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Abstract. Information related to the COVID-19 pandemic ranges from biological to bibliographic, from geographical to genetic
and beyond. The structure of the raw data is highly complex, so converting it to meaningful insight requires data curation, inte-
gration, extraction and visualization, the global crowdsourcing of which provides both additional challenges and opportunities.
Wikidata is an interdisciplinary, multilingual, open collaborative knowledge base of more than 90 million entities connected by
well over a billion relationships. It acts as a web-scale platform for broader computer-supported cooperative work and linked
open data, since it can be written to and queried in multiple ways in near real time by specialists, automated tools and the public.
The main query language, SPARQL, is a semantic language used to retrieve and process information from databases saved in
Resource Description Framework (RDF) format.

Here, we introduce four aspects of Wikidata that enable it to serve as a knowledge base for general information on the
COVID-19 pandemic: its flexible data model, its multilingual features, its alignment to multiple external databases, and its
multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be visualized, explored, and
analyzed for purposes like decision support as well as educational and scholarly research.

Keywords: Public health surveillance, Wikidata, knowledge graph, COVID-19, SPARQL, community curation, FAIR data, linked
open data

1. Introduction

The COVID-19 pandemic is complex and multifaceted and touches on almost every aspect of current life
[25]. Coordinating efforts to systematize and formalize knowledge about COVID-19 in a computable form is key
in accelerating our response to the pathogen and future epidemics [24]. There are already attempts at creating
community-based ontologies of COVID-19 knowledge and data [37], as well as efforts to aggregate expert data
[73]. Many open data initiatives have been started spontaneously [22,62,106]. The interconnected, multidisciplinary,
and international nature of the pandemic creates both challenges and opportunities for using knowledge graphs
[8,22–24,35,37,46,73,108]. However, there have been no systematic studies of crowd-sourced knowledge graph
generation by spontaneous groups of self-coordinated users, under the pressure of rapidly occurring phenomena,
such as the pandemic. Our paper fills this gap.

For applications of knowledge graphs in general, common challenges include the timely assessment of the rel-
evance and quality of any piece of information with regards to the characteristics of the graph and the integration
with other pieces of information within or external to the knowledge graph. Common opportunities are mainly re-
lated to leveraging such knowledge graphs for real-life applications, which in the case of COVID-19 could be, for
instance, outbreak management in a specific societal context or education about the virus or about countermea-
sures [8,22–24,35,37,46,73,108]. While this manuscript as a whole emphasizes the opportunities, we think it is
worthwhile to highlight some of the challenges early on.

1.1. COVID-19 data challenges

The integration of different data sources always poses a range of challenges [19], for example in terms of in-
teroperability (e.g. differing criteria for COVID-19 deaths across jurisdictions), granularity (e.g. number of tests
performed per jurisdiction and time period), quality control (e.g. whether aggregations of sub-national data fit with
national data), data accessibility (e.g. whether they are programmatically and publicly accessible, and under what
license) or scalability (e.g. how many sources to integrate, or how often to sync between them).

Integrating COVID-19 data presents particular challenges: First, human knowledge about the COVID-19 disease,
the underlying pathogen and the resulting pandemic is evolving rapidly [53], so systems representing it need to be
flexible and scalable in terms of their data models and workflows, yet quick in terms of deployability and updata-
bility. Second, COVID-19-related knowledge, while very limited at the start of the pandemic, was still embedded
in a broader set of knowledge (e.g. about viruses, viral infections, past disease outbreaks and interventions), and
these relationships – which knowledge bases are meant to leverage – are growing along with the expansion of our
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COVID-19 knowledge [105]. Third, the COVID-19 pandemic has affected almost every aspect of our globalized
human society, so knowledge bases capturing information about it need to reflect that. Fourth, despite the disrup-
tions that the pandemic has brought to many communities and infrastructures [25], the curated data about it should
ideally be easily and reliably accessible for humans and machines across a broad range of use cases [82].

1.2. Organization of the manuscript

In this research paper, we report on the efforts of the Wikidata community (including our own) to meet the
COVID-19 data challenges outlined in the previous section by using Wikidata as a platform for collaboratively
collecting, curating and visualizing COVID-19-related knowledge at scales commensurate with the pandemic. While
the relative merits of Wikidata with respect to other knowledge graphs have been discussed previously [1,30,84],
we focus on leveraging the potential of Wikidata as an existing platform with an existing community in a timely
fashion for an emerging transdisciplinary application like the COVID-19 response.

As active editors of Wikidata, the authors have contributed a significant part of that data modelling, usage frame-
work and crowdsourcing of the COVID-19 information in the knowledge graph since the beginning of the pan-
demic. We consequently have a unique perspective to share our experience and overview how to use Wikidata to
host COVID-19 data, integrate it with non-COVID-19 information and feed computer applications in an open and
transparent way.

The remainder of the paper is organized as follows: we start by introducing Wikidata in general (Section 2) and
describe key aspects of its data model in the context of the COVID-19 pandemic (Section 2.1). Then, we give an
overview of the language support (Section 2.2) and database alignment (Section 2.3) of COVID-19 information
in Wikidata. Subsequently, we present snapshots of applications of the Wikidata’s COVID-19 knowledge graph
to visualizing multidisciplinary information about COVID-19 (Section 3). These visualizations cover biological
and clinical aspects (Section 3.1), epidemiology (Section 3.2), research outputs (Section 3.3) and societal aspects
(Section 3.4). Finally, we discuss the outcomes of the open development of the COVID-19 knowledge graph in
Wikidata (Section 4), draw conclusions and highlight potential directions for future research (Section 5).

2. Wikidata as a semantic resource for COVID-19

Wikidata is a large-scale, collaborative, open-licensed, multilingual knowledge base that is both human- and
machine-readable. Notably, it is available in the standardized RDF (Resource Description Framework) format,
where data is organized into entities (items) and the relationships that connect them to each other and outside data,
named properties [102].

Wikidata is a peer production project, developed under the umbrella of the Wikimedia Foundation, which also
hosts Wikipedia and an ecosystem of open collaborative websites around it. Similarly to Wikipedia, it relies on
community-driven development and design and is both a-hierarchical and largely uncoordinated [47]. As a result,
it develops entirely organically, based on the editor community’s consensus, which may be implicit (e.g. by the
absence of modifications) or explicit (e.g. a policy on how to handle biographical information about living people).
This community develops ontologies and typologies used in the database.

This community-centric approach is both a blessing and a curse. On the one hand, it makes methodical planning
of the whole structure and its granularity very difficult, if not impossible [59]: there simply is no central coordination
system, and all major design decisions have to be approved through a consensus of all interested contributors. On the
other hand, harnessing knowledge and skills of a broad range of human and automated contributors provides for an
unparalleled flexibility and versatility of uses, and allows for rapid addressing of emerging and urgent phenomena,
such as disease outbreaks.1

The novelty of a bottom-up developed Knowledge Graph relies on an entirely organic growth of taxonomies and
content, negotiated continuously by the involved parties. While the benefits of peer production and collaborative
editing are well known, they are particularly visible in contemporary and fast changing topics [54]. This is because

1https://www.wikidata.org/wiki/Wikidata:WikiProject_Humanitarian_Wikidata.

https://www.wikidata.org/wiki/Wikidata:WikiProject_Humanitarian_Wikidata


CORRECTED  P
ROOF

4 H. Turki et al. / Representing COVID-19 information in collaborative knowledge graphs: The case of Wikidata

the crowd-sourced coordination does not require a long decision-making process, nor a chain of command. Addi-
tionally, the bottom-up approach allows for a better optimization of topics, by relying on “free market” spontaneous
forces of individual editors. It is already known that the search habits of users seeking medical content changed
dramatically as a result of the COVID pandemic [13]. However, the exact dynamics of how this peer network re-
sponded to the challenge, in particular to the urgent need for new taxonomies and knowledge graphs, has not been
a topic of systematic analysis. Our paper fills this gap.

With respect to the COVID-19 data challenges (cf. Section 1.1), Wikidata addresses them in several ways: First, it
was designed for web scale data with flexible and evolving data models that can be updated quickly and frequently
[98,102], and its existing community has been using it to capture COVID-19-related knowledge right from the start.2

Second, Wikidata already contained a considerable and continuously expanding volume of curated background
information – from SARS-CoV-1 and other coronaviruses to zoonoses, cruise ships, public health interventions,
vaccine development and relevant publications – ready to be leveraged to explore the growing COVID-19-related
knowledge in such broader contexts [105]. Third, both the Wikidata platform and the Wikidata community are
highly multifaceted, multilingual and multidisciplinary [51,52]. Fourth, the Wikidata infrastructure is digital-first,
with high uptime and low access barriers, while its community is distributed around the globe and includes people
from many walks of life [102], such that any particular disruption due to the pandemic only affects subsets of the
Wikidata community, which also has experience with handling humanitarian crises, e.g. through the Zika experience
[28] and through overlap with the Wikipedia community that has been covering disasters for two decades.3

An important caveat is that data integration through Wikidata poses some particular challenges of its own, such
as data licensing (being in the public domain, Wikidata can essentially only ingest public-domain data [76]) or
multilinguality (e.g. how to handle concepts that are hard to translate [88]), and for certain kinds of data (e.g.
health data from individual patients), it is not suitable, although appropriately configured instances of the underlying
technology stack might [80].

Here, we present how various types of data related to the COVID-19 pandemic are currently represented in
Wikidata thanks to the flexible structure of the database and how useful visualizations for different subsets of the
data linked to COVID-19 within the Wikidata knowledge base can be generated.

2.1. Data model flexibility

In Wikidata, each concept has an item (a human, disease, drug, city, etc.) that is assigned a unique identifier (Q-
number; brown in Fig. 1), and optionally a label, description and aliases in multiple languages (yellow in Fig. 1).
The assignment of a single language-independent identifier for each entity in Wikidata helps minimize the size of
the knowledge graph and avoids issues seen in databases such as DBpedia, where separate items are needed for each
language [1]. Such a feature is allowed thanks to the use of Wikibase software – a MediaWiki variant adapted to
support structured data – to drive Wikidata instead of other systems that represent entities using textual expressions,
particularly Virtuoso in the context of DBpedia [1] and NewsReader [101].

