Integration Technologies for Smart Textiles

Rolf Aschenbrenner

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM Technische Universität Berlin Gustav-Meyer-Allee 25 13355 Berlin

SIIT – System on Flex

The Fraunhofer-Gesellschaft Locations in Germany

- 66 institutes and research units
- Nearly 24,000 staff
- More than €2 billion annual research budget totaling. Of this sum, around 1.7 billion euros is generated through contract research

SIIT – System on Flex

Fraunhofer IZM's Mission:

From Microelectronics and Microsystems towards Smart Systems

System Integration Technologies

Outline

- 1. Introduction
- 2. Challenges for Design and Technology
- 3. Technology Overview
 - Conductors
 - Substrates
- 4. Interconnection Technologies
- 5. Application Examples

SIIT – System on Flex

Fraunhofer IZM TexLab

- Conductor Integration and interconnection technologies
- Lighting Concepts for smart textiles
- System Design for Smart Textiles
- Electronics Manufacturing
- Reliability Testing

Team: Christine Kallmayer Christian Diels Malte von Krshiwoblozki Rene Vieroth Bettina Otto +5 Students

SIIT – System on Flex

Wearables vs. Technical Textiles

Challenges for Design and Technology

SIIT – System on Flex

System Design for Smart-Textiles A New Way of Thinking

Designing Systems for Smart Textiles is Totally Different From Designing Systems for Conventional Electronics

SIIT – System on Flex

System Design for Smart-Textiles Nothing is Safe – The Seven Rules

- 1. Every interconnection may break at any time (mechanical stress)
- 2. Any Isolation might conduct at any time (humidity)
- 3. Normally nothing is shielded (properly)
- 4. There are typically no wave guides (high data rates, signal integrity)
- 5. The user has its hands and body in the system
- 6. All conductors are extremely exposed to ESD
- 7. Excessive heat means excessive claims for compensation

• Years of theory and experience made us master this task

SIIT – System on Flex

Technology Overview

SIIT – System on Flex

Materials (conductors) for e-textiles

There is a huge diversity of conductive materials for e-textile applications on the market.

Textile Circuit Manufacturing

Conventional textile manufacturing processes can be used to generate conductive, textile circuits

SIIT – System on Flex

Interconnection Technologies

SIIT – System on Flex

Textile-Integrated Electronic Systems

Integration Technologies – A Selection of Technologies

Interconnection Technologies: Thermoplastic Adhesive Bonding

Bonding with Non-Conductive Adhesive

- 1. Pressure + Temperature
 - adhesive melts >
 - contact pad and cond. yarn touch \succ
- Cooling without releasing pressure 2.
 - adhesive solidifies and
 - keeps contact partners in contact
- Release pressure 3.
 - electronic module and fabric circuit are \succ connected mechanically and electrically

Woven substrate SIIT – System on Flex

Interconnection Technologies: Reliability Testing TA-Bonding

- Temperature cycling (JEDEC JESD22 A104C)
 - 1000 cycles at different ranges
- Humidity tests (JEDEC JESD22 A101B)(85°C/85%H)
 - 1000h
- Wash cycling tests (ISO 6330)

-55 °C – 125 °C | 1000 cycles (same samples) -60 °C – 150 °C | 1000 cycles (same samples)

SIIT – System on Flex

Interconnection Technologies: Outlook: Large Area – High Precision Bonder

- Towards commercializing of thermoplastic adhesive bonding
- Prepared for large textile substrates (1x1 m² operation area)
- For bonding fine pitch circuitry modules

SIIT – System on Flex

Overall length x width x height	3300 mm x 3400 mm x 2600 mm
working area on textile	1000 mm x 1000 mm
max./min. dimension of electronic parts	50 mm x 50 mm / 3 mm x 3 mm
max. heating temperature	350 °C / 623.15 K
Heating rate	80 K/s
Heating principle	Resistance heating
Cooling rate	20 K/s
Cooling principle	Liquid cooling
Heating and cooling	Can be applied from both sides
max. bonding force	2500 N
Accuracy translational/rotational	20 µm / 0,03°
Position control	dual machine vision

