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COMPUTATION OF THE PERMEABILITY OF POROUS
MATERIALS FROM THEIR MICROSTRUCTURE BY FFF-STOKES

A. WIEGMANN

Abstract. A fully automatic procedure is proposed to rapidly compute the perme-
ability of porous materials from their binarized microstructure. The discretization
is a simplified version of Peskin’s Immersed Boundary Method, where the forces are
applied at the no-slip grid points.

As needed for the computation of permeability, steady flows at zero Reynolds
number are considered. Short run-times are achieved by eliminating the pressure
and velocity variables using an Fast Fourier Transform-based and 4 Poisson problem-
based fast inversion approach on rectangular parallelepipeds with periodic boundary
conditions. In reference to calling it a fast method using fictitious or artificial forces,
the implementation is called FFF-Stokes.

Large scale computations on 3d images are quickly and automatically performed
to estimate the permeability of some sample materials. A matlab implementation is
provided to allow readers to experience the automation and speed of the method for
realistic three-dimensional models.
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1. Introduction

Recent technological advances allow the reconstruction of realistic three-dimensional
images of many porous materials [24, 8]. There is great interest in performing flow
simulations in order to relate the obtained three-dimensional micro structures with
the macroscopically measureable permeability of these materials [25, 18, 21, 10]. The
book [26] gives a good introduction and overview to this topic.

The goal of this work is to develop a method that can perform such computations as
quickly as possible, and with as little preprocessing as possible. When this is achieved,
the method can also be used in a design cycle, where virtual sructures are generated
and evaluated with respect to their permeability.

To compute the permeability of a material, first the stationary Stokes equations are
solved and then the velocities are averaged. There are two fundamental challenges.

First, the rapid and reliable generation of computational grids for very complex
geometries.

Second, the efficient solution of very large linear systems of equations.
The first task is solved by simply taking the image itself as the grid. All that is needed

is a binarization of the image, where the two states empty and solid are marked. The
pore space is then given by the collection of empty cells, and the obstacles are defined
by the solid cells. The resulting cubic grid cells are commonly referred to as voxels.

Such grids are used very successfully in the lattice Boltzmann method [3] for the
computation of material permeabilities. The success rate of grid generation is 100%,
the run-times of the automatic grid generator are negligable compared to the solver.
In the staggered grid approach, the velocities are defined on their respective voxel-
faces and the pressure variables are defined in the center of the voxel. From [22] the
permeability tensor can be computed by solving three Stokes problems with periodic
boundary conditions and a uniform body force in the pores that is aligned with one
of the three coordinate directions.

The second task is tackled by using a grid-aligned version of Peskin’s immersed
boundary method [16]. Artificial forces allowing to extend the Stokes equations to the
whole domain was used by many different groups [6, 4, 11, 28]. But differently from
those works, here there is no immersed boundary. The forces are simply introduced
at the grid points where the no-slip conditions should be enforced. This simplifica-
tion is possible because only Stokes-flows are considered, and this simplification does
not cause additional loss of accuracy because the obstacles are only given with the
resolution of a voxel.

Most similar to our use of artificial forces is the work by Jung and Torquato [10] be-
cause they also implement boundary conditions through forces to evaluate permeabil-
ities. But instead of their Crank-Nicholson method driving a time-dependent problem
to steady-state, we directly discretize and solve the steady-state.

The newly introduced forces on the surfaces of the solids and velocities and pressure
variables inside the solids are viewed as additional unknowns. The new velocity and
pressure variables are accounted for by the extension of the conservation of momentum
and conservation of mass into the solids. In the interior of the solids, the forces are
zero. Together with the no-slip conditions this means the velocity is zero inside the
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obstacles, and the pressure is constant. The new force variables are defined by the
no-slip conditions on the forces.

In a Schur-complement formulation, one is only left with the discretization of the
no-slip boundary conditions on the solid walls where the variables are the auxiliary
forces on the solid walls. The meaning of the Schur-complement is to embed the forces
as singular forcing terms in the volume, then to solve a forced Stokes problem on the
volume without obstacles and with periodic boundary conditions and lastly, to reduce
the solution of this Stokes problem to the surfaces of the obstacles.

This follows in spirit the long traditions of fictitious domain methods ([13] and
references therein) and capacitance matrix methods ([17]). See also [2] and references
therein. [9] has extracted the general case where such fast methods apply: when
complete rows of the system matrix agree with the preconditioner, the iterations can
be reduced to a sparse subspace.

The discretization applies on a staggered grid (see §3.1 for details), takes advantage
of many well known matrix properties of finite difference matrices (see §3.3) and the
equally well-known fast Poisson solvers for rectangular domains with periodic bound-
ary conditions ([23, 5]). In summary, three steps are required.

(1) In §2, the well known solution of the Stokes equations by four Poisson
equations is carried over to the discrete case in the presence of no-slip
conditions on the surface of the fibers.

(2) Then a symmetric Schur-complement formulation is derived that makes use
of fast Poisson solvers on periodic domains.

(3) The Null-space of the discretized Laplacian for periodic boundary conditions
is judiciously taken care of in a singular Schur-complement formulation.

The discretization (§3) results in a symmetric Schur-complement (§4) for the auxil-
iary forces on the fiber surfaces which can be solved very efficiently with an appropriate
choice of conjugate gradiens, namely MINRES.

The examples section §5 illustrates the first order convergence and efficiency of the
approach for computing permeabilities of several sample materials.

[30] lists a Matlab implementation to allow readers to experience both the automa-
tion and speed of the method for realistic three-dimensional models.

2. Equations

2.1. The Steady Stokes Equation. We use the following notation for the incom-
pressible steady Stokes equation and the boundary conditions for the computation of
the permability tensor of porous materials.