The true richness of the knowledge base comes from the connections between the items: statements in the form of
RDF triples (subject-predicate-object) where the subject is the respective item, the predicate is a Wikidata property
(red in Fig. 1), and the object is another Wikidata item or piece of information (blue in Fig. 1). The properties that
relate items are similarly each assigned an identifier (P-number). Some properties relate a Wikidata item as the
object and can be taxonomic (e.g. instance of [P31], subclass of [P279] or part of [P361]) or non-taxonomic (e.g.
significant person [P3342], drug used for treatment [P2176] or symptoms [P780]). Conversely, other properties can

2The creation dates of the three core items: “COVID-19 pandemic” (Q81068910) 2020-01-05 https://w.wiki/3PCe (note that labels may
change), “SARS-CoV-2” (Q82069695) 2020-01-14 https://w.wiki/3PCf and “COVID-19” (Q84263196) 2020-02-02 https://w.wiki/3PCi. The
creation and curation of these core items was accompanied by the creation of more specialized ones like “Category:COVID-19 pandemic”
(Q83189805; 2020-01-19), “Wuhan Huanan Seafood Wholesale Market” (Q83264280; 2020-01-20), “Timeline of the COVID-19 pandemic”
(Q83493517; 2020-01-24) or “Huoshenshan Hospital” (Q83554783; 2020-01-24).

As these items became available, they were quickly put to use for enriching the knowledge graph around them. For instance, when the paper
“Recent advances in the detection of respiratory virus infection in humans” was published on 2020-01-15, the item Q82838328 about it had been
linked to the “SARS-CoV-2” item within less than three days: https://w.wiki/3XAt.

3Cf. https://w.wiki/VDe.

https://w.wiki/3PCe
https://w.wiki/3PCf
https://w.wiki/3PCi
https://w.wiki/3XAt
https://w.wiki/VDe
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Fig. 1. Data structure of a Wikidata item. The simple, consistent structure of a Wikidata item makes it both human- and machine-readable.
Each Wikidata item has a unique identifier (brown). Items can have labels, descriptions and aliases in multiple languages (yellow). They can
include any number of statements having predicates (red), objects (blue), qualifiers (black) and references (purple) where the subject is the item.
Finally, where additional wikimedia resources are available about an item’s topic, those are listed (green). Source: https://www.wikidata.org/
wiki/Q84263196, available at: https://w.wiki/auF. License: CC BY-SA 4.0.

https://www.wikidata.org/wiki/Q84263196
https://www.wikidata.org/wiki/Q84263196
https://w.wiki/auF
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have an object that is a value (e.g. number of cases [P1603]), date (e.g. point in time [P585]), URL (e.g. official
website [P856]), string (e.g. official name [P1448]), or external identifier (e.g. Library of Congress authority ID
[P244] or Disease Ontology ID [P699]). Each statement can be given further detail and specificity via qualifiers
(black in Fig. 1) or provenance via references (purple in Fig. 1), which themselves can be represented as RDF
triples [98]. This process of adding statements about statements is generally known as reification [40] and differs
from other projects like DBpedia, which are based on a simple RDF representation without qualifiers and references
[45]. The lack of reification in DBpedia makes it difficult to analyze epidemiological information as time series
because values are not assigned dates. On the other hand, the excessive use of generic properties, particularly
dbo:wikiPageWikiLink, to link DBpedia items according to how their corresponding Wikipedia articles are related
in Wikipedia (e.g. wikilink or subcategory) does not always capture semantic relatedness as generic relations can
sometimes represent comparisons and simultaneity and does not seem to be useful to drive automatic biomedical
reasoning requiring knowledge resources with well-defined relation types to efficiently work. An example of such
a deficiency is the consideration in DBpedia of a link to COVID-19 pandemic in Tunisia from the Wikipedia article
about 2020 Nice Stabbing although the statement including the wikilink declares that the perpetrator had arrived as
a migrant in late September 2020 at the island of Lampedusa, Italy, amidst the COVID-19 pandemic in Tunisia.

The only situation where DBpedia retrieves precise relational statements (e.g. dbp:symptoms, dbp:treatment) as
well as non-relational statements (e.g. dbo:confirmedCases, dbp:arrivalDate) from Wikipedia is when the informa-
tion is extracted from infoboxes [83]. Even in this situation, the infobox-based creation of DBpedia statements suf-
fers from several inconsistencies requiring the use of logical constraints and human efforts for their efficient elimina-
tion although properties are quite defined in infoboxes [83]. A practical example of this problem is the DBpedia item
about Ahmed Al-Qadri, a former Syrian minister of Agriculture and Agrarian Reform, as of June 20, 2021.4 This
item is described as having COVID-19 pandemic as a place of death (dbp:deathPlace) and not as a cause of death.

The advantage of Wikidata’s use of RDF over other competing semantic data formats, particularly property
graphs, is that it applies reference schemas and consistency rules before assigning predicates to statements [5]. Its
volume, variety, velocity and veracity place it at the forefront of ‘big data’ approaches [41,90]. Entries in RDF triple
stores are predefined entities, rather than simple text strings, and structured into uni-directional statements [4]. In
Wikidata, this is further enhanced by the use of qualifiers to provide additional features of the statements. This
structure makes building semantic databases using RDF more difficult and time-consuming than alternative systems,
especially property graphs [5], but it allows a fully regular representation of statements in knowledge graphs where
subjects, predicates and objects are standardized and semantically described. Avoidance of typos and synonyms of
string-based systems then allows far faster and more precise information retrieval and usage [4].

In the context of the COVID-19 pandemic, an ontological database representing many aspects of the SARS-CoV-
2 outbreak has been represented in Wikidata, building on pilot work that was started at the onset of the Zika pan-
demic [28] and led to the formation of WikiProject Zika Corpus.5 This Zika project – itself inspired by dedicated
Wikiprojects for Medicine6 and for Source Metadata7 – laid many of the foundations for the current COVID-19
work in managing fast-changing information: it developed, documented and refined sets of SPARQL queries about
an ongoing epidemic, the underlying pathogen, the disease and diagnostic or therapeutic options, and it piloted
workflows for integrating distributed knowledge from multiple databases to build a consistent semantic representa-
tion of a topic for which relevant concepts were often not yet readily available through formal ontologies.

Wikidata is apt to cover gaps in ontologies, as any user is entitled to create new classes and propose new properties.
In contrast to DBpedia, which is based on scheduled scraping of Wikipedia, the openness of the Wikidata data model
allows flexible, immediate representation by any stakeholder interested on a subject. For example, Wikidata has a
concept for vaccine candidate [Q28051899], but as it is not on a particular Wikipedia page, the concept has never
been represented on DBpedia.

The core of the COVID-19 knowledge graph in Wikidata is formed by three main items (red in Fig. 2): COVID-19
[Q84263196], SARS-CoV-2 [Q82069695], and COVID-19 pandemic [Q81068910]. Those three core COVID-19-

4https://web.archive.org/web/20210620223556/https://dbpedia.org/page/Ahmed_Al-Qadri.
5https://www.wikidata.org/wiki/Wikidata:WikiProject_Zika_Corpus.
6https://www.wikidata.org/wiki/Wikidata:WikiProject_Medicine.
7https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData.

https://web.archive.org/web/20210620223556/https://dbpedia.org/page/Ahmed_Al-Qadri
https://www.wikidata.org/wiki/Wikidata:WikiProject_Zika_Corpus
https://www.wikidata.org/wiki/Wikidata:WikiProject_Medicine
https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData
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Fig. 2. Simplified skeleton of the data model of COVID-19 information on Wikidata. The three main COVID-related items (the ‘C3 items’)8

are represented in red, selected classes of items related to these are shown in blue, with the relations between them represented as arrows. The
number of statements relating to each item from the relevant class is indicated next to the item (In the case of scholarly articles, relations to each
of the three COVID-related items is indicated by colour). Relation types regularly used to define items within Wikidata classes are omitted (e.g.
chromosome [P1057] for human genes), as of 20 August 2020,9 available at: https://w.wiki/auD, license: CC BY 4.0.

related Wikidata items have relatively simple links to one another. Mainly that SARS-CoV-2 causes COVID-19,
which itself has had the downstream effect of the COVID-19 pandemic.

These three core items then link to a vast array of items related to all aspects of the disease, its causative virus,
and the resulting pandemic (>17,000 Wikidata items as of 20 August 2020; blue in Fig. 2).

When comparing the number of COVID-related Wikidata items with the number of COVID-related entries on
the English DBpedia as of May 26, 2021, we find that only 8727 DBpedia entities have been defined for COVID-19
information, presumably only the entities having a corresponding article in English Wikipedia.10 The limitation of
DBpedia in this context is explained by the narrower notability criteria used in Wikipedia for deciding whether
a topic can have a Wikipedia article or not. This criterion disallows multiple aspects of COVID-19 from being
included in Wikipedia and consequently in DBpedia [32].

10For an update of the number of COVID-related items in English DBpedia, please see https://tinyurl.com/ftn5aef3.

https://w.wiki/auD
https://tinyurl.com/ftn5aef3
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The collaborative work in Wikidata to populate and curate this data has been largely accomplished by WikiProject
COVID-19,11 launched in March 2020 [105]. This WikiProject itself has a Wikidata item [Q87748614], and items
are linked to it using the property on focus list of Wikimedia project [P5008]. The Wikipedia wing of the project
similarly works to enrich and validate COVID-19 information through manual fact-checking from referred scholarly
publications and trustworthy mass media to prevent vandalism [9] and verify the coverage of the disease through
Wikidata-driven analysis of the online encyclopedia [56]. This replication mainly serves to ensure the manual ex-
traction of accurate COVID-19 information from Wikipedia to further enrich Wikidata by contrast to DBpedia that
gives less interest to the verification and vandalism identification of Wikipedia information before automatically
retrieving it to enrich DBpedia with updated statements [32].

