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ABSTRACT

Image smoothing is widely used for enhancing the quality of
single images or videos. There is a large amount of appli-
cation areas such as machine vision, entertainment industry
with smart TVs or consumer cameras, or surveillance and re-
connaissance with different imaging sensors. In many cases
it is not easy to find the trade-off between high smoothing
quality and fast processing time. However, this is necessary
for the mentioned applications as they are dependent on real-
time computing. In this paper, we aim to find a good trade-off.
Local texture is analyzed with Local Binary Patterns (LBPs)
which are used to adapt the size of a Gaussian smoothing ker-
nel for each pixel. Real-time requirements are met by the
implementation on a Graphical Processing Unit (GPU). An
image of 512× 512 pixels is processed in 2.6 ms.

Index Terms— Image denoising, image enhancement, lo-
cally adaptive, variable kernel size, texture analysis, LBPs

1. INTRODUCTION

Image smoothing is a technique used to enhance the quality
of images and videos. This is done for different reasons: in
machine vision, medical imaging, or automatic surveillance
and reconnaissance the performance of processing algorithms
is to be improved by higher quality input data. On the other
hand, consumers are to be supported with a better visual im-
pression of camera images or videos in entertainment sys-
tems. Some of these applications require fast computation
to guarantee real-time processing. Thus, one key challenge is
to find a good trade-off between smoothing quality and pro-
cessing time. In this paper, we meet this challenge by using
Local Binary Patterns (LBP) and Gaussian filters. Flat image
areas are smoothed with a large Gaussian kernel and edges or
corners with small kernels. LBPs are used to decide about the
kernel size depending on how complex the local texture is.
We do not discuss temporal filters [1] which can be applied
to videos but have to solve specific problems such as accurate
image-to-image registration or handling moving objects.

There is a lot of related work on this topic. Most authors
try to remove strong noise with complex methods (image

restoration) and only few of them try to find the mentioned
trade-off. Bilcu and Vehvilainen [2] propose a modified
sigma filter. Images are decomposed by horizontal and verti-
cal low- and high-pass filtering. The sigma filter is applied to
each component and image reconstruction is done by linear
combination. Chaudhry and Mirza [3] analyzed the effect of
different window sizes in Adaptive Fuzzy Punctual Kriging
(AFPK) based image restoration. Hammond and Simon-
celli [4] developed an orientation-adaptive Gaussian Scale
Mixture Model (GSM) in the wavelet domain representing
local amplitude and local orientation. Portilla et al. [5] use
a GSM only considering the local amplitude. Kervrann et
al. [6] present a Bayesian Non-Local (NL) means filter with
spatially adaptive dictionaries for better contrast restoration.
Wang [7] suggests a modified Lee filter. Haar wavelets and
window-based pyramids are used for multiscale image de-
noising. Jin et al. [8] propose an adaptive Wiener filter using
an adaptive weighted averaging (AWA) approach in the spa-
tial and the wavelet domain. Gnanadurai and Sadasivam [9]
also present an approach in the wavelet domain based on
Generalized Gaussian Distribution (GGD) modeling of sub-
band coefficients which are calculated after the application
of Discrete Wavelet Transform (DWT) and used for adaptive
thresholding for each subband reconstructing the image with
inverse DWT. Some more advanced approaches for texture
adaptive smoothing are based on PDEs [10, 11] providing
good results for the price of high computation time.

The remainder of this paper is organized as follows: The
proposed approach is described in Section 2. In Section 3,
the experimental setup and the results are presented. Finally,
conclusions and potential future work are given in Section 4.

2. THE PROPOSED APPROACH

Local texture around a central pixel is analyzed with LBPs
and the result is used to adjust the size of a Gaussian smooth-
ing kernel. If there is no texture or strong noise, a large kernel
is applied. In case of a complex edge and corner structure, a
small kernel is chosen. After a brief introduction to the theory
of LBPs, the realization of this idea is described.
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Fig. 1. Theory and interpretation of LBPs [12].

2.1. Theory of LBPs

In recent years, LBPs have become popular for texture anal-
ysis. Face detection, background modeling, or texture classi-
fication are some of the applications [12]. LBPs are a unique
encoding of a pixel neighborhood. Fig. 1a describes the calcu-
lation. There are two main parameters: number of neighbors
P and radius R. This leads to the following formalization for
the gray-values g of central pixel c and neighboring pixels p:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p, where s(x) :=

{
1, x ≥ 0

0, x < 0.

(1)
In this paper, we are using a special kind of LBPs called
rotation-invariant, uniform LBPs [12]:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc), if U(LBPP,R) ≤ 2

P + 1, else.
(2)

U describes the number of bitwise 0/1 and 1/0 transitions.
Only two or less are allowed for uniform LBPs. As shown
in Fig. 1b, LBP riu2

P,R can be interpreted as texture primi-
tives [12]. There are nine classes of texture primitives.

