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ABSTRACT
Modern Cyber-Physical Systems (CPS) must increasingly
adapt to changing contexts, like smart cars to changing driv-
ing conditions. Thus, design approaches are facing a rapidly
growing number of network runtime configurations. With
recent approaches this problem can be solved for design
space exploration (DSE) by analyzing the network perfor-
mance of single configurations which are intended to rep-
resent the entire runtime variability space. This technique
can be applied for DSE since the latter only intends to find
an optimized system setup. Yet it does not meet the re-
quirements of network verification, since it does not neces-
sarily find the worst-case for all applications. To solve this,
we developed an integrated model, which allows describing
runtime variability in the network performance model with a
0-1 linear-fractional program. Thus, we can cover entire run-
time variability spaces without analyzing every single net-
work runtime configuration. Although the approach utilizes
heuristics, it still guarantees worst-case results. We can show
that in comparison to state-of-the-art methods our approach
scales for large automotive systems with multiple network
configurations. Moreover, our evaluation results highlight
the superior capabilities of our method with respect to ac-
curacy and computation time.

1. INTRODUCTION
Several domains, like automotive, railway, or avionic face
great challenge in designing and evaluating Cyber-Physical
Systems (CPS). Such systems consist of many computing
units which are connected through various communication
technologies (e.g., CAN, MOST, Flexray, and Ethernet [1]).
Since these systems implement applications with real-time
constraints, the network architecture must be verified within
the design process. This verification process usually consists
of a performance evaluation for the designed network archi-
tecture carried out late in the design process. The network
architecture is only valid if the results of the performance
evaluation fulfill the non-functional requirements of the ap-
plications.

As the implemented functionality of CPS steadily increases
and those systems are more and more dynamic [2], their
performance evaluation faces ever new challenges. These
dynamic systems may have numerous runtime configura-
tions [3] (also called system scenarios [2]), as the number
of configurations grows exponentially with the number of
implemented software components. The set of valid run-
time configurations is described by the runtime variability
space[3]. Since performance evaluation methods must en-
sure that their predictions cover the entire runtime variabil-
ity space, scalability becomes an intricated task.

In current research, no approach exists that sufficiently solves
this scalability problem while guaranteeing worst-case re-
sults. DSE-approaches[4] , focusing on the reduction of the
vast number of runtime configurations do not necessarily
find the worst-case. Other verification-approaches [5] guar-
antee worst-case results, but they do not consider scalability
sufficiently.

In the work at hand, we tackle the problem of covering the
entire runtime variability space while simultaneously guar-
anteeing worst-case performance predictions. We approach
this problem with an integrated model, which describes the
runtime variability in the performance model with a 0-1
linear-fractional program. This can then be solved after
linearization-transformations, by standard mixed-integer lin-
ear programming (MILP) solvers.

The main contributions of this paper are:

• An integrated approach capable of predicting worst-
case network aggregation end-to-end delays which in-
tegrates runtime variability. This approach consists
of:

– an integrated model which represents the run-
time variability of the system in the performance
model with a 0-1 linear-fractional program. After
relaxations and a reformulation-linearization [6]
the model is solvable by standard MILP-solvers
such as lp solve [7].

– an algorithm making use of this model to calcu-
late the network aggregation end-to-end delays of
large systems

• We validated the scalability of the approach by numer-
ous experiments with varying network topology exam-
ples of automobile in-vehicle networks.



The remainder of this paper is organized as follows. In
the next section, we review related work. In Section 3, we
present our novel integrated model along with its perfor-
mance prediction algorithm. Section 4 discusses evaluation
results using the example of modern automobiles. In the
last section, we conclude and give an outlook on our future
work.

2. RELATED WORK
One crucial step during the verification of network architec-
tures for CPS is the performance evaluation. The objective
of this process is the prediction of the system’s network per-
formance. Generally, there are three methods to predict the
performance: analysis, simulation, and measurement. Typ-
ically, simulation[8, 9] and measurement are used to get a
picture of the average-case performance. However, for ver-
ification purposes worst-case results are needed. These can
in general be obtained by analytical methods. One draw-
back of analytical methods is, that they often lead to over-
approximated performance predictions. Therefore, a lot of
effort has been spent in last years to develop tight perfor-
mance models (in particular for Ethernet, cf. [10, 11, 12, 13,
14, 15, 16]). Since those performance models do not capture
the runtime behavior or the system application’s dynamics,
there has been considerable work to describe and analyze
the dynamic behavior of CPS.

Gheorghita et al. [2] published a system design approach
for dynamic real-time embedded systems. They propose to
group system behaviors to system scenarios with respect to
similar non-functional properties (e.g., delay or energy con-
sumption). The system scenarios can then be optimized in
the design process by exploiting these similarities. Further-
more, the approach provides a methodology to predict and
switch between system scenarios during runtime. Since the
approach requires to manually define use-case scenarios, it
is restricted to small sets of scenarios and thus not suitable
to capture variability of multiple runtime configurations.