These COVID-19-related items are linked to their respective classes or types using instance of [P31] or sub-
class of [P279] relations, and they are linked between each other using non-taxonomic relations defining knowl-
edge about various and multi-disciplinary aspects of COVID-19 (Fig. 2). Biomedical relations between Wikidata
items can be assigned nature of statement [P5102] or sourcing circumstances [P1480] qualifiers to state the sta-
tus (e.g. official, hypothesis and de facto) and the occurrence probability (e.g. rarely, possibly and often) of the
described semantic relation. The network of these items and relations forms a large-scale knowledge graph for
COVID-19, where the three core COVID-19-related items noted above extensively link various classes, most no-
tably: disease outbreaks [Q3241045] in regions such as continents, sovereign states, and constituent states, COVID-
19 tracing apps [Q89288125], COVID-19 vaccines [Q87719492] and vaccine candidates [Q28051899], scholarly
articles [Q13442814] and COVID-19 dashboards [Q90790055]. This graph with short paths to the core COVID
items is augmented by biomedical, geographical and other more distantly related entities that are already available
in Wikidata, representing an important overview of clinical and other knowledge [98,105]. Such distantly related
entities are also available in other open knowledge graphs, particularly DBpedia and YAGO, and contribute much to
the value of a semantic resource [30,84]. In Wikidata, several initiatives such as WikiCite for scholarly information
[67,70,92,107] and Gene Wiki for genomic data [11] have enabled COVID-19 knowledge graphs to include classes
like genes [Q7187], proteins [Q8054] or biological processes [Q2996394], along with the definition of semantic
relations between items closely and distantly related to COVID-19. This, consequently, allows the expansion of the
coverage of COVID-19 information in Wikidata and a better characterization of COVID-19-related items.

In addition to relational statements that link items within the knowledgebase, non-relational statements link to
external identifiers or numerical values [27]. Wikidata items are assigned their identifiers in external databases,
including semantic resources, using human efforts and tools such as Mix’n’match [65]. These links make Wikidata
a key node of the open data ecosystem, not only contributing its own items and internal links, but also bridging
between other open databases (Fig. 3). Wikidata therefore supports alignment between disparate knowledge bases
and, consequently, semantic data integration [11] and federation [65] in the context of the linked open data cloud
[21]. Such statements also permit the enrichment of Wikidata items with data from external databases when these
resources are updated, particularly in relation with the regular changes of the multiple characteristics of COVID-19.
By contrast, DBpedia mainly uses Wikipedia for its enrichment and this does not support the coverage of multiple
aspects of the analyzed disease [1,45,60]. Examples of Wikidata properties used to define external identifiers can be
found in Table 1.

Numerical statements are assigned to disease outbreak items for the COVID-19 pandemic to outline the evolution
of the epidemiological status of different entities, from countries to provinces, cities and cruise ships. The properties
used to define these statistical statements are shown in Table 1 and include data about the morbidity, the mortality,
the testing and the clinical management of COVID-19 at the level of continents, countries and constituent states
and also many smaller entities. Some Wikidata properties used to store this epidemiological information have been
created in response to COVID-19 (e.g. Number of recoveries [P8010], number of clinical tests [P8011], and number
of hospitalized cases [P8049]) proving the flexibility of the knowledge base. To keep records of the progress of the
COVID-19 pandemic over time, each statistical statement is assigned a point in time [P585] relation as a qualifier.
These epidemiological statements are retrieved from CC0 databases such as the COVID-19 DataHub database12

11https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19.
12https://datahub.io/core/covid-19.

https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19
https://datahub.io/core/covid-19


CORRECTED  P
ROOF

H. Turki et al. / Representing COVID-19 information in collaborative knowledge graphs: The case of Wikidata 9

Fig. 3. Wikidata in the Linked Open Data Cloud. Databases indicated as circles (with Wikidata indicated as ‘WD’), with grey lines linking
databases in the network if their data is aligned, source dataset last updated May 2020 (available at: https://w.wiki/bYM, license: CC BY 4.0).

and are linked to them as references. These statements can be used to automatically infer other measures that are
not supported by Wikidata but give a full overview of the epidemiology of COVID-19: let c be the total number
of confirmed cases at a given day Z when the epidemiological evaluation takes place, d the number of confirmed
deaths until that day, r the number of confirmed recoveries by that day, h the number of confirmed hospitalized cases
on that day, t the number of clinical tests until that day. On the basis of these values (which could all be represented
in Wikidata if matters related to the multi-level coverage of COVID-19 knowledge and conflicts of information from
multiple sources are solved), the following measures can be inferred:

– Confirmed active cases v = c − (d + r);
– Confirmed recovery rate a = r/c;
– Confirmed patient-days p = ∑

h if all infection days are represented;
– New confirmed cases ncZ = cZ − cZ−1;
– New confirmed deaths ndZ = dZ − dZ−1;
– New clinical tests ntZ = tZ − tZ−1;
– New confirmed recoveries nrZ = rZ − rZ−1.

This set of COVID-19 information is integrated into Wikidata using human efforts, the QuickStatements tool,13

the Wikidata API,14 and bots mainly written in Python (e.g. CovidDatahubBot15), which explains its quantity and
coverage [98]. Data validation is accomplished at multiple layers:

13QuickStatements (QS) is a web service that can modify Wikidata, based on a simple text commands: https://quickstatements.toolforge.org/.
14An application programming interface (API) is a machine-friendly interface of a web service that can be used to feed another computer

program with needed information. The Wikidata API is available at https://www.wikidata.org/w/api.php.
15https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/CovidDatahubBot.

https://w.wiki/bYM
https://quickstatements.toolforge.org/
https://www.wikidata.org/w/api.php
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/CovidDatahubBot
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Table 1

Examples of Wikidata properties used to define non-relational statements

Wikidata ID Name Description

Properties for the alignment with scholarly databases

P496 ORCID iD identifier for a researcher (Open Researcher and Contributor ID)

P1153 Scopus Author ID identifier for an author in the Scopus bibliographic database

P214 VIAF ID identifier for the Virtual International Authority File database

P7859 WorldCat Identities ID entity on WorldCat for authority control of authors’ data

P1053 ResearcherID identifier for a researcher in a system for scientific authors, primarily used in Web of
Science

Properties for the alignment with clinical language resources and encyclopedias

P494 ICD-10 identifier in the ICD catalogue codes for diseases – Version 10

P672 MeSH tree code Medical Subject Headings (MeSH) codes are an index and thesaurus for the life
sciences (�= MeSH ID, P486)

P1417 Encyclopædia Britannica Online ID identifier for an article in the online version of Encyclopædia Britannica

P486 MeSH descriptor ID identifier for Descriptor or Supplementary concept in the Medical Subject Headings
controlled vocabulary

P3098 ClinicalTrials.gov Identifier identifier in the ClinicalTrials.gov database

P6680 MeSH term ID identifier of a “MeSH term” (Medical Subject Headings)

P6694 MeSH concept ID identifier of a Medical Subject Headings concept

Properties for the non-relational characterization of Wikidata items

P569 date of birth date on which the subject was born

P856 official website URL of the official homepage of an item (current or former)

P1603 number of cases cumulative number of confirmed, probable and suspected occurrences

P1120 number of deaths total (cumulative) number of people who died since start as a direct result of an
event or cause

P3457 Case fatality rate proportion of patients who die of a particular medical condition out of all who have
this condition within a given time frame (equal to the quotient of the number of
cases by the number of deaths as stated in a given day)

P8010 Number of recoveries number of cases that recovered from disease

P8011 number of clinical tests cumulative number of clinical tests

P8049 number of hospitalized cases number of cases that are hospitalized

P3488 minimal incubation period in humans minimal time between an infection and the onset of disease symptoms in infected
humans

P3487 maximal incubation period in humans maximal time between an infection and the onset of disease symptoms in infected
humans

P3492 basic reproduction number number of infections caused by one infection within an uninfected population

– Wikidata properties can have constraint declarations associated with them which represent conditions on the
use of those properties. As an example, property drug or therapy used for treatment [P2176] has a type con-
straint that states that the items described by it should be instances of health problem [Q2057971] and a value-
type constraint that states that the referenced items should be instances of medication [Q12140].

– In 2019, Wikidata added a new namespace to define Entity schemas using the Shape Expressions (ShEx) lan-
guage [78,97]. Entity schemas can be used to define expectations about the topology associated with some
entities. Entity schemas are human readable and machine processable, facilitating their creation by domain
experts and their use for validation. During the pandemic, entity schemas related to COVID-19 entities were
created like virus taxon [E192], strain [E174], disease [E69], virus strain [E170], virus gene [E165], coron-
avirus pandemic local outbreaks [E188] and so on [105]. A remarkable aspect of entity schemas in Wikidata is
their collaborative nature, which allows the entity schema ecosystem to evolve by users creating new schemas
with different constraints or reusing existing schemas by importing existing ones.

– Another approach to validate the data has been the use of SPARQL queries. SPARQL is available as part
of the Wikidata Query Service and it can be used not only to query the knowledge graph, but also to detect
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inconsistencies and check logical constraints and more complex patterns based on heuristics. It is also possible
to check the edit history and use the ORES service to eliminate database vandalism [97].

Although Web Ontology Language (OWL) can define knowledge graphs with a richer semantic characterization
of data models by providing a layer of Description Logics such as in DBpedia [1], the infrastructure developed for
the validation of RDF data in Wikidata helps assure a high level of consistency of the Wikidata knowledge graph.

