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Knowledge discovery from software engineering measurement data is essential
in deriving the right conclusions from experiments. Various data analysis tech-
nigues may provide data analysts with different and complementary insights
into the studied phenomena. In this paper, two data analysis techniques
—Rough Sets and Logistic Regression— are compared, from both the theoreti-
cal and the experimental point of view. In particular, the empirical study was
performed as a part of the ESPRIT/ESSI project CEMP on a real-life maintenance
project, the DATATRIEVE™ project carried out at Digital Engineering Italy. We
have applied both techniques to the same data set. The goal of the experimen-
tal study was to predict module fault-proneness and to determine the major
factors affecting software reliability in the application context. The results ob-
tained with either analysis technique are discussed and compared. Then, a hy-
brid approach is built, by integrating different and complementary knowledge
obtained from either approach on the fault-proneness of modules. This knowl-
edge can be reused in the organizational framework of a company-wide expe-
rience factory.

Knowledge Discovery, Hybrid Approach, Rough Sets, Logistic Regression,
Empirical Case Studies, Experience Factory, Fault-proneness, Software Mainte-
nance.
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Introduction

1 Introduction

Discovery, representation, and reuse of software engineering development
know-how are crucial for improvement of software quality in an organization.
The Quality Improvement Paradigm (QIP) (Basili et al., 1994) offers a general
evolutionary framework for performing systematic quality improvement by
means of reuse of experience. Software measurement and analysis of meas-
urement data from carefully designed experiments are essential parts of the

QIP.

Careful data analysis and knowledge discovery are necessary for deriving the
right conclusions from data. In a field like software engineering, it is important
to make the most out of the available data sets, which may be smaller than in
other application fields. No "silver bullet" technique exists answering all ques-
tions for different situations and circumstances in an optimal way. On the con-
trary, it is reasonable to expect that different techniques will have context-
sensitive strengths and weaknesses. Furthermore, different insights will likely
be gained from the different assumptions underlying them and from the use of
different analysis processes. Therefore, we believe that it is important to study,
assess, and compare several different techniques.

In this paper, we will study the application of two techniques, Logistic Regres-
sion (Hosmer and Lemeshow, 1989) and Rough Sets (Pawlak, 1991) to the
analysis of measurement data of a real-life maintenance project, the
DATATRIEVE™ project carried out at Digital Engineering Italy. The experiment
was performed as a part of the CEMP project (CEMP, 1995), an ESPRIT/ESSI
project funded by the Commission of the European Communities. The overall
project was devoted to the customized establishment of goal-oriented meas-
urement programs which were based on the Goal/Question/Metric (GQM)
paradigm (Basili and Weiss, 1984), (Basili and Rombach, 1988). The GQM
paradigm was applied and evaluated in a case study replicated across three
major companies. In all participating projects, goals related to reliability and re-
usability were studied, to increase consistency and comparability of results
across the CEMP project.

Logistic Regression is a statistical classification technique based on maximum
likelihood estimation that was originally developed for biomedical applications
and has already been successfully used in a few software engineering applica-
tions (Briand et al., 1994). Based on the values of a given set of explanatory
variables for the attributes of an object, Logistic Regression estimates the
probability that the object may be classified as belonging to one of the possible
categories. Therefore, Logistic Regression is quite different from other regres-
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Introduction

sion techniques (e.g., linear regression), which aim at finding out to what ex-
tent a relationship of a specified kind (e.g., linear) exists between explanatory
and dependent variables.

Rough Set theory is a new and promising machine learning data analysis ap-
proach which has been successfully applied in many real-life problems of vari-
ous areas, e.g. medicine, pharmacology, business, banking. Although no addi-
tional information such as independence of explanatory variables or assump-
tions on data distribution is required, conclusions can be drawn even for small
sized data sets. As a result, computation of cause-effect relationships in a
minimal knowledge representation is performed. Rough Sets have been used in
knowledge engineering applications in the past. So far, few applications exist
in software engineering (Ruhe, 1996).

The main objectives of the paper are to

» demonstrate the contributions of Logistic Regression and Rough Sets based
analysis from experimental software engineering. The data were from a
real-world case study devoted to predict fault-proneness of modules (i.e.,
the likelihood that they are faulty) under maintenance constraints;

 investigate the quality of predictions of the different approaches for a series
of data sets of varying size;

e compare the performance of both approaches and suggest a hybrid ap-
proach combining their strengths;

* evaluate the results of the hybrid approach when applied to predict fault-
proneness of modules.

We also discuss and compare the empirical results of the application of Logistic
Regression, Rough Sets, and the new hybrid approach. We believe that these
results can be helpful to practitioners in their own applications, but we also
think that caution should be used before reusing these results "as-is." Our
viewpoint —consistent with the use of the GQM paradigm and the objectives
of the CEMP project, which advocate the customized introduction of meas-
urement programs— is that, at this stage of technology, there are no models
that are applicable unchanged to all software projects. The identification of
such general models, which can be applied across all environments, is a long-
term goal, which will be achieved only after a number of experiments are car-
ried out and successfully replicated.