−µ∆u +∇p = f in Ω \G, (1)

div u = 0 in Ω \G, (2)

u(x + ilx, y + jly, z + klz) = u(x, y, z) for i, j, k ∈ Z, (3)

p(x + ilx, y + jly, z + klz) = p(x, y, z) for i, j, k ∈ Z,

u = 0 on ∂G. (4)
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(1), (2) and (3) are the conservation of momentum, conservation of mass and peri-
odicity of the velocities and pressure, respectively. G with surface ∂G is the volume
that is occupied by solid material and Ω = [0, lx]× [0, ly]× [0, lz] is the computational
box including the volume occupied by both solid and void. u is the velocity vector
with components u, v and w, f is the density of a body force in the pore portion of
the computational box with components fx, fy and fz, and p is the pressure. By div
we mean the application of the divergence operator (∂x, ∂y, ∂z) and (4) is the no-slip
boundary condition on the surfaces of the solid.

2.2. Stokes via Four Poisson Problems. For sufficiently regular f , u and p, the
steady Stokes equations decouple into four Poisson problems [12] by taking advan-
tage of the fact that the Laplace and divergence operators commute. Applying the
divergence to the momentum equations and using the conservation of mass yields

div ∇p = ∆p = div (µ∆u) + div f = µ∆( div u) + div f = div f .

Hence, the Stokes problem could be solved as four Poisson problems

∆p = div f in Ω \G,

µ∆u =
∂p

∂x
− fx in Ω \G,

µ∆v =
∂p

∂y
− fy in Ω \G,

µ∆w =
∂p

∂z
− fz in Ω \G,

u = 0 on ∂G,

if only we knew what boundary conditions to use for the pressure. Later it turns out
that implicitly and discretely, we do know them!

Equation (17) suggests that the pressure on the boundary should be given by the
the sum of two terms, one being − ∂

∂n
(u · n) and the other term only depending on

the integral of the body force, appropriately distributed to the boundaries, and dottet
with the normal direction n which points from Ω \G into G.

2.3. Calculation of the permeability. According to Darcy’s law, the through per-
meability κzz in [m2] is defined for a porous material aligned with the x− and y−
coordinates as

κzz = µ
d

∆P

Q

A
.

Here µ is the fluid viscosity in [kg/(ms)], d is the thickness of the probe in [m], ∆P
is the applied pressure difference in [kg/(ms2)], Q is the mass flux in [m3/s] and A is
the cross section area in [m2].

Noting that Q
A

is the mean velocity w̄ and rearranging slightly, we get

w̄ =
κzz

µ

∆P

d
. (5)

What is the meaning of ∆P in our above setting (1)—(4), i.e. for periodic boundary
conditions? The pressure variable p agrees on opposite sides, so its contribution to
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∆P valishes. However, we may think of the body force as the gradient of the applied
pressure difference, ∇p̃ = −f .

Periodic boundary conditions usually lead to non-zero mean velocity components
also in the two directions that lie perpendicular to the applied pressure difference.
This allows the computation of the full permeability tensor, which generalizes Darcy’s
original ”through-permeability” κzz. Now κ denotes the tensor of permeabilities and
ū = (ū, v̄, w̄) the vector of mean velocities. Three Boundary Value Problems should be
considered to completely determine κ. The calculations become particularly simple for
pressure drops proportional to the length of the domain. ∆P = lx for the x−direction
results in ∇p̃ = −f1 = −(1, 0, 0)′, ∆P = ly for the y−direction results in ∇p̃ =
−f2 = −(0, 1, 0)′ and ∆P = lz for the z−direction results in ∇p̃ = −f3 = −(0, 0, 1)′,
respectively. The resulting vectors of mean velocities are ū1, ū2 and ū3, respectively.

Recalling that the pressure gradient points from the larger pressure in front to the
lower pressure behind the probe, (5) becomes

ū = −κ

µ
∇p̃. (6)

The choice of forces in the Cartesian directions allows the computation of the per-
meability tensor one column at the time: κxx

κyx

κzx

 = µ

 ū1

v̄1

w̄1

 ,

 κxy

κyy

κzy

 = µ

 ū2

v̄2

w̄2

 ,

 κxz

κyz

κzz

 = µ

 ū3

v̄3

w̄3

 .

As the material permeability is independent of the viscosity, the viscosity may be
chosen as 1. In this case, the column of the permeability tensor is simply the mean
velocity resulting from the unit force applied in the corresponding direction. This is
illustrated in the accompanying matlab program [30].

3. Discretization

3.1. The staggered grid. u and p are discretized on a staggered grid derived from
a uniform Cartesian grid with mesh size h. We will sometimes refer to the U-grid,
V-grid, W-grid and P-grid and let

n = nxnynz

denote the number of voxel centers.
Cell centers are located at {0.5h, 1.5h, ..., (nx−0.5)h}×{0.5h, 1.5h, ..., (ny−0.5)h}×

{0.5h, 1.5h, ..., (nz − 0.5)h}, and the variables have the following meaning: for i =
1, 2, . . . , nx, j = 1, 2, . . . , ny and k = 1, 2, . . . , nz:

Pi,j,k is pressure at ((i− 0.5)h, (j − 0.5)h, (k − 0.5)h),

Ui,j,k is x-component of velocity at ((i− 1.0)h, (j − 0.5)h, (k − 0.5)h),

Vi,j,k is y-component of velocity at ((i− 0.5)h, (j − 1.0)h, (k − 0.5)h),

Wi,j,k is z-component of velocity at ((i− 0.5)h, (j − 0.5)h, (k − 1.0)h).

Figure 1 illustrates the staggered grid and the meaning of the variables.
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Figure 1. a) The discrete velocity variable in the x-direction approx-
imates the continuous velocity at the center of the left voxel face. b)
The discrete velocity variable in the y-direction approximates the con-
tinuous velocity at the center of the front voxel face. c) The velocity
variable in the z-direction approximates the continuous velocity variable
at the center of the bottom voxel face. d) The discrete pressure variable
approximates the continuous pressure at the voxel center.

Definition 3.1. Solid surface faces on a MAC grid are faces of solid voxels so that one
of the 6 neighboring faces on the same grid lies in the flow domain. See find surface

routine in [30].

By periodicity, Pi,j,nx is a neighbor of Pi,j,1, etc. There are three different sets of
indices for the surface variables indexed 1, 2, . . . ,mx, 1, 2, . . . ,my and 1, 2, . . . ,mz on
the U-, V- and W-grids, respectively. The discrete no-slip boundary condition must be
imposed at the locations of these surface variables which are marked by filled symbols
in Figure 2. This figure also illustrates the reason why the method converges only
with first order even when the true geometry is represented exaclty by the voxels:
the no-slip condition in the tangential direction is enforced half a mesh width away
from the true voxel surface. This leads to slightly higher velocities than the correct
boundary location would yield.

