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Abstract—Observations and decisions in computer vision are inherently uncertain. The rigorous treatment of
uncertainty has therefore received a lot of attention, since it not only improves the results compared to ad hoc
methods but also makes the results more explainable. In this paper, the usefulness of stochastic approaches will
be demonstrated by example with selected problems. These are given in the context of optimal estimation, self-
diagnostics, and performance evaluation and cover all steps of the reasoning chain. The removal or interpreta-
tion of unexplainable thresholds and tuning parameters will be discussed for typical tasks in feature extraction,

object reconstruction, and object classification.
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1. INTRODUCTION

Motivation. The observations used in computer
vision are inherently uncertain and often contaminated
with outliers. The rigorous and consistent treatment of
uncertainty has therefore received a lot of attention,
since it not only improves the results compared to ad
hoc methods but also makes the results more explain-
able.

Often, thresholds for decisions can be replaced by
quantile values of hypothesis tests, i.e., error probabil-
ity limits, provided that the stochastic properties of the
entities under consideration are known. The statistical
interpretation of free tuning parameters gives insights
into their meaning and eventually permits them to be
set reasonably or even to be eliminated. Thus, expert
knowledge for tuning these parameters becomes obso-
lete, which paves the way toward fully automatic pro-
cedures.

Some publicly available computer programs for
image processing and computer vision require assump-
tions about uncertainty as input parameters, e.g., the
image noise level, but do not provide any information
about the quality of the output. This defeats statements
about the reliability of the results. Sometimes this is
incomprehensible, because often little additional effort
is required to provide this information. Reported qual-
ity measures can help the user to decide on the useful-
ness of the algorithm for the specific application.

Related work. D. Mumford predicted that statisti-
cal reasoning and modeling of uncertainty will become
the scientific paradigm of the future [1]. Within the arti-
ficial intelligence community, P. Cheeseman defended
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probability theory as the right tool for dealing with
uncertainty: Many forms of reasoning systems are
reducible or inferior to the use of probabilistic methods
for the same task [2].

Methods for geometric reasoning within the frame-
work of projective geometry can be found in [3] and
[4]. To speed up the verification process within the
(deterministic) RANSAC algorithm [5], assessment
components have been introduced [6, 7]. Studies for the
uncertainty of multiview relations are [8, 9]. Statisti-
cally based model selection schemes can be found for
instance in [10] for structure from motion problems and
in [11] for geometric reasoning.

Contribution. The presented considerations refer to
all levels of abstraction in vision systems. Applications
of these principles can be found in the entire reasoning
chain. A complete review covering all aspects of the
topic is beyond scope of this paper. In the following, we
therefore restrict ourselves to selected examples that
demonstrate the usefulness of stochastic approaches in
computer vision.

2. MANIFESTATIONS

In the following, we discuss selected examples. We
do not discuss representations for uncertainty. We
implicitly assume that the uncertainty to be represented
can be represented by the first two moments of a prob-
ability distribution. Without more specific information,
this is justified by the maximum entropy argument,
which states that, under certain assumptions, the major-
ity of probability distributions that could have gener-
ated a finite data set must have an entropy close to the
maximum entropy distribution [12].
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2.1. Removal of Unexplainable Thresholds
and Tuning Parameters

In the following, the replacement of thresholds and
tuning parameters by better explainable parameters will
be presented. For example, significance levels will be
introduced for decisions by hypothesis tests. This will
be discussed in the context of feature extraction, object
reconstruction, and classification.

2.1.1. Feature extraction. Many image processing
algorithms expect, for instance, the image noise G, as
an input parameter. Often this parameter influences the
results considerably—at least quantitatively, i.e., based
on the number of extracted features. In the following
we assume that the image noise has been estimated
based on repeated measurements, image models, or
gradient information [13, 14].

Edge Extraction. Edge extraction methods usually

rely on a threshold for the magnitude ||Vg|* = gf + gi
of the local intensity gradients g, and g.. Since the
expectation value of the gradients is E(g,) = E(g.) =0,
the extraction process can be interpreted as testing the
hypothesis that the magnitudes of the gradients are sig-
nificantly nonzero. With the standard deviations of the
gradients derived by error propagation, the test statistic
is

g g

r c 2

=+ =5 ~ A2 (D
8r ch

which is y?-distributed with two degrees of freedom. Of
course, the independence assumptions do not hold
exactly. The precision of the position and orientation of
the edge element can be given with the known image
noise level G, [15].

