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Abstract. One problem standing in the way of fully automated vehicles
is the question of how to ensure vehicle safety and the safety of all traffic
participants. Standards like ISO 26262 and ISO/PAS 21448 tackle those
issues from different viewpoints by defining safety measures and mecha-
nisms. While ISO 26262 focuses on safety hazards arising from malfunc-
tioning of E/E systems, ISO/PAS 21448 stresses hazards due to tech-
nological limitations. However, it is an open challenge how system-wide
safety can be monitored and validated at run-time. To complement those
safety specifications we propose a system-wide run-time safety analysis.
Our System Health Management concept is based on so-called Health
Indicators (HIs) to propagate knowledge about detected errors and trig-
ger appropriate error reactions. We analyze probable information sources
to define meaningful HIs in automated driving context and investigate
influence factors, of both ISO 26262 and ISO/PAS 21448. We apply our
approach to a case study demonstrating its applicability in an automated
driving scenario.
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1 Introduction

To classify different levels of automation, SAE International released the stan-
dard J3016 defining ”Levels of Driving Automation” [4]. Current cars realize
levels 0 up to level 2, which offer driver support features. For instance, level 2
features can automatically accelerate and decelerate the vehicle. However, the
driver must always supervise and take over in case of critical situations, ergo
he serves as a safe fallback state. Transitioning from level 2 to level 3 increases
system complexity as the vehicle operates autonomously in dedicated Opera-
tional Design Domains (ODDs) without requiring driver supervision. Only after
notification, the driver must take over within a specified time span. Level 4 can
master all driving tasks within the ODD; the automated driving system of level 5
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vehicles is capable to handle all environmental conditions. ISO 26262 [2] provides
necessary processes and mechanisms for realizing functional safety by avoiding
design faults and offering error detection and handling mechanisms, among other
things. Nonetheless, these mechanisms do not automatically account for the ab-
sence of functional insufficiencies. To close this gap, ISO/PAS 21448 [3] defines
the term ’Safety of the Intended Functionality (SOTIF)’ as absence of unrea-
sonable risk due to hazards caused by performance limitations of the intended
behavior or by reasonably misuse by the user. And yet, the safety standards
only support vehicle development up to automation level 2 as many open issues,
such as how to validate and verify functional safety, remain [11]. The diversity
of error sources like random hardware faults or software design faults gives an
indication of why designing level 3 systems is so challenging. Furthermore, the
causal safety chain becomes a system-wide property as the failure of one element
impacts the rest of the system. For instance, sensor limitations could lead to er-
roneous environment perception and dangerous driving maneuvers. These safety
violations must be identified at run-time in order to trigger respective mitigation
actions. To tackle this problem, we present an approach for system-wide safety
monitoring at run-time.
This paper is structured as follows. In Section 2 we present a detailed descrip-
tion of the proposed concept. Section 3 provides an example of how this concept
can be applied in an automated driving context. In Section 4 we compare our
concept to related work. At the end we give a conclusion and outlook.

2 Proposed Approach

Introducing the notion of Health Indicators shall increase system safety by en-
abling system degradation and Quality of Service (QoS) mechanisms. HIs on
system-level enable system-wide recovery and degradation. Especially automated
driving systems rely on mechanisms of redundancy and diversity to improve sys-
tem safety. Thus, a standardized approach for degradation, not locally but on
system level, has to be defined. In case of failure, this allows switching to hot-
standby instances. Moreover, the principal idea of QoS is adopted to a safety
perspective. Attaching QoS values containing HIs permits service receivers to
instantly decide how far they trust the received service and how to process this
data. Current vehicle architectures integrate diverse platforms like AUTOSAR
or Genivi confirming to different safety and criticality levels. The QoS approach
facilitates coordinating safety mechanisms beyond the borders of single platforms
and standards.