Remark 3.1. On the staggered grid, no boundary conditions are needed for p. ∇p is
evaluated only on voxel faces inside the flow domain, where both neighboring values of
p are ”interior values”.

3.2. Review of discrete operators and their properties. Using the index map

l = i + nx((j − 1) + ny(k − 1)),

geometry-dependent embedding operators for the three types of surface variables may
be defined:

Ex ∈ Rn×mx maps the U-surface variables to their 3d location,

Ey ∈ Rn×my maps the V-surface variables to their 3d location and

Ez ∈ Rn×mz maps the W-surface variables to their 3d location.
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Figure 2. The auxiliary variables in the horizontal (circles) and ver-
tical directions (squares). Empty symbols denote positions where the
auxiliary forces can be set to zero and the variables are not surface vari-
ables because their 4 grid neighbors are all interior to the green domain.
In 3d the 6 grid neighbors have to be considered.

To extend operators and variables to Ω, we need more notation:

Σl = (1, 1, . . . , 1)′ ∈ Rl

Ol = (0, 0, . . . , 0)′ ∈ Rl

Sl = Rl \ {Σl}

Ml =
1

l
ΣlΣ

′
l ∈ Rl×l

Pl = (Il −Ml)

The inner product of a vector with Σl is the sum of that vector. Sl is the l-dimensional
space of vectors in Rl with sum zero. Ml applied to a vector yields a constant vector
with the same average value. Il is the l−dimensional identity and Pl is the orthogonal
projector from Rl → Sl.

Furthermore, we will use

Ψx = ExPmx ∈ Rn×mx ,

Ψy = EyPmy ∈ Rn×my ,

Ψz = EzPmz ∈ Rn×mz .

Ψx embeds the projection from Rmx → Smx in Rn. Ψy and Ψz repsectively embed the
projection from Rmy → Smy in Rn and the projection from Rmz → Smz in Rn.

3.3. Properties of finite difference matrices. The standard difference operators
have several well known important properties which we summarize here for complete-
ness and later reference. The notation follows [7].
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Definition 3.2. The matrix D+(n) with entries

D+(n)i,j = δi,j+1 − δi,j, where i, j ∈ {1, 2, . . . , n}

is the periodic 1d unit forward difference matrix for n cells. By periodicity j = 0 is
identified with j = n and δi,j is the Kronecker delta that is equal to 1 if i = j and equal
to 0 otherwise. Similarly, the matrix D−(n) with entries

D−(n)i,j = δi,j − δi,j−1, where i, j ∈ {1, 2, . . . , n}

is the periodic 1d unit backward difference matrix for n cells. Periodic differences on
the uniform grid with mesh width h can be derived from the unit differences through
division by h.

Definition 3.3. The matrix

∆(n) = D+(n)D−(n)

is the periodic 1d unit Laplace matrix for n cells. The periodic Laplace matrix on the
uniform grid with mesh width h can be derived from the unit matrix through division
by h2.

Definition 3.4. The centered 2- and 3-dimensional difference matrices can be derived
as follows:

Dc
x(nx) = (2h)−1

(
D+(nx) + D−(nx)

)
Dxx(nx) = h−2D+(nx)D

−(nx)

Dzz(nx, ny, nz) = h−2I(nx)⊗ I(ny)⊗∆(nz)

Dyy(nx, ny, nz) = h−2I(nx)⊗∆(ny)⊗ I(nz)

Dxx(nx, ny, nz) = h−2∆(nx)⊗ I(ny)⊗ I(nz)

where the tensor product notation ⊗ means that the matrix on the left is a block that
gets multiplied with the entries of the matrix on the right, and I(n) is the n−dimensional
identity matrix.

Remark 3.2. The centered difference operators approximate the first and second
derivatives of a periodic function at a grid point. The forward difference approxi-
mates the first derivative of a periodic function at the center between a grid point and
its successor (with the correct periodic interpretation). The backward difference ap-
proximates the first derivative of a periodic function at the center between a grid point
and its predecessor (with the correct periodic interpretation). With this interpretation
regarding the location, all approximations are second order. This makes the staggered
grid approach second order accurate for interior empty cells.

Proposition 3.5. The periodic difference operators in 1, 2 and 3 dimensions have the
following properties: for nx, ny, nz ∈ IN, s, t ∈ {+,−} and a, b ∈ {x, y, z}:

(1) The forward and backward operators are negative conjugates:

D+
a (nx, ny, nz) = D−

a (nx, ny, nz)
′
.
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(2) The forward and backward operators commute:

Ds
a(nx, ny, nz)D

t
b(nx, ny, nz) = Dt

b(nx, ny, nz)D
s
a(nx, ny, nz).

Proof. The proof is purely algebraic and can be found, for example, in [27]. �

Proposition 3.6. For all v ∈ Rn, for all a ∈ {x, y, z}, and for all s ∈ {+,−},
Ds

a(nx, ny, nz)v ∈ Sn.

Proof. Because every entry in v appears once with the positive and once with the
negative sign, this property is obvious for periodic difference operators. �

With the understanding that all matrices are intended for three-dimensional voxel
geometries of lengths nx, ny and nz, respectively, where the lengths are positive integers
we drop the arguments (nx, ny, nz) from all subsequent difference matrices. Length 1
is allowed, the matrix ”shrinks” to a lower dimensional operator.

Proposition 3.7. The seven point stencil discretization of the discrete Laplacian in
3d is

∆h = −
(
D+

x D−
x + D+

y D−
y + D+

z D−
z

)
= −

(
D−

x D+
x + D−

y D+
y + D−

z D+
z

)
Proof. The proof is purely algebraic and can be found in [27]. �

Proposition 3.8. The restriction of ∆h to Sn is an invertible operator on Sn.

