
Adaptive Agents in the Context of Connect Four

Olana Missura
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
olana.missura@iais.fraunhofer.de

Artificial intelligence (AI) is a part of most computer
games and it plays the main role in the players’ satisfac-
tion. Games where from the point of view of the player the
computer is “dumb” or “too smart” quickly become boring
or frustrating.

One of the aspects involved in games’ AI is difficulty
scaling. For a game to be interesting for a human player, it
should be neither too easy, nor too difficult. The conven-
tional method to implement this property is a setting called
“level of difficulty” that a player can set up for herself.
This doesn’t satisfy most people. The skills of a player are
changing continuously, not discretely; hence there will be
times, when not one of the proposed values for the level of
difficulty will match her level. Additionally, level of diffi-
culty setting does not necessarily control the strategy or de-
cision making abilities of a computer opponent, but rather
environmental variables. Consider also the fact that gen-
erally games require several different skills to play them.
The situation when computer can adjust all these skill lev-
els automatically is more user-friendly than offering several
settings for a user to set. It is also possible that developers
of the game would prefer to keep the information about the
specific skills hidden from players so as not to disclose too
much data about the mechanics of the game.

In this work we attempt to investigate the two following
questions:

1. To what extent can methods of machine learning be
used to develop an online adaptive agent?

2. How well does such an adaptive agent perform
against humans players?

Most research on developing online adaptive agents
comes from the game developers community. One of the
examples is the work of [Hunicke and Chapman, 2004]. In
their paper the authors place the task of adaptation on the
game engine. It traces and evaluates the player’s perfor-
mance and attempts to adapt the game world in such a way
that the game keeps being challenging, but not too diffi-
cult for the player. The adaptation is done by adjusting the
characteristics of the player’s opponents, their numbers and
locations, etc.

While this approach certainly has its place in solving the
problem of developing games that adapt themselves to the
players, modifying the game world is not the answer to the
question of creating an online adaptive agent.

An example of an online adaptive agent based on a mod-
ified reinforcement learning (RL) approach is presented in
the work of [Danzi et al., 2003]. Here the authors use the
Q-learning together with a challenge function to build in-
telligent agents that automatically control the game diffi-
culty level. Q-learning produces a ranking on a set of ac-

tions available to the agent in any given state. While the
ordinary Q-learning agent chooses the best possible action
in every state, the agent designed by the authors uses the
challenge function to evaluate the performance of its oppo-
nent. Informally, the challenge function tells the agent if
the game is too difficult or too easy for the opponent. If it
is too difficult (easy), the agent chooses the action that is
worse (better) than the one it made before. This approach
was evaluated empirically in the context of a fighting game,
Knock ’em, against the non-adaptive agents developed by
the authors.

The disadvantage of the proposed method is that the
agent needs to be trained offline to produce the Q-matrix
of the states and evaluations. Depending on the complexity
of the game this matrix can be huge. There is no guar-
antee that while training offline the agent will encounter
all possible states, which can lead to it losing the adaptive
qualities. While this can be overcome with Q-regression,
i.e. replacing the Q-matrix with the Q-function, it does not
eliminate the fact that to learn and adapt, the agent needs to
play many games.

To answer the questions stated above we needed to ad-
dress the problem of evaluating a given adaptive agent. For
that purpose first we decided on the game that our agents
and human players would play: Connect Four. Then we
constructed a test environment consisting of two parts. The
first part contains four preprogrammed algorithms having
four distinct skill levels in Connect Four. The second part
provides an environment where human players can play
against developed agents and the statistics necessary for
evaluation are gathered.

We looked at the problem of creating an online adaptive
agent from two different viewpoints: Can the agent esti-
mate the skill level of its opponent and if yes, how can it
adapt itself? What can the agent do if such information
is not available? As the result of these considerations two
distinctly different agents were created and evaluated.

To sum up the main contributions of this work are:

• Design and implementation of a test environment that
allows to evaluate the adaptive qualities of a given
agent in the context of Connect Four.

• Design and implementation of an adaptive agent
for Connect Four based on the MiniMax algorithm.
Demonstration of its good adaptive qualities based on
the empirical evaluation.

• Design and implementation of an adaptive agent for
Connect Four based on the SVM algorithm. Demon-
stration that its adaptive qualities are not yet satisfac-
tory.



The first of the developed agents, AdaptiveMiniMax,
uses a quantative approach to select an appropriate strat-
egy. It evaluates each move made by its opponent and each
move available to itself using the same heuristic, builds the
ranking on the moves and chooses an appropriate action.
To function, AdaptiveMiniMax requires domain knowl-
edge in the form of a heuristic. Without the appropriate
heuristic that evaluates the moves or the strategies in the
game, the agent would not construct the correct ranking.
An additional disadvantage of this method is that Adap-
tiveMiniMax can play only as good as the underlying Min-
iMax algorithm. Therefore, it is bound to lose its adap-
tive properties when playing against opponents who are
stronger than MiniMax.