The remainder of this paper is organized as follows. In Section 2, the practical
problem is described, including the experimental design and other context in-
formation. The analysis techniques —Logistic Regression and Rough Sets— are
concisely described and compared in Section 3. In Section 4, we describe the
analysis results we have obtained by applying Logistic Regression and Rough
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Sets to the entire maintenance data set obtained in the DATATRIEVE™ project
and eight randomly generated subsets of the entire data set, for comparison
purposes. Based on these results, we introduce a hybrid approach (Section 5)
that combines the strengths of either approach and therefore results in im-
proved classification accuracy. Summary and concluding remarks follow in Sec-
tion 6.
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2

The Experimental Environment

Our experiment concerned the transition of the DATATRIEVE™ product from
version 6.0 to version 6.1. The DATATRIEVE™ product was undergoing both
adaptive (DATATRIEVE™ was being transferred from platform OpenVMS/VAX
to platform OpenVMS/Alpha) and corrective maintenance (failures reported
from customers were being fixed) at the Gallarate (ltaly) site of Digital Engi-
neering. At the time of the experiment, the DATATRIEVE™ team was com-
posed of six people. The DATATRIEVE™ product was originally developed in
the BLISS language. BLISS is an expression language. It is block-structured, with
exception handling facilities, co-routines, and a macro system. It was one of
the first non-assembly languages for operating system implementation.. Some
parts were later added or rewritten in the C language. Therefore, the overall
structure of DATATRIEVE™ is composed of C functions and BLISS subroutines.
The empirical study of this paper reports only the BLISS part, by far the bigger
one. In what follows, we will use the term "module" to refer to a BLISS mod-
ule, i.e., a set of declarations and subroutines usually belonging to one file.
More than 100 BLISS modules have been studied. It was important to the
DATATRIEVE™ team to better understand how the characteristics of the mod-
ules and transition process were correlated with the code quality.

We followed the QIP-based measurement process used for all application ex-
periments within the CEMP project. More details, along with guidelines for the
application of the process, may be found at (CEMPwww) and in (CEMP, 1995).
In particular, the Goal/Question/Metric (GQM) paradigm was used as a part of
this QIP-based process to iteratively define metrics for those attributes which
are important in the context of the measurement goals.

The approach described in (CEMPwww) and (CEMP, 1995) requires a close
contact between the measurement team and the project team. Software
measurement goals should be identified by the project team. To be effective,
measurement must be carried out towards objectives that are relevant to the
software organization under study. Also, the quality aspect (e.g., software reli-
ability) along with its influencing factors (e.g., software size) must be identified
by the project team, who has a sensible understanding of the important char-
acteristics of the processes and products studied. We believe that this ap-
proach helps software organization better focus on the important objectives
and characteristics.

This is the GQM goal that was established by the project team:
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Analyze version 6.1 of DATATRIEVE™ (object of study)
for the purpose of understanding (purpose)
with respect to the impact of modifications

from version 6.0 to version 6.1 on reliability (quality focus)
from the viewpoint of the project leader (viewpoint)
in the following environment: Digital Italy — Gallarate (environment)

The five dimensions of measurement goals help precisely identify what is inves-
tigated (object of study), why (purpose), with respect to which specific attrib-
ute (quality focus), for whose benefit (viewpoint), and in what context (envi-
ronment). GQM goals are later refined into questions and metrics, to capture
all relevant factors! in a quantitative fashion. In the above goal, the purpose
"understanding" was chosen since our measurement study was carried out as
the beginning of a measurement program. It was considered too ambitious to
start a measurement program with a prediction or improvement goal, which
can be established only after a clear understanding of the processes and proj-
ects has been obtained. At any rate, we also obtained results that can be used
as a first kernel around which prediction models can be built.

The objective of our data analysis was to study whether it was possible to clas-
sify modules as non-faulty or faulty, based on a set of measures collected on
the project. Therefore, the dependent variable of our study is

* Faulty6.1: its value is O for all those modules in which no faults were
found; its value is 1 for all other modules.

Here, we will list the relevant explanatory variables that quantify factors
deemed important by the developers and that will also be used in the experi-
mental comparison between Rough Sets and Logistic Regression. We limited
our study only to explanatory variables that measured factors suggested by the
project team. Also, our study encompassed other factors indicated by the proj-
ect team and the corresponding explanatory variables, but our experimental
analysis showed that they were not relevant with respect to the quality focus
of interest. For each module m, we found that the following explanatory vari-
ables were relevant:

¢ LOC6.0: number of lines of code of module m in version 6.0.

¢ LOC6.1: number of lines of code of module m in version 6.1.

e AddedLOC: number of lines of code that were added to module m in ver-
sion 6.1, i.e., they were not present in module m in version 6.0.

» DeletedLOC: number of lines of code that were deleted from module m in
version 6.0, i.e., they were no longer present in module m in version 6.1.

TAn intermediate document, the abstraction sheet, was used to refine the GQM goal, and as a basis to de-
rive the questions. Details about this augmentation to the GQM paradigm can be found in (Latum et al.,
1998).
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» DifferentBlocks: number of different blocks module m in between versions
6.0and 6.1.

* ModificationRate: rate of modification of module m, i.e.,

* (AddedLOC + DeletedLOC) / (LOC6.0 + AddedLOC).

* ModuleKnowledge: subjective variable that expresses the project team's
knowledge on module m (low or high)

* ReusedLOC: number of lines of code of module m in version 6.0 reused in
module m in version 6.1.

6 Copyright © Fraunhofer IESE 1999
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3 A Concise Introduction to Logistic Regression and Rough Sets

Here, we briefly illustrate the basic concepts of Logistic Regression (Section 3.1)
and Rough Sets (Section 3.2). For a comprehensive introduction, the reader
may refer to (Hosmer and Lemeshow, 1989) and (Pawlak, 1991), respectively.
The two data analysis techniques are then compared in Section 3.3, based on a
set of desirable requirements.