Proof. We denote the 3-dimensional discrete Fourier Transform (DFT) of U by FU.
For (l,m, p) 6= (1, 1, 1), where the indices in Fourier space l,m and p run from 1 to
nx, ny and nz, respectively, one finds (see [29]) that

∆hU = F

implies

(FU)l,m,p =
h2 (FF)l,m,p{

2 cos
(

2(k−1)π
nx

)
+ 2 cos

(
2(m−1)π

ny

)
+ 2 cos

(
2(p−1)π

nz

)
− 6

} .

Since F ∈ Sn means

(FF)1,1,1 = 0 (7)

we can simply map (FU)1,1,1 to zero to define the inverse ∆†
h of ∆h on Sn as follows:

For F ∈ Sn ,

U = ∆†
hF = h2F−1 (DFF)

where F−1 means application of the inverse discrete Fourier transform and D is a
diagonal matrix with l = i + nx((j − 1) + ny(k − 1)) and entries

Dll =

{
0, l = 1(
2 cos

(
2(k−1)π

nx

)
+ 2 cos

(
2(m−1)π

ny

)
+ 2 cos

(
2(p−1)π

nz

)
− 6

)−1

, l = 2, 3, . . . n
.

�
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Remark 3.3. The method of solving partial differential equations by FFT used in
the proof of Proposition 3.8 is known since the 1960’s. An overview can be found in
[23]. For the sake of simplicity, our implementation (see [30]) follows [29] in that we
actually perform three-dimensional Fourier-transforms. Solving a tri-diagonal system
[23] in the third direction would be even more efficient.

3.4. The embedded discretized Stokes problem. The Stokes equations are dis-
cretized on a staggered grid by applying specifically chosen matching discrete operators
for the gradient (backward differences) and divergence (forward differences) operators:

−µ ∆̃h Ũ + D−
x P̃ = F̃x in Ω \G,

−µ ∆̃h Ṽ + D−
y P̃ = F̃y in Ω \G, (8)

−µ ∆̃h W̃ + D−
z P̃ = F̃z in Ω \G,

D̃+
x Ũ + D̃+

y Ṽ + D̃+
z W̃ = On in Ω \G, (9)

Ũ = Omx on ∂G,

Ṽ = Omy on ∂G, (10)

W̃ = Omz on ∂G.

By the tilde on the operators and variables we indicate that they are only valid on
those portions of the grid that lie in the pores Ω \G. We repeat that on the staggered
grid one needs no boundary conditions for the pressure since the forward differences in
U , V and W each live on the P - grid, and the backward differences in P live on the U -,
V - and W - grids. The backward differences are only applied across cell boundaries in
the interior of the flow domain. Similarly, the forward differences in (9) are evaluated
only across cell centers inside the flow domain, using the boundary conditions (10).

The Stokes equations can be rescaled with respect to viscosity and extended to the
rectangular parallelepiped:

−∆h Ū + D−
x P̄−ΨxFx = F̄x,

−∆h V̄ + D−
y P̄−ΨyFy = F̄y, (11)

−∆h W̄ + D−
z P̄−ΨzFz = F̄z,

D+
x Ū + D+

y V̄ + D+
z W̄ = On, (12)

E ′
xŪ = Omx ,

E ′
yV̄ = Omy , (13)

E ′
zW̄ = Omz .

F̄x, F̄y and F̄z are vectors that are defined on the original domain, on the bound-
aryies of the obstacles and inside the obstacles. They agree with the given forces
except for a division by the viscosity F̃x/µ, F̃y/µ and F̃z/µ, respectively, on Ω \ G.
They are zero inside the obstacles G and are chosen constant on the boundaries

of the obstacles ∂G, F̄x|∂G ≡ −
(∑

F̃x/µ
)

/mx, F̄y|∂G ≡ −
(∑

F̃y/µ
)

/my and

F̄z|∂G ≡ −
(∑

F̃z/µ
)

/mz. This means they sum to zero on Ω, i.e. F̄x ∈ Sn, F̄y ∈ Sn
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and F̄z ∈ Sn. Similarly, Ū, V̄ and W̄ are vectors that agree with Ũ, Ṽ and W̃ on
Ω \G and vanish on the boundary δG and inside G. P̄ is the rescaled pressure vector
that agrees with the original pressure divided by viscosity P̄ = P̃ /µ on Ω \ G and
vanishes on the rest of Ω.

Fx, Fy and Fz are vectors of fictitious forces on ∂G. Note that these forces can
be computed from the extended velocities and pressure. They can be proven to each
sum to zero by the choice of F̄x, F̄y and F̄z and the fact that the discrete Laplace
operator and each component of the discrete gradient operator map Rn to Sn. Thus,
ΨxFx = ExFx, ΨyFy = EyFy and ΨzFz = EzFz.

Theorem 3.9. There exists a solution of (11)-(13).

Proof. Sketch: By standard arguments, there exists a unique solution of the original
problem in the pores, (8) – (10). The complement of the pores, the interior of G,
may consist of one or several compact components. In G, the trivial solution of zero
velocities and zero pressure solves the boundary value problem(s) with zero velocities
(no-slip) on the boundaries. Combining the solutions in the pores, on the obstacle
surface and inside the obstacles results in velocities and pressure on Ω that satisfy the
Stokes equations with given forces in the pores and zero forces inside the obstacles.
The values of the velocities and pressures on and neighboring the surfaces determine
force values on the surfaces, and thus a solution is constructed.

�

Remark 3.4. The solution is by no means unique; the trivial extension by zero pres-
sure is not the only extension into G. Numerical experiments for small examples
suggest the following estimate for dimension the of the null-space N of (11)-(13):

dim N ≈ 7 + max(#S - #F ,1),

where #S is the number of solid voxels and #F is the number of interior faces inside
the solid voxels. In Figure 2, #S is the number of green squares while #F is the number
of empty symbols.

To achieve symmetry of the final Schur-complement we note that Pl is symmetric
and PlOl = Ol. We keep (11) and (12) for our auxiliary solution U, V and W but
replace (13) by

Ψ′
xU = Omx ,

Ψ′
yV = Omy , (14)

Ψ′
zW = Omz .

Remark 3.5. For future reference, we consider the general case of arbitrary Dirichlet
boundary conditions which includes no-slip boundary conditions.