Due to the fact that the manual definition of multiple run-
time configurations is very complex and error-prone, there
has been some work on the automatic generation of run-
time configurations from dynamic models, such as Disci-
plined Dataflow Networks and Runtime Feature Models. In
[5], Siyoum et al. present an automated scenario-based ap-
proach for analyzing properties of embedded streaming ap-
plications. They describe a process which enables the ex-
traction of all possible scenarios of a Disciplined Dataflow
Network. They present examples of a RVC-MPEG video de-
coder and a WLAN 802.11a baseband processing implemen-
tation. By these, they show that a scenario-based design-
time analysis can save resources significantly. However, this
does not provide a solution for the exponentially growing
number of scenarios. In prior work [3], we presented an
approach which is capable of making network performance
predictions for dynamic embedded systems at an early de-
sign stage. This approach describes the runtime variability
of a system in an abstract model. From this model runtime
configurations are obtained which are in turn transformed
into system configurations. The performance of the system
configurations can be analyzed by tools such as network cal-
culus [17]. Since this approach requires analysis of every
runtime configuration to guarantee worst-case performance

results, it is limited to systems with moderate large runtime
variability spaces.

Although latter approaches are able to guarantee worst-case
results, they still do not scale for large CPS, since the num-
ber of runtime configurations grows exponentially. This is-
sue is addressed by Van Stralen et al. in [4]. They intro-
duce a design space exploration (DSE) approach that ad-
dresses the problem of exploding number of runtime con-
figurations. In their approach, they endeavor to optimize
task-bindings for MultiProcessor System-on-Chip-based em-
bedded systems with numerous configurations. During the
optimization process, they need to evaluate the performance
of every candidate. Since a candidate consists of a large
number of runtime configurations, they propose a feature
selection algorithm that selects only a small set of config-
urations. This set is intended to be representative for the
entire runtime variability space. Since the approach does not
necessarily find the worst-case for all applications, it cannot
guarantee worst-case performance results.

In summary, it can be said that no current approach solves
sufficiently the problem of predicting worst-case performance
results for dynamic CPS with multiple runtime configura-
tions. On the one hand, approaches that are capable of
guaranteeing worst-case results do not scale for such sys-
tems with large runtime variability spaces. On the other
hand, approaches that solve the scalability problem cannot
guarantee worst-case results. The objective of this work, is
to create an approach fulfilling both properties: scalability
for systems with large runtime variability spaces and guar-
antee of worst-case results.

3. INTEGRATED APPROACH
In this section, we present our integrated approach, which
aims at tackling the challenge of determining the worst-case
network performance of dynamic CPS with multiple run-
time configurations. It consists of: i) an integrated network
performance model which enables designers to calculate net-
work aggregation end-to-end delays for an entire runtime
configuration space, and ii) an algorithm which makes use
of the integrated model to calculate the accumulated aggre-
gation delay on the path of a data dependency. As can be
obtained from Figure 1, the integrated approach starts with
modeling of the runtime behavior of the system through
a Runtime Feature Model (RFM). After transforming this
model into a Component/Hardware Network Model (CHNM)
the Integrated Network Performance Model (INPM) is gen-
erated. With this step the runtime variability of the RFM
within the INPM is modeled. By means of this INPM, the
performance of the system can be analyzed using standard
MILP-solvers.

3.1 Formalisms
First, we introduce the formalisms from [3] which are later
used in the integrated model. A RFM represents the run-
time variability of the system by means of a feature model
(see [18]). On this feature level cardinality groups and corre-
sponding cardinality values (see [19, 20]) describe the system
applications’ variability at runtime. In a RFM, a cardinality
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Figure 1: The integrated approach

group describes a set of features which can be active1 in dif-
ferent multiplicities. An example is a video display feature
as depicted in Figure 2. This feature is able to display two
video streams at once, while it must show at least one video
stream all the time. The user can choose between four dif-
ferent video sources: Human-Machine-Interface (HMI), nav-
igation, storage video server, and Bluray player. Formally,
we describe a RFM fm by a 5-tuple consisting of a set of
Features F , a root feature r, decomposition edges D, cardi-
nality groups Γ, and their cardinality values γ. The runtime
variability space S(fm), of a given feature model fm, con-
sists of all possible valid runtime configurations Si of the
feature model fm.

fm = (F, r,D,Γ, γ) (1)

S(fm) = {S1, ..., Sn}, Si ∈ 2F (2)

The Dataflow Component Model (DCM) captures a system
on data flow level. Software is described by components and
data flows are represented by data dependencies. Formally,
a component model cm is a triple consisting of components2

1Here a feature represents a high-level application which can
be activated or deactivated in the system.
2In the rest of this text, we mean software component, when
ever we use the term component.
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Figure 2: Sample feature group for a video display feature

C = {c1, ..., cn}, a set of data dependencies Rdd, and a map
πdata that assigns a data traffic specification to every data
dependency. Such a data traffic specification consists of the
maximum amount of data σ a component can send at once,
the average data rate ρ, and the maximum data frame size
Lmax on link layer.

cm = (C,Rdd, πdata) (3)

πdata(rd) = (σ, ρ, Lmax) (4)

The mapping of features to software components is mod-
eled by a map which links a leaf-feature to a set of com-
ponents. This map represents which features are imple-
mented by which components. A leaf-feature has no chil-
dren. Fleaf is the set of all leaf-features, that is defined by
f ∈ Fleaf → f has no children.