3.1 Logistic Regression

Logistic Regression is a technique for estimating the probability that an object
belongs to a specific class, based on the values of the explanatory variables
that quantify the object's attributes. As such, Logistic Regression is different
from other regression techniques (e.g., linear regression), whose goal is to de-
termine whether there is some form of functional dependency (e.g., linear) be-
tween explanatory variables and dependent variable. Logistic Regression does
not assume any strict functional form to link explanatory variables and the
probability function. Instead, this functional correspondence has a flexible
shape that can adjust itself to several different cases. Logistic Regression is
based on maximum likelihood and assumes that all observations are independ-
ent.

Let us suppose that the dependent variable Y can take only the two values 0
and 1, like in our case, where Faulty6.1 will be the dependent variable Y. Let us
suppose that there are a number of explanatory variables X;. The measures we
have collected on the DATATRIEVE™ modules (see the list at the end of Sec-
tion 2) will be the explanatory variables in our case. The multivariate Logistic
Regression model is defined by the following equation (if it contains only one
independent variable, then we have a univariate Logistic Regression model):

e(CO+C1-X1+_,,+C,,-X,))

p(Y=1) = ﬂ(Xsz/-.-,Xn): 1+ @ CorCrXitaCroX,)

where p(Y=1) is the probability that Y = 1. The curve describing the relation-
ship between p(Y=1) and any single X; —i.e., under the assumption that all

other Xj's are constant— has a flexible S shape which ranges between the fol-
lowing two extreme cases:

» A horizontal line, when variable X; is not significant (probability p(Y=1) is a
constant with respect to X;);
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A vertical line, when variable Xj alone is able to differentiate between the
case Y =0 and the case Y = 1, i.e., based on the value of X; alone, one can
perfectly predict whetherY =0orY = 1.

We will use the following three statistics to illustrate and evaluate the experi-
mental results obtained with Logistic Regression:

Cj, the regression coefficients, estimated via the optimization of a likelihood
function. The likelihood function is built in the usual fashion, i.e., as the
product of the probabilities of the single observations, which are functions
of the explanatory and dependent variables (whose values are known in the
observations) and the coefficients (which are the unknowns). The coeffi-
cients of the Logistic Regression equation show the extent of the impact of
each explanatory variable on the estimated probability, and, therefore, the
importance of each explanatory variable.

Logistic Regression also provides an alternative way to assess the extent of

this impact, via the variation in the odds ratio due to the variation of a value

of an explanatory variable. The odds ratio is defined by _ 7t , and is an indi-
1-7

cator of the likelihood of an event that is commonly used in several real-life

situations. (for instance, when one provides the odds of a certain event,

e.g., 7:2). It can be shown that the variation in the odds ratio due to a varia-
tion AX. in the value of explanatory variable X is given by e“*% . Conse-

quently, the variation due to a change of one unit in X, is given by e .

p, the statistical significance of the logistic regression coefficients, which
provides an insight into the accuracy of the coefficient estimates. The level
of significance of a Logistic Regression coefficient C; provides the probabil-

ity that C, is different from zero by chance. In other words, the level of sig-
nificance of C; provides the probability that the corresponding variable X,

has an impact on 1 by chance. Historically, a significance threshold (a) of
o= 0.05 (i.e., 5% probability) has often been used in univariate analysis to
determine whether a variable is a significant predictor. The larger the level
of significance, the larger the standard deviation of the estimated coeffi-
cients, the less believable the calculated impact of the coefficient. The sig-
nificance test is based on a likelihood ratio test, commonly used in the
framework of Logistic Regression.

R2, the goodness of fit, not to be confused with least-square regression RZ
they are built upon very different formulae, even though they both range

between 0 and 1. The higher RZ, the higher the effect of the model’s ex-
planatory variables, the more accurate the model. However, as opposed to

the RZ of least-square regression, a high value for RZ is rare for logistic re-

gression. RZ may be described as a measure of the proportion of total un-
certainty that is attributed to the model fit.

Copyright © Fraunhofer IESE 1999
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3.2  Basic Concepts of Rough Set Theory

Rough Set theory assumes that attributes of objects (i.e., BLISS modules in our
application case) are measured on a nominal or ordinal scale. For software en-
gineering measurement, this requirement is often met quite naturally (e.g.,
programming language, experience level of project team, degree of communi-
cation). Otherwise, it is necessary to subdivide each attribute’s domain into
subclasses (nominal scale) or subintervals (ordinal scale). The specific discretiza-
tion used may affect the quality of results in terms of accuracy of prediction.
Four automatic discretization techniques were applied to ten real-word data
sets with equal interval width, equal frequency per interval, minimal class en-
tropy (Chmielewski and Grzymala-Busse, 1994). Accuracy of the techniques
was compared but no clear preference could be found.

Knowledge obtained from Rough Set-based analysis of experimental data is
represented by means of production rules, which describe the relationships be-
tween premises and conclusions. Background and algorithms to generate pro-
duction rules are described in (Pawlak, 1991). The premise of a production rule
is the conjunction of predicates of the form "explanatory variable = value".
The conclusion of a production rule is of the form " dependent variable =
value".

The objects in the data set are partitioned into subsets such all the objects of
one subset have the same values for the explanatory variables. It might be the
case that these subsets do not change even after a few independent variables
are discarded. Some explanatory variables may shown to be redundant and
thus can be removed from the set of explanatory variables without affecting
the classification of the objects in the data set. On the other side, some of the
explanatory variables can be shows to be core attributes which means that
their elimination would decrease the accuracy of classification. For details we
refer to (Pawlak 1991).

Rules generated from Rough Set analysis may be of two kinds:

» Deterministic rules: the objects in the data set that satisfy their premise be-
long to exactly one category of the dependent variable. Therefore, any new
module to be classified that satisfies the premise of a deterministic rule is
classified according to the value of the dependent variable in the conclusion
of the rule.