In the context of COVID-19, numerical statements related to epidemiology are constantly changing, and Wiki-
data’s structure benefits it in terms of recency.16 Wikidata’s speed can be tailored by independent users to be as fast
as needed. In the case of COVID-19, while death counts on Wikidata might lag behind Wikipedia, bots and humans
fill the data model directly, and do not wait for update cycles. As of June 2, 2021, DBpedia counts less than 160.000
deaths in Brazil17 while both English Wikipedia and Wikidata present counts of over 460.000.18 This is mainly due
to the long delays between the regular updates of the DBpedia statements from Wikipedia. In fact, as of June 2,
2021, DBpedia information for COVID-19 pandemic in Brazil is inferred from the edition of October 30, 2020,19

leaving it currently outdated. Even if DBpedia has been timely updated from infoboxes, the information infoboxes
include can remain outdated in several languages due to the lack of activity on a particular page. An example of such
a limitation is the epidemiological data in the infobox of the article about COVID-19 pandemic in France in Simple
English Wikipedia as of May 28, 2021 that shows outdated values of confirmed cases and deaths going back to May
13, 2021.20 In that direction, the Wikidata Bridge project21 aims to develop Wikidata-driven infoboxes that can be
editable in Wikipedia. That may benefit non-English Wikipedia projects in particular to have updated information
in infoboxes.

2.2. Broad multilingual representation

Wikidata’s language-independent data model makes it well-adapted for multilingual representation. In English,
French, German and Dutch, its biomedical language coverage is comparable to other semantic resources such as
SNOMED-CT,22 BabelMeSH,23 and ICD-1024 (largely due to links with other biomedical ontologies and knowl-
edge bases) [98]. However, its coverage over a larger lange set is markedly broader than those resources [39,61].
Looking at the coverage of the 17,000 items that link to and from the three main COVID items (Fig. 2) and the
55,000 statements that relate them, distinct patterns emerge (Fig. 4E). More than 40% of the predicates (Curves B
and D) and more than 90% of the objects (Curve C) of the statements related to COVID are represented in fifty
languages or more. English is the unsurprising front-runner in items with COVID as the object, since many of those
items are journal articles with untranslated titles (Fig. 4A). The names of the properties that link them (Fig. 4B, D)
have much more even coverage, as do items with COVID as the subject (Fig. 4C). This broad but uneven coverage
is particularly relevant for multilingual resources for natural language processing purposes in clinical contexts [20].

The better coverage in English is explained in part by the higher support of this language in both biomedical
language resources [34] and Wikipedia [91]. Cooperation with publishers such as Cochrane has a significant effect

16This can be illustrated, for instance, by a query for the number of COVID-related items that have been last modified in May and June 2021
(as of June 21, 2021): https://w.wiki/3XBL.

17https://web.archive.org/web/20210602140025/https://dbpedia.org/page/COVID-19_pandemic_in_Brazil.
18https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=10260573, https://www.wikidata.org/w/index.php?

title=Q86597695&oldid=1433353285.
19https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=986289428.
20https://simple.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_France&oldid=7562853.
21https://www.mediawiki.org/wiki/Wikidata_Bridge.
22http://www.snomed.org/snomed-ct/sct-worldwide (Accessed February 3, 2021): SNOMED-CT supports English, French, Danish, Dutch,

Spanish, Swedish, and Lithuanian.
23https://lhncbc.nlm.nih.gov/project/babelmesh-and-pico-linguist (Accessed on February 3, 2021): BabelMeSH supports Arabic, Chinese,

Dutch, English, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Swedish.
24ICD-10: International Classification of Diseases, 10th Revision [49]: ICD-10 supports Arabic, Chinese, English, French, Russian, Spanish,

Albanian, Armenian, Azeri, Basque, Bulgarian, Catalan, Croatian, Czech, Danish, Dutch, Estonian, Persian, Finnish, German, Greek, Hungarian,
Icelandic, Italian, Japanese, Korean, Latvian, Lithuanian, Macedonian, Mongolian, Norwegian, Polish, Portuguese, Serbian, Slovak, Slovenian,
Swedish, Thai, Turkish, Turkmen, Ukrainian, and Uzbek.

https://w.wiki/3XBL
https://web.archive.org/web/20210602140025/https://dbpedia.org/page/COVID-19_pandemic_in_Brazil
https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=10260573
https://www.wikidata.org/w/index.php?title=Q86597695&oldid=1433353285
https://www.wikidata.org/w/index.php?title=Q86597695&oldid=1433353285
https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=986289428
https://simple.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_France&oldid=7562853
https://www.mediawiki.org/wiki/Wikidata_Bridge
http://www.snomed.org/snomed-ct/sct-worldwide
https://lhncbc.nlm.nih.gov/project/babelmesh-and-pico-linguist
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Fig. 4. Language representation of COVID-19-related statements. A-D) Language coverage for items and properties used in statements when
either the object or subject is one of the three COVID-related items (as per Fig. 2; note: log y-axis). The eight most common languages in
Wikidata are shown: en=English, fr=French, de=German, es=Spanish, zh=Chinese, ar=Arabic, ja=Japanese, ru=Russian.) E) Percentage of the
items covered in order from highest to lowest coverage. faceted by categories A-D. Data shown for top 150 languages in each category (note:
languages not necessarily in same order for each), as of August 15, 2020 (available at: https://w.wiki/auE, license: CC BY 4.0; live data: https://
w.wiki/Yj$, https://w.wiki/Yk3, https://w.wiki/Yk5, and https://w.wiki/Yk6).

on English Wikipedia coverage, too [48]. The significant coverage of languages like French, Spanish, German,
Chinese and Swedish in Medical Wikidata fits with their support by major biomedical multilingual databases: ICPC-
2 [86] supports 24 languages,25 SNOMED-CT supports 7 languages, LOINC26 supports 13 languages, BabelMeSH
[33] supports 13 languages, and ICD-10 supports 42 languages. The situation is even worse for other multilingual

25ICPC-2 supports Afrikaans, Basque, Chinese, Croatian, Danish, Dutch, English, Finnish, French, German, Greek, Hebrew, Hungarian,
Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovenian, Spanish, and Swedish.

26https://loinc.org/international/ (Accessed on August 13, 2020): LOINC supports Chinese, Dutch, Estonian, English, French, German, Greek,
Italian, Korean, Portuguese, Russian, Spanish, and Turkish.

https://w.wiki/auE
https://w.wiki/Yj$
https://w.wiki/Yj$
https://w.wiki/Yk3
https://w.wiki/Yk5
https://w.wiki/Yk6
https://loinc.org/international/
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Table 2

Languages ranked by medical content from the literature: number of medical Wikipedia articles, number of Wikidata labels, number of native
speakers, and number of Wikidata users. Style code: italic for languages appearing in all four lists; bold for those appearing in only one

Rank Medical Wikipedia, 2013 [38] Wikidata labels, 2017 [52] Population, 2019 [26] Wikidata users, 2018 [51]

Language Number of
medical
articles

Language Rate of labels Language Native
speakers

(millions)

Language

1 English 29072 English 11.04% Chinese 1323 English

2 German 7761 Dutch 6.47% Spanish 463 French

3 French 6372 French 6.02% English 369 German

4 Spanish 6367 German 5.08% Hindi 342 Spanish

5 Polish 5999 Spanish 4.07% Arabic 335 Italian

6 Italian 5677 Italian 3.9% Bengali 228 Russian

7 Portuguese 5269 Swedish 3.89% Portuguese 227 Dutch

8 Russian 4832 Russian 3.54% Russian 154 Japanese

9 Dutch 4391 Cebuano 2.21% Japanese 126 Danish

10 Japanese 4303 Bengali 1.94% Western Punjabi 82.5 Portuguese

open knowledge graphs, particularly DBpedia which failed to develop COVID-19 information in major languages
like French and German as of June 20, 2020.27

The support of other natural languages can also be explained by the use of bots that extract multilingual terms
representing clinical concepts based on natural language processing techniques and machine learning28 [93] and by
the involvement of research institutions and scientists speaking these languages, particularly German and Dutch, in
adding biomedical information to Wikidata [79,103]. The near-100% coverage for properties with COVID-19 as the
subject in the most spoken languages (Fig. 4B) resulted from early systematic volunteer translation drives for com-
mon properties by WikiProject Labels and Descriptions29 and others [88]. Language coverage of medical Wikidata
labels (particularly for diseases’ class) seems influenced by several factors. Most obvious for a collaborative project
is the number of speakers of each language among the contributor community [51]. However, there also appears
to be an impact from the overall number of Wikidata labels for each language [52] and to the number of medical
Wikipedia articles in each language [38] (Table 2).

These correlations can be interrogated by querying Wikidata to find out the current status of the editing of this
knowledge graph and of Wikipedia in 307 languages (Table S3; top-ranking items for each variable summarised
in Tables 3 and 4). Query results largely match previously published trends for Wikipedia and Wikidata (Table 2),
though we note that Arabic (ar) and Chinese (zh), appear in the top 10 languages in the Wikidata COVID-19 sub-
set, while being absent from the top 10 s for other sets described in Table 4. Coverage differed across languages
and variables, and most of the distributions showed marked positive skew. Nonparametric analysis of correlations
(Spearman’s rho) found large magnitude associations (rho 0.65 to 0.97, median = 0.84, Supplementary Table S4),
statistically significant even following stringent Bonferroni correction. To account for skew and data spanning mul-
tiple orders of magnitude, log 10-transformed data was used for subsequent analyses. Pearson’s correlation coeffi-
cients between all variables was high (Fig. 5). A principal component analysis for the 90 languages with complete
data on all 7 indicators found that a single component explained 81% of the variance, with loadings ranging from
0.80 to 0.95. The smallest PCA loading and Spearman’s correlation were for the number of viewers, which though
still a strong association, was less correlated than the other variables by a substantial margin.

Similarly, the current representation of COVID-19 Wikidata items in natural languages seems to be linked with
COVID-19-related Wikipedia pages, edits and pageviews for a given language, as shown in Table 4. This is con-

27Please refer to https://web.archive.org/web/20210620132047/http://fr.dbpedia.org/page/COVID-19 and https://web.archive.org/web/
20210620132401/http://de.dbpedia.org/page/COVID-19 as a proof of this assumption.

28An example of such a Wikidata bot can be Edoderoobot 2, which is specifically working on labelling, thereby translating structured data
into prose in the respective language. Further information about this bot can be found at https://www.wikidata.org/wiki/Wikidata:Requests_for_
permissions/Bot/Edoderoobot_2.

