
REAL-TIME HYPERSPECTRAL STEREO PROCESSING FOR THE GENERATION OF 3D
DEPTH INFORMATION

Nina Heide, Christian Frese, Thomas Emter, and Janko Petereit

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB,
Fraunhoferstr. 1, 76131 Karlsruhe, Germany

ABSTRACT

We present a local stereo matching method for hyperspectral
camera data, allowing multiple usage of camera hardware and
imaging data such as for object classification or spectral anal-
ysis and multichannel input to the correspondence problem.
The matching process combines correlation-based similarity
measures for pixel windows utilizing all 16 spectral channels
followed by a consistency check for disparity selection. We
evaluate stereo-processing methods focusing on effectiveness
and runtime of the processing on a CPU and analyze paral-
lelization possibilities. Based on the results of the evaluation
on the CPU, we implement the optimized stereo matching for
images with 16 channels on a graphics processing unit (GPU)
utilizing the Compute Unified Device Architecture (CUDA).
The parallel processing of the calculation steps to obtain the
disparity image on the GPU achieves more than 27× speed
up, resulting in calculation and post-processing of hyperspec-
tral images with 8 – 13 Hz, depending on the selection of
maximum disparity. The 3D reconstruction achieves a mean
square error of 0.0267 m2 in distance measurements from 5 –
10 m.

Index Terms— hyperspectral imaging, stereo vision,
real-time stereo matching, GPU processing

1. INTRODUCTION

The reconstruction of the environment is an essential require-
ment, for instance in the perception for autonomous robotic
systems. To capture the environment for localization, map-
ping and execution of autonomous tasks, active or passive
sensors can be used. Besides light and radio detection and
ranging (LiDAR, RADAR), the structure of the surrounding
area can also be captured by stereo vision. Passive stereo
vision allows the 3D reconstruction of the environment with
ambient lighting. Hyperspectral cameras enable the usage of
the same hardware and data for multiple purposes as 3D per-
ception, object classification and spectral analysis. For 3D
perception, the analysis of light intensity in different spec-
tral channels supports correlation-based similarity measures.
Correlation-based, local stereo matching produces a dense
3D reconstruction and facilitates parallel processing of image

data on GPUs, which significantly speeds up the calculation
of disparity images.

Our aim is to passively perceive the environment in 3D
using hyperspectral cameras for the purpose of autonomous
driving in outdoor environments [1]. We extend the local
stereo matching proposed by Jiao et al. [2] to hyperspec-
tral images, considering a significantly larger amount of im-
age information for depth reconstruction than in RGB images.
Optimization is performed on a CPU for high quality dispar-
ity images and low runtime comparing hyperspectral data to
3D LiDAR data captured on technology demonstrators in un-
structured outdoor environments. To achieve real-time 3D
reconstruction we implement our optimized algorithm on a
GPU performing adjustments for parallel processing.

2. RELATED WORK

Stereo matching techniques divide into feature-based tech-
niques producing sparse point clouds [3, 4], and correlation-
based techniques generating considerably denser point clouds
[5].

The correlation-based, local stereo matching method for
RGB images proposed by Jiao et al. [2] consists of calcu-
lating an initial disparity using the combination and aggre-
gation of cost functions followed by several post-processing
steps. The cost values from Modified Colour Census Trans-
form (CCT), sum of absolute differences (SAD) and gradi-
ent differences (SGDx, SGDy) are combined with regard to
their assigned weight and aggregated using the Guided Fil-
ter Algorithm (GF) [6] choosing the disparity with the lowest
costs. In post-processing, disparities are recalculated with in-
terchanged input pictures, accepting only disparities passing
this left-right consistency check (LRC). Inconsistent values
are corrected by cross-region based voting (CBIV) [7] and
detection of remaining artifacts and refinement.

Semi-Global Matching (SGM) of Hirschmüller [8] uses
pixel-by-pixel matching of mutual information combined
with an approximately calculated global smoothness con-
straint, requiring about 1 s on typical images [8]. Global
methods like graph cuts [9, 10] produce high quality disparity
maps along with high processing time.