2.1.2. Reconstruction: Statistical interpretation
of linear regularization. Another example for the pos-
sibility to remove a parameter is given in the context of
linear regularization. As an example, we consider the
determination of a regularly spaced height profile u; =
flx;) from possibly irregular spaced heights z(x))
observed at the positions x;. Approximation by the non-
parametric graph z = f(x) results in a 1.5 D representa-
tion of the profile.

If there are fewer observations than unknown
heights, the problem is ill-posed and we have to intro-
duce prior information to obtain a unique solution. With
implicit smoothness assumptions about the profile, the
functional of the standard Tikhonov regularization
reads

Ey = Y eltn) + N [u' (01 dx @)

L

with the observations

zZ(x) +e(x) = au;+ (1 -a)u;, (3)
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Fig. 1. The true profile, the observed heights with standard
deviation ¢, = 0.5, and the reconstructed profile for an
expected minimal curvature radius rp,;,, = 0.72.

being a linear interpolation of the unknown heights u;
and the regularization parameter A% This factor con-
trols the trade-off between the “roughness” of the solu-
tion and the infidelity of the data. In a statistical frame-
work, a discrete version of the energy reads [16]

2 2
Ive(x) 1k
Ey= 2Y S5+ c, )
FTNET TRE TS

assuming N uncorrelated observations. The K curva-
tures are approximated by the finite differences

U 1 =2uj+u;,,
d2
where d is the spacing of the height profile sought.

K(u;) =

) )

Multiplying (4) by N G? and comparing it with (2)
reveals that the regularization parameter is determined
by [15]

Vo= =2 (6)

where the ratio N/K accounts for the different numbers
of height observations and curvature “observations.”
For the determination of a proper regularization param-

. 2 2 . .
eter A? or the variances G, and O, there exist various

approaches, e.g., cross validation [17], variance com-
ponents estimation [18], and the method of maximal
curvature of the L-curve (cf. Figs. 1 and 2 for an exam-
ple).

These methods are not appropriate for real-time
applications since they are somewhat expensive and
time-consuming. However, knowledge of the stochastic
properties of the observations or of the expected profile
offers simple opportunities to set this parameter suit-
ably:

* If the average variance of the observed heights is
known, the variance of the curvatures can be derived

from (5) by error propagation, i.e., Gi = 6(55 Id*.

. 2 . P
o If the variance G is unknown, an expected mini-
mal curvature radius r,;, can be specified which sub-
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Fig. 2. The sum Zef(xi) as a function of ZKZ(M ;) for var-

ious values of A. A reasonable solution of A = 0.52 can be
read off at the bend of the L-curve, which corresponds to a
minimal curvature radius of r;, = 0.72 (cf. Fig. 1 also).

sumes the expected roughness of the profile with a
sound interpretable quantity: Assuming uncorrelated,

normally distributed observations k¥ ~ N(O, Gi ), the

probability for the curvature k lying within the interval
126, is P(-20,< K <26,) =95% and thus 6, = 1/(2r,;,)
holds.

Of course, these relations hold only for values with
a problem-specific, reasonable magnitude.

Within a statistical framework, model violations due
to non smooth objects causing ridges and breaks can be
considered up to some degree also [19]: By applying
robust estimation procedures, the influence of outliers
can be reduced. This affects both the observed point
heights z(x;) and the fictitious curvature observations
K(u;).

2.1.3. Classification with rejection class. For many
applications in uncontrolled environments, the assump-
tion that the model base specifies all objects that might
appear is not sustainable. Therefore, for the classifica-
tion task, a rejection class is usually introduced to relax
this closed world assumption [20].

This rejection of classifications can be done either
because of large distances to the model instances or
because of ambiguities. Both cases can be treated
readily by applying a x>-test for the Mahalanobis dis-
tances and considering likelihood ratios respectively
[21].

2.2. Optimal Estimations and Self-Diagnostics

Within the framework of adjustment theory, we dis-
cuss the derivation of weights and covariances (1) to
obtain optimal estimations and (2) to apply model vali-
dations.

2.2.1. Optimal estimation: Feature correspon-
dences and weights. Knowledge of the variances and
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correlations for observations offers the opportunity to
obtain optimal parameter estimations. This will be dis-
cussed in examples for extracted and tracked interest
points.

Optimal estimation. In multiple view geometry,
the relations between different images and camera ori-
entations are often formulated by algebraic entities,
modeling mappings, or constraints for image features.
Within the framework of algebraic projective geometry,
these relations are often bilinear in the unknown param-
eters and the observations using a homogeneous repre-
sentation for the entities. Thus, in order to minimize
algebraic errors, the parameters can easily be derived
by solving eigenvalue problems.