» Non-deterministic rules: the objects in the data set that satisfy their premise
belong to more than one category of the dependent variable. In this case,
any new object to be classified that satisfies the premise of a non-
deterministic rule is not classified.

Copyright © Fraunhofer IESE 1999 9
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Each rule is associated with its absolute strength, defined as the number of
objects of the data set that satisfy its premise. To reflect different frequencies
of occurrence of the different values for the dependent variable, we introduce
the measure of relative strength. It is defined as the ratio of the number of
objects (modules) that satisfy the premise of the rule to the total number of
objects that have, for the dependent variable, the value of the consequence of
the rule. Absolute and relative strengths provide an idea of the importance of
the considered rule in explaining the behavior of the dependent variable based
on the explanatory variables.

3.3  Conceptual Criteria for Comparison

We list a set of desirable requirements that data analysis approaches should
satisfy and compare Logistic Regression (LR) and Rough Sets (RS) according to
these assessment criteria. The list includes the criteria suggested in (Briand et
al., 1992).

1.

10

Avoidance of restrictive assumptions (probability density distribution on
the independent and dependent variable ranges, independence among
explanatory variables).

LR: No strict assumption is necessary on the functional relationship be-
tween independent and dependent variables, as Logistic Regression
curves are able to approximate several different functional forms. Inde-
pendence of observations is necessary to apply maximum likelihood
technigues. However, independence of observations is also assumed true
for the vast majority of statistical techniques. Data sets of larger size lead
to higher confidence in the results.

RS: No assumption is necessary with respect to the probability distribu-
tion of variables and independence between variables. No assumption is
necessary even on the size of the data set. Rough Sets analysis can be
applied even to small-size data sets.

The modeling process needs to capture the impact of integrating all ex-
planatory variables.

LR: Univariate analysis is first carried out. Based on the results obtained,
multivariate models are built by means of a multistage process.

RS: All explanatory variables are taken into account at the same time.
Therefore, the Rough Sets approach may be considered as a kind of mul-
tivariate analysis. Rough Sets analysis allows for detection of core and
redundant variables.

Copyright © Fraunhofer IESE 1999
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Robustness to outliers.

LR: This technique is less sensitive to outliers than other statistical tech-
nigues, though some kind of preliminary outlier analysis must be carried
out.

RS: Outliers are reflected as "outlier rules," i.e., rules with low strength,
which do not influence other rules in any form.

Ability to handle interdependencies among explanatory variables.

LR: Interdependencies are detected by means of statistical techniques
that allow data analysts to check for correlations or associations between
variables.

RS: Computation of reducts (see Section 4) provides information on the
core and redundant explanatory variables. Therefore, Rough Sets analysis
allows the identification of a set of essential explanatory variables (core)
and a set of variables that depend on those in the core.

Reliability of each individual prediction.

LR: Given the values for the explanatory variables of an object, Logistic
Regression provides an estimate for the probability of that object to be,
say, faulty. In addition, Logistic Regression provides an estimate for the
variance of this probability. Therefore, the reliability of each prediction
can be assessed.

RS: There is no reliability measure from the original approach. Quality of
prediction is measured by using different techniques such as ten-fold
cross validation. Each individual rule is accompanied by its absolute and
relative strength.

Management of inconsistent pieces of information

LR: Inconsistent pieces of information are handled in a probabilistic way.
Logistic Regression provides an estimate of the probability of an object to
be classified in each of the possible classes of the explanatory variable.
Therefore, Logistic Regression also tells how likely it is for the value of
the explanatory variable of an object to be due to random.

RS: Inconsistencies are handled by nondeterministic rules.
No need for discretization

LR: Logistic Regression may be applied to interval or ratio level data—in
addition to nominal and ordinal data—so there is no need for discretiza-
tion.

RS: Rough Sets based analysis uses explanatory variables defined on a
nominal or ordinal scale. Granularity and discretization techniques may
influence analysis results.

11
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8.

Manipulation of different levels of granularity

LR: Although not needed, discretization may be carried out in Logistic
Regression. A reason for this may be the way the data has been col-
lected, to make the results less sensitive to possible data collection prob-
lems, because the actual data collected may be imprecise.

RS: The degree of accuracy of results is determined by the number of in-
tervals. However, Rough Sets-based computations assume a low (about

five) number of intervals. This often reflects degree of accuracy available
from software engineering experimental data.

Scale invariance
LR: The analysis can be carried out regardless of the type of scale.

RS: There is no dependency on type of scale, after discretization has
been carried out.
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4 Experimental Results

We present the results we obtained with Logistic Regression (Section 4.1) and
Rough Sets (Section 4.2) on the entire data set, to show what kind of results
the two approaches can provide. In Section 4.3, to better assess similarities and
differences, Rough Sets and Logistic Regression are applied to randomly gen-
erated subsets of the original complete data set. This will lead to the introduc-
tion of the hybrid approach in Section 5.

4.1 Logistic Regression

Here, we summarize the results we have obtained with Logistic Regression on
the entire data set obtained in the DATATRIEVE™ project. We show the multi-
variate model we obtained, which is based on the explanatory variables that
were found significant and able to explain a relevant part of uncertainty on the
dependent variable in the univariate analysis. More details can be found in
(Hosmer and Lemeshow, 1989). Here is the multivariate model that we identi-
fied using p(Faulty6.1=1) = M{AddedLOC, ModificationRate, ModuleKnowl-
edge)? for short:

log(TV1-1) = =11.65 + 0.0286 AddedLOC + 17.11 ModificationRate
+ 3.53 (ModuleKnowledge — 1) — 0.06 AddedLOC*ModificationRate

The term +3.53 (ModuleKnowledge - 1) shows how Logistic Regression deals
with ordinal explanatory variables. The difference between the actual value
(ModuleKnowledge) and a reference value (the numeric value 1, which is as-
sumed to represent "high" knowledge of a module) is used as the actual co-
variate.