Fig. 1. Scheme of mosaic structure to combine 16 channels into one
pixel (figure courtesy of Ximea).

Fig. 2. Hyperspectral local stereo matching algorithm.

Hyperspectral stereo imaging is mainly used in the field of
photometric stereo for the estimation of surface normals [11,
12], in remote sensing [13, 14] as well as for food analysis
and control [15, 16]. In the field of robotics, Trierscheid et
al. propose a method for the detection of victims with rescue
robots using the characteristic spectra of human skin [17].

Mahieu and Lowney describe a CUDA implementation
of SGM [18], evaluating their results with RGB datasets from
the Middlebury Stereo Evaluation (MiEv) [19]. The runtime
of the proposed CUDA implementation lies around 2.5 s for
images with approximately 140,000 pixels on a NVIDIA
GeForce 940M. Kowalczuk et al. implement stereo matching
on CUDA using adaptive support-weight cost aggregation
followed by an iterative refinement method [20]. One dis-
parity image with 60 levels requires 120 ms on a NVIDIA
GeForce GTX 580 for MiEv datasets with 640×480 pixels.
Gallup et al. [21] achieve the calculation of disparity images
with 40 Hz on 640×480 images with 50 disparity levels using
SAD over a 7×7 matching window. Mei et al. propose cost
matching utilizing SAD and CCT on CUDA with approxi-
mately 10 Hz, ranked top performer in the MiEv at the time
of publication [7].

3. METHODOLOGY

3.1. Hyperspectral local stereo matching

We use Ximea xiSpec MQ022HG-IM-SM4X4-VIS cam-
eras with 16 spectral bands from 465 - 630 nm, divided into
512×272 mosaic pixels as shown in Fig. 1. The 4×4 mosaic
structure of the mosaic pixels is treated as one pixel con-
taining 16 channels. Bilinear interpolation of the respective

Fig. 3. Evaluation images on the CPU: Vegetation with test ob-
jects (upper-left,(a)), mixed area (upper-right,(b)), pure urban zone
(bottom,(c)).

intensities from neighboring mosaic pixels is applied and
the image is processed as 512×272 image with 16 channels
instead of three when using only RGB intensities. The hyper-
spectral 3D reconstruction rests on the three channel matching
method proposed by Jiao et al. [2], being ranked 5/153 in the
MiEv. Instead of using only RGB values, we evaluate the
intensity values for each spectral band in the calculation of
the disparity value. For the search of corresponding pixels,
we compare the intensity values of equivalent bands matching
mosaic pixels, for instance in the calculation of SAD. ILi (p)
denotes the intensity of channel i in pixel p of the left image,
compared to the intensity IRi (p − d) of pixel p and disparity
d in the right image:

SAD =

∑16
i=1 ||ILi (p)− IRi (p− d)||

16
.

Fig. 2 illustrates the process of calculating the disparity val-
ues from single cost functions to post-processing. CCo refers
to the weighted sum of all cost values and DS to the selection
of the disparity value with minimum cost. The disparity im-
age can additionally be smoothed by a Median Filter (MF),
posing a trade-off between high accuracy and smooth tran-
sitions of the disparity values with less invalid pixels. Each
processing step is evaluated on images from unstructured out-
door environments as shown in Fig. 3, focusing on effective
processing and accurate depth maps. The local method utiliz-
ing the combination of mosaic pixels into window structures
favors parallel calculation of the single steps needed to obtain
disparity images on a GPU.

3.2. Optimization for real-time operation on GPUs

We use a NVIDIA Quadro M6000 with 12 GB DDR SDRAM,
317 GB/s throughput and 3072 CUDA kernels. Calculation op-
timizations as the replacement of the L2-norm used in [2]
with the L1-norm exchanging square root calculation with
division or the removal of the exponential function from the
calculation of the CCT minimize processing time. We com-
pare the cost values calculated on the CPU and optimized on

Fig. 4. Left: IOSB.amp.Q1, right: TULF.

the GPU on a reference image for each processing step at a
fixed disparity value. Considering the high number of spec-
tral channels and pairwise comparisons for correspondence
formation, we focus on optimizing memory access.