2.1 Meta-Model

We introduce a System Health Management concept to target system-wide run-
time safety analysis. Figure 1 depicts a meta-model of the considered system.
Its goal is to formally express vehicle abstraction levels and system properties
used for run-time health analysis. This model enables partitioning the vehicle
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into different domains that group dependent features. According to safety anal-
ysis conducted for ISO 26262 and ISO/PAS 21448 all functional features and
domains must have well-defined safety properties. These properties can include
redundancy and configuration information for the purpose of analyzing valid
configurations and possible degradation strategies. At domain level, those re-
quirements result in a rule set for functional degradation rules. Depending on
available features, this rule set allows continued system operation despite failures
by reducing the set of active functional features (graceful degradation). For de-
ciding which features to terminate, functional features have an assigned priority.
In case of failure, features can implement adaptation strategies to save resources
by performance degradation. Functional features are composed of different sub-
systems, defined by hardware, software, redundancy, and capability properties.
The performance degradation rules are based on the subsystem’s availability
and performance. Our concept considers the described properties of the meta-
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Fig. 1. Meta-model for considered vehicle

model as basis to define constraints and models for run-time Health Indicators.
Thus, run-time monitors check those properties at subsystem, functional fea-
ture, and domain level. Those monitors are tailored to their underlying systems.
Subsystems for example have monitors that supervise critical hardware and soft-
ware resources. Domains or functional feature monitors may check degradation
and availability properties of platforms. Run-time Health Indicators shall enable
run-time system degradation strategies. Possible structures of health models are
defined in section 3.
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2.2 Health Indicator

Within our concept we define Health Indicators as a triple of Performance, Re-
liability and Degradation: HI = (Per, Rel, Deg). The three parameters capture
different aspects required by different safety standards. The Degradation para-
meter is a system specific set of degradation levels, which are based on availabil-
ity requirements. ISO 26262 demands supervision and monitoring functionalities
to assess the health state of E/E systems with respect to random or system er-
rors. The health state of ISO 26262 related safety considerations is captured in
the Performance parameter. The Reliability parameter evaluates how much to
trust the system due to uncertainties. Therefore, it encompasses SOTIF related
safety considerations by including the vehicle’s interaction with its environment,
users, and other cars to capture uncertainties introduced by them.
The main purpose of Health Indicators is to monitor system-wide safety prop-
erties at run-time in order to trigger appropriate mitigation actions. Safety vio-
lations can be mitigated by reducing the system’s functionality or performance.
Our Health Indicator triple supports both degradation strategies. The Degra-
dation parameter gives an overview on available system resources for functional
degradation. The Performance and Reliability parameters of features or domains
are a valuable information source to trigger performance degradation strategies.

2.3 Run-time System Health Management

The self-adaptation strategy of the SHM is implemented as MAPE-K loop. It
refers to the five activities of Monitoring the environment and/ or system,
Analyzing data for discrepancies, Planning possible adaptation strategies, and
finally Executing the adaptation based on modeled Knowledge [10]. Figure 2
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Fig. 2. Adaptation mechanism structure

illustrates the planned MAPE-K adaptation architecture. Each managed sub-
system consists of a local MAPE-K loop. Subsystems can be single software
platforms, ECUs, or sensors, for instance. Relevant health information is locally
collected during the analysis phase and is shared with a global analysis unit,
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the System Health Manager (SHM). The SHM receives information from one
or multiple local analysis units and optionally also from other SHMs. Based
on this information, HIs on subsystem, functional feature or domain level are
determined. The HIs are in turn shared with managed subsystems. For clean ar-
chitectural structuring, the concept shall comply to the ”separation of concerns”
principle. Therefore, the adaption logic and execution are left with local state
managers, as they are the only ones with detailed information on, for instance,
running processes. The SHM focuses on abstract global health analysis and pro-
vides this information via HIs to local managers. Extensive system analysis is
required to ensure the local adaptations lead to a globally consistent state as
for instance presented in [5]. For safe global recovery, it may be necessary for
dependent subsystems to exchange current states.
As a standalone solution, our concept cannot guarantee safe system behavior
but rather acts as one measure to enable system degradation strategies by pro-
viding self-awareness on the system’s health status. For example, one SHM is a
single point of failure and might violate safety requirements. To circumvent this
problem, two redundant global SHMs can be implemented. The second SHM
serves as hot-standby instance and can take over in case of failure of the first
instance. Therefore, compliance with safety requirements is dependent on com-
bining safety mechanisms tailored to the underlying problem statement.