These solutions are statistical suboptimal because
they do not take the correlations of the observations
into account. Often the individual weights (variances)
of the observations are not taken into consideration
either. Furthermore, the solutions cannot easily be gen-
eralized to the estimation of multiple homogeneous
entities with multiple constraints.

Therefore, the determination of realistic weights for
the observations is desirable for computing optimal
estimations.

Weights for extracted and tracked interest
points. Common interest point operators search image
windows for which the sum of the gradient magnitudes
is large [22, 23]. As postulated by the settings of the
operator parameters, the error characteristic for the
point positions is usually homogeneous and isotropic.
In this situation, the treatment of these uncertainties in
the position is, in principle, not mandatory [24]. How-
ever, some multiview approaches enforce a uniform
occurrence and distribution of the interest points in the
image in order to achieve a favorable geometric config-
uration, e.g., by image tiling. It cannot then be expected
that this characteristic holds any longer, and the uncer-
tainties of the points can influence the result of the
parameter estimation considerably [8]. Furthermore, if
we want to use other image features, such as straight
line segments for instance, the uncertainty has to be
considered to use different image features combined.

In the context of stereo analysis, point correspon-
dences can be in principle established by tracking or by
matching [25]. In both cases, the uncertainty of the
point positions can be determined without much effort
[24]. Consideration of these uncertainties affects the
uncertainties of the parameters describing the image
orientations as well as positional uncertainties of the
reconstructed objects in space.

The left side of Fig. 3 shows enlarged the estimated
standard error ellipses for the positions of the interest
points extracted with subpixel precision in a first image.
The right side shows the tracked image points together
with their standard error ellipses of the coordinates. As
is to be expected, the overall appearances of the error
characteristics are similar in shape and magnitude for
tracking and matching.
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2.2.2. Self-Diagnostics: Model validation. Within
the theory of adjustment, the stochastic properties of
the observations are collected in a stochastic model. An
initial covariance matrix EEIO) of the observations 1 is

assumed to be known and related to the true covariance
matrix X, by

X, = GSZE?)’ @)

with the possibly unknown scale factor Gé . As pointed

out in the previous paragraph, the covariance matrix %,
of the observations 1 is often available.

If the initial covariance matrix reflects correctly the
uncertainty of the observations, the variance factor is

03 = 1. The factor can be estimated from the residuals
€ via [18]

Go = , ®)

where r denotes the redundancy of the system.

If the mathematical model actually holds and the
observations are normally distributed, the test statistic

T=2~F,. )

has the expectation value one and is Fisher distributed
with r and oo degrees of freedom. If the test is not
rejected, data and model fit. Otherwise there is no evi-
dence for conclusions such as incorrect models, pres-
ence of outliers, or wrong covariances for the observa-
tions. In particular, small errors in the assumptions con-

cerning the precision ZE?) of the observations lead to a

rejection of the hypothesis. Therefore, initially the use-
fulness of test statistic (9) is rather limited.

However, outliers can be eliminated by applying
robust estimation schemes or outlier detection by
hypothesis tests. If we furthermore have reasonable

weight matrices Z],l for possibly correlated observa-

tions, (5(2J = 1 holds and model violations can be
detected.

Thus the hypotheses test (9) enables the validation
of functional models if we assume observations to be
free of outliers and realistic weight matrices to be
within the adjustment procedure.

2.3. Performance Evaluation

The evaluation of results with respect to reference
data (ground truth) refers to the values of estimated
quantities and as well as to decisions.

2.3.1. Empirical accuracy of estimated parame-
ters. For the evaluation of the empirical accuracy of n
results x with covariance ¥,,, one can check the com-
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Fig. 3. On the left, the standard error ellipses for the posi-
tions of the extracted interest points, enlarged by the factor
50; on the right, the tracked point positions in a subsequent
image of the sequence.

plete set in a combined hypothesis test. The Mahalano-
bis distance

d=(x-%) (T, +Z,,)" (X=X (10)

is xi -distributed and includes the covariance matrix
X, x, Of the reference data x,. Thus, the often-made
assumption of error-free reference data is relaxed. If

d> Xi; , holds, it can be concluded that the accuracy

potential of the observations is not exploited—provided
that the reference data actually are correct and normally
distributed.