29https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_descriptions.

https://web.archive.org/web/20210620132047/http://fr.dbpedia.org/page/COVID-19
https://web.archive.org/web/20210620132401/http://de.dbpedia.org/page/COVID-19
https://web.archive.org/web/20210620132401/http://de.dbpedia.org/page/COVID-19
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/Edoderoobot_2
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/Edoderoobot_2
https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_descriptions
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Table 3

Languages ranked by medical content from Wikidata queries (as of August 11, 2020). The medical Wikipedia query yields Wikipedia articles
associated with Wikidata items that have a disease ontology ID [P699] or are in the tree of any of the following classes: medicine [Q11190],
disease [Q12136], medical procedure [Q796194] or medication [Q12140]. The medical Wikidata labels query yields labels of Wikidata items
that have a disease ontology ID [P699] or a MeSH descriptor ID [P486] or are in the tree of any of the same four classes. The Wikipedia and
Wikidata users column provides a snapshot from the Wikidata dashboard that lists Wikidata users who also edit Wikipedia by number of such
users per Wikipedia language. Style code: italic for languages appearing in all three lists; bold for those appearing in only one

Rank Medical Wikipedia articles
https://w.wiki/Z6a

Medical Wikidata labels
https://w.wiki/Z6h

Wikipedia and Wikidata users
https://w.wiki/Z6W

Language Number of
medical
articles

Language Number of
labels

Language Number of
users

1 English 16670 English 65986 English 9600

2 German 8911 French 37053 French 2580

3 Arabic 8596 German 22432 German 2490

4 French 7258 Spanish 21505 Spanish 2330

5 Spanish 6979 Arabic 18581 Russian 1790

6 Italian 6498 Italian 18074 Italian 1430

7 Polish 6071 Japanese 17992 Chinese 1120

8 Portuguese 5652 Dutch 17985 Japanese 1090

9 Russian 5564 Chinese 17462 Portuguese 979

10 Japanese 4651 Russian 17165 Arabic 688

firmed by the high correlation (Pearson r = 0.93) of the language distribution of COVID-related Wikidata labels
with the number of COVID Wikipedia pages in language editions and the moderate correlation (Pearson r > 0.65)
between the number of Wikidata COVID-related labels in a given language and the quantity and edit statistics of
medical content in Wikidata and Wikipedia (Fig. 5). Such relationships are strengthened by the high correlation
(Pearson r > 0.9) between the number of medical Wikidata labels in a given language and the number of medi-
cal Wikipedia articles in language editions as well as the number of native speakers jointly editing Wikipedia and
Wikidata.

To investigate the possible causes of these highly correlated datasets, we compared them to two external metrics
for each language: the number of native speakers of each language [26] and the maximum Human Development
Index for countries where that language is an official language [99]. This data was available for fewer languages
(N = 57 each, 19 pairs) and the sparse overlap precluded including both simultaneously in analyses. The number
of native speakers showed a similar positive skew to earlier data, so was also log 10-transformed. Even though
these analyses are necessarily exploratory, maximum development correlated more strongly than did the number
of speakers (Fig. 5B; Table S4). Cohen’s q values (an effect size for differences between correlation coefficients)
of a size considered unusually large for the social sciences (>0.5) were observed when comparing correlation of
development index versus number of speakers with the number of medical Wikidata labels and with the number
of users. Further medium q values (differences > 0.3) were observed for correlation to the number of medical
Wikipedia articles and to the number of COVID Wikipedia pages. Correlation differences were negligible with
regard to development versus number of speakers as associated with the number of edits or pageviews [15].

The observation here that current language coverage in Wikidata and Wikipedia correlates more closely to coun-
tries’ development index than to the number of speakers of each natural language aligns with previous work demon-
strating low correlation of Wikidata to the number of speakers [52].

We interpret this as a potential ‘need gap’, where languages that have a large number of relatively low-income
speakers remain relatively underserved. To address this, it may be necessary to encourage and/or support contribu-
tion by speakers of under-resourced and unrepresented languages to medical Wikidata projects, analogous to those
Wikipedia projects.30

30Current efforts to enhance the coverage and language support of medical knowledge in Wikipedia are mainly driven by Wikimedia Medicine.
For further information, please refer to https://meta.wikimedia.org/wiki/Wiki_Project_Med. An example of the initiatives under this umbrella is

https://w.wiki/Z6a
https://w.wiki/Z6h
https://w.wiki/Z6W
https://meta.wikimedia.org/wiki/Wiki_Project_Med
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Fig. 5. A) all-versus-all pairwise correlations of log 10-transformed values of seven metrics for 307 languages (data from sources detailed in
Tables 3 and 4). Histograms on diagonal indicate skew, scatter plots below diagonal indicate data and trendlines, ellipsoids above diagonal indi-
cate Spearman’s R correlation coefficient. b) Cohen’s q coefficient comparing correlation of the seven metrics to maximum human development
index versus to the number of native speakers. C) highest correlated variable pair. d) lowest correlated variable pair. [Available at: https://w.wiki/
zV6, license: cC-BY 4.0].

In addition to the intrinsic value of increased language coverage, it would also help in ensuring culturally relevant
contextualizations in Wikidata’s medical and other domains.

the Special Wikipedia Awareness Scheme for The Healthcare Affiliates project, focused on languages of India. An explanation of this project
can be found at https://en.wikipedia.org/wiki/Wikipedia:SWASTHA.

https://w.wiki/zV6
https://w.wiki/zV6
https://en.wikipedia.org/wiki/Wikipedia:SWASTHA
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Table 4

Languages ranked by COVID-19-related content from Wikidata queries and other live data (as of August 13, 2020). The COVID-19 pandemic
Wikipedia pageviews column represents daily average user traffic (averaged over 2020) to the article about the COVID-19 pandemic in the
respective language. The COVID Wikidata labels query sorts languages by the number of labels of Wikidata items with a direct link to and/or from
any of the core COVID-19 items – Q84263196 (COVID-19), Q81068910 (COVID-19 pandemic) and Q82069695 (SARS-CoV-2) – excluding
items about humans (3131) or scholarly publications (40164). The COVID Wikipedia articles query filters those Wikidata items for associated
Wikipedia articles and sorts languages by the number of such articles. The values in the COVID Wikipedia edits column represent the revision
counts per Wikipedia language as taken from the dashboard listing Wikimedia projects by total number of revisions to COVID-19-related articles.
Style code: Italic for languages appearing in all four lists; bold for those appearing in only one

Rank COVID-19 pandemic Wikipedia
pageviews https://w.wiki/ZTG

COVID Wikipedia articles
https://w.wiki/ZSt

COVID Wikidata labels
https://w.wiki/ZSq

COVID Wikipedia edits
https://w.wiki/y9u

Language Avg. daily pageviews Language Number of articles Language Number of labels Language Number of edits

1 English 52872 English 561 English 1429 English 250306

2 Russian 41246 Arabic 517 Dutch 785 German 126359

3 Spanish 37722 German 431 Arabic 623 French 42029

4 Chinese 27598 Portuguese 427 Catalan 579 Chinese 41545

5 German 20707 Korean 408 German 561 Spanish 30869

6 Italian 8490 Chinese 396 French 517 Arabic 19963

7 French 7959 Vietnamese 392 Japanese 503 Russian 18719

8 Portuguese 7648 French 379 Chinese 483 Japanese 11508

9 Japanese 5227 Spanish 370 Portuguese 463 Ukrainian 10599

10 Arabic 4300 Indonesian 363 Spanish 433 Hebrew 10386

2.3. Alignment to external databases

As shown in the “Data model” section, Wikidata items are linked to their equivalents in other semantic databases
using statements where the property provides details about a given resource and the object is the external identifier
of the item in the aligned database. Similarly to Wikidata items, these database alignment properties are defined by
labels, descriptions and aliases in various languages and by statements describing logical conditions for their usage
including formatting constraints and allowed values of subject classes [97].

The alignment of Wikidata entities to other entries on different databases is a collaborative process which, as with
everything in Wikidata, is done via combination of manual and automatic curation. As an example of automation,
items concerning scholarly entries (i.e. articles and reports) were often aligned to other databases using DOIs (Dig-
ital Object Identifiers) as unique keys. As Wikidata is an open database, the precision of the alignments is largely
based on trust in the community, and misalignments are promptly corrected once identified. At the scale of curation
happening on Wikidata, quality issues in aligned databases regularly surface, e.g. invalid DOIs stated in PubMed and
PMC Europe.31 While most of these databases have some feedback channels, no mechanisms exist for informing
them systematically about issues with their data that have been identified at the scale of Wikidata-based curation.

As of September 1, 2020, 530232 out of 787733 Wikidata properties are used to state external identifiers of the
Wikidata items. These properties facilitate interoperability between Wikidata and other databases and consequently
the regular enrichment of Wikidata with detailed information from online ontologies and knowledge graphs updated
on a daily basis [29,30,102]. The output using such Wikidata properties can be adapted as an open license framework
for the automatic evaluation and learning of knowledge graph alignment approaches [85,102] and for the integration
of scholarly knowledge [68].

In the circumstances of the COVID-19 outbreak, a SPARQL query34 has been formulated to analyze the integra-
tion of external identifiers in Wikidata. This query succeeded in returning the main aligned external resources to the
set of scholarly articles and clinical trials, of diseases, of symptoms, of drugs, of humans, of sovereign states, of

31https://github.com/br2s/bug-reports-to-science/issues/8.
32For the updated count of the properties defining external identifiers, refer to https://w.wiki/ayn.
33For the updated count of all the properties, refer to https://w.wiki/ayo.
34https://w.wiki/auR.

https://w.wiki/ZTG
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genes, of proteins, and of other items related to the ongoing COVID-19 pandemic in Wikidata. This confirms the
centrality of Wikidata within the linked open data cloud (cf. Fig. 3 and [21]) and consequently the usefulness of
Wikidata to address the COVID-19 data challenges and dynamically integrate various types of semantic data in the
context of the disease outbreak.