μF×C : Fleaf → 2C , (5)

Fleaf = {f | f ∈ F, �(f, f ′) ∈ D} (6)

μF×C(f) = c, f ∈ Fleaf, c ∈ 2C (7)

In the CHNM, the network topology and the binding of the
components to hardware elements are defined. Formally,
a CHNM nt is a four-tuple consisting of the set of network
nodes N = Nc∪Nsw, the interconnections IC, and the map-
pings μC and μR. The set Nc consists of computing nodes
and Nsw represents data switching nodes. These nodes are
connected through interconnections IC = {ic1, ..., icn}, ici =
(si, ei, lsi), where si is the start node, ei is the end node and
lsi is the link speed. The mappings μC and μR describe the
binding of components to hardware nodes with respect to
which data flows traverse which interconnections.

nt = (N, IC, μC , μR) (8)

μC : C → Nc (9)

μC(c) = n, c ∈ C, n ∈ Nc, (10)

∃(c, n) ∈ μC → ∀(c, n′) ∈ μC : n = n′ (11)

μR : Rdd → 2IC (12)

μR(rd) = ic, rd ∈ Rdd, ic ∈ 2IC (13)

3.2 Integrated Network Performance Model
To achieve the goal of defining a model which predicts worst-
case delays without exploring the entire runtime variabil-
ity space, we create an integrated model. The idea behind
this model is to parametrize the performance model. The
parametrization is achieved in the following way. First, we
formulate the problem of finding the worst-case aggregation
delay for one switch output port for a runtime variability
space as a maximization problem. The purpose is to find



the maximum delay within the runtime variability space. In
particular, this optimization problem is formulated as a 0–
1 linear-fractional program. This can then be solved, after
some transformations, by standard MILP-solvers.

Before the parametrization is conducted, we present the per-
formance model. This model is based on the work of [17].
It models the performance of full duplex switched Ether-
net networks. Formula 14 calculates the network aggrega-
tion end-to-end delay of a virtual bit traversing the network.
Since we focus on aggregation delays in this work, the con-
sidered path starts at the first switch, which connects the
sending computing unit (CU) to the network, and ends at
the last switch output port, which connects the receiving
CU to the network. The network aggregation end-to-end
delay d̂aggr for a data dependency dd consists of the sums

of i) the store-and-forward delay d̂sf at the input ports of

the traversed switches and ii) the aggregation delay d̂ of
the switch output ports. The store-and-forward delay de-
pends on the maximum frame size L on the data link layer
of the input port, where the corresponding data dependen-
cies must traverse the link (ic ∈ μR(ddi)), and on the link
speed ic.ls of the input port. The delay on a switch output
port is calculated according to Formula 16, where Cin and
Cout represent the speed of the incoming links and the speed
of the output link. The variables σj and ρj are the sums of
the burst and average data transmission values of the data
dependencies traversing the link (ic ∈ μR(dd)). Each of
those data dependencies dd belongs to a sending compo-
nent cji and a receiving component cjk which are part of
the mapping μF×C for a corresponding leaf feature fj . It
is assumed that any two mappings μF×C(f) and μF×C(f

′)
are disjunctive for f �= f ′, i.e., there are no overlapping
mappings and there are no data dependencies between any
two components c and c′ of two different mappings, i.e.,
�(c, c′) ∈ Rdd | c ∈ μF×C(f), c

′ ∈ μF×C(f
′). The variable

L̄ represents the sum of the maximum frame sizes L on the
data link layer of the incoming links.

d̂aggr(dd) =
n∑

i=1

(
d̂sf(ici−1) + d̂(ici)

)
,

PATH(dd) = (icn, ..., ic0)
(14)

d̂sf(ic) =
L

ic.ls
,

L = max(dd1.Lmax, ..., ddn.Lmax),
ic ∈ μR(ddi)

(15)

d̂(ic) =
Cin − Cout

Cout
· Σσj

Cin − Σρj
+

L̄(Cout − Σρj)

Cout(Cin − Σρj)
σj = Σσjk, ρj = Σρjk,
ic ∈ μR(ddjk), πdata(ddjk) = (σjk, ρjk, ...)
ddjk = (c, c′), c, c′ ∈ μF×C(fj)
Cin = Σicin.ls,
icin : ∃dd,PATH(dd) = (..., ic, icin, ...)
L̄ = ΣL

(16)

Now, the parametrization of Formula 16 is presented. As
stated before, we formulate our problem as a linear-fractional
program consisting of an objective function that must be
maximized and constraints which must be fulfilled. At first,
Formula 16 is extended to Formula 17 by boolean variables
f1...fn, n = |F |, fi ∈ {0, 1}. That is, if a feature is active,
then fi = 1; if not, fi = 0. The root feature of the feature

model has to be active anyway. Furthermore, since we cal-
culate the worst-case network aggregation delays on a per
feature basis (cf. Section 3.5), this feature factive has to be
activated, too. The limitations that are given through the
cardinality groups and the decomposition edges (see [19]) are
modeled in the constraints equations (Formulas 20 – 21). We
model a decomposition edge dpi,i = (fpi, fi) as an inequal-
ity fi − fpi ≤ 0. The cardinality groups are modeled in the
following form: for a cardinality group Γj = {fj,1, ..., fj,n}
with γ(Γj) = (x, y) (i.e., there must be at least x and there
may be up to y features active), the corresponding constraint
inequality is Σfj,i − y ≤ 0. Thus, we get the following 0–1
linear-fractional program:

