
www.embedded-world.eu 

 

 Securing the IoT 
 Utilizing conformance tessuites for fuzzing  

 

Dorian Knoblauch 
Software Quality Center (SQC) 

Fraunhofer FOKUS 

Berlin, Germany 

dorian.knoblauch@fokus.fraunhofer.de 

Sascha Hackel 

Software Quality Center (SQC) 

Fraunhofer FOKUS 

Berlin, Germany 

sascha.hackel@fokus.fraunhofer.de

 

 
Abstract— IoT devices are widely used in almost all vertical 

domains like homes, factories or as wearables on the body. This 

diversity is reflected in a variety of implementations which 

creates challenges for security testing due to the lag of 

applicability of out-of-the-box security testing solutions, like 

existing in other areas. We're introducing a security testing suite 

that is capable of providing security tests. Our security test suite 

is part of the Eclipse IoT-Testware project.  

It is capable of creating fuzz test cases from conformance test 

suites for devices automatically, regardless of the used protocols. 

Eclipse IoT-Testware reads into the communication between two 

devices, generates a model of the used protocol and generates 

fuzz data using the generation library Fuzzino. This solution has 

found vulnerabilities in ITS devices and flaws in devices using 

COAP and MQTT. 

Keywords— IoT; negative testing; TTCN-3; Eclipse Titan; 

Fuzzing; security 

I.  INTRODUCTION 

IoT devices are widely used in multiple areas like the 
private home, factories or even as wearables on the body. This 
diversity is reflected in a variety of implementations which 
creates challenges for security testing due to the lag of 
applicability of out-of-the-box security testing solutions, like 
existing for other areas. 

Security testing is an important part of the test process, thus 
it reveals flaws in the applied security mechanisms and 
implementations in general. As systems getting more complex 
and interconnected, the attack surface increases. General 
security testing approaches are mainly focusing on discovery 
and avoidance of known vulnerabilities. This is quite effective 
for common software stacks and infrastructures but it fails as 
soon as new or proprietary technologies are subject to test, 
which very much applies to the domain of the Internet of 
Things. 

Incidences and cyber-attacks, like the appearance of the 
Mirai-bot-Network [1], an attack on the Ukraine Power Grid or 
a German steel mill [2] [3], have shown the thread potential of 
insufficient secured IoT systems which nowadays, due to 
industry 4.0, are part of critical infrastructure. 

Our approach introduces a security testing suite that’s 
capable of providing suitable security tests according to the 

device’s interfaces by listening to the communication of the 
IoT devices. 

We take usage of conformance and interoperability test 
suites written in the Testing and Test Control Notation (TTCN-
3)1, a testing language standardized by the European 
Telecommunications Standards Institute (ETSI).TTCN-3 test 
suites usually test each functionality of a protocol do exits for 
all major communication protocols like SIP, WiMax, and IPv6. 
By taking those as the basis for our security testing we ensure 
that a high specification coverage is achieved even when 
dealing with a black box implementation. Our security test 
suite is part of the Eclipse IoT-Testware project, which 
includes conformance test suites for COAP and MQTT, which 
are the foundation for all of our security testing.  

In the area of IoT, the most prominent TTCN-3 
environment is the open-source tool Titan2, whose procedures 
enable a fully automated testing. Tethering to those procedures, 
we developed a generic automated security test in TTCN-3 
with the use of model-based fuzz-testing. Fuzz testing is a well-
known, effective and widely accepted approach to identify and 
locate robustness and security-related weaknesses and 
vulnerabilities in a software-based system.  

Fuzz testing is about systematically injecting invalid or 
unexpected input data to a system under test. That way, 
security-relevant vulnerabilities may be detected when the SUT 
processes such data instead of rejecting it. Eclipse Titan in its 
current version demands the definition of a new template with 
a precise data definition for each fuzzed message. In our 
approach, we’ll ease this step up by providing fuzz data 
through the fuzz data generator Fuzzino to highly automate the 
test execution. 

Fuzzino3 is a library that supports the generation of test data 
for fuzz testing. It provides a set of data generation heuristics 
that target known weaknesses (e.g. integer or buffer overflows) 
and allows for finding new weaknesses by randomly modifying 
test data. In this, we’ll show the implementation of the fuzzing 
approach, so about the difficulties on automatically map the 
TTCN-3 fields to the fuzz data. 

