APPLICATION OF LOAD ADAPTED HYBRID TEXTILES FOR A THERMOPLASTIC SEAT PASS-THROUGH

Michael Schreiter, Daniel Nebel, Enrico Körner, Arham Saleem, Manuel Schlegel

CONTENT

- Motivation
- Approach
- Load adapted design approach for a seat pass-through
- Thermoplastic process chain
- Conclusion

Motivation

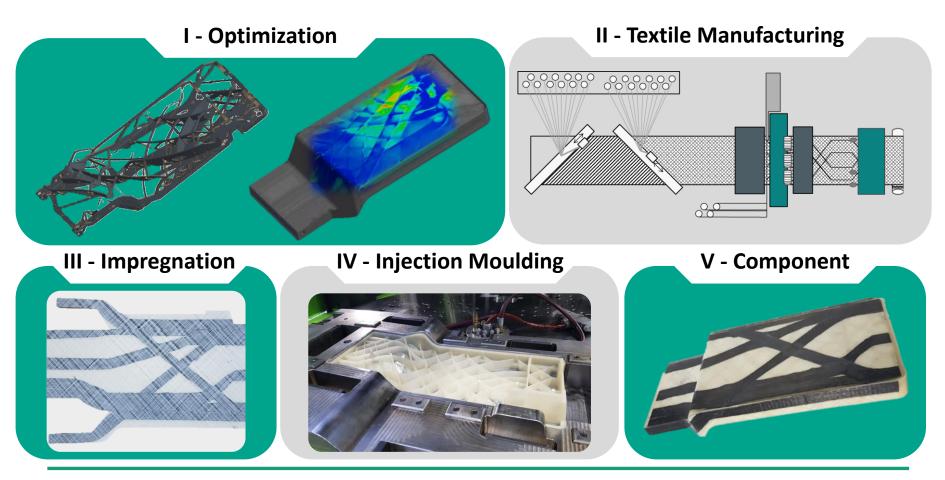
- Low economic attractiveness of carbon fiber reinforced components in the automotive industry due to high material and process costs
- Limited design freedom of conventional fiber composite semi-finished products
- Challenging subsequent thermoplastic impregnation and processing of variable textile semi-finished products

Source: BMW

Source: KraussMaffei

Generating novel Use-Case through cost-effective materials and high material efficiency, especially for expensive high-performance fibers

Approach


- Topology optimization of an organo-sheet based seat pass-through for a load-adapted and resource-efficient design approach
- Production of suitable hybrid non-crimp fabrics from e.g. carbon fibers on non-crimp fabrics made of inexpensive materials such as natural or glass fibers
- Thermoplastic processing (impregnation, forming and injection molding) of hybrid semi-finished products with cost-effective matrices such as polypropylene

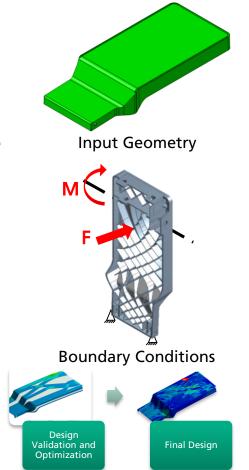
© Fraunhofer IWU

Approach Overview

Load adapted design approach for a seat pass-through Process Overview & Boundary Condition

Load path

Identification


Seat Pass-Through is Structural component in seat backrest:

Topology

Optimization

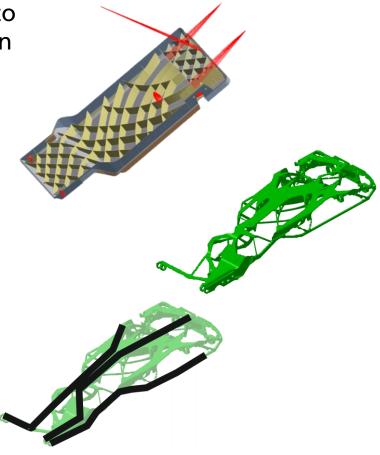
- Stiffness in tension of the belt
- Protection of the vehicle occupant from baggage impact
- Load absorption in rear crash