Ψ′
xU = PmxU0,

Ψ′
yV = PmyV0, (15)

Ψ′
zW = PmzW0.
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In this case, the extension of the velocities into G is not zero but satisfies the boundary
conditions “as solution inside the solid”.

We can look at the modified equations because we can always find the solution of
the original problem Ū, V̄, W̄ and P̄ from the solution of the new problem U, V, W
and P as follows:

Proposition 3.10. Suppose U, V and W satisfy (11), (12) and (15). Then

Ū = U− 1

mx

ΣnΣ′
mx

(E ′
xU−U0) ,

V̄ = V − 1

my

ΣnΣ′
my

(
E ′

yV −V0

)
,

W̄ = W − 1

mz

ΣnΣ′
mz

(E ′
zW −V0) ,

P̄ = P

satisfiy (11), (12) and (13).

Proof. Since Ū and U differ only by a constant, Ū inherits the validity of (11) and
(12) from U because the difference operators vanish on constant vectors.

We prove the statement only for the first component of velocity, the other two
components are proven analoguously.

We begin with (15):

P ′
mx

E ′
xU = P ′

mx
U0(

I(mx)−
1

mx

ΣnΣ′
mx

)
E ′

xU =

(
I(mx)−

1

mx

ΣnΣ′
mx

)
U0

I(mx) (E ′
xU−U0) =

1

mx

ΣnΣ′
mx

(E ′
xU−U0) .

This implies

E ′
xU = U0 + c,

where c = (c, c, . . . , c) ∈ R with

c =
1

mx

Σ′
mx

(E ′
xU−U0) .

Noting that

c = E ′
xΣnc,

we get

E ′
x

(
U− 1

mx

Σ′
nΣmx (E ′

xU−U0)

)
= U0. (16)
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In (13), U0 = Omx , V0 = Omy and W0 = Omz , Ū, V̄ and W̄ simplify to

Ū = U− 1

mx

Σ′
nΣmxE

′
xU,

V̄ = V − 1

my

Σ′
nΣmyE

′
yV,

W̄ = W − 1

mz

Σ′
nΣmzE

′
zW.

So (16) simplifies to

E ′
x

(
U− 1

mx

Σ′
nΣmx (E ′

xU)

)
= Omx ,

which is (13) for Ū from the proposition for U0 = Omx . �

By applying the discrete divergence operator to the three equations (11), using that
D+

x ∆h = ∆hD
+
x , D+

y ∆h = ∆hD
+
y , D+

z ∆h = ∆hD
+
z and using (12) we get

∆hP =
(
D+

x ΨxFx + D+
y ΨyFy + D+

z ΨzFz

)
+

(
D+

x F̄x + D+
y F̄y + D+

z F̄z

)
. (17)

Now we have the notation for a 7 × 7 block system that discretizes the Stokes
equations and the jump equations explicitly: Define

M =



∆h O O −D−
x Ψx O O

O ∆h O −D−
y O Ψy O

O O ∆h −D−
z O O Ψz

O O O ∆h −D+
x Ψx −D+

y Ψy −D+
z Ψz

Ψ′
x O O O O O O
O Ψ′

y O O O O O
O O Ψ′

z O O O O


,

X =



U
V
W
P
Fx

Fy

Fz


,B =



−F̄x

−F̄y

−F̄z

D+
x F̄x + D+

y F̄y + D+
z F̄z

Omx

Omy

Omz


then we need to solve

MX = B. (18)

Theorem 3.11. Let X be a solution of (18), with first four blocks U, V, W and P.
Define Ū, V̄ and W̄ as in Proposition 3.10. Then the restriction of Ū, V̄, W̄ and
µP̄ = µP to Ω \G solves (8) — (10).

Proof. By construction, the orignal equations (8) – (10) are a subset of the equations
(11) – (13). Hence any solution of (11) – (13), when restricted to Ω \G also solves (8)
– (10). Since (17) implies (12) by contradiction, the claim follows by Proposition 3.10.

�
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4. Schur-complement formulation

4.1. Elimination of the pressure. By construction, the right hand side in (17) is
always in Rn \ Sn. Thus (17) can alwys be solved for P by applying the supspace

inverse ∆†
h via FFT:

(FP )l,m,p =
h2 (FF )l,m,p{

2 cos
(

2kπ
nx

)
+ 2 cos

(
2mπ
ny

)
+ 2 cos

(
2pπ
nzp

)
− 6

}
with (FP )0,0,0 = 0 as in Proposition 3.8.

Using the subspace inverse ∆†
h, the pressure can be eliminated from (18). The

pressure is split into two parts, the component resulting from the application of ∆†
h

to the 4th block of the right hand side B and the application of ∆†
h to the fictitious

forces. This provides the notation for an efficient method to solve (11), (12) and (14).

P = P1 + P2,

P1 = ∆†
h

(
D+

x ΨxFx + D+
y ΨyFy + D+

z ΨzFz

)
,

P2 = ∆†
h

(
D+

x F̄x + D+
y F̄y + D+

z F̄z

)
.

The resulting Schur-complement is

M1

26666664

U

V
W

Fx

Fy

Fz

37777775 =

26666664

−F̄x + D−
x P2

−F̄y + D−
y P2

−F̄z + D−
z P2

Omx

Omy

Omz

37777775 ,

where

M1 =

26666666664

∆h O O
“
I − D−

x ∆†
hD+

x

”
Ψx −D−

x ∆†
hD+

y Ψy −D−
x ∆†

hD+
z Ψz

O ∆h O −D−
y ∆†

hD+
x Ψx

“
I − D−

y ∆†
hD+

y

”
Ψy −D−

y ∆†
hD+

z Ψz

O O ∆h −D−
z ∆†

hD+
x Ψx −D−

z ∆†
hD+

y Ψy

“
I − D−

z ∆†
hD+

z

”
Ψz

Ψ′
x O O O O O
O Ψ′

y O O O O
O O Ψ′

z O O O

37777777775
.