                                                           
1 http://www.ttcn-3.org 

2 https://projects.eclipse.org/projects/tools.titan 
3 https://github.com/fraunhoferfokus/Fuzzino 



After providing the introduction of this paper in section I, a 
short discussion about related work follows in section II. In 
section III the decided test ecosystem including TTCN-3 as test 
language is explained. Section IV provides the implementation 
of the approach presented in this paper followed by the 
conclusion in section V. The paper finishes with an outlook in 
section VI. 

II. RELATED WORK 

A. IoT 

The Internet of Things (IoT) is a communicating-actuating 
network which exists due to the seamless dissemination into 
daily life blending information gathering and tasks executing 
devices [4]. IoT is driven by reused and newly emerged 
technologies and the networking architectures that are heavily 
utilizing the remarkable evolution that wireless and mobile 
communication have had. The challenge in such an 
interconnected environment is to obtain, in combination, a 
feasible high performance and security level [5]. 

Communication among vehicles is one major use case for 
the IoT and Intelligent Transport Systems (ITS) is one of the 
technologies pushing forward to make vehicle communication 
possible.  

ITS are making an important and innovative contribution to 
more efficient, cleaner and safer mobility. Telematics and all 
types of communication, including technologies from the IoT 
domain, are enabling vehicles to exchange data among each 
other. Although a main focus of ITS is on wireless Short-
Range Communications based on ad-hoc networks 
complementary data such as wide area traffic information is 
provided via the internet and conventional transmission 
technologies such as 5G or LTE. The standards are published 
by the ETSI and define the protocols and ports for 
communication [6]. As a proportionally undiscovered area in 
terms of security testing, ITS implementations are providing an 
ideal test ground for testing our approach. 

B. Fuzzing 

Fuzzing is an effective negative testing method of finding 
vulnerabilities in Software. In this black box approach, a 
system under test is exposed via its interfaces to unexpected 
data [7]. Typical interfaces are file loading mechanisms, 
network protocols and proprietary interfaces like API's [8]. The 
expectation is that due to the exposure with partially invalid 
data, the system gets into an unexpected state. Inputs of this 
type can either be generated randomly or systematically by 
mutating valid data or creating new data according to 
specifications [9]. The vast majority of inputs gets rejected by 
the system because of mechanisms like input validation, 
mapping to other data representations or elevation to an upper 
layer. Those rejected inputs are considered ineffective since 
their execution doesn't lead to the possibility of exposing a 
weakness which reduces the overall effectiveness of a fuzzing 
campaign. Model-based security testing does target this issue 
by generating test cases according to the systems model and 
specifications [10]. 

C. TTCN-3 

The Testing and Test Control Notation (TTCN-3) is an 
international test language, standardized by the ETSI. 
Originally, it has been used for black-box conformance 
protocol testing in the telecommunication domain. Nowadays, 
the language widens its scope and is also suitable for 
performance or security testing in different domains like 
automotive, medicine, or banking. 

The technology is explained very well in articles and books 
[11]. It has been accepted in several international projects, 
performed through e.g. SIP tests [12], 3GPP or the WiMax-
Forum certification programs. 

D. Tool support 

Fuzzing is supported in all its various aspects by all kinds 
of tools. One that is currently well reflected in the media due to 
its success in finding vulnerabilities in a variety of different 
systems is the mutation based American Fuzzy Lop (afl). By 
recompiling the code with special flags, afl gains the 
opportunity to obtain information on code coverage. The goal 
of each fuzzing campaign is to produce inputs where its 
execution covers all paths in a program, which ultimately 
increases the overall possibility of determining a vulnerability. 
In this approach, we'll obtain a high coverage of the SUT 
implementation by generating test cases from existing test 
suites which by definition are meant to over a comprehensive 
feature set. 

Just knowing the model doesn't naturally provide data that 
is increasing the likelihood of exploiting a weakness. The 
Fuzzino library fills this gap by generating data according to 
the model's needs via parameterization. For instance, taking an 
input field of a web application as a target, fuzzing would 
provide malicious strings or even SQL-injection string for the 
underlying database. 