FEM-Simulation

Reinforcement

Integration in

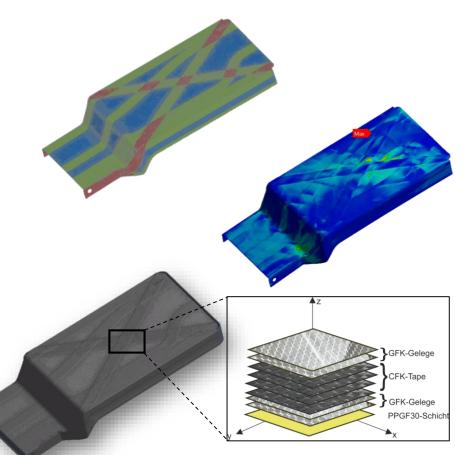
CAD



© Fraunhofer IWU

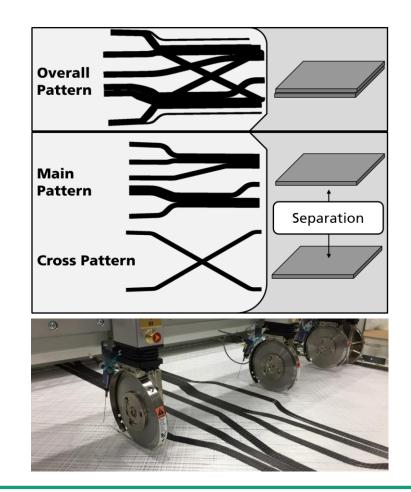
Geometry

Load adapted design approach for a seat pass-through Optimization

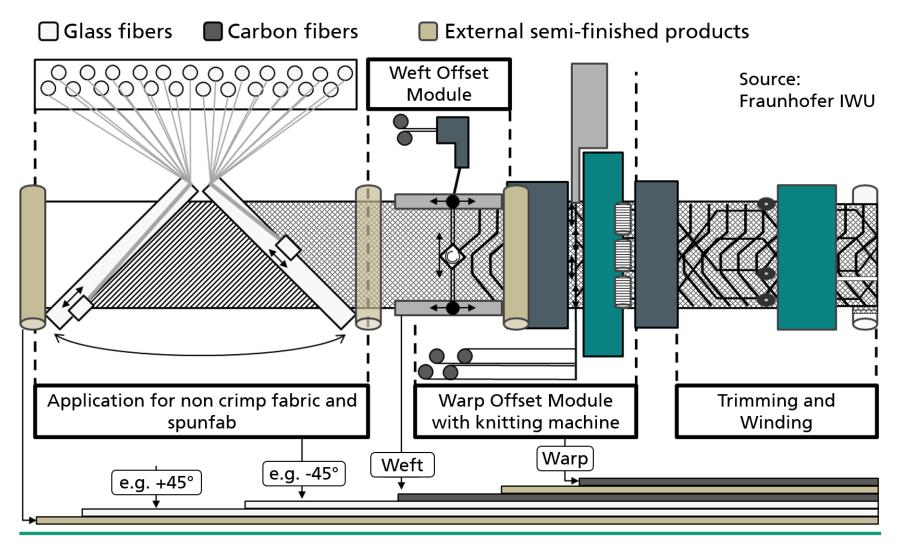

- FEM Simulation with the given load cases to establish a benchmark for optimized design
- Topology optimization
 - With individual load cases
 - Isotropic material definition to give liberty of orientation
- Identification of Load-Paths
 - Analysis of optimization results
 - Extraction of load paths
 - Integration in CAD-Model

Load adapted design approach for a seat pass-through Optimization

- Design validation & adjustments
 - Definition of composite layups with proper material orientations along the load paths
 - Simulation with relevant load cases for the validation of the proposed reinforcement design
- Thickness optimization for higher stiffness and lower weight and design finalization

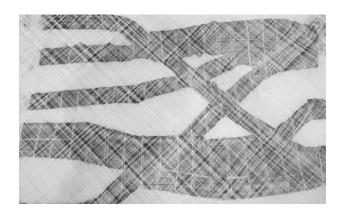


Reinforced Geometry with Lay-up Definition


Textile Production

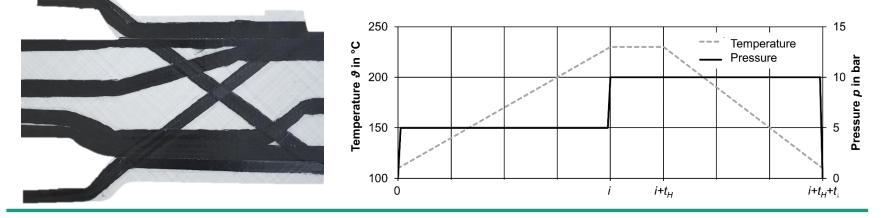
- Inverse drape of the threedimensional load paths to the two-dimensional plane
- Separating the entire pattern into a main pattern with six threeroving load paths and a cross pattern with two three-roving load-paths to ensure sufficient impregnability
- Production of the main pattern on non-crimp fabric and in addition like the cross pattern on pure matrix foil for the later impregnation

Textile Production



Production of pre-impregnated semi-finished products

- Cutting, stacking and prefixing of the layers and additional matrix foil for insertion into the press
- Consolidated laminate thickness 0.6, 1.25 and 1.9 mm
- Use of metallic stencil to compensate for load path thicknesses of 0.65 mm
- The dynamic change in thickness during the impregnation leads to significant fiber washing up to 40 mm



Production of pre-impregnated semi-finished products


- Solution was made by combining the stencils with a fluid-based variothermal tool insert which is fundamentally transferable to a process such as an interval heating press
- The fluid transfers the pressure evenly to the surface and the stencils prevent undercuts and maintain contour accuracy
- Injection molding inserts were then cut out in the water jet
- Pressing parameter are shown at the bottom right

Component manufacturing in injection molding

- Production of the demonstrator in the original injection molding tool of the reference component on the Engel Insert 1800H / 400 of the MERGE Center
- Lateral semi-finished product areas separated and preformed for insertion into molding tools and laminat of original semi-finished product was directly formed when molding tool was closed
- Injection Molding Material Scolefin 52 G 13-0 by Screw temperature 240°C and mold temperature 75°C

Component manufacturing in injection molding

- Principle application of novel semifinished products with component production of a load-adapted seat pass-through demonstrated
- Challenge of too rapid cooling of the semi-finished products in the closed mold and the resulting poorer adhesion between semifinished Product and Injection Molding Material
- Adaptation of the injection mold, as well as a variothermal pretempering with e.g. external induction temperature control, is recommended

Weight: 1.95 kg

Reduction of **18%** compared to the reference component

Conclusion

- Carbon fiber reinforced plastics are currently less competitive compared to other materials, especially in the automotive sector
- It could be shown how a load adapted design of fiber composite semifinished products lead to a savings potential of a seat pass-through, which was already optimized with a glass fiber organo sheet
- The large-scale production on the textile level could be shown
- For a successful impregnation of such textiles, a fluid-based variothermal press process was successfully tested
- Production of the components in injection molding process could be carried out and shows the need of customized injection molding tools and thermally efficient processes for such applications

Thank you for your attention!