(POLF)max
(Cin − Cout)Σσjfj + L̄(Cout − Σρjfj)

Cout(Cin − Σρjfj)
(17)

s.t. r = 1 (18)

factive = 1 (19)

fi − fpi ≤ 0, (20)

(fpi, fi) ∈ D∑
fj,i − y ≤ 0, (21)

fj1 , ..., fjn ∈ Γj , γ(Γj) = (x, y)

fj ∈ {0, 1}, Cin − Σρjfj > 0 (22)

3.3 Reformulation-Linearization
Since the 0–1 linear-fractional program (LFP) formulated
in Formulas 17-22 is not solvable with MILP-solvers in this
form, we apply the reformulation-linearization method pub-
lished in [6] by Yue et al.. This transforms the 0-1 LFP
into its MILP-equivalent. In a first step, this linearization
technique introduces a new variable u = 1

Cin−Σρjfj
. In a

second step, further variables wi = u · fi are introduced.
Thus, POLF can be transformed into the MILP POL which
is given below:

(POL)max uL̄Cout +
∑

wj

(
(Cin − Cout)σj − L̄ρj

)
(23)

s.t. Cout(Cinu− Σρjwj) = 1 (24)

w0 − u = 0 (25)

wactive − u = 0 (26)

w1 − w0 ≤ 0 (27)

w2 − w1 ≤ 0 (28)

...

Σwj,i − uy ≤ 0 (29)

wj − u ≤ 0 (30)

wj −M · fj ≤ 0 (31)

wj − u−M · fi ≥ −M (32)

u ≥ 0, wj ≥ 0, fi ∈ {0, 1} (33)

where M can be determined by heuristics (cf. [6]).

3.4 Relaxations
In this section, we introduce relaxations that preserve the
linearity of POL. As can be observed from the Appendix,
these relaxations still guarantee worst-case results. Further-
more, they lead to acceptable over-approximation (see Sec-
tion 4.2).



3.4.1 Cin-Relaxation
In order to solve POL with a MILP-solver, POL must be
linear. Since Cin depends on the selection of the features
(see Formula 16), Formula 23 would be non-linear. To avoid
this, we assume Cin to be the sum of the speeds of the links
which have a data dependency traversing the incoming link
and the outgoing link of the analyzed port. Thus, the esti-
mated C′

in is always bigger or equal to the real Cin. As can
be obtained from the Appendix, this relaxation guarantees
worst-case results. That means, despite this estimation, we
always obtain worst-case results.

3.4.2 σ-Relaxations
The burst-value σ changes after experiencing delay on a net-
work element. According to [17], the new burst-value can
be calculated as σnew = σ + ρ · d, where d is the delay
of the data flow experienced on the data path so far. To
determine the new sigma value, we must calculate all de-
lays on the path. That, in turn would imply that we must
calculate all sigma values of all data dependencies interfer-
ing with these data dependencies. Note that this relation
is transitive. That is to say, a data dependency dda in-
terfering with ddc (dda ∼ ddc) does not require to have a
common path segment with ddc. It is sufficient if there is a
chain dda ∼ ddb ∼ ddc. This has an impact on two calcula-
tions. Firstly, it would prohibit a linear form of POL since
the replacement of the σi variables would lead to non-linear
terms. Secondly, for the same reason, d̂aggr cannot be di-
rectly formulated as a linear objective function. Therefore,
we introduce three heuristics: i) we relax σnew = σ+ρ ·d to

Formula 34; ii) we assume d̂sf to be calculated according to

Formula 35; iii) we formulate d̂aggr to a form which requires
only the calculations of multiple instances of POL. As we
show in Section 4.2, these relaxations can introduce over-
approximation to Formula 36. The reason for this lies in the
fact that the single values of Σd̂r(icj) (for Formula 34 and
36) could potentially belong to different runtime configura-
tions since the single instances of POL are not synchronized.

σnew = σ + ρ · Σ(d̂sfr (icj−1) + d̂r(icj))
icj ∈ PATH(dd) = (.., ici, ici−1, ..., ic0), 0 < j < i

(34)

Since the delay of every network element has an impact on
the burst value σ, the store-and-forward delay has an im-
pact, too. That is to say, the σ-value changes to σnew =
σ · (L/ic.ls) after traversing an input port of a switch, where
L depends on the selected features. This would introduce
again non-linearity to POL. Therefore, we relax the deter-
mination of this value by selecting the maximum value over
all features on that link. The difference between this heuris-
tic and Formula 15 lies in the scope of the max-term. In
Formula 15, the maximum over one runtime configuration
is determined. In Formula 35, the maximum over all con-
figurations is determined. Thus, d̂sfr (ic) ≥ d̂sf(ic) always
holds.

d̂sfr (ic) =
L

ic.ls
,

L = max(dd1.Lmax, ..., ddn.Lmax),
ici−1 ∈ μR(ddj), ici ∈ μR(ddj), ici = ic
PATH(dd) = (.., ici, ici−1, ..., ic0)

(35)

For the estimation of the σnew-value this means that the
estimated σ′

new is always greater than or equal to the correct
σnew. Thus, the same proof as for Formula 34 can be applied

to verify the worst-case guarantee of this heuristic. It can
be found in the appendix.