Eclipse Titan is an execution environment for the TTCN-3 
language initially developed as an in-house tool by Ericsson. It 
supports the generation of executable and protocol independent 
test code out of TTCN-3. The target language is C++. Besides 
the core components, which includes amongst others the 
TTCN-3/ASN.1 compiler and a base library to support the code 
generation, it provides a graphical IDE based on the Eclipse 
IDE. To bridge the gap between generated code and the system 
under test (SUT), Titan uses test ports that are written ideally 
by domain experts with knowledge of the particular protocol or 
device. 

We'll use the fuzzing language extension and data provided 
by Fuzzino to generate reasonable test cases that is described in 
section IV.A. 

 

E. Integration of fuzzing into a TTCN-3 test setup 

Like mentioned above, integrating fuzzing into an existing 
conformance test framework allows the utilization of model 
knowledge. In the particular case of TTCN-3 test frameworks 
and suites, package data unit descriptions are provided in the 
form of TTCN-3 templates, XSD-Definitions or ASN.1 
notation and can be yield as models for the test case generation. 



www.embedded-world.eu 

 

Already existing ports in TTCN-3 can be used for sending the 
generated fuzzing test cases. 

A similar approach is described in T3FAH: A TTCN-3 
based fuzzer with attack heuristics. This work of Luo et al. 
describes how to automatically extract the input syntax of the 
SUT from existing test data definitions in TTCN-3 
conformance test suites. This syntax is used to generate invalid 
inputs based on their attack heuristic generation algorithm. In 
the final step, a fuzzing test script via reusing the conformance 
test case get automatically constructed [13]. 

Knoblauch and Großmann are describing an approach that 
is capable of learning each PDU model described in TTCN-3 
and using this model to generate new test cases. This process is 
fully automated and needs just one example input to generate 
any amount of test cases using the model information and data 
provided by fuzzino library [14]. This approach was 
successfully evaluated and proved to be able to detect 
vulnerabilities in ITS implementations. The concrete 
implementation heavily relies upon a fully implemented 
TTCN-3 TRI [15] and the Java reflection API which is present 
in Spirent's TTWorkbench. 

III. APPROACH 

Today most projects have a lack of formal (i.e. machine 
processable) system model of the SUT available. Time 
pressure does not allow developing any formal model to get 
automatic tool support for test suite derivation. Thus, a manual 
written synthesis of the test suite is required. With this 
approach, it is difficult to reach high coverage of the functional 
requirements in affordable time. Even worse if requirements 
are related to security. To overcome this problem, we leverage 
the fact of a standardized test language such as TTCN-3, that is 
already used in several standardized test suites. 

One of the main reasons for the success of TTCN-3 is the 
platform independence. A major step for the dissemination of 
the technology has been two years ago with the availability of 
the powerful Titan tool. Furthermore, TTCN-3 provides the 
flexibility to test different kinds of quality of a system. From 
traditional functional testing, the language concepts of TTCN-3 
allow to include testing of non-functional requirements like 
security [14] [16], or performance [17] [18]. 

ETSI and other standardization bodies are issuing TTCN-3 
test suites to achieve a high level of conformity and 
interoperability among different vendors. Mostly all important 
telecommunication protocols are covered with proper TTCN-3 
test and currently, there are major efforts to provide similar test 
suites for IoT based protocols. One of it is the IoT-Testware 
project4 at the Eclipse Foundation initiated by Fraunhofer 
FOKUS and several partners from industry and the research 
domain. The aim of the IoT-Testware is to supply a rich set of 
test suites for IoT technologies implemented with TTCN-3. 
Initially, IoT protocols MQTT and CoAP were in the focus. 
Later more technologies, like OPC UA, follows. It will help 
parties working with IoT relevant protocols or services to 
increase their quality by working collaboratively at the test 
suites within the project and make the results available at no 

                                                           
4 https://projects.eclipse.org/projects/technology.iottestware 

charge in the scope of the Eclipse Foundation. Recently, next 
to conformance test suites, the IoT-Testware provides a yet 
small but promising ecosystem, including a full GUI, that was 
published recently. 