3 Health Indicators in Automated Driving Context

3.1 Use Case

This section presents an example for determining HIs on subsystem level. The
paper is taken from the thesis [6], refer to it for more refined Health Indicator ex-
amples. Figure 3 shows a simplified logical architecture of the Automated Driving
domain adapted from [1]. The system enables level 3 features like a ”highway pi-
lot”, to autonomously navigate vehicles on highways with structurally separated
roads with a maximum velocity of 130 km/h. In case of severe system failures,
the vehicle can either continue its operation with a reduced velocity of 60 km/h,
request the driver to take over after a specified time, or stop the vehicle at the
emergency lane. To define HIs the presented E/E system architecture is analyzed
and divided into subsystems. In the following, the nominal integration platform
is taken as an exemplary subsystem for calculating HIs. The nominal integration
system is responsible for trajectory calculation. The computer vision platform
provides information to the PAC and the SAC ECUs. Both channels generate
independent environment models. Based on this environment model, the PAC
application computes a collision-free vehicle trajectory. In parallel, SAC also uses
computer vision information to determine a minimal risk trajectory. Afterwards,
the PAC Validator and the SAC Validator each check both trajectories for colli-
sions. According to several performance and safety requirements, the trajectories
are associated with a score. The Selector uses those scores to choose the best
trajectory.
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Fig. 3. Example logical architecture for Automated Driving domain

3.2 Health Indicators of Automated Driving System

The Degradation represents different levels based on the availability and causal
dependencies of hardware and software resources. PAC and SAC have different
purposes; PAC shall continuously operate and compute trajectories while SAC is
supposed to take over in case of PAC failure. SAC is not intended for continuous
operation. As soon as SAC is activated a handover to the driver is initiated.
Those differences shall be visible in different degradation states:

DegNom =


0 Ok

1 Minimal Risk

2 Failed

(1)

For determining the Performance parameter, we propose a rule-based approach
based on software monitor results. The nominal integration system is considered
safety-critical and different software monitors supervise the timely arrival of
sensor information and whether logical and deadline constraints are satisfied. An
error tolerance for failed reference cycles can be configured for Alive Supervisions.
For instance, all supervision results are summed up in a supervision status, which
can have one of four states:

– OK: No supervision failed.
– FAILED: An Alive Supervision failed and the error counter is below the

configured error tolerance.
– EXPIRED: A Deadline or Logical Supervision failed or the error counter is

equal or above the configured error tolerance.
– DEACTIVATED: A mode switch deactivated the Supervised Entity.
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Those supervision states can be mapped to performance levels as shown in Equa-
tion 2. OK and DEACTIVATED suggest application performance is good (0).
A delayed sensor input might decrease overall performance of the highway pi-
lot regarding its driving smoothness but is not considered a safety risk. Thus,
FAILED is in this case mapped to medium performance (1). EXPIRED indicates
a severe error or even functionality loss and is mapped to poor performance (2).

PerSen =


0 if LSS = OK ∨ LSS = DEACTIV ATED

1 if LSS = FAILED

2 if LSS = EXPIRED

(2)

The nominal integration system is a poster example of uncertainty introduced by
SOTIF for the Reliability parameter. Using machine learning algorithms in com-
puter vision and grid fusion yields high uncertainties as unfamiliar environments
might be interpreted the wrong way. The probability values of both machine
learning algorithms are indicators of how good the reliability of the environment
model is. In addition, the cross-validation of both trajectories evaluates how
much the computed trajectories can be trusted. The reliability is influenced by
whether the validators agree on the trajectory score and by the number of the
score itself. Disagreeing should decrease reliability, agreeing should increase its
values. Equation 1 considers the elaborated influence aspects.

