
track are also used for the classification.

Let us say, for example, that particles A and B are particles
of a food and at some point in time, the image processing
has detected that a spot of particle A is covered by poisonous
fungi. If the particles A and B collide toward the end of the
belt, then confusing the two particles at this point may lead
to particle B being separated from the stream, while particle
A will fly unobstructed and become part of the final product.

Thus, good association performance is crucial to both the
tracking and the classification. To improve the associations,
we extend our state vector by the orientation, which can be
determined using visual data for certain classes of particles.
In the following, we first describe how we can keep track of
the orientation while assuming the association is given and
then lay out how the association can be enhanced by the use
of the orientation. For simplicity, we always assume that the
orientation of the particle is independent of the position of
the particle and neglect any linear–circular correlations.

A. Orientation Estimation Based on Image Data

Given a non-rotationally symmetric particle, the image
processing can extract a quantity representing the orientation
of the particle from the image data. For example, the angle
describing the direction in which the longest straight line
within the object points could be used. In our scenario,
we have to particularly pay attention to ambiguities in the
image data. For example, cube-shaped objects appear 90-
degree symmetric in the image data, while a 180-degree
symmetry may be observed for other cuboids and cylinders
lying sideways.

The orientation of a particle in a two-dimensional plane is a
periodic quantity with an underlying circular manifold. Thus,
many classical approaches to recursive Bayesian estimation
can, if at all, only be applied with significant modifications
and may not show the expected behavior. To correctly model

probabilities on the circle, directional statistics [16], [17] can
be employed. Recursive Bayesian estimators for the circle
have been proposed, e.g., in [18], [19]. If the association
is given, these filters allow us to estimate the orientations
of the particles and model the uncertainties adequately. In
the case of 90 or 180-degree symmetry, we can integrate
the ambiguity using a multimodal likelihood and employ a
filter that allows the modeling thereof. While filters using
the Bingham distribution [20] are inherently suitable for 180-
degree symmetries, flexible filters such as [21], [22] can be
applied for, e.g., 120-degree or 180-degree symmetries.

Alternatively, we can define a linear mapping, e.g., from
[0, 12π), [0, 23π), or [0, π) to [0, 2π) and use standard 2π-
periodic filters for problems featuring 90, 120, or 180-degree
symmetries. An easy mapping is to simply multiply all values
by 2 (for 180-degree symmetry), 3 (for 120-degree symmetry)
or 4 (for 90-degree symmetry). We use such a mapping to be
able to use the von Mises filter [19] as implemented in [23]
in our sample implementation. The estimate as provided by
the von Mises filter can be transformed back via a division by
the respective value to obtain a valid estimate in the limited
distinguishable range of angles.
B. Using the Orientations for the Association

To improve our multitarget tracking, we now use the
orientations in the association process. As we assume the
position component and the orientation component to be
independent, we can split the likelihood of association of
an individual measurement up into a part concerning the
position and a part concerning the orientation. The likelihood
of association of the measurement ẑ to the ith track is given
by

`(ẑ|i) =
∫
R2×[0,2π)
`(ẑ, x|i) dx .

We now call the part of the state x describing the position in
the two-dimensional plane xpos and the (scalar) part describ-
ing the orientation xang. For a measurement ẑ comprising
information about the position ẑpos the orientation ẑang, we
can rewrite the likelihood of association as

`(ẑ|i) =
∫
R2×[0,2π)
`(ẑpos, ẑang, xpos, xang|i) dx .

Due to our assumption that the position and the orientation
are independent, we can write the likelihood as

`(ẑ|i) =
∫
R2×[0,2π)
`(ẑpos, xpos|i) `(ẑang, xang|i) dx

=

∫
R2

`(ẑpos, xpos|i) dxpos︸ ︷︷ ︸
=:`(ẑpos|i)

∫
[0,2π)

`(ẑang, xang|i) dxang

︸ ︷︷ ︸
=:`(ẑang|i)

.

As previously stated, the problem of finding the association
that maximizes the product of the likelihoods can be refor-
mulated as a problem of minimizing the sum of the negative
log-likelihoods. If we apply the logarithm and invert the sign,
we can see from

− log `(ẑ|i) = − log `(ẑpos|i)− log `(ẑang|i)
that we can regard the two parts separately and combine them
afterward.



Fig. 2: Three-dimensional model of the optical belt sorter as
used in the DEM simulation.