Loading optimization is achieved by minimizing global
memory access with repeated consolidation of overlapping
windows in the local memory [22], formation of single in-
struction, multiple thread (SIMT) groups to share local mem-
ory allocations, and additional provisioning of overlapping
SIMT group elements in local memory, using a tile struc-
ture including the margin regions of neighboring pixels of the
SIMT window. The CPU implementation uses the OpenCV
matrix structure row-column-channel. To prevent stride in-
efficiency, we import the channel information blockwise in
the local memory of a SIMT structure, changing the matrix
structure to channel-row-column on GPUs. We adjusted the
dimensions of SIMT groups using the NVIDIA Visual Pro-
filer to analyze registry allocation and memory requirements.
A native CUDA context on the M6000 consists of 32 ele-
ments, hence we evaluate integer multiples of 32 and integer
factors of the 512×272 resolution. With 16 channels, each
pixel needs 16 bytes forming the basis for memory allocation.
CUDA allows allocations up to 48 KiB. For effective latency
hiding, a partitioning allowing eight contexts is necessary. As
the M6000 has 96 KiB shared memory per streaming multi-
processor, we require less than 12 KiB per context.

4. EVALUATION

4.1. Technology demonstrators

The hyperspectral camera system is mounted on two au-
tonomous platforms for driving in unstructured environment,
shown in Fig. 4. The IOSB.amp.Q1 platform is equipped
with one Velodyne HDL-64E 3D LiDAR sensor, the TULF
[23] with two Velodyne HDL-32E. The baseline of the stereo
systems amounts to 0.74 m on the IOSB.amp.Q1 and 1.18 m
on the TULF. The platforms offer calibrated 3D LiDAR mea-
surements with only translational shift to the vehicle frame.
The LiDAR data is transformed into the vehicle frame as

Fig. 5. Evaluation using NN-preprocessing and ICP matching, GT
denotes ground truth and Wi the weighting for the evaluation metric.

Table 1. Parameter variation of all configurations, parameter varia-
tion of four most accurate results and parameters chosen for unstruc-
tured environments due to highest accuracy.

Parameter Variation Top 4 Chosen value

Weighting CCT 0-1 0.70 0.70
Weighting SAD 0-1 0/0.15 0.15
Weighting SGDx 0-1 0.10 0.10
Weighting SGDy 0-1 0/0.05 0.05

Perform GF false/true true true
GF regularization 0.001/0.004 0.004 0.004
GF window size 2-25 7/10 7

Perform LRC false/true true true
Perform CBIV false/true false false
Perform MF false/true false/true false
MF window size 3-7 5 –

ground truth for stereo matching as illustrated in Fig. 5.
The iterative closest point (ICP) method allows accurate

registration of point clouds [24, 25]. Generalized-ICP [26]
extends ICP to minimize errors between locally planar sur-
faces. We calibrate the stereo matching results to the LiDAR
data using ICP-matching instead of GICP-matching as the
point clouds generated from correlation-based stereo match-
ing favor the minimization of the error between single corre-
sponding points due to plate-shaped structures in larger dis-
tance from the cameras.

4.2. Hyperspectral local stereo matching

The results from hyperspectral stereo are compared to 3D
LiDAR data. The datasets from the MiEv [19] contain only
RGB data and only from structured indoor environments,
making them unsuitable to evaluate performance in unstruc-
tured outdoor environments using 16 spectral bands. Hence
we develop our own evaluation procedure. It is divided into
matching the stereo point cloud to LiDAR data with ICP,
optionally preprocessed by filtering outliers with Nearest
Neighbor Search (NN) and secondly evaluating distance mea-
surements to test objects. The evaluation metric for ICP and

Fig. 6. Test objects.

Table 2. Timing results on the CPU (tC) and GPU (tG), max.
disparity values 80 and 174, n = tC

tG
.