RelNom = (α ∗ Prob+ β ∗ #agree

#disagree
) ∗ score

scoremax
(3)

3.3 Health Indicator Models

In the following, we outline general aspects for determining Health Indicators
on subsystem, feature and domain level. For Degradation and Performance rule-
based health models prove valuable. They can encompass supervision results of
already installed monitoring mechanisms of safety-relevant software and hard-
ware components like software supervision results or sensor measurements. Pos-
sible subsystem failure dependencies are included by inspecting fault trees. The
uncertainty mirrored by the Reliability cannot be categorized in concrete states.
Instead we propose numerical evaluation with values ranging from 0 to 100.
This way, different influence factors can be weighted and put into relation with
each other. In general exist two main uncertainty causes: aleatoric and epistemic
uncertainty [9]. Epistemic uncertainty covers the uncertainty of unknown situa-
tions as there is no guarantee the artificial intelligence system will react safely.
Aleatoric uncertainty is caused by inaccurate sensor measurements and results in
a misrepresentation of the actual environment. To grasp aleatoric uncertainty, it
is important to capture the current environment state as well as the capabilities
and availability of different sensors. For measuring epistemic uncertainty diverse
and redundant information is used and compared as presented in the example
with PAC and SAC. Therefore, results of different validator and plausibility
checkers can be weighted to measure Reliability. Another uncertainty factor are
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human operators. Consequentially, results of driver monitoring systems are a
good information source on the current driver state and could be included in the
Reliability analysis.

4 Related Work

Most self-adaptive strategies in the industry and the scientific community focus
on application- or component-level analysis. In the following we compare our
concept with three system-level solutions. In the avionics domain, [7] presents a
two-level approach for software health management. The authors suggest com-
bining Component-level Health Managers with a high-level System Health Man-
ager. Similar to our approach, the Component-Level Health Manager is responsi-
ble for monitoring subsystems and reporting the anomalies to the System-Level
Health Manager. The System-Level Health Manager conducts a system-level
analysis on anomalies and executed mitigation actions. In contrast to our run-
time mitigation strategies based on HIs, the overall system diagnosis identifies
the root cause and an appropriate coping strategy is selected. Afterwards, the
Component-Level Health Manager is informed about the strategy and executes
the mitigation actions [7]. This work does not define any abstraction levels for
system health as we do with subsystem, features and domains.
In the automotive domain, the ”SafeAdapt - Safe Adaptive Software for Fully
Electric Vehicles” project presents a decentralized concept for safe runtime re-
configuration. All core nodes cyclically exchange health states of running ap-
plications. The knowledge of application health states is used for coordinated
global adaptions [12]. We propose collecting health information to determine
HIs on feature and domain level in a centralized instance. Our SHM only pro-
vides relevant HIs to local instances, which execute the adaptations.
Frtunikj proposes in [8] a decentralized fault management layer to handle sys-
tem failures. Each local node collects health information to determine a health
state of multiple system functions. Those health states are cyclically exchanged.
Taking the health state and additional information like redundancy types of a
subsystem, its degradation level as well as the system function degradation level
is calculated. On this basis the system reconfiguration manager chooses an ap-
propriate adaption option [8]. The proposed system functions are similar to the
features of this concept. We further consider the domain level for HIs. Addition-
ally, the HIs do not only give an indication on the current degradation state but
include knowledge on Performance and Reliability states.

5 Conclusion and Outlook

To complement existing standards, we set up a generic System Health Manage-
ment concept for run-time safety analysis based on Health Indicators. Moreover,
HIs can help tackling other open challenges for automated vehicles. To bring
automated driving into practice without compromising safety requirements, so-
phisticated verification and validation methods are required. It is yet an unsolved
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problem how to generate test scenarios and test data that capture all relevant
hazards. Virtual simulation environments are a promising strategy and could
further be used for validating our concept in a risk-free environment. But this is
only part of the solution. Bringing verification and testing to run-time appears
a valid approach to complement the vehicle’s safety argumentation. HIs can be
seen as a first step in the direction of run-time verification. Our concept currently
does not consider security issues. Information corruption of sources like backend
servers, other vehicles, infrastructure, or apps would result in severe hazards.
Including a run-time security evaluation is as important as the run-time safety
assessment. Future work could extend the existing HI with security parameters
that indicate external intrusions.
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