AddedLOC*ModificationRate, being the product of two explanatory variables,
is called an interaction term. Interaction terms are used to check whether the
combined effect of two variables has an impact on the dependent variable that

is not captured by a purely linear model. The R2 we obtained is 0.46, which is
quite high for Logistic Regression. In column "Estimate (std dev)," Table 1 re-
ports on the estimates for the Logistic Regression coefficient and their their
standard deviation (in parentheses). Column "p" reports on the significance of
the coefficients of the multivariate model. All of the explanatory variables of
the multivariate model we have identified have a very high significance. For in-

2This formula shows the Logistic Regression equation of Section 3 in an equivalent form, to highlight the
expression containing the explanatory variables. The right-hand side of the equality is the exponent of e in
the original formula.

Copyright © Fraunhofer IESE 1999 1 3



Experimental Results

Table 1.

stance, the probability that the impact of AddedLOC on the dependent vari-
able is due to chance is 0.0006, i.e., 0.06%.

Term Estimate (std dev) p

Intercept -11.65 (2.78) 0.0000
AddedLOC 0.0286 (0.0084) 0.0006
ModificationRate 17.11 (5.72) 0.0028
ModuleKnowledge 3.53(1.13) 0.0018
AddedLOC*ModificationRate -0.06 (0.024) 0.0123

Logistic Regression: multivariate model.

In our context, an observation is the detection/non detection of a faultin a
module. Each detection/non detection of a fault is assumed to be an event in-
dependent from the other fault detections/nondetections. These observations
were used to build the likelihood equation to estimate the coefficients of the
Logistic Regression model.

4.1.1 Interpretation of the Model

14

All explanatory variables are sure to have an impact on the dependent variable,
since their p-values are very small, i.e., there is a small probability that we have
detected this impact just by chance. Therefore, they are potential risk factors
and should be monitored and used when deciding whether a module should
undergo further inspections and testing.

The impact is mostly in the "expected" directions, as shown by the signs of the
coefficients. On the one hand, the estimated probability that there is a fault in
a module increases when either AddedLOC or ModificationRate increases, or
when the knowledge of a module is not good (ModuleKnowledge = 1 means
good knowledge and ModuleKnowledge = 2 means bad knowledge). On the
other hand, the interaction term is a correction term that mitigates the in-
crease in the estimated probability in the multivariate model when both
AddedLOC and ModificationRate increase.

Just knowing that p(Faulty6.1=1) basically increases when AddedLOC or Modi-
ficationRate increases, or when ModuleKnowledge gets worse is not enough.
We also need to know which of the explanatory variable has the greatest im-
pact on the dependent variable, i.e., which explanatory variable is the most
important one to keep monitored and controlled. The numerical values of the
coefficients of the Logistic Regression equation show the extent to which each
explanatory variable affects the estimated probability. The variation in the odds
ratio may also be used to this end. Some caution must be used, however, be-
fore drawing the conclusion that the explanatory variables with the biggest co-
efficients in absolute value are also the ones with the biggest impact. In our
case, this would for instance mean that ModificationRate (whose coefficient is
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Table 2.

Experimental Results

17.11) is more important than AddedLOC (whose coefficient is 0.0286). Vari-
able ModificationRate can only range between 0 and 1, and is rarely close to 1.
Variable AddedLOC has 0 as its lower bound, and no upper bound. One
should bear in mind that the variation in the odds ratio depends on both the
coefficients and the variations of the explanatory variables. For instance, if a
typical value of AddedLOC is 100 lines of code and a typical value in Modifica-
tionRate is 0.1 (which are variations with respect to the initial situation of the
software product), the impact of AddedLOC is greater than the impact of
ModificationRate, since the variation on the odds ratio due to AddedLOC

would be e?®  while the variation in the odds ratio due to ModificationRate

would be """ In our case, since the average value of AddedLOC is 117.95
(with standard deviation 118.63), that of ModificationRate is 0.2437 (with
standard deviation 0.1280), that of the interaction term Added-
LOC*ModificationRate is 33.52 (with standard deviation 45.87), and the only
permissible variation in ModuleKnowledge is 1, we can conclude that the four
terms of the Logistic Regression equation can be ranked as follows:

(1) Module-Knowledge, (2) ModificationRate, (3) AddedLOC, (4) Added-
LOC*ModificationRate.

Classification Results

The classification results obtained with Logistic Regression are summarized in
Table 2. We have assumed a threshold of p = 0.085 to predict a module as
faulty, which is the actual proportion of non-faulty modules found in our sam-
ple, i.e., a module was predicted to be faulty only if the estimated probability
for it to be faulty exceeded 0.085. Therefore, we classified as faulty those
modules for which

log(Tv1-1m) > log(0.085/0.915)
ie.,

-11.65 + 0.0286 AddedLOC + 17.11 ModificationRate + 3.53 (ModuleKnowledge - 1)
— 0.06 AddedLOC*ModificationRate > log(0.085/0.915)

However, the choice of a threshold is to some extent a subjective decision, and
other thresholds may be used.