AdaptiveMiniMax showed good performance when
playing against the preprogrammed algorithms, adapting
well to their respective skill levels, with exception of the
optimal algorithm [Allis, 1988], to which it was losing
steadily due to the disadvantage mentioned above. In the
experiments with the human players data confirming the
adaptive qualities of this agent was obtained. There is no
correlation between the skill level of a specific player and
the percent of games this player won against AdaptiveM-
iniMax. From the same data it seems that for the major-
ity of players AdaptiveMiniMax chose a strategy that was
weaker than the corresponding player’s skill level, i.e. the
percentage of the games won by humans is mostly greater
than 50%. It would be interesting to see how these statis-
tics would change if AdaptiveMiniMax was equipped with
memory, that is if it was provided with a way to incorpo-
rate the data about the win-loss proportion into the strategy
choosing mechanism.

At the moment AdaptiveMiniMax’s decision about
which move to make is based on the average of the rank-
ing scores of all moves made by its opponent. It is possible
that human players make a lot of far from optimal moves
in the beginning of the game, when situation on the board
is hard to foresee. In this case the average ranking is influ-
enced by these weak moves and it may lead to the apparent
weakness of AdaptiveMiniMax when playing against hu-
mans. In the future work we would like to investigate how
this behaviour can be changed, for example by introduc-
ing some kind of discounting scheme, so that the moves
made recently have bigger influence on the resulting rank-
ing score than the moves made (relatively) long time ago.

The second agent, SVM Agent, was developed in an at-
tempt to overcome both disadvantages of AdaptiveMini-
Max, the need for the good heuristic and the limit on its
playing skill. The problem of choosing an appropriate strat-
egy in the game was presented in the context of supervised
learning as a binary classification problem, where training
data is built from the moves that the agent’s opponent made
and the agent is making a prediction about which move the
opponent would make. An existing implementation of the
SVM algorithm [Chang and Lin, 2001] was used to solve
this problem. The kernel function was designed to repre-
sent the similarities between the pairs of the board states
in Connect Four. The detailed description of the problem’s
formulation and the kernel function can be found in [Mis-
sura, 2007].

The experiments were designed to evaluate the SVM
Agent’s performance using the games played by the prepro-
grammed algorithms against themselves. As a measure of
performance the cross-validation accuracy and the compar-
ison between the SVM Agent’s predictions and the moves

made in the recorded games were used. The results are dis-
satisfying. It was to be expected that in the beginning of a
game the training set is too small to allow for any good pre-
diction, but there was also hope that as the game progresses
and the size of the training set grows, the agent’s predic-
tions are going to get better. In reality even though the
cross-validation accuracy shows acceptable values (gener-
ally around 80%) the predictions that SVM Agent makes
are almost always off the mark, and when it does get it
right it seems more the case of a random guess succeeding.

Despite these results, we feel that more experimenting
can be done with the SVM approach. Adapting the cross-
validation procedure to the specifics of our training sets,
replacing binary labels with continuous ones, trying out
different kernel functions or different types of SVM, or
equipping the agent with memory can potentially lead to
the improvements. Another way to improve its perfor-
mance, especially in the beginning of the game, is to pro-
vide it with additional domain knowledge, for example of
the same kind that AdaptiveMiniMax uses.

References
[Allis, 1988] Victor Allis. A knowledge-based approach

of connect-four. The game is solved. Master’s thesis,
Free University of Amsterdam, October 1988.

[Chang and Lin, 2001] Chih-Chung Chang and Chih-
Jen Lin. LIBSVM: a library for support vec-
tor machines. http://www.csie.ntu.edu.tw/
∼cjlin/libsvm, 2001.

[Danzi et al., 2003] G. Danzi, A. H. P. Santana, A. W. B.
Furtado, A. R. Gouveia, A. Leitão, and G. L. Ramalho.
Online adaptation of computer games agents: A rein-
forcement learning approach. II Workshop de Jogos e
Entretenimento Digital, pages 105–112, 2003.

[Hunicke and Chapman, 2004] R. Hunicke and V. Chap-
man. AI for dynamic difficulty adjustment in games.
Proceedings of the Challenges in Game AI Workshop,
Nineteenth National Conference on Artificial Intelli-
gence, 2004.

[Missura, 2007] Olana Missura. Adaptive agents in the
context of connect four. Master’s thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, August 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