4.2. Elimination of the velocities. Similar to the elimination of P , (11) can always
be solved for U , V and W because each of the 4 terms in each of the three sets of
equations lies in Rn \ Sn. Each component of velocity is split into two parts, the

component resulting from the application of ∆†
h to the first, second and third block of

the right hand side B and the application of ∆†
h to the terms involving the fictitious
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forces.

U = U1 + U2,

U1 = ∆†
h

((
−I + D−

x ∆†
hD

+
x

)
ΨxFx + D−

x ∆†
hD

+
y ΨyFy + D−

x ∆†
hD

+
z ΨzFz

)
,

U2 = ∆†
h

(
D−

x P2 − F̄x

)
,

V = V1 + V2,

V1 = ∆†
h

(
D−

y ∆†
hD

+
x ΨxFx +

(
−I + D−

y ∆†
hD

+
y

)
ΨyFy + D−

y ∆†
hD

+
z ΨzFz

)
,

V2 = ∆†
h

(
D−

y P2 − F̄y

)
,

W = W1 + W2,

W1 = ∆†
h

(
D−

z ∆†
hD

+
x ΨxFx + D−

z ∆†
hD

+
y ΨyFy +

(
−I + D−

z ∆†
hD

+
z

)
ΨzFz

)
,

W2 = ∆†
h

(
D−

z P2 − F̄z

)
.

Again we have split U , V and W into repeating and one-time calculations as to provide
the notation for an efficient method to solve (11), (12) and (14).

This Schur-complement is the final set of equations on ∂G that is solved numerically:

M2

 Fx

Fy

Fz

 = −

 Ψ′
xU2

Ψ′
yV2

Ψ′
zW2

 , (19)

where

M2 =

26664
Ψ′

x∆†
h

“
−I + D−

x ∆†
hD+

x

”
Ψx Ψ′

x∆†
hD−

x ∆†
hD+

y Ψy Ψ′
x∆†

hD−
x ∆†

hD+
z Ψz

Ψ′
y∆†

hD−
y ∆†

hD+
x Ψx Ψ′

y∆†
h

“
−I + D−

y ∆†
hD+

y

”
Ψy Ψ′

y∆†
hD−

y ∆†
hD+

z Ψz

Ψ′
z∆†

hD−
z ∆†

hD+
x Ψx Ψ′

z∆†
hD−

z ∆†
hD+

y Ψy Ψ′
z∆†

h

“
−I + D−

z ∆†
hD+

z

”
Ψz

37775 .

Proposition 4.1. M2 is symmetric.

Proof. This follows from the facts that ∆†
h is symmetric, D+

x = −D−
x
′
, D+

y = −D−
y
′
,

D+
z = −D−

z
′
and because the one-sided differences D−

x , D−
y , D−

z , D+
x , D+

y and D+
z com-

mute with ∆†
h, by Proposition 3.5 and Proposition 3.6. �

Remark 4.1. After (19) is solved for Fx, Fy and Fz, the solution of the original
problem is found by adding known vectors and restricting them to the original domain

U = (U1 + U2)|Ω\G ,

V = (V1 + V2)|Ω\G ,

W = (W1 + W2)|Ω\G ,

P = µ (P1 + P2)|Ω\G .

Remark 4.2. The Schur-complement system (19) inherits the non-trivial null-space
from the extended system. Only the dimension is reduced by 4, one dimension per
eliminated set of variables U , V , W and P :

dim N ≈ 3 + max(#S - #F ,1),
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with notation as in Remark 3.4.
To cope with this indefiniteness of the matrix, we follow the advice in [1] and use

MINRES [15] rather than CG.

4.3. Efficient Schur-complement multiplication. To solve (19) with conjugate
gradients, the matrix-vector product on the left of (19) must be evaluated. This can
be done very efficiently as follows. First, auxiliary vectors of projected embedded
forces are computed:

F̃x = ΨxFx, F̃y = ΨyFy, F̃z = ΨzFz.

Baed on these quantities, in every matrix-vector product evaluation, exactly 4 Poisson
problems must be solved:

P1 = ∆†
h

(
D+

x F̃x + D+
y F̃y + D+

z F̃z

)
,

U1 = ∆†
h

(
D−

x P1 − F̃x

)
,

V1 = ∆†
h

(
D−

y P1 − F̃y

)
,

W1 = ∆†
h

(
D−

z P1 − F̃z

)
,

and finally the matrix-vector product

M2

 Fx

Fy

Fz

 in (19) can be quickly evaluated as

 Ψ′
xU1

Ψ′
yV1

Ψ′
zW1

 .

Proposition 4.2. The arguments in the computation of P1, U1, V1 and W1 satisfy
(7), i.e. they are in the range Sn of the operator ∆†

h for any Fx ∈ Rmx, Fy ∈ Rmy and
Fz ∈ Rmz .

Proof. F̃x ∈ Sn by definition of Ψx, and similarly F̃y and F̃z. Similarly, by the def-

inition of D+
x , D−

x , D+
y , D−

y , D+
z and D−

z , D+
x F̃x ∈ Sn, D+

y F̃y ∈ Sn, D+
z F̃z ∈ Sn,

D−
x P1 ∈ Sn, D−

y P1 ∈ Sn and D−
z P1 ∈ Sn. Since the sum of elements in Sn is again in

Sn the proof is complete. �

5. Examples

The method is already in use in many ongoing projects, mostly regarding the virtual
material design of so-called nonwoven [20], for the purpose of filtration simulations [18],
fuel cell simulations [21] and simulations of paper dewatering felts.

5.1. Example 1: permeability of a unit cell with spherical obstacles.

5.1.1. Results for permeability. Jung and Torquato [10] considered the unit cell with
spherical obstacles of various diameters to valiate their computed permeability against
solutions by Sangani and Acrivos [19].

We will also consider these values from [19] as the correct solution.
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Spherical obstacles are placed at the center of the unit cell. The diameter of the
obstacle is varied from 0.1 to 1, and the computed permeabilty of the resulting cell is
listed in Table 1.