Step tC,80 tC,174 tG,80 tG,174 n80 n174

in ms in ms in ms in ms

Init 3.68 2.88 2.05 1.84 1.80 1.57
CCT 502.79 486.29 4.76 5.05 105.56 96.22
SAD 228.34 404.16 1.04 1.34 218.76 301.95
SGDx 155.60 272.86 2.80 3.31 55.62 82.55
SGDy 144.50 272.88 3.39 3.74 42.64 72.85
CCo 43.66 94.65 4.66 8.06 9.36 11.74
GF 434.32 913.87 25.56 47.80 16.99 19.12
DS 25.89 49.00 1.37 1.39 20.28 35.15

GF 432.46 902.03 25.47 47.73 16.98 18.90
DS 26.55 48.46 1.37 1.43 19.33 33.95
LRC 0.74 0.67 0.85 0.74 – –

Total 1998.53 3447.75 73.32 122.43 27.26 28.16

NN considers the criteria according to Fig. 5, among them the
Euclidean fitness score e, calculated from the sum of squared
errors between corresponding source (x/y/z)S and target
points (x/y/z)T , divided by the number of correspondences
N :

e =

∑N
i=1

(
(xi,S−xi,T)

2
+ (yi,S−yi,T)2 + (zi,S−zi,T)2

)
N

.

We evaluate different parameter configurations with varia-
tions as given in Table 1 by ranking each configuration for
each criterion i given in Fig. 5. All configurations are evalu-
ated on the images presented in Fig. 3, which contain bushes,
trees and buildings as well as lawn and street-like ground.
We assign double importance to the results for images with
vegetation ((a),(b) in Fig. 3), as we focus on unstructured
outdoor environments. Awarding penalty points pi,k for the
result of each criterion relative to other configurations, we
combine the penalties applying the weighting factors Wi ex-
plained in Fig. 5 for each configuration k to the penalty pjk
for configuration k on image j:

pjk =

9∑
i=1

(
pji,kWi

)
.

Fig. 7. GPU: evaluation image
(top), disparity image (bottom).

Proc. step Group dim.

CCT 16×8
SAD 128×1
SGDx 16×16
SGDy 16×16
CCo 8×64 - 512×1
DS 16×16
GF 256×1

Table 3. Group dimensions for
M6000.

To combine the results for all evaluation images, the penalties
are summarized:

pk = 2p
(a)
k + 2p

(b)
k + p

(c)
k .

In the second evaluation step we weight the LiDAR-measured
distance once and the hand-measured distance twice. Fig. 6
shows the test objects, positioned in 4.62 – 9.97 m from the
origin of the vehicle frame. The mean squared error of the
distance between the respective test object and the origin of
the vehicle frame results to 0.0267 m2 for the chosen value
configuration in Table 1.

4.3. Optimization for real-time operation on GPUs

The runtime with the configuration given in Table 1 is mea-
sured on an Intel Xeon E5-2640 v3 system with eight cores,
which can execute 16 threads in parallel. Before starting to
execute the steps as illustrated in Fig. 2, the raw image has to
be preprocessed (52 ms) and rectified (26 ms). The costs for
all disparity values are equal between processing on the CPU
and on the GPU. Fig. 7 shows the reference image for the
comparison of the results from the CPU and the GPU as well
as the final disparity image generated on the GPU. Table 2
describes the timing results. The group dimensions used on
the M6000 are shown in Table 3.

5. CONCLUSION

Our method allows the calculation of 8 to 13 disparity images
per second including 3D reconstruction on the M6000 GPU,
achieving a mean square error of 0.0267 m2 in measuring dis-
tances up to 10 m. GPU implementation significantly speeds
up the calculation and 3D depth information for unstructured
outdoor environments can be generated in real-time, allowing
proper close-range mapping of the environment.

6. ACKNOWLEDGEMENTS

The financial support from BAAINBw U6.2 and the WTD 41
(Bundeswehr) is gratefully acknowledged.

7. REFERENCES

[1] Thomas Emter, Christian Frese, Angelika Zube, and
Janko Petereit, “Algorithm toolbox for autonomous mo-
bile robotic systems,” ATZoffhighway worldwide, vol.
10, no. 3, pp. 48–53, 2017.

[2] Jianbao Jiao, Ronggang Wang, Wenmin Wang, Shengfu
Dong, Zhenyu Wang, and Wen Gao, “Local stereo
matching with improved matching cost and disparity re-
finement,” in IEEE MultiMedia, 2014, number 4.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool,
“SURF: Speeded up robust features,” Computer vision–
ECCV 2006, pp. 404–417, 2006.