Scholarly articles and clinical trials have been linked to numerous external identifiers, particularly the Digital
Object Identifier (DOI), the PubMed ID, the Dimensions Publication ID, the PubMed Central ID (PMCID) and
the ClinicalTrials.gov Identifier (Table S5). Most of these identifiers are added thanks to WikiProject WikiCite
aiming to add support of bibliographic information on Wikidata [67,70,107]. The current representation of external
identifiers for the scientific literature in Wikidata seems to be similar to the general one for the bibliographic data in
the knowledge graph. As of September 3, 2020, 36208373 scholarly articles35 are currently represented in Wikidata.
31425586 of which have PubMed IDs and 25896956, 6016452, and 346114 scientific publications respectively have
DOIs, PubMed Central IDs and ArXiv IDs.

However, this Wikidata coverage of the availability of COVID-19-related publications in external research
databases does not seem to fully represent full records of COVID-19 literature in aligned resources. By way of
comparison, we performed a simple search for “COVID-19” in a set of literature databases, and there were 103796
COVID-19-related records available on PubMed,36 110323 COVID-19 full texts accessible on PubMed Central,37

296450 COVID-19 publications on Dimensions,38 211000 records on Semantic Scholar,39 4778 records at Clinical-
Trials.gov,40 3295 records on arXiv ID,41 and 183 records on NIOSHTIC-242 as of February 17, 2021.

Wikidata’s relatively incomplete coverage of the literature is mainly explained by Wikidata’s development of
scientific metadata being based on latent crowdsourcing of information from multiple sources through bots and
human efforts and not on the real-time screening of the external scholarly resources [92,107]. In addition to such
sampling biases, there are also differences in annotation workflows, e.g. in terms of the multilinguality of or the
hierarchical relationships between topic tags in Wikidata versus comparable systems like Medical Subject Headings.

As for the diseases and symptoms related to COVID-19, Wikidata maps to multiple external identifiers in the
main biomedical semantic databases such as MeSH, ICD-10,43 and UMLS44 as well as in open lexical databases
like OBO Foundry ontologies (e.g. Human Phenotype Ontology) and Freebase (Table S6). This is mainly due to
the use of machine learning algorithms to align these major online biomedical resources to Wikipedia articles and
consequently to Wikidata items [81]. The representation of open license resources is particularly explained by the
use of these databases to form the core of the biomedical knowledge in Wikidata through mass uploads and timely
updates [104]. Items about diseases and symptoms are also aligned to several online encyclopedias (e.g. eMedicine,
Encyclopedia Britannica, and MedlinePlus) and to non-medical databases such as scholarly repositories (e.g. JS-
TOR45) and bibliographic databases (e.g. Microsoft Academic46) using external identifiers’ statements. This can
be explained by the efforts of WikiProject Source Metadata47 and the WikiCite initiative to align topic pages in
research databases to Wikidata items, so that active members of this project can easily extract topics of research
publications from source databases and assign them to the corresponding Wikidata items using main subject [P921]
relations [70]. The linking from Wikidata items about between diseases and symptoms to online first-class ency-
clopedias is not restricted to the context of the COVID-19 pandemic [104] and is a rather established practice to

35https://scholia.toolforge.org/.
36https://pubmed.ncbi.nlm.nih.gov/?term=COVID-19.
37https://www.ncbi.nlm.nih.gov/pmc/?term=COVID-19.
38https://tinyurl.com/y6kwrdth.
39https://www.semanticscholar.org/search?q=COVID-19&sort=relevance.
40https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist=.
41https://arxiv.org/search/?query=COVID-19&searchtype=all&source=header.
42https://www2a.cdc.gov/nioshtic-2/Buildqyr.asp?S1=COVID-19&Submit=Search.
43International Classification of Diseases, Tenth Revision (https://www.who.int/classifications/icd/en/).
44Unified Medical Language System (https://www.nlm.nih.gov/research/umls/index.html).
45https://www.jstor.org/.
46https://academic.microsoft.com/.
47https://www.wikidata.org/wiki/WD:WikiProject_Source.
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provide Wikidata users with pointers to further specialized information pertaining to a given Wikidata item [58] and
to allow comparison of medical data quality between Wikipedia and other encyclopedias [38].

Since Wikidata is multidisciplinary, it has extensive matching to humans and sovereign states (Table S7) as well
as films, computer applications and disease outbreaks (Table S8). The alignment to various metadata databases like
VIAF,48 WorldCat,49 Library of Congress and IMDb50 is motivated by the mass import of authority control data
for the interoperability between library metadata and for the prevention of the duplication of items including book
authors, actors and films [3,58]. Wikidata items about sovereign states and humans are aligned to corresponding
topic pages and user pages in social networking services (Twitter) and question answering forums (Quora and
Reddit). This enables tracking the effect of the information provided by Wikimedia projects, particularly Wikipedia,
on online communities [100]. Information about items in social media can also be retrieved to support the topic
modelling of the coverage of the pandemic in social networks [14]. Taken together, these database alignments are
useful to integrate new non-clinical information to Wikidata, to allow correlations between epidemiological data
and non-medical information about countries, individuals, masterpieces and disease outbreaks such as geopolitical,
software programming and economic data, and to provide further readings about the concerned items [68].

Concerning drugs, proteins, genes and taxons, Wikidata items are mainly assigned external identifiers in the
major knowledge graphs for pharmacology (e.g. MassBank51), for biodiversity (e.g. IRMNG52), for genomics (e.g.
Entrez Gene) and for proteomics (e.g. PDB53) and are rarely linked to non-medical databases or to encyclopedias, as
shown in Table S8. The lack of alignment between these biomedical Wikidata items and their equivalents in social
web services is explained by the higher interest of social media users in the health policies and epidemiology of
COVID-19 rather than the therapeutic options and molecular aspects related to the disease [72]. The most important
interest in matching these concepts in Wikidata to graph databases (e.g. Massbank, PDB, and KEGG54) and semi-
structured databases (e.g. Guide to Pharmacology55) for bioinformatics rather than online encyclopedias is due
to the better availability of genomic and proteomic information in these specialized semantic resources [43,104].
The alignment of taxon items in Wikidata to biodiversity knowledge graphs (e.g. NCBI56 taxonomy and IRMNG)
is to permit the discussion of the pathogenesis of coronavirus and mainly COVID-19 through the analysis of the
physiological features of infected taxons [74]. The sum of these biomedical alignments is developed using human
edits and computer tools thanks to large initiatives to develop open ontological databases for curating advanced
molecular biology data such as WikiGenomes [79] and Gene Wiki [11] and is enhanced in the context of the current
pandemic through the contributions of WikiProject COVID-19 [105].

Despite the volume and variety of database alignment in Wikidata, particularly related to COVID-19, the Wiki-
data statements providing external identifiers do not provide the extent of matching between the subject and its
equivalent in the aligned database. By contrast, DBpedia assigns different properties for database matching accord-
ing to the level of correspondence between the aligned entities (e.g. rdfs:seeAlso, skos:broader, or owl:sameAs)
[94]. As a solution to this matter, a new Wikidata property entitled “mapping relation type” (P4390) has been cre-
ated. This property is assigned as the predicate to the qualifier of a statement providing an external identifier of
an item. The object of this qualifier has to be one of the SKOS generic mapping relation types: “close match”
(Q39893184), “exact match” (Q39893449), “narrow match” (Q39893967), “broad match” (Q39894595) or “related
match” (Q39894604). When the object is an “exact match”, the two aligned items are equivalent. However, when
the object is a “broad match”, this means that the external entity is a hypernym to the corresponding Wikidata items
(i.e. skos:broader), etc.

48Virtual International Authority File (http://viaf.org/).
49https://www.worldcat.org/.
50Internet Movie Database (https://www.imdb.com/).
51https://massbank.eu/MassBank/.
52Interim Register of Marine and Nonmarine Genera (https://www.irmng.org/).
53Protein Data Bank (https://www.rcsb.org/).
54Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/).
55IUPHAR/BPS Guide to Pharmacology (https://www.guidetopharmacology.org/).
56National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/).
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3. Visualizing facets of COVID-19 via SPARQL

One of Wikidata’s key strengths is that each item can be understood by both machines and humans. It represents
data in the form of items and statements, which are navigable in a web interface and shared as semantic triples [102].
However, where a computer can easily hold the entire knowledge base in its memory at once, the same is obviously
not true for a human.

Since we still rely on human interpretation to extract meaning out of complex data, it is necessary to pass that data
from machine to human in an intuitive manner [57]. The main way of doing this is by visualising some subset of the
data, since the human eye acts as the input interface with the greatest bandwidth. Because Wikidata is available in
the RDF format, it can be efficiently queried using SPARQL,57 a semantic query language dynamically extracting
triple information from large-scale knowledge graphs.

Given the breadth of Wikidata’s COVID-19-related information (examples in Supplementary Figure S1), extract-
ing specific subsets of that information using SPARQL58 can illustrate different aspects of the COVID-19 disease,
its causative virus, and the resulting pandemic (Supplementary Table S1). Several Wikidata-based COVID-19 dash-
boards take advantage of the variety of visualizations that can be generated using the Wikidata Query Service (Sup-
plementary Table S2) from both a quantitative perspective (amount of statistical data that can be generated through
the integration of COVID-19 information with non-COVID-19 data) and a qualitative one (visualization types and
topics). This section will present examples across different aspects of COVID-19, adapted from five main sources
to which we have contributed substantially59,60,61,62,63 Several similar query collections exist, e.g. for COVID-19
in India64 and Indonesia [17].

3.1. Biological and clinical aspects

A simple demonstration of Wikidata’s encoding of SARS-CoV-2’s basic biology is in its genetics (Fig. 6) and
resulting symptoms (Fig. 7). The viral genome contains 11 genes that encode 30 proteins (and variants), which are
currently known to interact with over 170 different human proteins. Although there are two genome browsers based
on Wikidata [66,79], neither yet display the SARS-CoV-2 genome. SPARQL visualizations provide a broader way
to explore biomedical knowledge about the studied virus and the related infectious disease. As the knowledge graph
grows, this is allowing linking together complex knowledge on biochemistry (e.g. genes and proteins), biology (e.g.
host taxa), clinical medicine (e.g. interventions) [104]. Such queries can be expanded by considering the qualifiers
that modulate biomedical statements. These qualifiers allow the assignment of weights to assumptions according to
their importance and certainty. For instance, some treatments are indicated as hypothetical, or symptoms are listed as
rare, as defined by their nature of statement [P5102] or sourcing circumstances [P1480] qualifiers, with references
to back these up (live data: https://w.wiki/bmJ).