2.3.2. Competing classifiers. As pointed out by
P. Cheeseman, one has to distinguish between probabil-
ity and the uncertainty of probability [2]. Since proba-
bility values depend on the evidence (information) used
to derive them, they are random variables. The impor-
tance of this insight will be demonstrated in the context
of the comparison of competing classifiers based on the
evaluation of a confusion matrix.

Error rate estimation. The classification error or
simply the error rate P(e) has been stated to be the “ulti-
mate measure” for the performance of a classifier [26].
If T is the number of misclassified test samples out of n
samples, the maximum-likelihood estimator of P(e) is

Pe) = L. (11)
n

The number T is a random variable because it

depends on the specific training and test sets used.

Therefore, Tand P(e) have associated confidence inter-
vals according to the binomial distribution.

The table illustrates the necessity of considering
these properties for two competing classifiers 1 and 2.
Without further information, classifier 2 would be pre-
ferred because of its lower classification error rate. By
knowing the number of samples used to determine
these rates, it turns out that the confidence interval for
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Confidence intervals for the error rates of two classifiers 1
and 2 computed for a significance level of o = 0.05

Classifier | Error rate | Confidence interval |Sample size n
1 0.20 [0.145, 0.225] 200
2 0.15 [0.06, 0.260] 50

the classifier 2 is quite large. This might be not accept-
able for applications that demand low misclassification
rates. Furthermore, in this situation other criteria such
as reliability or computational speed might weigh
more.

Receiver operating characteristic. Characterizing
the performance of a classifier by the error rate (11) is
not adequate for all pattern recognition systems. For
binary classifiers the Receiver Operating Characteristic
(ROC) curve permits the system designer to assess the
performance of the recognition system at various
thresholds in the decision rule [26]. For each threshold
value, the correct detection rate is plotted versus the
false acceptance rate. The convex hull of all sample
points yields the ROC curve. Figure 4 shows examples
of the ROC curves for two different classifiers.

For the evaluation of the overall performance, sev-
eral measures have been suggested. Among them, the
value A for the area under the curve has a proper statis-
tical meaning: The value A € [0, 1] reflects the proba-
bility that a randomly chosen point from class a is cor-
rectly rated or ranked with greater suspicion than a ran-
domly chosen point from class b [27].

Which classifier performs significantly better than
the other cannot, without further information, be stated

True positive rate
1.0
09
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 i

O 1 1 1 Il | | 1 | | ]
0 0102030405060.70.809 1.0
False positive rate
Fig. 4. ROC curves for two classifiers. The gray area for one

classifier indicates the area under the curve. The diagonal
results for a random classifier.
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at all. But with rather general assumptions, the variance
of the area can be specified via [27]

2 _ A=A+ (1, 1)(Q, - A)

(O

n,ny

L (=1, - A%

n,np

(12)

with sample sizes n, and n, for the two classes, O, =
A/(2 — A), and Q, = 2A%/(1 + A). Thus, the uncertainty
of A is in an essential way influenced by the number of
samples used to determine the corresponding ROC
curve.

Whether two classifiers 1 and 2 differ significantly
in their performance can be checked with the hypothe-
sis test A} = A, vs. A| # A,. The denominator of the test
statistic

(A,-A)°

2 2
c5A1+c5A2—2c5AIA2

T = (13)

follows from error propagation for the area difference
and takes the correlation of the areas A; and A, into
account [28].

3. CONCLUSIONS

It has been demonstrated that the benefits of using
stochastic approaches and interpretations are manifold:

* Unexplainable thresholds and parameters can be
removed or replaced by quantities with a sound inter-
pretation. This gives hints about how to generalize the
procedures.

* The reduction of the parameter set to a small num-
ber of well-defined, meaningful parameters paves the
way toward full automatic vision systems and real-time
applications.

* The provision of quality measures permits the user
to decide on the usefulness of algorithms for specific
applications.

* Vision modules that require and provide quality
measures can be integrated into the reasoning chain in
a consistent manner. For example, the uncertainties of
extracted image features can be transmitted to the esti-
mation of parameters describing the image orientation
(Section 2.2.1). Also, the (secondary) results of the esti-
mation step can again be used for model validation
(Section 2.2.2).

* The determination of realistic weights and correla-
tions for observations offers the opportunity to obtain
optimal estimates, to consider features of different
kinds, to fuse information from different sensors, and to
apply hypothesis tests.

* The use of stochastic models enables self-diagnos-
tics, which is essential for fully automatic systems.
Model validation and selection can be applied.
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