χ|N 40 80 160 240 J&T [10] S&A [19]

0.1 10.15e−1 9.245e−1 9.182e−1 9.220e−1 9.147e−1 9.112e−1

(4/7/1.0) (15/48/9.6) (26/413/131) (30/1389/482)

0.2 3.902e−1 3.836e−1 3.844e−1 3.847e−1 3.844e−1 3.822e−1

(15/8/1.3) (26/53/14) (36/414/169) (42/1393/633)

0.3 2.136e−1 2.105e−1 2.097e−1 2.092e−1 2.107e−1 2.081e−1

(21/7/1.5) (31/51/16) (41/418/187) (48/1405/710)

0.4 1.249e−1 1.238e−1 1.240e−1 1.239e−1 1.252e−1 1.233e−1

(26/8/1.7) (35/51/17) (44/425/200) (53/1425/766)

0.5 7.622e−2 7.524e−2 7.524e−2 7.505e−2 7.638e−2 7.467e−2

(26/8/1.7) (36/54/18) (44/435/199) (52/1458/768)

0.6 4.622e−2 4.508e−2 4.488e−2 4.476e−2 4.580e−2 4.450e−2

(27/8/1.7) (36/54/18) (44/450/200) (50/1504/742)

0.7 2.619e−2 2.558e−2 2.550e−2 2.543e−2 2.606e−2 2.525e−2

(27/9/1.7) (34/57/17) (42/470/192) (47/1568/705)

0.8 1.372e−2 1.345e−2 1.335e−2 1.331e−2 1.376e−2 1.320e−2

(27/10/1.7) (33/61/17) (41/496/188) (47/1652/695)

0.85 9.617e−3 9.346e−3 9.292e−3 9.250e−3 9.596e−3 9.152e−3

(28/10/1.7) (33/63/17) (41/512/189) (47/1653/697)

0.9 6.548e−3 6.350e−3 6.257e−3 6.227e−3 6.480e−3 6.153e−3

(27/10/1.7) (34/66/17) (42/529/193) (47/1758/698)

0.95 4.354e−3 4.115e−3 4.068e−3 4.050e−3 4.247e−3 4.003e−3

(28/11/1.8) (36/68/18) (43/548/198) (49/1820/736)

1.0 2.692e−3 2.611e−3 2.573e−3 2.555e−3 2.673e−3 2.520e−3

(31/11/1.8) (36/71/18) (46/569/209) (54/1888/799)

Table 1. Permeabilities, iteration counts, memory (MB) and run times
(seconds) for example 1.

The small print in the parentheses in Table 1 indicates the number of iterations
required and the required run time in seconds. Even on the coarsest grid, the perme-
abilities already give the correct impression when compared to [19]. The computed
permeabilities are not monotone under grid refinement. This may be explained by
the fact that the two finest grids are not nested, because we wanted to keep the com-
putations feasible on a computer with 2GB memory. Otherwise, our uniform grid
computations yield better results than [10] for the larger spheres and slightly worse
than [10] for the smallest sphere. This is explained by a discussion in [10] that the
smaller the sphere, the lower the quality of the representation on a fixed grid. This is
graphed in Figure 3, here relative errors are plottetd. Both approaches always over-
estimate the permeability. In the case of FFF-Stokes it is due to the fact that the
boundary conditions in the tangential direction are enforced half a voxel inside the
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Figure 3. Plot of the relative error in the data in Table 1. First order
of FFF-Stokes is visible as well as the better values of Jung and Torquato
[10] for small spheres. Both approaches consistently overestimate the
permeability.

solid, thus providing the flow solver with an effectivley larger emtpy region, where a
higher permeability is expected.

Unfortunatley, [10] give no run time and memory requirements for their calculations.
This is probably because their main interest was in providing numerical evidence that
maximum fluid permeability of triply periodic porous structures with a simply con-
nected pore space and 50% porosity is achieved by a structure that globally minimizes
the specific surface.

The C++ code took between 1 second for the easiest 403 problem with about
256000 = 4×40×40×40 variables less than 17 minutes for the 2403 problem with more
than 55 million variables. Thus, the code may be a very useful tool for performing
studies such as the one in [10].

5.1.2. Convergence of the original variables. The method works on reducing the resid-
ual of the Schur-complement system for the fictitious forces, but the real interest lies
the quality of the solution in the original variables. This example illustrates that the
reduction of the residual of the Schur-complement is also a meaningful criterion for
the original variables.
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Table 2 shows that the 2-norm of the differences between the velocities computed
with 6 digits residual decrease of the Schur-complement and the velocities computed to
1, 2, 3, 4, and 5 digits, respectively, behave exactly the same as the Schur-complement
variables. For the pressure the convergence is initially slower. Only on the finest grid
the decrease is on the same order of magnitude as for the Schur-complement variables.

‖|rG‖|
‖|RHS‖|

‖|U i−U6‖|2
‖|U6‖|2

‖|V i−V 6‖|2
‖|V 6‖|2

‖|W i−W 6‖|2
‖|W 6‖|2

‖|P i−P 6‖|2
‖|P 6‖|2

1e-1 4.73e-01 1.44e-01 7.79e-01 3.63e-01
1e-2 5.26e-02 1.87e-02 5.76e-02 1.08e-01
1e-3 4.96e-03 1.97e-03 5.18e-03 3.40e-02
1e-4 4.67e-04 2.10e-04 5.45e-04 1.15e-02
1e-5 4.26e-05 1.90e-05 5.06e-05 1.10e-03
Table 2. Convergence of the original variables

5.1.3. Convergence of MINRES vs CG. To illustrate the benefit of using MINRES com-
pared wit CG, Table 3 shows the number of Schur-complement matrix-vector products
needed by MINRES and CG in order to achieve a fixed reduction of the residual of the
Schur- complement. This is a reasonable quality measure because both methods are
started with the zero-vector as initial guess, and the norm of the initial residual is
simply the norm of the right hand side, i.e. agrees for the two cases.

CG MINRES

1e-1 7 5
1e-2 29 19
1e-3 91 48
1e-4 323 131

Table 3. Iteration counts of MINRES vs CG.

This means that the higher accuracy required, the greater the benefit of using
MINRES. In particular, the residue does not decrease monotonically when using CG,
and the residuals vary significantly (3rd digit of the norm) after as few as 40 iterations
even for small sized problems. This is probably due to the nontrivial nullspace of the
matrix as explained in [14].