57The recursive acronym for “SPARQL Protocol and RDF Query Language”, the current version of which is SPARQL 1.1. A full description
of this language is available at https://www.w3.org/TR/sparql11-query/.

58Technical documentation about SPARQL can be found at https://en.wikibooks.org/wiki/SPARQL.
59WikiProject COVID-19 (WPCOVID) queries: extracts from the query collection of Wikidata’s WikiProject COVID-19; https://www.

wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries.
60SARS-CoV-2-Queries: extracts from the book “Wikidata Queries around the SARS-CoV-2 virus and pandemic” [2]; https://egonw.github.

io/SARS-CoV-2-Queries/.
61SPEED queries: extracts from the Wikidata-based epidemiological surveillance dashboard for COVID-19 pandemic in Tunisia (https://

speed.ieee.tn). It was partially built upon COVID-19 Wikidata dashboard (https://sites.google.com/view/covid19-dashboard).
62Scholia queries: queries underlying COVID-19-related visualizations from the Wikidata-based scholarly profiling tool Scholia [83]; https://

scholia.toolforge.org/.
63Covid-19 Summary queries: queries visualizing COVID-19 information in Wikidata linked to the epidemiological information of the out-

break and to the characteristics of the infected famous people; https://public.paws.wmcloud.org/User:99of9/Covid-19.ipynb.
64https://w.wiki/LsK.
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Fig. 6. SARS-CoV-2 interactions with the human proteome as of September 14, 2020 (available at: https://w.wiki/c3D, license: CC BY 4.0).
Proteins encoded by SARS-CoV-2 genes (note that some genes encode multiple proteins) and the currently known human protein interaction
partners (live data: https://w.wiki/beR).

3.2. Epidemiology

Wikidata also contains the necessary information to calculate common epidemiology data for different countries,
such as mortality per day per capita, and case number to mortality rate correlation. In some cases this is stored as
aggregate data, such as the case mortality rate [P3457] statements for regional epidemics stored as numeric data
(Fig. 8A), whereas other common visualisations can be calculated from granular data such as the individual date
of birth [P569] and date of death [P570] of notable individuals deceased from COVID-19 (Fig. 8B). Although this
reflects the age distribution of COVID mortality, it is also influenced by the demographics of persons sufficiently
notable to have Wikidata items.

In some cases, summary data is also time-resolved, allowing inquiry of its change over time (Supplementary
Figure S2), capturing features not depicted in several statistical predictions of the epidemiological evolution of
COVID-19 outbreaks [12] and clearly seen in other data sources, such that mortality peaks at the beginning of
a disease outbreak [111]. Wikidata’s granularity (i.e. the representation of COVID-19 information at the scale of
individual cases, days and incidents) and collaborative editing have also made it highly up to date on queries such
as the most recent death of notable persons due to COVID-19. This result is difficult to achieve with other datasets
(Supplementary Figure S3), and mirrors Wikipedia’s well-known rapid response to updating information on deaths
[55,56].

https://w.wiki/c3D
https://w.wiki/beR
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Fig. 7. Symptoms of COVID-19 and similar conditions as of September 10, 2020 (available at: https://w.wiki/byX, license: CC BY 4.0). A)
Currently listed symptoms of COVID-19, with qualifiers indicating their frequency. (live data: https://w.wiki/N8f). B) Other medical conditions
sorted by the number of shared symptoms with COVID-19. (live data: https://w.wiki/bqV; adapted from https://scholia.toolforge.org/disease/
Q84263196).
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Fig. 8. Summary epidemiological data on the COVID-19 pandemic as of September 10, 2020 (available at: https://w.wiki/byW, license: CC BY
4.0). A) Correlation between the current number of cases and mortality rates in every country, calculated from numeric summary data for each
region. Countries coloured randomly (live data: https://w.wiki/bf$). B) Age distribution of notable persons who have died of COVID-19 (blue),
compared to the death age distribution for notable persons who were born after 1901 (green), calculated from individual dates of birth and death
(live data: https://w.wiki/be7 and https://w.wiki/but).

3.3. Research outputs

A large portion of Wikidata is dedicated to publication metadata and citation links. There are several ways to
investigate the relevant topics in publications regarding COVID-19. Firstly, topic keywords can be extracted directly
from the titles of articles with COVID-19 as a main topic (Fig. 9A). This is a useful and rapid first approximation of
topics covered by those publications, extracted as plain text. These can be expanded upon by querying for the main
subject [P921] of a set of publications in Wikidata. This property acts analogously to the narrower but more granular
Medical Subject Headings (MeSH) descriptors [95]. Such statements allow broader querying of the literature as a
network via co-occurrence of topics as the main subject of articles (Fig. 9B).65 This enables rapid traversal and
faceting of the literature on topics in addition to the traditional links made by tracing citations [42], such as extracting
common pharmacological and non-pharmacological interventions (live data: https://w.wiki/N8i). The ‘WikiCite’
project is working on importing the citation network into Wikidata to make a fully open citation network (Fig. S4)
[10].

Because Wikidata is agnostic to the exact type of research output, its structure is equally suited to representing
information on research publications, preprints (Fig. S5), clinical trials (Fig. S6) or computer applications (Fig. S7).
However, preprints are not yet thoroughly covered in Wikidata, a limitation for this context as preprints have become
particularly important during the rapid pace of COVID-19 research [10,64]. Further, Wikidata’s rich biographical

65https://ts404.shinyapps.io/topicnetwork.

https://w.wiki/byW
https://w.wiki/bf$
https://w.wiki/be7
https://w.wiki/but
https://w.wiki/N8i
https://ts404.shinyapps.io/topicnetwork


CORRECTED  P
ROOF

H. Turki et al. / Representing COVID-19 information in collaborative knowledge graphs: The case of Wikidata 23

Fig. 9. COVID-19 publication topics as of September 10, 2020 (available at: https://w.wiki/byV, license: CC BY 4.0). A) Common words and
word combinations (ngrams) in the titles of publications (live data: https://w.wiki/cFu). B) Co-occurrence of topics in publications with one
of the COVID-related items as a topic, with ribbon widths proportional to the number of publications sharing those topics (log scale). Topics
coloured by group as determined by Louvain clustering, topics shared in fewer than 5 publications omitted (interactive version: https://csisc.
github.io/WikidataCOVID19SPARQL/Fig8B.html; live data: https://w.wiki/bww).

and institutional data makes extracting information on authors, institutions or others straightforward (Fig. S8), and

eventually for other contributors too [71].

https://w.wiki/byV
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Fig. 10. Bankruptcies of publicly listed businesses due to the COVID-19 pandemic as of September 13, 2020 (available at: https://w.wiki/byY,
license: CC BY 4.0). A) Tabular output of SPARQL query B) Bankruptcies per month C) ratios of different industries associated with bankrupt
companies. (live data: https://w.wiki/cG6).

3.4. Societal aspects

Further emphasising the multidisciplinary nature of Wikidata, there are also significant social aspects of the
pandemic contained in the knowledge base. This includes simple collation of information, such as regional official
COVID websites, and unofficial but common hashtags (Fig. S9), or relevant images under Creative Commons
licenses (Fig. S10). It also includes more cross-disciplinary information, such as companies that have reported
bankruptcy, with the pandemic recorded as the main cause (Fig. 10), or the locations of those working on COVID
(Fig. S8B).

However, this also exemplifies how misleading missing data can be: Wikidata currently has highly inconsistent
coverage of companies that are not publicly listed, which heavily biases the results. For example, the current lack
of yearly updated socio-economic information such as unemployment rates [P1198] and nominal GDP [P2131] for
countries in Wikidata limits the use of the knowledge graph for the study of the effect of the pandemic on global
economies, although this is theoretically possible. Likewise, Wikidata is very incomplete with respect to COVID-19-
related regulations like stay-at-home orders, school closures or policies regarding face masks. Standardised methods
to audit and validate Wikidata’s content on various topics are still under investigation and development [97].

4. Discussion

Many knowledge graphs have been rapidly developed to represent various types of COVID-19-related infor-
mation, including government responses [22], epidemiology [108], clinical data [73], scholarly outputs and out-
comes [46], economic impacts [8], physiopathology [24], social networking [23] among other features related to the

https://w.wiki/byY
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COVID-19 pandemic. These semantic databases are mainly built using a combination of human efforts and crowd-
sourcing techniques [22]. Such resources can also be developed through the automatic extraction – using natural
language processing techniques – of information from scholarly publications about the outbreak, as is the case with
the COVID-19 Open Research Dataset [106].

Despite the importance of such resources, they tend to cover a narrow range of aspects of the disease, and despite
the challenges (cf. Section 1.1), more integrated approaches are necessary to support advanced decision-making
related to the outbreak. In response, integrated semantic databases have been launched to combine more divergent
information, such as CIDO (combining clinical data with genomics) [37] and COVID-19 data hub (combining
epidemiological data with social interactions) [35].

While clearly a valuable part of the data ecosystem, these projects rely on small groups of data curators, a model
that has struggled to keep pace when data and scholarly literature grow sharply, as is the case with topics like
COVID-19 [53]. This observation fits with the considerably limited volume of knowledge graphs exclusively en-
riched and verified by a dedicated expert group – such as OpenCyc – when compared to the volume of open and
collaborative knowledge graphs, particularly Wikidata, YAGO, DBpedia and Freebase [30].