Technologies: Crimping

Advantages:

- Room temperature
- Mechanical opening of isolation layers
- Low contact resistance
- High reliability

Disadvantages:

- High setup cost (tooling)
- Limited miniaturization (2 mm pitch)

Christine Kallmayer

Crimp Technologie

^[4] J.H. Whitley, "The Mechanics of Pressure Connections", New York, 1964. © Fraunhofer IZM

Technologies: Crimping

Application e.g. for sensor integration in textiles

IZM

Interconnection by Click-Tool

- Combination of force-fit interconnection and nonconductive adhesive bonding
- Heat transfer through short current pulse for melting the thermoplastic isolation
- Compression force through Click-Tool

SIIT – System on Flex

Wearables DIY-Kit

- IZM offers DIY-Kit for E-textile developers
- Boards are equipped with various sensors and LEDs
- Master Module is compatible to Arduino
- Designer is not bothered with BLE configuration

SIIT – System on Flex

Embroidered Circuits and Interconnections

Context S Fraunhofer IZM

SIIT – System on Flex

.

Resistance of Embroidered Contacts

Phd Study Thorsten Linz

SIIT – System on Flex

Protection of Embroidered contacts

Transfer Molding or Hotmelt over the module

or

Deposition of Epoxy or ICA locally at the contact Or

Combination of local and global encapsulation

SIIT – System on Flex

Technologies: Stretchable Circuit Board

- Stretchable Circuit board based on thermoplastic Polyurethane
- Meander structures for stretchable conductor lines
- Lamination on textile after complete assembly and test
- Textile and electronic processes are seperated as long as possible

Eingebettete Komponenten in TPU

Christine Kallmayer

SIIT – System on Flex

Structuring of Polyurethane

Via in thermoplastic polyurethane foil

Stretchable Circuit Board – Rigid stretch transition

Lamination of SCB on Textile

Ironing

T=190 °C

Textil Lamination

SIIT – System on Flex

Application Examples

SIIT – System on Flex

EasyLight Modular System

RGB display and lighting on textile

- Smart RGB pixel interposers bonded on conductive woven textile circuits
- 3D-fabrics for light diffusion

SIIT – System on Flex

MOTEX MOnitoring TEXtiles

Smart Textile based knee brace for accurate measurement/monitoring of the knee angles

Application fields:

- Healthcare/medical: monitoring of rehabilitation trajectory of patients with total knee arthroplasty)
- Sport: monitoring of knee angles for cyclists to avoid wrong position which could lead to knee problems

Measurement principle: Inductive textile sensor with 1° resolution

Data will be collected by a Smartphone and transferred to

a cloud where it can be analyzed from doctors or coaches

pes **Textile Sensor Integration for Structural Health Monitoring** ADDITCATIONS Carbon Prosthesis **GFRP** Wind Turbine Sensor integration in **Concrete Reinforcement** Automotive CFRP Chassis technical textiles for various applications Measurement of internal strain, temperature, humidity, anti-cut protection SIIT - System on Flex

Application of Resistive Sensor Structures on SCB Pressure Sensing Insole for Diabetes Patients

SIIT – System on Flex

E-Cargo bike Extended safety features for green urban mobility

SIIT – System on Flex

© Fraunhofer IZM

K⊹r TEXTIL

IZM

Automotive interior trims

Extensive use of fabrics as trim

Grupo Antolin is world leader in headliner trims. Its portfolio includes most vehicle interior trims.

- New styling & market trends and requirements
- Increasing number of illumination functions

SIIT – System on Flex

Self-Sustaining Emergency Shelter

SIIT – System on Flex

- "Smart Textiles" summarizes a wide range of applications from Wearables to technical textiles
- The requirements differ between the applications and are completely different from conventional electronics
- A large portfolio of materials and technologes has been developed with different TRLs
- Challenges still lay in:
 - "Simple" applications
 - Standardization
 - Equipment for production

SIIT – System on Flex

Thank you for your attention

Best Regards Your TexLab Team