[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski, “ORB: An efficient alternative to SIFT
or SURF,” in IEEE international conference on Com-
puter Vision (ICCV). IEEE, 2011, pp. 2564–2571.

[5] Nick Pears, Yonghuai Liu, and Peter Bunting, 3D imag-
ing, analysis and applications, vol. 3, Springer, 2012.

[6] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided im-
age filtering,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013.

[7] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao,
Haitao Wang, and Xiaopeng Zhang, “On building an
accurate stereo matching system on graphics hardware,”
in IEEE International Conference on Computer Vison
Workshops (ICCV Workshops), 2011.

[8] Heiko Hirschmüller, “Accurate and efficient stereo pro-
cessing by semi-global matching and mutual informa-
tion,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2005.

[9] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast ap-
proximate energy minimization via graph cuts,” IEEE
Transactions on pattern analysis and machine intelli-
gence, vol. 23, no. 11, pp. 1222–1239, 2001.

[10] Vladimir Kolmogorov and Ramin Zabih, “Comput-
ing visual correspondence with occlusions using graph
cuts,” in IEEE International Conference on Computer
Vision, 2001, vol. 2, pp. 508–515.

[11] Keisuke Ozawa, Imari Sato, and Masahiro Yamaguchi,
“Hyperspectral photometric stereo for a single capture,”
J. Opt. Soc. Am. A, vol. 34, no. 3, Mar 2017.

[12] Giljoo Nam and Min H Kim, “Multispectral photomet-
ric stereo for acquiring high-fidelity surface normals,”
IEEE computer graphics and applications, vol. 34, no.
6, pp. 57–68, 2014.

[13] Nahum Gat and CA Torrance, “Real-time multi-and
hyper-spectral imaging for remote sensing and machine
vision: an overview,” in Proc. ASAE Annual Interna-
tional Mtg, 1998.

[14] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chip-
man, Remote sensing and image interpretation, John
Wiley & Sons, 2014.

[15] Da-Wen Sun, Hyperspectral imaging for food quality
analysis and control, Elsevier, 2010.

[16] Gamal ElMasry, Ning Wang, Adel ElSayed, and
Michael Ngadi, “Hyperspectral imaging for nondestruc-
tive determination of some quality attributes for straw-
berry,” Journal of Food Engineering, vol. 81, 2007.

[17] M. Trierscheid, J. Pellenz, D. Paulus, and D. Balthasar,
“Hyperspectral imaging or victim detection with rescue
robots,” in IEEE International Workshop on Safety, Se-
curity and Rescue Robotics, Oct 2008.

[18] Robert Mahieu and Michael Lowney, “Real-time semi-
global matching using CUDA implementation,” 2016.

[19] Daniel Scharstein and Richard Szeliski, “A taxonomy
and evaluation of dense two-frame stereo correspon-
dence algorithms,” International journal of computer
vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[20] Jedrzej Kowalczuk, Eric T Psota, and Lance C Perez,
“Real-time stereo matching on CUDA using an iterative
refinement method for adaptive support-weight corre-
spondences,” IEEE transactions on circuits and systems
for video technology, vol. 23, 2013.

[21] David Gallup, Jan-Michael Frahm, and Joe Stam, “Real-
time local stereo using CUDA,” in NVIDIA Research
Summit, 2009.

[22] John Nickolls and William J Dally, “The GPU comput-
ing era,” IEEE micro, vol. 30, no. 2, 2010.

[23] “ELROB, Robotics for military applications,” 2016.

[24] Paul J. Besl and Neil D. McKay, “A method for regis-
tration of 3-D shapes,” in IEEE Transactions on pattern
analysis and machine intelligence, 1992.

[25] Zhengyou Zhang, “Iterative point matching for registra-
tion of free-form curves and surfaces,” in International
Journal of Computer Vision, 1994, number 13.

[26] A. V. Segal, D. Haehnel, and S. Thrun, “Generalized-
ICP,” in Proceedings of Robotics: Science and Systems,
2009.