Whereas most knowledge graphs tend to be specialized and developed by a limited team, Wikidata deliberately
takes a multidisciplinary, multilingual position anchored in the linked open data ecosystem. It is this breadth, com-
bined with its interoperability, that makes it unique among even other user-generated collaborative projects. Indeed,
it becomes uniquely suited to highly dynamic topics such as the COVID-19 pandemic [104,105]. In comparison to
other resources like DBpedia, Wikidata is not just edited by machines and built from data automatically extracted
from textual resources like Wikipedia [60]. Wikidata complements automated edits from trusted sources with en-
richments and adjustments by a community of over 25000 active human users on a daily basis66 and is released
under the CC0 license allowing the free and unconditional reuse and interoperability of its information in other
systems and datasets and consequently the growth of interest of many people in using, enriching and adjusting
it [97]. By being highly multilingual, its human-readability extends well beyond English to support international
contributions and reuse [97,98]. Also, its flexible editing policy and RDF structure permit the easy creation of new
classes, properties and data models to rapidly support emerging data topics [97,98]. One of the features of Wikidata
is also providing hundreds of exemplary SPARQL queries,67 which even beginner users can immediately explore
and easily modify, assisted with features like default prefixes, autosuggestions, autocomplete and straightforward
conversion between Wikidata identifiers and natural language [65]. As a result, Wikidata users do not have to be
SPARQL experts to arrive at results that are useful to them.

These factors have facilitated Wikidata’s rapid growth since its creation in 2012 into an interdisciplinary net-
work of >90 million items, richly interconnected by more than a billion statements [97,98]. In the context of the
COVID-19 outbreak, Wikidata has proven its efficiency in representing multiple facets of the pandemic ranging
from biomedical information to social impacts. This stands in marked contrast to other integrated semantic graphs
that only combine two to three distinct features of the pandemic (e.g. CIDO [37], COVID-19 data hub [35], COVID-
19 Living Data68 [50] and Knowledge4COVID-1969 [44]) as shown in the “data model” and “Visualizing facets
of COVID-19 via SPARQL” sections. This large-scale information is supported in multiple languages as explained
in the “language representation” section and is matched to its equivalents in other semantic databases as revealed
by the “database alignment” section. Moreover, the semantic nature of the SPARQL query language has enabled
in-depth analysis of the multifaceted, multidisciplinary COVID-19 information in Wikidata. This confirms previous
findings about the importance of querying COVID-19 semantic resources such as CIDO [37] to compare clinical
information with other types of COVID-19 information and consequently to generate new insights into or new per-
spectives on characteristics of the disease or the pandemic [16]. The primary advantage of applying SPARQL to
extract and visualize COVID-19 information from a generalized knowledge graph such as Wikidata when compared
to domain-specific knowledge graphs developed for the pandemic like CIDO [37] is the possibility of integration of

66https://www.wikidata.org/wiki/Special:Statistics.
67https://w.wiki/pGw.
68https://covid-nma.com/.
69https://devpost.com/software/covid-19-kg.
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outbreak data with non-COVID-19 information such as economic, industrial, climatic and social facts that can be
used to generate summary information to explain the reasons behind the dynamics of the studied pandemic.

Despite the advantages of collaborative editing and free reuse of open knowledge graphs like Wikidata to support
and enrich COVID-19 information, these two features have several drawbacks related to data quality and legal con-
cerns. It is true that the use of fully open licenses (CC0 or Public domain) in centralized knowledge graphs removes
all legal barriers to their reuse in other knowledge graphs or to drive knowledge-based systems and encourages the
development of intelligent support for tasks related to COVID-19. However, application of CC0 on these databases
causes them not to integrate information for semantic resources and datasets with only partially open licenses (e.g.
CC BY and MIT), as these licenses require either the attribution of the source work to authors or the use of the same
license to process the data [36,77]. This situation is analogous to the status of regular group O red blood cells as a
universal donor but restricted recipient [63].

It is worth noting that crowd-sourced collaborative editing is often prone to the law of diminishing returns: the
quality of human curation reaches a certain point, beyond which it is difficult to achieve additional major improve-
ments. For instance, the quality of Wikidata relies partly on, e.g. automatically extracted infoboxes, which will only
be verified and checked by editors some time in the future. However, research shows that the Wikidata community
is already quite responsive to the needs of the database for all practical purposes. It is also worth remembering
that machine-based systems are not immune to that effect neither [69]. Although collaborative editing contributed
to the development of large-scale information about all aspects of the disease, there are currently still significant
gaps and biases in the dataset that can lead to imprecise results if not interpreted with caution. For example, the
COVID-19 outbreaks on cruise70 and naval71 ships are better covered in Wikipedia than in Wikidata (or most other
online resources). Similarly, scholarly citations are not yet evenly covered, since systematic curation will require
more scalable workflows. Although many of these gaps are rapidly being addressed and closed over time, errors
of omission and bias are inevitable to some extent. Such deficiencies can only be detected and solved by applying
algorithms that assess data completeness of items included in a given class within open knowledge graphs. Solutions
involve cross-checking knowledge bases or subsets of the same knowledgebase [7,18], systematically exposing the
content of Wikidata to many eyes through its reuse in Wikipedia and SPARQL-based tools such as Scholia and
COVID dashboards [70,105], and using knowledge graph learning techniques to update items directly from textual
databases like scholarly publications [110] and electronic health records [87]. Moreover, collaborative editing can
cause several inaccuracies in the declaration of statements in open knowledge graphs disregarding the metadata
standards of the knowledge bases [89]. These inconsistencies can persist particularly when the database and the
largely growing scholarly literature about COVID-19 is managed by a limited number of administrators72 and can
consequently cause matters about the trustworthiness of the reuse of data [89]. However, critical problems related to
structural deficiencies in defining statements or to the inclusion of mistaken data in open knowledge graphs seem to
happen less frequently in Wikidata [30]. Greater consistency of structure and accuracy is partly due to the involve-
ment of more contributors in Wikidata than in other open knowledge graphs [30]. But it also stems from importing
data from other rapidly-updated and curated databases (mainly from the linked open data cloud [98]) and from ver-
ification by overlapping methods (e.g. ShEx schemas,73 SPARQL-based logical constraints and bot edits [31,97]).
The data validation infrastructure of Wikidata seems to be in accordance with the latest updates in knowledge graph
evaluation and refinement techniques [75,109] and explains in part the reasons behind the robustness of the data
model of COVID-19 information in this open knowledge graph.

5. Conclusion

In this research paper, we demonstrate the ability of open and collaborative knowledge graphs such as Wikidata
to represent and integrate multidisciplinary COVID-19 information and the use of SPARQL to generate summary

70https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships.
71https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships.
72As of February 18, 2021, there are only 62 Wikidata administrators, as shown at https://www.wikidata.org/wiki/Special:Statistics.
73The validation schemas for COVID-19 information in Wikidata are currently available at https://www.wikidata.org/wiki/Wikidata:

WikiProject_COVID-19/Data_models.
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visualizations about the infectious disease, the underlying pathogen, the resulting pandemic and related topics. We
have shown how the community-driven approach to editing without centralized coordination has contributed to the
success of Wikidata in tackling emerging and rapidly changing phenomena, such as the pandemic. We have also
discussed the disadvantages of collaborative editing for systematic knowledge representation, mainly the difficulty
of ensuring sustainability for COVID-19 information in open knowledge graphs, the tricky validation of conflicting
semantic data, the lack of coverage of several aspects of the analyzed pandemic, and the significant underrepre-
sentation of advanced semantics for several types of Wikidata statements. Then, we described how the Wikimedia
Community is currently trying to solve them through a series of advanced technical and organizational solutions.
As an open semantic resource in the RDF format, Wikidata has become a hub for COVID-19 knowledge due to
its alignment with major external resources and to its broad multidisciplinarity. The insertion of information in the
Linked Open Data format provides the flexibility to integrate data from many facets of COVID-19 data with non-
COVID-19 data. By its multilingual structure, these inputs are contributed to (and reused by) people all over the
world, with different backgrounds. Effectively, the WikiProject COVID-19 has made COVID-19 knowledge more
FAIR: Findable, Accessible, Interoperable and Reusable [104].

An important aspect of Wikidata’s FAIRness is the Wikidata SPARQL query service (https://query.wikidata.org)
[104]. More than an endpoint, the query service provides a visual interface to create queries, and makes it easier for
beginners to customize queries. Additionally, community-contributed data visualization tools like Scholia provide
human-friendly interfaces to surf the data [70]. As shown here, SPARQL visualizations are an entry point for deeper
insights into COVID-19, including the integration of data from various fields and resources, and acquiring valuable
implicit knowledge, both regarding the biomedical facets of this still new disease, as well as into the societal details
of the pandemic.

As Wikidata is community-oriented and broadly themed, virtually any researcher can take advantage of its knowl-
edge, and contribute to it. SPARQL queries can complement and enrich research publications, providing both an
overview of domain-specific knowledge for original research, as well as serving as the base for systematic reviews
or scientometric studies. Of note, SPARQL queries can be inserted into living publications, which can keep up to
date with the advancements both in human knowledge and its coverage on Wikidata.

Another part of FAIRness is user-friendly programmatic data access. Wikidata database dumps are available
for download and local processing in RDF, JSON and XML formats (https://www.wikidata.org/wiki/Wikidata:
Database_download). Beyond dumps, the Wikibase API makes data retrievable via HTTP requests, which facilitates
integration into analysis and reuse workflows. API wrappers are also available for popular programming languages
like R (https://cran.r-project.org/web/packages/WikidataR/) and Python (https://pypi.org/project/Wikidata/), further
boosting interoperability.

Even though Wikidata is rich in COVID-19 knowledge, there is always room for improvement. As a collaborative
endeavour, Wikidata and the WikiProject COVID-19 are likely to become further enriched over time. By the collec-
tive efforts of contributors, we hope that the database will grow in quality and coverage, supporting other types of
information – such as the outcomes of the ongoing COVID-19-related research efforts – and contributing to higher
pandemic preparedness globally.
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bnW mostly under the CC BY 4.0 License and their source SPARQL queries74 are linked in the figure legends.
Internet archive links for the cited URLs are made available at https://doi.org/10.5281/zenodo.4022591 thanks to
ArchiveNow [6].
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Supplementary material containing Supplementary Tables S1-S8 and Supplementary Figures S1-10 is available
at: http://dx.doi.org/10.3233/SW-210444.
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