5.1.4. Performance in terms of run time and memory. Since the FFT is known to be
most efficient for powers of 2, it is interesting to see how the overall method performs on
different lengths of the paralellepiped. Table 4 shows results for edge lengths that are
equal to a prime (127), a power of 2 (128), and the product of two primes (128 = 3*43).
The required memory (here: for our C++ implementation, not the matlab code [30])
behaves as expected, with a moderate increase for the larger problem. And the time
per iteration also behaves as expected, it is by about a factor 2 better for the power
of 2. The reason why this is not worse lies in the fact that a 3-dimensional Fourier
transform actually consists of many 1d transforms, and hence the order parameter for
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Figure 4. 3d view of of the plain weave cell with 10 filaments per thread.
a) nx = 64, b) nx = 128 and c) nx = 256.

the FFT is only nx, ny and nz, respectively, and not the total number of variables
n = nx · ny · nz. Another reason is probably the quality of the FFTW implementation
by Frigo and Johnson [5].

n = 4nxnynz nx = ny = nz time / iteration (s) memory (MB)
8, 193, 532 127 6.3 337
8, 388, 608 27 = 128 3.3 345
8, 586, 756 3 ∗ 43 = 129 6.5 352

Table 4. Run time and memory for different prime factorizations

5.2. Example 2: Permeabilities of multifilament woven textiles.

5.2.1. Resolution study. As already illustrated in the first example, if only the perme-
ability is needed, it is sufficient to work on rather coarse grids. Figure 4 and Table 5
illustrate this as follows: The same multifilament woven geometry is resolved with
mesh width 1, 0.5 and 0.25. Then, flow in the z-direction is computed, and the mean
flow velocity is listed in Table 5. As for the much simpler geometries in the first ex-
ample, even for the coarse resolution the mean flow velocities are within 10% of the
mean flow velocities computed on the mesh with the highest resolution. Considering
that 10% is often a good assumption on the measurement error it follows that if the
method works at all (agreement with measurements is the ultimate goal), then one
might as well work with a very coarse grid.

nx ny nz material mean(u) mean(v) mean(w)
64 64 32 31% -8.41e+03 -1.96e+04 1.66e+05

128 128 64 31% -7.77e+03 -1.80e+04 1.56e+05
256 256 128 31% -7.62e+03 -1.75e+04 1.52e+05

Table 5. Variation of velocity for 10 filament woven under grid refinement.
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Figure 5. 3d view of of the plain weave cell a) 10 filaments per thread,
b) 40 filaments per thread and c) 160 filaments per thread.

Figure 6. Cross sections at the same in plane layer of the plain weave
cell with a) structure and b) velocity magnitude.

5.2.2. Variation of filament diameter and number of filaments. Given a fixed porosity
and a fixed type of weaving pattern, the flow resistivity depends signifiantly on the
number of filaments in a thread. Figure 5 and Table 6 illustrate this as follows: The
same simple weaving pattern is used, with different numbers of filaments per thread.
The filaments are made finer to keep the overall porosity. To resolve the thinnest
filaments, we use the finest resolution from the previous example. Again the flow is in
the z-direction, but now the mean flow velocity increases significantly for thicker and
fewer filaments.

Table 6. varied number of filaments

nx ny nz filaments material mean(u) mean(v) mean(w)
256 256 128 10 31% -7.62e+03 -1.75e+04 1.52e+05
256 256 128 40 31% 7.78e+03 -2.08e+03 7.33e+04
256 256 128 160 31% 1.30e+02 -1.60e+02 2.23e+04



22 A. WIEGMANN

6. Remarks

Several features of FFF-Stokes are worth emphasizing:

(1) The inf-sup condition on the pressure is dealt with naturally by solving in
Fourier space, where the constant is simply the first mode.

(2) The speed of convergence results from the fact that for highly porous media,
the solution of forced free space (with force integrating to zero and periodic
boundary conditions) is a good preconditioner for the problem with obstacles.

(3) The additional directions of null-space of the Schur-complement matrix are
properly taken care of by using the MINRES variant of conjugate gradients.

(4) The speed of the implementation results from the fact that in this formula-
tion almost all the work lies in the discrete Fourier transform, the free-space
problem can be solved in O(n log n). For the FFT, the very powerful FFTW
implementation [5] is available in matlab and also as a C++ library.

(5) Notable are the low numbers of MINRES iterations required for the answer com-
pared to results using CG.

(6) Another positive feature is the little increase in the required number of itera-
tions under grid refinement. This is due to the fact that we stopped the solver
after reducing the residual of the Schur-complement problem by 3 orders of
magnitude. Control runs for an extra digit indicated that the permeability
does not change anymore, and so one may stop the computations.

(7) It is an essential feature of FFF-Stokes that we have observed for all examples:
It produces a solution that is correct to several digits extremely quickly and
then takes more and more iterations for every extra digit. For permeability
computations, this behavior is acceptable because usually only a couple digits
can be measued in practice.

7. Conclusions

The permeability of porous media is estimated via the computation of Stokes flows
in three-dimensional computer models of the micro structure of the media.

FFF-Stokes works directly on the voxel model without further need for meshing and
thus provides a fast, memory efficient and easy-to-use tool to perform such permeability
computations.

Great insights can be gained into the dependance of permeability on micro structure
of real porous materials in diverse applications, such as filter, fuel cell and other
materials. FFF-Stokes applies to virtual materials as well as real materials.

A matlab implementation is provided [30] to allow readers to experience the au-
tomation and speed of the method for realistic three-dimensional models.

One drawback of FFF-Stokes is a slow-down of convergence for higher accuracy and
also for lower porosities.

The second, more relevant issue are large errors for narrow channels. Since the
boundary condition in the tangential direction is enforced half a voxel inside the solid,
the flow is too fast. This in general leads to an overestimation of the permeability.
And if channels of 1 or a few voxels diameter are present, this error can be quite large.
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Additionally, in these cases the good agreement of error in the Schur-complement
residual and error in the original variables deteriorates.

Thus, we recommend FFF-Stokes for fairly open structures of porosities above 80%,
where both accuracy and speed of solution are acceptable.
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