Besides calculating store-and-forward delays of input ports
and the aggregation delays of single switch output ports,
we formulate the equivalent of Formula 14. To avoid non-
linearity, we do not formulate a single objective function for
d̂aggr. Instead of doing so, we calculate d̂aggr by summing

up the relaxed aggregation delays d̂r and the relaxed store-
and-forward delays d̂sfr on the path of the considered data

dependency. The values of d̂r are obtained using POL and
Formula 34.

d̂aggr-r(dd) =
n∑

i=1

(
d̂sfr (ici−1) + d̂r(ici)

)
,

PATH(dd) = (icn, ..., ic0)
(36)

As the Cin-relaxation, the σ-relaxations do not violate the
worst-case guarantee of our approach. The proof can be
found in the Appendix.

3.5 Algorithm
In this section, we describe the algorithm which makes use
of the previously defined integrated model. As can be ob-
tained for Algorithm 1, the algorithm iterates over all leaf-
features Fleaf. For each factive ∈ Fleaf, the aggregation delays
for all links ic ∈ IC are calculated according to POL (see
Formulas 23 – 34). After that step, the network aggregation
end-to-end delay is calculated for each data dependency that
belongs to that feature factive, as the sum of the aggregation
delays and store-and-forward delays. Since this value is al-
ready worst-case, the performance results can be directly
updated with the tuple (dd, d̂aggr-r(dd)).

Algorithm 1 End-to-End Aggregation Delay Calculation

1: procedure e2eAggregationDelayCalc
2: for factive ∈ Fleaf do � For all leaf-features
3: for ic ∈ IC do � For all interconnections
4: d̂r(ic) = POL(factive, ic)
5: end for
6: for dd : dd = (c′, c), c′, c ∈ μF×C(factive) do
7: � For all data dependencies that belong to factive

8: d̂aggr-r(dd) =
n∑

i=1

(
d̂sfr (ici−1) + d̂r(ici)

)

9: end for
10: end for
11: end procedure

4. EVALUATION
In this section, we evaluate the performance and accuracy of
our approach presented in Section 3 in various experiments
of different network sizes.

4.1 Test setups
To examine the scalability and the accuracy of our approach,
we define test-setups (see Table 2 and 1). They represent a
set of typical CPS as they can be found in current automo-
biles (cf. [21, 22]). The setups primarily differ in the num-
bers of features, while the ratios between leaf-features and
components, as well as between components and Electronic
Control Units (ECU), are fixed. The varying parameter for
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Figure 3: Example of 60 ECUs Topology. The subnets con-
sist of a mixed daisy chain and star topology and are inter-
connected with a backbone switch.

the different feature models is the number of leaf-features.
For capturing the runtime variability, we assume that two
variants are expressed by ten leaf-features. Thus, the num-
ber of runtime configurations for each test-setup is given by
2|Fleaf|/10. Thereby, the overall number of runtime configura-
tions varies from 32 to 1.1× 1015. The cardinality groups of
the feature models differ in hierarchy level, i.e., the level in
the feature tree. In our scenarios, we have up to 8 hierarchy
levels.

In our setups, each leaf-feature maps to a group of 8 compo-
nents with regard to automotive systems (cf. [22]) and are
interconnected randomly (uniformly distributed). Represen-
tative data traffic characteristics (cf. [8, 23]) are assigned
according to Table 1. We define seven common traffic cate-
gories: driver assistant video, control data, navigation bulk
data, stereo audio data, storage video data, BluRay video
data, and multi-channel audio data. Their σ -and ρ-values
are randomly varied (uniformly distributed) within a range
of 20 percent. The probability that a data dependency gets
assigned to a particular traffic category is documented in
column 2 of Table 1.

The ratio between ECUs and components is set to 1:20, de-
rived from [21]. To keep the network topologies scalable,
they are created hierarchically (see Figure 3). The small-
est segment size consists of 20 ECUs, which are randomly
connected in mixed daisy chain and star topology, as ex-
pected for upcoming automobiles (see [8, 9]). For slightly
larger topologies, these subnet clusters are interconnected
by direct links, i.e., no backbone switches are needed. As
depicted in Figure 3, three subsegments are interconnected
through a backbone switch. If the number of subnet seg-
ments exceeds four3, the backbone clusters are intercon-
nected in daisy chain mode. More than three backbone seg-
ments are interconnected by an additional backbone switch.
The data transmission rate of the links is set to the smallest
value v which results in a maximum link utilization below

3Four subsegments are also interconnected by only one back-
bone switch since it would make no sense to connect the
fourth subsegment to a new backbone switch.

40%, where v ∈ {100 MBits · 10n| n ∈ N0} and N0 is the set
of natural numbers including 0.

To keep the complexity of the test-setups at a defined level,
the parameter average runtime configurations per switch out-
put port is introduced (see column #Runtime Configura-
tions in Table 2). The number of runtime configurations
per switch output port is defined as the number of runtime
configurations of the feature model obtained through a data
link to feature model projection (see Definition 1 in the Ap-
pendix). That is to say, this parameter defines the average
complexity of POL (see Section 3). The number of bound

components for one ECU is in the interval [1, 2·|C|
|Nc| ], where C

is the set of all components and NC is the set of Computing
Units (i.e., ECUs).