2.2. Adaptive Gaussian Smoothing with LBPs

For some example images (Lena, etc.) with different levels
and types of artificial noise we calculate LBP riu2

8,R . For higher
robustness, multiscale LBPs [12] with variable radius R for
each pixel are used. Fig. 2 shows that the number of corners
and edges (LBP riu2

8,R classes 3-5) decreases when the noise
level increases. As noise is unstructured, other LBPs (mainly
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Fig. 2. LBP histogram for Lena with different noise levels.

classes 0, 8, 9) appear. Class 9 represents all LBPs which are
not LBP riu2

8,R .
This approach is used to define a decision criterion for

the kernel size of a Gaussian filter. Gaussian filters are ef-
fective and widely used for image smoothing but suffer from
the effects of a fixed kernel size: while noise reduction may
not be strong enough if the kernel is too small, complex edge
structures may get blurred if the kernel is too large. Thus, we
propose a variable kernel size for each pixel based on the ratio
t of edges and corners to the total number of calculated LBPs
in its local surrounding area. Let Rc with the size of N ×N
be the local region surrounding a central pixel c = (xc, yc)
and C and E the sets of LBP riu2

8,R representing corners (class
3 and 5) and edges (class 4). Ratio tc is then defined as

tc =
|{LBP8,r(i, j) | LBP8,r(i, j) ∈ C ∪ E}|

|{LBP8,r(i, j)}|
(3)

with (i, j) ∈ Rc and r ∈ {R0, . . . , Rk}. The smoothed im-
age Is of a given image I using Gaussian kernels G of size
m×m is then calculated by

Is(c) =



I(c), if tc > t0

(G3×3 ∗ I)(c), if t0 ≥ tc > t1

(G5×5 ∗ I)(c), if t1 ≥ tc > t2

(G7×7 ∗ I)(c), if t2 ≥ tc > t3

(G9×9 ∗ I)(c), else.

(4)

Ratio tc is more powerful than analyzing local contrast
since it considers the structural character of the local texture.
The threshold parameters t0, t1, t2, t3 have been determined
by an automatic parameter optimization using several images
with different levels and types of artificial noise maximizing
the mean peak-signal-to-noise ratio (PSNR) of the original to
the noisy image.
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Fig. 3. Evaluation results: PSNR before and after filtering using different approaches.

2.3. GPU Implementation

The proposed approach is well-suited for implementation on a
GPU. The Gaussian filter is a separable convolution that runs
in 0.2ms for Lena image using a slightly modified code sam-
ple from NVIDIA. LBP performance is mostly dependent on
bilinear interpolation (due to the neighbors’ circular arrange-
ment) and memory bandwidth. On GPUs bilinear interpola-
tion is implemented in the texture unit [13] and the texture
cache is optimized for 2D spatial locality and fits well with
the access pattern used by LBPs. With our implementation
using CUDA 4.0 and a NVIDIA GeForce GTX 580 GPU we
achieved runtimes of about 2.6ms per image and a one-time
initialization time of about 25ms at application startup. The
runtime per image increases linearly with the image size and
the initialization time is insignificant for video processing.

3. EXPERIMENTS AND RESULTS

The experimental setup for the quantitative evaluation con-
sists of a set of synthetic and natural test images, an artificial
noise generator, and the calculation of PSNR before and af-
ter smoothing to measure the smoothing performance. In this
paper we present an excerpt of the evaluation with Lena and
Cameraman as test images, 19 different levels of Gaussian
additive and speckle multiplicative noise for systematic im-
age degradation.

As competitors to the proposed LBP-Gauss approach we
use standard Gauss and median filter with fixed kernel size
from the OpenCV library [14]. We also evaluate bilateral fil-
tering [14] which is edge-preserving by using means of a non-
linear combination of local pixel values [15]. From the related
work we consider the results of Bilcu and Vehvilainen [2] us-
ing a modified sigma filter, Chaudhry et al. [3] using Adap-
tive Fuzzy Punctual Kriging (AFPK), and Portilla et al. [5]
using an orientation-adaptive Gaussian Scale Mixture Model
(GSM). Most complex methods [4, 6, 8] show similar results
as Portilla et al. [5], while [7, 9] perform similar to the pro-
posed approach. However, Bilcu and Portilla provide results
for a larger PSNR range of Gaussian additive noise. Speckle
noise is not considered in their evaluation at all.

The results are presented in Fig. 3. Complex methods
such as [4, 5] work best but have runtimes of 10 or more sec-
onds per image. For Lena with Gaussian additive noise the bi-
lateral [15] and the modified sigma filter [2] slightly perform
better than LBP-Gauss for weak noise up to 30 dB PSNR, but
worse for moderate and strong noise. LBP-Gauss performs
comparably or better in all noise levels for the Cameraman
with Gaussian additive noise. For speckle noise the LBP-
Gauss provides the most balanced results with the highest
mean PSNR along all noise levels. Overall, the LBP-Gauss
outperforms Gauss and median filters with fixed kernel size.
Some example images are shown in Fig. 4 to demonstrate the
benefit of spatially adaptive filtering compared to fixed kernel
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Fig. 4. Examples for image smoothing. Besides Lena and Cameraman we also present one infrared (IR) and one Synthetic
Aperture Radar (SAR) image coming from real surveillance data with unknown type and level of noise. While the 3× 3 Gauss
kernel can not remove the noise well, the 9×9 kernel causes blurring. Due to the strong noise in the example images, parameters
for strong denoising have been chosen for the bilateral filter (different than in the evaluation in Fig. 3) causing slower runtimes
of about 0.5-1 s. The parameters for LBP-Gauss and bilateral filtering were fixed during the whole test. The LBP-Gauss as
proposed in this paper provides the best local adaptivity.

size. The two lower images are coming from real surveillance
data with unknown type and level of noise.

4. CONCLUSION

A spatially adaptive image smoothing approach is proposed
using LBP statistics and Gaussian filters. Local texture qual-
ity and structure are determined for each pixel in the noisy
image. Small Gaussian kernels are used to preserve local
edge structure, while flat and very noisy image areas are

smoothed with large kernels. The results show that the pro-
posed method offers a good trade-off between spatially adap-
tive image smoothing and real-time processing. Even large
images can be processed within few milliseconds. However,
the presented approach is outperformed by complex methods
with 10 or more seconds of processing time.

Potential future work includes considering the LBP orien-
tation and local contrast for further adjustment of the Gaus-
sian kernel. Local orientation and contrast can be derived di-
rectly from the calculated LBPs as well [16].
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