LR classification Predicted non-faulty 6.1 | Predicted faulty 6.1 Total
Actual non-faulty 6.1 63.1% 28.4% 91.5%
Actual faulty 6.1 0.8% 7.7% 8.5%
Total 63.9% 36.1% 100%

Logistic Regression: classification results.
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4.2  Rough Sets: Results

Table 3.

Experimental data were analyzed by the Rough Sets based data analysis system
PROFIT, developed at Institute of Computing Science of Technical University
Poznan (Slowinski and Susmaga, 1996). Cluster analysis techniques were used
to obtain discrete variables from the experimental data in an automated way.

Fifteen deterministic rules were generated. Among them, three rules were
non-deterministic. In Table 3, we report the ones with the greatest relative
strength. In more detail, we show the three (deterministic) rules with the
greatest relative strength for non-faulty modules (Faulty6.1 = 0) and the two
rules with the greatest relative strength for faulty modules (Faulty6.1 = 1).

Premise Conclusion Relative Strength
(DifferentBlocks = low) & (ModuleKnowledge = high) Faulty6.1 =0 56%
(LOC6.0 =medium) & (AddedLOC = low) & (ReusedLOC = low) | Faulty6.1 =0 43%
(DifferentBlocks = low) & (ReusedLOC = very high) Faulty6.1 =0 37%
(DifferentBlocks = medium) & (ModuleKnowledge = high) Faulty6.1 =1 27%
(AddedLOC = medium) & (ReusedLOC = high) Faulty6.1 = 1 18%

Rules with greatest relative strength generated by the Rough Sets data analysis.

Deterministic and non-deterministic rules aggregating knowledge gained from
the experiments are an essential input for feedback sessions (van Latum et al.,
1998). Feedback sessions are organized meetings integrating members of the
project and the GQM experts. They are an essential device for analysis and in-
terpretation of measurement data. There are four principal cases which my oc-
cur with respect to hypotheses formulated at the beginning of the experiment:

e Confirmation of hypothesis

» Update of hypothesis

* Rejection of hypothesis

e Formulation of new hypothesis.

In each case, additional insight is gained from the empirical investigation in-
cluding Rough Set analysis of data. Either predictions for fault-pronenenss of
modules become more reliable, or new explanations are found for modules to
be critical.

4.2.1 Interpretation of the Rule

16

The first rule above is the most powerful one. It states that number of faults in
version 6.1 is expected to be zero for those modules where few blocks have
been modified from version 6.0 to version 6.1 and the knowledge of the mod-
ule is high. The premise of the rule is satisfied by 56% of modules for which
Faulty6.1 = 0. This is a deterministic rule, so all the modules in the data set for
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4.2.2

Table 4.

4.3

Experimental Results

which (DifferentBlocks = low) & (ModuleKnowledge = high) have Faulty6.1 =
0. We also report two other rules for modules with Faulty6.1 = 0, which are
self-explanatory. The other two rules refer to those modules for which
Faulty6.1 = 1. The stronger of them says that when the number of blocks that
are different between the two version is medium and the knowledge of the
module is high, then we have a faulty module. The premise of this rule is satis-
fied by 27% of the modules with Faulty6.1 = 1.

These rules only use the elementary measures on which all the explanatory
variables are based: LOC6.0, AddedLOC, DeletedLOC, ReusedLOC, Different-
Blocks, ModuleKnowledge. The core attributes (as defined above) are: LOC6.0,
ReusedLOC, DifferentBlocks, and ModuleKnowledge.

Classification Results

Leaving-one-out test was performed to validate the quality of the prediction
results. This test consists in repeating N times the iteration of classifying ob-
jects, where N is the number of objects in the input data. In each iteration a
different object (module) is chosen to be the testing (one-element) sample,
while all the other objects constitute the learning sample from which the rules
are generated. Accuracy of classification can then be assessed, since the actual
classification of the object is known. The results are summarized in Table 4.

RS classification Not Classified Predicted non-faulty 6.1 Predicted faulty 6.1 Total

Actual non-faulty 6.1 0% 89.9% 1.6% 91.5%
Actual faulty 6.1 0.8% 3.85% 3.85% 8.5%
Total 0.8% 93.75% 5.45% 100%

Rough Set classification results.

The percentages in the "Not Classified" column correspond to the modules
that satisfy the premise of some non-deterministic rule and cannot be classified
by Rough Sets.

Comparison of Results on Partitions

In addition to the results for either technique outlined in Sections 4.1 and 4.2,
we have also carried out further analysis, by partitioning the original data set
into smaller sets, to allow for better and more detailed comparison of Rough
Sets and Logistic Regression depending on the data set size. Table 5 describes
the characteristics of the 9 data sets we used (data set #1 is the entire data
set). For instance, data set #4 contained 50% of the modules of the original
data set; 9.2% of the modules in data set #4 were faulty.
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Table 5:

18

# 1 2 3 4 5 6 7 8 9
% modules 100% 50% 50% 50% 50% | 24.6% | 24.6% | 25.4% | 25.4%
%faulty modules | 8.5% | 16.9% | 16.9% | 9.2% 77% | 157% | 15.7% | 182% | 18.2%

Characteristics of the data sets.

The 9 data sets were assigned to four classes, based on the similarities in the
proportion modules from the original data set contained and the proportion of
faulty modules they contained:

Class | = {1}
Class Il = {2,3}
Class Il = {4,5}
Class IV = {6,7,8,9}

The quality of prediction was evaluated by the following three parameters:

1. Overall completeness: Proportion of modules that have been classified cor-
rectly. This parameter provides information on how well a technique classi-
fies modules, regardless of the category in which the modules have been
classified.