The approach presented in Section 3 is implemented in C
using lp solve 5.5 [7]. For each test-setup the calculations are
distributed over 16 threads. All experiments are performed
on a 64 bit machine with two octa-core Intel Xeon E5-2660
and 128 GByte RAM. The operating system is a Debian
3.14.4-1 64bit Linux.

Data Traffic Dist. ρ σ Lmax

Categories [%] [MBits] [octet] [octet]

Driver Assis.
Video Data

30 6.3600 28918 1522

Control Data 20 0.0512 6400 64
Navigation
Bulk Data

15 1.7046 21308 1522

Stereo Audio
Data

15 1.5136 946 946

Storage Video
Data

10 15.7070 65446 1522

BluRay Video
Data

5 41.6419 173508 1522

Multi-channel
Audio Data

5 3.8336 2396 946

Table 1: Distribution of the network traffic characteristics

4.2 Results
Figure 4 shows the computation time needed to determine
the worst-case results of test-setups 1 - 9. For the smaller
setups 1 - 3, the approach from [3] performs better than
the integrated approach. In particular for test-setup 3, it
performs approximately twice as fast. For the larger test-
setups 4 and 5, the integrated approach needs significantly
less computation time. The delay calculation for test-setup
5 – which for instance represents a network with 100 ECU,
2000 components, 250 features and approximately 34× 106

runtime configurations – took about 3 minutes for the in-
tegrated approach. In comparison, the approach from [3]
took approximately 3 hours. Test-setups 6 - 9 did not finish
within reasonable time applying the approach from [3].

Here, it is clearly observable that the computation time
needed for the approach from [3] grows exponentially with
the number features (i.e., linear with the size of the runtime
variability space). The time needed by our integrated ap-
proach scales with the test-setup size. Even for test-setup 9,



T
es
t-
se
tu
p

#
L
ea
f-
fe
a
tu
re
s #Cardinality Groups #Runtime Configurations

#
C
o
m
p
o
n
en
ts

#
E
C
U
s

#
S
w
it
ch
es

Hierarchy Level average
1 2 3 4 5 6 7 8 overall per Switch Port

1 50 - - 1 1 1 - - - 32 1 400 20 12

2 100 - - 3 3 - - - - 1.0× 103 10 800 40 22

3 150 - - 2 5 1 - - - 3.3× 104 3.3× 102 ± 1% 1200 60 42

4 200 - - 4 5 3 - - - 1.0× 106 1.0× 104 ± 1% 1600 80 49

5 250 - 1 2 - 9 15 3 - 3.4× 107 ± 1% 3.4× 105 ± 1% 2000 100 67

6 300 - 1 1 1 7 7 5 - 1.1× 109 ± 1% 1.1× 107 ± 1% 2400 120 77

7 350 - 1 2 2 8 18 5 2 3.4× 1010 ± 1% 3.4× 108 ± 1% 2800 140 91

8 400 - 1 4 3 18 22 2 - 1.1× 1012 ± 1% 1.1× 1010 ± 1% 3200 160 110

9 500 - 1 4 15 22 18 6 - 1.1× 1015 ± 1% 1.1× 1013 ± 1% 4000 200 143

Table 2: Experimental Setups

which is far beyond the system size of realistic automotive
systems, the integrated approach could anyway verify the
network performance within 30 minutes.

Since we made some relaxations in the integrated model,
we reimplemented the approach from [3] in C to obtain an
estimation of the over-approximation of the delay values. As
already stated, the approach from [3] did not finish within
reasonable time for test-setups 6 - 9. Therefore, we are only
able to evaluate the over-approximation of test-setup 1 - 5.
Figure 5 shows the 90% percentile and the mean values of the
over-approximation of the integrated approach compared to
[3]. As can be derived, the over-approximation grows with
the size of the test-setups. However, even for test-setup 5
the 90th percentile it is still below 18%.

Thus, we could show that the integrated approach is, in con-
trast to present approaches, able to verify the network per-
formance of CPS with multiple configurations. Moreover, it
scales for large network systems and verifies its performance
in reasonable time. The calculated over-approximation is
within 18% of an acceptable range. Hence, overall it can be
stated that our integrated approach is well-suited for verify-
ing the network performance of dynamic CPS with multiple
configurations.

5. CONCLUSION AND FUTURE WORK
In the paper at hand, we presented a novel approach that
provides a methodology for the prediction of network ag-
gregation end-to-end delays for CPS with multiple runtime
configurations. In contrast to previous work, our approach
considers runtime variability while guaranteeing worst-case
results at the same time. As shown by the example of vary-
ing setups for automobile systems, our approach scales even
for large network configurations of complex CPS. The ob-
served over-approximation of network delays through the
relaxations is acceptable, particularly, as - to the best of the
authors knowledge - no other approach solves this scalability
problem while ensuring worst-case guarantees. For future
work, we plan to extend the integrated approach with an
application end-to-end model.
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Figure 4: Time to obtain the network performance results
for test-setup 1 - 9 in logarithmic scale