Assuming the uncertainties in the estimated positions and
the measurements are normally distributed, we can follow
the scheme as given in [12, Eq. (10.22)–(10.24)] to obtain
a formula for the likelihood `(ẑpos|i) that only requires
evaluating the density of a normal distribution. Further, we can
reduce − log `(ẑpos|i) to a squared Mahalanobis distance [12,
Eq. (10.25)–(10.29)] between the measurement ẑpos and the
position estimate xpos

i of the ith track. However, the formula
for − log `(ẑang|i) does not reduce to an intuitive and cheap
to calculate distance even if the uncertainties in the estimated
and measured angles are von Mises distributed. Therefore,
we replace − log `(ẑang|i) with a common distance measure
on the circle [17, Eq. (1.3.7)] called the cosine distance

d(ẑang, x̂ang
i ) = 1− cos(ẑang − x̂ang

i )

between the measurement ẑang and the estimate of the ith
track x̂ang

i . The squared Mahalanobis distance for the position
is then combined with the cosine distance for the orientation
via a weighted summation. This combination induces that the
distance-like penalty terms representing the likelihood that
the measurement belongs to a yet unknown track and the
likelihood that the track is not in sight have to be adjusted
when integrating the orientation in the association problem.

Unlike the squared Mahalanobis distance, the cosine
distance does not take the uncertainties in the estimates
and measurements into account. Currently, we combine the
squared Mahalanobis distance with the cosine distance using
a fixed weighting factor. In future work, we plan to use a
weighting or a distance measure that respects the uncertainty
in the orientation estimate and the orientation measurement.

IV. EVALUATION

To evaluate our proposed extension of the multitarget
tracking algorithm, we regard the association decisions
performed when including or excluding the angle in the
association process. For this, we simulate feeding a batch of
particles to TableSort, a small experimental optical belt sorter
that we use in our project. The simulations of TableSort are
based on the discrete element method [24] (DEM) and are
explained in more detail in [3], [25]. The three-dimensional
model of the sorter used in the simulation is depicted in
Fig. 2. A realistic belt speed of 1.15m/s was chosen for
the simulation. As the bulk material for our evaluation, we

Fig. 3: The real cuboid that the stimulated particles are based
on is shown on the left and the modeled cuboid on the right.

use a batch of 4113 wooden cuboids. The models are based
on real cuboids as shown in Fig. 3. The parameters of the
cuboids that are relevant to the simulation were determined
experimentally according to procedures described in [26].
A. Evaluation Criteria

Unlike real data, the data obtained from the numerical
simulation provide us with the entire trajectories of the
individual particles. Using the ground truth trajectories, we
can generate measurements with known labels. These labels
are then used to resolve which track gave rise to which
measurement. This information is solely used for validation
purposes and is not made available to the multitarget tracking
algorithm. While we know the entire trajectories of the
particles including their positions during the feeding process,
only measurements of particles on the belt are passed on to the
multitarget tracking algorithm. Although our ground truth has
a higher temporal resolution, we only provide measurements
to the multitarget tracking at 200Hz, which is a realistic
frame rate for area scan cameras in real world applications.

Our algorithm saves the indices of all measurements that
are assigned to each track. Using the information saved during
the generation of the measurements, we use these indices
to look up the IDs of the ground truth tracks to which the
measurements belong. Based on the list of IDs of the tracks
whose measurements were assigned to an estimated track,
we define two types of errors.

If the list of a single estimated track contains IDs of
multiple ground truth tracks, this is proof of an incorrect
association. In the following, we refer to this as an error of
the first kind. This measure of error does not respect errors
occurring when a measurement is erroneously deemed to
stem from a new track although the corresponding track has
already been observed. An extreme example is a scenario in
which the multitarget tracking erroneously does not assign any
measurement to existing tracks. In this case, all measurements
would be assigned to new tracks in each time step, which
would not result in errors of the first kind.

To also respect these false associations, we define a second
measure of error. If measurements of a single ground truth
track were used in multiple estimated tracks, this counts as
an error of the second kind. As illustrated in Fig. 4, these
two types of errors are not mutually exclusive. If, e.g., two
tracks are confused from a certain time step on, this will
result in both types of errors.
B. Evaluation Results

In all scenarios regarded, we keep track of the position of
each particle in the two-dimensional plane in which the belt
lies and use the identity matrix as the measurement matrix for
the position measurements. We use a constant velocity model
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Fig. 4: Illustration of how two tracks can be confused, which
leads to both kinds of errors. Measurements of different
ground truth tracks were used in both tracks and the two tracks
share measurements of a common ground truth track. The
measurements are shown as crosses with the corresponding
time indices and erroneous associations are circled in red.
Ground truth tracks are shown using solid lines, whereas
dashed lines are used for estimated tracks.

as the system model for the position component of the state.
As the measurement model for estimating the orientation,
we use an identity model with additive noise that takes the
periodicity into account. A random walk model adapted to the
periodic case is used as the system model for the orientation
component.