2. Faulty module completeness: Proportion of faulty modules that have been
classified as faulty. This parameter provides information on how many of
the faulty modules have been correctly identified by the data analysis tech-
nigue. Conversely, this parameter provides information on the risk of not
having identified faulty modules, and, therefore, not having tested or in-
spected them more carefully.

3. Faulty module correctness: Proportion of modules that have been classified
as faulty and were faulty indeed. This parameter provides information on
the efficiency of a technique, i.e., on the proportion of modules that are po-
tential candidates for further verification. Conversely, this parameter pro-
vides information on the proportion of modules that are not faulty and have
undergone further verification anyway.

The idea underlying the use of faulty module completeness and faulty module
correctness is that faulty modules may be considered more relevant than non-
faulty ones in this application context and in software engineering in general.
Faulty modules may cause serious failures, i.e., if faults are not removed.
Therefore, faulty modules should undergo additional verification activities, be-
sides those carried out on all modules.

For each of the four classes, we computed the average values of the three clas-
sification indices above. In what follows, LR(i) and RS(i) denote the analysis re-
sults of the i-th class from application of Logistic Regression and Rough Sets,
respectively. The results are summarized in Table 6. In classes |, lll, and IV, the
Rough Set approach provides non-deterministic rules in addition to the deter-
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Table 6.

Experimental Results

ministic ones. As a matter of fact, all of the non-faulty modules were classified
and only a few of the faulty ones were not classified. In Table 6, in addition to
the three evaluation parameters, we provide the percentages of the faulty
modules that were not classified by the Rough Sets. We also show the differ-
ence in results related to the three evaluation parameters due to the unclassi-
fied modules. The first percentage in each entry corresponds to classifying the
unclassified modules as non-faulty; the second one (i.e., the one in parenthe-
ses) corresponds to classifying the unclassified modules as faulty. For instance,
average overall completeness of class Il is 93.85% if the unclassified modules
are considered as non-faulty and 95.4% if the unclassified modules are consid-
ered as faulty. At any rate, due to the small number of faulty modules, it is very
likely that a software manager will consider the unclassified modules faulty,
i.e., he or she will take into account the results in parentheses as the useful
ones. In each column RS(*) we present the classification results obtained with
the leaving-one-out mechanism.

Parameter LR RS LR RS LR RS LR RS

(1 () (I (n (I (i (V) (V)
Non-faulty modules 91.5% 83.1% 91.5% 83.1%
Faulty modules 8.5% 16.9% 8.5% 16.9%
Overall complete- 70.8% 93.85% 77.7% |[91.5 66.2% |[93.85% | 84.1% 92.1%
ness (94.6%) % (95.4%) (93.0%)
Faulty module com- 94.1% 45.4% 91.1% (77.2 83.4% | 46.2% | 90.9% 66.7%
pleteness (54.5%) % (63.3%) (71.7%)
Faulty module cor- 21.3% 71.4% 42.6% |76.6 17.4% | 70.8% | 58.0% 80.4%
rectness (75.0%) % (77.5%) (81.7%)
Not classified faulty 0% 0.8% 0% 0% 0% 1.4% 0% 0.8%
modules

Comparison of classification results for the five classes of examples.

Based on the data analysis, it is possible to draw the following conclusions:

e Rough Sets based analysis performs better for all five classes with respect to
overall completeness and faulty module correctness.

» Logistic Regression based analysis performs better for all five classes with re-
spect to faulty module completeness.

» There is no obvious tendency for the dependency between the varied size of
the data set and the quality of classification results.
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Hybrid Approach

Overall, the two techniques look complementary, in that Logistic Regression
performs better with respect to faulty module completeness, while Rough Sets
analysis performs better with respect to overall completeness and faulty mod-
ule correctness. The question is: Is it possible to combine the classification
strengths of both approaches into a hybrid approach? In what follows, we de-
velop a hybrid approach which answers the above question in a positive way.

The hybrid approach H is described in five steps:

Step1.

Step2.

Step3.

Step4.

Step5.

Let M be the set of all modules. The modules of set M are classi-
fied by Logistic Regression into two disjoint sets: LRF, the set of
modules classified as faulty, and LRNF, the set of modules classified
bas non-faulty.

We apply Rough Set analysis on the entire set M. A set of classifi-
cation rules is obtained.

Logistic Regression classification with respect to non-faulty mod-
ules is considered to be final, since the evaluation results show that
the vast majority of modules that belong to LRNF are non-faulty
indeed.

On the other hand, LRF is likely to include most faulty modules (see
the high values for faulty module completeness in Table 6), but
also several non-faulty ones (see the low values for faulty module
correctness in Table 6). Since Rough Set analysis is likely to elimi-
nate most non-faulty modules, the Rough Set classification rules
obtained at Step 2 (based on the entire set M) are applied to LRF.
Modules in LRF are classified into two sets: RSLRF, the set of mod-
ules classified as faulty, and RSLRNF, the set of modules classified
as non-faulty.

The final classification of fault modules (HF) and non-faulty mod-
ules (HNF) by means of the hybrid approach H is

HF = RSLRF

HNF = LRNF O RSLRNF

For validation purposes, we suggest two heuristics to classify those modules
that match a nondeterministic rule when the Rough Sets rules are applied in

Step 4:
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5.1

5.2

Table 7.

Table 8.

Hybrid Approach

— Modules matching a non-deterministic rule are classified according to the
conclusion which is supported by the maximum number of modules related
to M (and thus is more likely to occur). The related approach is denoted by
LR*RS.

— Modules matching a non-deterministic rule are classified as faulty, to be on
the "safe side." The related approach is denoted by LR&RS.