6. REFERENCES
[1] “Autosar — the worldwide automotive standard for

e/e systems,”ATZextra worldwide, vol. 18, no. 9, pp.
5–12, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s40111-013-0003-5

[2] S. V. Gheorghita, M. Palkovic, J. Hamers,
A. Vandecappelle, S. Mamagkakis, T. Basten,
L. Eeckhout, H. Corporaal, F. Catthoor,
F. Vandeputte, and K. D. Bosschere,
“System-scenario-based design of dynamic embedded
systems,”ACM Trans. Des. Autom. Electron. Syst.,
vol. 14, no. 1, pp. 3:1–3:45, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1455229.1455232

[3] M. Manderscheid and C. Prehofer, “Network
performance evaluation for distributed embedded
systems using feature models,” in The Eighteenth
International Conference on Engineering of Complex
Computer Systems (ICECCS 2013), 2013.

[4] P. van Stralen and A. Pimentel, “Fast scenario-based
design space exploration using feature selection,” in
ARCS Workshops (ARCS), 2012, 2012, pp. 1–7.

[5] F. Siyoum, M. Geilen, J. Eker, C. v. Platen, and



 0

 5

 10

 15

 20

1 2 3 4 5

O
ve

ra
pp

ro
xi

m
at

io
n 

in
 %

Test-setup

90%-percentile
Average

Figure 5: Over-approximation of the integrated approach
compared with the approach from [3] for test-setup 1 - 5

H. Corporaal, “Automated extraction of scenario
sequences from disciplined dataflow networks,” in
Formal Methods and Models for Codesign
(MEMOCODE), 2013 Eleventh IEEE/ACM
International Conference on, 2013, pp. 47–56.

[6] D. Yue, G. Guillén-Gosálbez, and F. You, “Global
optimization of large-scale mixed-integer linear
fractional programming problems: A
reformulation-linearization method and process
scheduling applications,”AIChE Journal, vol. 59,
no. 11, pp. 4255–4272, 2013. [Online]. Available:
http://dx.doi.org/10.1002/aic.14185

[7] “lp solve version
5.5.1: http://lpsolve.sourceforge.net/5.5/.”

[8] H.-T. Lim, L. Völker, and D. Herrscher, “Challanges in
a future ip/ethernet based in-car network for real-time
applications,” in Design Automation Conference, 2011.

[9] H.-T. Lim, B. Krebs, L. Volker, and P. Zahrer,
“Performance evaluation of the inter-domain
communication in a switched ethernet based in-car
network,” in Local Computer Networks (LCN), 2011
IEEE 36th Conference on, 2011, pp. 101–108.

[10] J. Rox, R. Ernst, and P. Giusto, “Using timing
analysis for the design of future switched based
ethernet automotive networks,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2012,
pp. 57–62.

[11] D. Thiele, J. Diemer, P. Axer, R. Ernst, and J. Seyler,
“Improved formal worst-case timing analysis of
weighted round robin scheduling for ethernet,” in
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013 International Conference on,
2013, pp. 1–10.

[12] Jonas Diemer, Jonas Rox, and Rolf Ernst, “Modeling
of ethernet avb networks for worst-case timing
analysis,” in MATHMOD 2012 - 7th Vienna
International Conference on Mathematical Modelling,
Vienna and Austria, 2012. [Online]. Available:
http://doi.org/10.3182/20120215-3-AT-3016.00150

[13] J. Diemer, D. Thiele, and R. Ernst, “Formal
worst-case timing analysis of ethernet topologies with
strict-priority and avb switching,” in Industrial

Embedded Systems (SIES), 2012 7th IEEE
International Symposium on, 2012, pp. 1–10.

[14] F. Reimann, S. Graf, F. Streit, M. Glaß, and J. Teich,
“Timing analysis of ethernet avb-based automotive e/e
architectures,” in Proceedings of IEEE International
Conference on Emerging Technology & Factory
Automation (ETFA), 2013, p. 8.
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APPENDIX
Definition 1. Data link - RFM Projection

A data-link-RFM-projection projects a data link onto a run-
time feature model (RFM). Formally, this is a map μproj

that maps a tuple (ic, fm) to a runtime feature model fmic,
where ic is the projected data link, fm the original RFM,
and fmic the resulting RFM.

μproj(ic, fm) = fmic,
ic ∈ IC, fm = (F, r,D,Γ, γ), fmic = (Fic, r,Dic,Γic, γic)

The elements of the resulting feature model fmic are defined
as follows. The root feature r of the original RFM is also the
root feature of fmic. The set of the features Fic is a subset
of the features of the original RFM. A feature f is in Fic,
if one the following conditions holds: i) the feature f maps
to any two components c and c′ (c′, c ∈ μF×C(f)) that are



part of a data dependency dd and dd traverses the data link
ic (ic ∈ μR(dd)); or ii) the feature f is a parent feature of a
feature f ′ for which condition i) holds. D+ is the transitive
closure of the set of decomposition edges D of the original
RFM. A feature f is a parent feature for f ′, if (f, f ′) ∈ D+.

The set of decomposition edges Dic contains only edges from
D, for which both features f and f ′ are in Fic.