In our first scenario, we evaluate the performance of the
multitarget tracking when the ground truth data are used
directly as the measurements. As shown in Fig. 5, this
results in zero errors of both kinds, regardless whether the
orientation is used or not. Thus, when the measurements are
highly accurate and the system model is suitable, using the
orientation may not be required to reliably determine the
correct associations.

In real world scenarios, the position measurements always
contain some kind of measurement noise. To account for such
noises in our second scenario, we add an additive noise term

vpos ∼ N (0m, 0.001m2 · I) ,
with the identity matrix I to each position measurement. With
C = 0.001m2 · I, the standard deviation is about 0.032m
along each of the two axis. As the distance an average particles
travels in one time step is approximately 0.0055m in the
simulation, this is clearly a non-negligible noise term. We
did not use our knowledge about the precise parameters of
the noise when choosing the parameters of the multitarget
tracking algorithm as such knowledge is usually unavailable
in real world applications.

The ground truth data obtained using the DEM simulation
include a full rotation matrix for each particle in every time
step. Since only the angle around the axis that is a normal
to the plane in which the belt lies can be reliably obtained
from the two-dimensional image data captured from above,
we reduce our rotation matrix to that single angle. For this,
we can first multiply the rotation matrix with the vector
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Fig. 5: Visualization of the evaluation results for both
approaches and all three scenarios.[
1 0 0

]T
. Then, the third entry is discarded to perform

the projection on the two-dimensional plane. The angle on
the plane can then be calculated using the atan2. These steps
can be efficiently combined in one step. For a rotation matrix
R ∈ R3×3, we can use atan2(r2,1, r1,1) to calculate the
desired angle.

In the second scenario, we did not add any noise to the
orientation. Further, the ambiguity in the orientation stemming
from the symmetries of the particles was disregarded. This
was possible as the rotation matrices obtained from the
simulation do not suffer from such ambiguities. As evident
from Fig. 5, using the orientation significantly reduces the
errors in the associations in this scenario.

In the third scenario, we add a von Mises distributed noise
term of vang ∼ VM(0, 100) to all angle measurements to
account for noise in the orientation measurements in real
world scenarios. Further, we account for the symmetries of
the particles. While the thin cuboids as shown in Fig. 3
are, strictly speaking, only 180-degree symmetric, we say
that in the worst case, the image processing cannot reliably
determine the longer side. Therefore, we assume the particle
to be 90-degree symmetric, which is even more challenging
than a 180-degree symmetry. To generate the measurements,
we first add vang to the ground truth angles. Then, we multiply
all angles by 4 and take them mod 2π, which allows us to use
the 2π-periodic von Mises filter and erases the information
about the precise orientation derived from the ground truth
data. The 90-degree symmetry worsens the effect of vang

added to the angles as it limits the range of usable angles
from [0, 2π) to [0, 12π). As shown in Fig. 5, the uncertainties
and symmetries reduce the benefit of using the orientation.
Nonetheless, an improvement can be observed even in this
challenging scenario.



V. CONCLUSION

In this paper, we have proposed a novel extension to the
predictive tracking scheme used for sorting bulk materials
using optical belt sorters. Using an approach based on
directional statistics, we are able to estimate the orientation of
the particles. This information is not only useful by itself, e.g.,
for motion-based classification or to improve the separation
using the nozzles, it also allows improving the associations
of the multitarget tracking scheme. Accurate associations are
important both for precise tracking results and for being able
to accumulate visual features of the particles to guide the
separation decision.

The enhancement described is a purely software-based
improvement. For n active tracks, the distance calculation
for the association problem is in O(n2) if the number of
measurements and tracks is approximately equal. Given the
association decision, the additional overhead to estimate the
orientation is in O(n). Since the assignment problem solver
has a run time in O(n3), the asymptotic complexity of the
algorithm is not changed. To use this extension in real world
applications, a fast image processing routine to extract the
orientations of the particles is also required.

Future work will include investigating other distance
measures for the orientation term or combining the position
and orientation components in a different manner. Further,
we plan to use the orientation estimates in the classification.
Additionally, the sizes of the particles could also be estimated
and used for the association decision. Moreover, using other
system models may enhance the estimation of the position
and orientation.
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