Interpretation of the Models and Rules

Classification is carried out by combining the model obtained with Logistic Re-
gression and the rules derived with Rough Sets. The Hybrid approach can be
used in a straightforward manner. For instance, suppose that a new module
needs to be classified.

If Logistic regression classifies it as non-faulty, since

-11.65 + 0.0286 AddedLOC + 17.11 ModificationRate + 3.53 (ModuleKnowledge — 1)
—-0.06 AddedLOC*ModificationRate < log(0.085/0.915)

then the module is classified as non-faulty. Otherwise, the Rough Sets rules
(some of which are shown in Section 4.2.1, Table 3) are used to classify the
module as either non-faulty or faulty.

Classification Results

We compare the quality of classification obtained from application of Logistic
Regression, Rough Sets analysis, and the hybrid approach with both heuristics.
The evaluation is done with respect to the three parameters described above
and was applied to all four classes defined in Section 5.4. Corresponding re-
sults are given in Tables 7, 8, 9, and 10, respectively.

Parameter LR(1) RS(1) LR*RS(I) LR&RS(I)

Overall completeness 70.8% | 93.85% 96.9% 96.1%
(94.6%)

Faulty module completeness 94.1% 45.4% 81.2% 90.9 %
(54.5%)

Faulty module correctness 21.3% 71.4% 81.2% 71.4%
(75.0%)

Comparison of classification results for class I.

Parameter LR(IT) RS(ID LR*RS(I) | LR&RS(IN)
Overall completeness 77.7% 91.5% 97.7% 97.7%
Faulty module completeness 91.1% 77.2% 86.4% 86.4 %
Faulty module correctness 42.6% 76.6% 100% 100%

Comparison of classification results for class Il.
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Table 9.

Table 10.
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Parameter LR(IIN) RS(I1) LR*RS(I) | LR&RS(II)
Overall completeness 66.2% | 93.85% 98.5% 98.5%
(95.4%)
Faulty module completeness 83.4% 46.2% 81.8% 81.8 %
(63.3%)
Faulty module correctness 17.4% 70.8% 100% 100%
(77.5%)
Comparison of classification results for class Ill.
Parameter LR(IV) RS(IV) LR*RS(IV) | LR&RS(IV)
Overall completeness 84.1% 92.1% 99.2% 99.2%
(93.0%)
Faulty module completeness | 90.9% 66.7% 95.5% 95.5%
(71.7%)
Faulty module correctness 58.0% 80.4% 100% 100%
(81.7%)

Comparison of classification results for class IV.

We observe that the hybrid approach performs better than both LR and RS.
There are only small differences between the application of the two heuristics
LR*RS and LR&RS. In addition to the ‘numerical’ superiority, the hybrid ap-
proach also integrates other advantages of both basic approaches:

1. Logistic Regression results in a ranking of the most important influence fac-
tors among all the attributes considered. This is of value as a guidance for
improvement. These results were independently confirmed by Rough Set
analysis thus increasing confidence.

2. Rough Sets analysis brings out operational rules by which the mod-
ules can be classified. This is of importance because it can be immedi-
ately used for decision support.

3. Analysis of Logistic Regression is based on the measures of the GQM plan,
which may be in fact derived from more elementary measures. Rough Sets
analysis instead used the elementary metrics to which all the measures of
the GQM plan could be reduced.

4. The Rough Sets approach offers the strength of the derived rules but does
not provide reliable indications on the significance of prediction. The Logis-
tic Regression approach is able to evaluate the confidence with which re-
sults have to be considered in the case of larger data sets and in the case of
independent attributes.
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Summary and Conclusions

6  Summary and Conclusions

We have studied and compared Logistic Regression and the Rough Sets ap-
proach, two techniques for the analysis and knowledge discovery of software
measurement data. Our study shows that both techniques are able to identify
essential knowledge to predict module faultiness in maintenance. The results
of prediction become even better for the suggested hybrid algorithm exploiting
the strengths of both approaches. The main conclusions from the investiga-
tions are:

1.

Copyright © Fraunhofer IESE 1999

The two approaches perform differently with respect to the three chosen
criteria of accuracy (overall completeness, faulty module correctness, faulty
module completeness). In all five classes of examples, Rough Set based
analysis performed better with respect to overall completeness and faulty
module correctness, while Logistic Regression was better with respect to
faulty module completeness.

. We suggest a hybrid approach, in which both techniques are applying sub-

sequently. The performance of this approach is demonstrated to be better
when compared to separate application of either Logistic Regression or
Rough Sets.

. The knowledge gained from either approach increases confidence of

results and is - to some extent - complementary from its nature. It
contains independent detection of main influence factors on reliability
of modules on the one side and formulation of production rules re-
flecting the experience from performed experiments on the other
side. Both contributions are essential for carrying out similar projects
in the future and are part of the knowledge of an organization wide
experience factory.

. Knowledge engineering approaches in software engineering should

take into account maturity of the organization; scope and objective of
the underlying measurement program; completeness, accuracy, and
precision of the collected data. From its methodological background,
Rough Sets are more devoted to quantitative analysis based on nomi-
nal or ordinal scale while Logistic Regression is more quantitative from
its origins.

The analysis of the data from a real-world case study offered valuable in-
sights for both the software development process and analysis techniques.
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Summary and Conclusions

However, more studies of this kind are necessary to further increase confi-
dence of results with respect to both aspects and related to other analysis
techniques.

6. The suggested hybrid approach can be applied whenever we have a Boo-
lean dependent variable. Its extension to more general types of variables is
an open research topic.
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