Dic = {d | d = (f, f ′) ∈ D, f ∈ Fic, f
′ ∈ Fic}

The cardinality groups Γiic are the subsets of the correspon-
dent cardinality groups Γi. The cardinality values γic(Γiic) =
(minic,maxic) depend on the size |Γiic | of the cardinality
groups. If the size of |Γiic | is less than the size of the origi-
nal values γ(Γi).min or γ(Γi).max, then those values must
be adapted.

Γic = {Γ1ic , ...,Γnic},Γiic = Γi\{f |f /∈ Fic}
γic = {(Γiic , (minic,maxic)) | minic = min(γ(Γi).min, |Γiic |),
maxic = min(γ(Γi).max, |Γiic |)}

Proof. The Cin- and L̄-relaxations are worst-case pre-
serving.
Let d̂ be the worst-case delay of a switch output port ac-
cording to Formula 16. According to Section 3.4.1 the Cin-
relaxation is a over-estimation of the Cin-parameter. That
means the estimated C′

in = Cin + εC , εC ≥ 0. Analo-
gously, the L̄-relaxation leads to a overestimated L̄′ = L̄ +
εL, εL ≥ 0. We now show that for every over-estimated
C′

in = Cin + εC , εC ≥ 0 and L̄′ = L̄ + εL, εL ≥ 0 the delay
d̂r is always greater than or equal to the correspondent d̂.

d̂r =
(C′

in − Cout)σ + L̄′(Cout − ρ)

Cout(C′
in − ρ)

d̂r ≥ d̂ ⇔ d̂r − d̂ ≥ 0

d̂r − d̂ =
(C′

in − Cout)σ + L̄′(Cout − ρ)

Cout(C′
in − ρ)

− (Cin − Cout)σ + L̄(Cout − ρ)

Cout(Cin − ρ)

=
(Cin − ρ)

[
(C′

in − Cout)σ + L̄′(Cout − ρ)
]

Cout(C′
in − ρ)(Cin − ρ)

− (C′
in − ρ)

[
(Cin − Cout)σ + L̄(Cout − ρ)

]
Cout(C′

in − ρ)(Cin − ρ)

=
(Cin − ρ)(C′

in − Cout)σ − (C′
in − ρ)(Cin − Cout)σ

Cout(C′
in − ρ)(Cin − ρ)

+

L̄′(Cin − ρ)(Cout − ρ)− L̄(C′
in − ρ)(Cout − ρ)

Cout(C′
in − ρ)(Cin − ρ)

=
σ [(Cin − ρ)(Cin + εc − Cout)− (Cin + εc − ρ)(Cin − Cout)]

Cout(Cin + εc − ρ)(Cin − ρ)
+

(Cout − ρ)
[
(L̄+ εL)(Cin − ρ)− L̄(Cin + εc − ρ)

]
Cout(Cin + εc − ρ)(Cin − ρ)

=
σεc(Cout − ρ)

Cout(Cin + εc − ρ)(Cin − ρ)
+
(Cout − ρ)(εL(Cin − ρ)− L̄εc)

Cout(Cin + εc − ρ)(Cin − ρ)

=
(Cout − ρ)(σεc + (εL(Cin − ρ)− L̄εc)

Cout(Cin + εc − ρ)(Cin − ρ)

=
(Cout − ρ)(εc(σ − L̄) + εL(Cin − ρ))

Cout(Cin + εc − ρ)(Cin − ρ)

Since Cout > ρ,Cin > ρ, σ ≥ L̄:

d̂r − d̂ =
(Cout − ρ)(εc(σ − L̄) + εL(Cin − ρ))

Cout(Cin + εc − ρ)(Cin − ρ)
≥ 0 holds.

Proof. σ-relaxations are worst-case preserving.
In this proof we show that relaxations in Formulas 34 - 36
are worst-case preserving. Let d̂ be the worst-case delay of
a switch output port according to Formula 16. According to
Section 3.4.2 the σ-relaxations base on an over-estimation
of the σ-parameter. That means the estimated σ′ = σ +
ε, ε ≥ 0. We now show that i) for every over-estimated

σ′ = σ+ ε, ε ≥ 0 the delay d̂r is always bigger than or equal
to the correspondent d̂, and ii) that the resulting d̂aggr−r is

always greater than or equal to the actual d̂aggr.
i:

d̂r =
(Cin − Cout)(σ + ε) + L̄(Cout − ρ)

Cout(Cin − ρ)

d̂r ≥ d̂ ⇔ d̂r − d̂ ≥ 0

d̂r − d̂ =
(σ + ε)(Cin − Cout) + L̄(Cout − ρ)

Cout(Cin − ρ)

− σ · (Cin − Cout) + L̄(Cout − ρ)

Cout(Cin − ρ)

=
(Cin − Cout)(σ + ε)− σ · (Cin − Cout)

Cout(Cin − ρ)
=

(Cin − Cout)(σ + ε− σ)

Cout(Cin − ρ)
=

ε · (Cin − Cout)

Cout(Cin − ρ)
Since Cin > ρ and Cin > Cout:

d̂r − d̂ =
ε · (Cin − Cout)

Cout(Cin − ρ)
≥ 0 holds.

ii: Since d̂r ≥ d̂ and d̂str ≥ d̂st, d̂aggr−r =
∑(

d̂str + d̂r
)
≥

d̂aggr ≥ ∑(
d̂st + d̂

)
also holds.
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