Like mentioned in section II, those conformance test suites 
are covering huge parts of the functionality of the protocols and 
the interfaces. Ideally, most of the parts of an implementation 
of a standard, in a particular SUT which gets introduced to 
such a test suite, will be executed. This nearly full coverage 
which reflects in the TTCN-3 data description and the TTCN-3 
communication procedures will be used to achieve similar high 
penetration with fuzz test cases. Already implemented 
mechanisms for sending data to the SUT like ports in TTCN-3 
are being reused for sending fuzzed messages. The integration 
of an additional fuzz testing capability into an existing test 
suite showed to be the most reasonable approach 

IV. IMPLEMENTATION 

A. Test ecosystem 

As described in II.D, Titan is used as the core platform to 
automatically generate test code and to embed the Fuzzino 
library as fuzzed data provider. In our approach, we're using 
existing parts of conformance and interoperability test 
frameworks to utilize them as models shown in Figure I. So 
modeling allows to narrow down the test cases and reduce the 
amount of data while keeping a similar effectiveness compared 
to a comprehensive approach. In terms of fuzzing capabilities, 
Titan introduces specific language extensions which currently 
are not in the TTCN-3 standard but are planned to be. It allows 
manipulating defined templates using the language specific 

with attribute in combination with the non-standardized 

erroneous keyword as described in detail in a post [19] at 
the official Eclipse Titan forum. It gives the possibility to 
update already existing test data rather than manually creating 
several new. Hence, we stick to the TTCN-3 templates taken 
from the conformance test suite and keep the same coverage. 
Because it is still not a standardized feature, we won't use this 
approach. However, this paper follows another approach of 
deriving fuzzed tests from conformance test suites manually 
and play them back into the Titan tool. 

B. Implementation steps 

1) Get the base 
For applying fuzz testing we use conformance tests as a 

model. This allows us to obtain the structure of the message we 
send to the SUT. As we use existing tests as a base, we get the 
same coverage for the fuzz tests that was achieved with the 
conformance tests. It enables us to focus on the generated data 
we use as negative testing input for the protocol fields instead 
of asking for completeness. In this paper, we consider the ITS 
conformance test suite provided by ETSI as well as the IoT 
Testware for COAP and MQTT. 

2) Building the model 



 

Figure I - Schematic overview of generating fuzzed data from already existing 

conformance tests. 

The next step is to configure the conformance test suite from 1) 
and execute it against a SUT. We record the produced traces 
with a packet analyzer, e.g. Wireshark. Thus, the traces reflect 
the packet structure that is already used by the conformance 
tests and will be re-used in the following steps. This step 
requires the packet analyzer to be capable of parsing the 
packages received by the SUT. 

3) Generate fuzzed data 
With the model by hand, we have an input for the Fuzzino 

library. The Fuzzino library provides a Java and XML interface 
to generate fuzzed data. The recorded traces from Wireshark 
are exported in a suitable exchange format. We decided to use 
JSON as Wireshark export because it is easy to process 
furthermore. This JSON representation contains the structure of 
the package/PDU including the precise bit allocation for each 
filed. Which is needed to modify the field data without 
tampering with structure. Wireshark does not provide the data 
type of the filed, therefore the initial allocation for the field get 
analyzed for its type.  

Given size and type of the field, Fuzzino is capable of 
providing new data for each field. Such provided data is 
specifically generated for the purpose of revealing flaws. For 
instance, given a field with the type Integer and a length of 8-
bit Fuzzino will provide amongst others values in boundaries, 
like 0 and 256. This gets more complex when dealing with 
Strings, here Fuzzino generates ranging from simple wrongly 
encoded String up to complex wrong formatted Http-requests 
or even SQL injections. This is shown in Figure I. 

4) Narrow down the amount of test data 
The allocation of the fields is key to the success of the fuzz 

test. Meaning that allocating more than one field with 
malicious unexpected data increase the possibility of causing 
unexpected behavior. Ideally, a fuzz campaign should make an 
n-wise allocation of each field in the package with newly 
generated fuzz data. But this will produce such a high number 
of test cases that one execution will likely run for months. 
Therefor we’re using at max a pairwise allocation for each 
newly generated fuzzed package. 

5) Run tests with fuzzed data 
Having the initial PDU mutated by allocation chosen field 

with unexpected data created a new fuzzed PDU. This new 
PDU is being sent to SUT using the same communication stack 

as the conformance tests do. It occurs that sending the fuzzed 
PDU on the same layer might not be possible since its being 
altered to a degree where it fails to be encoded on the test 
system side. In this case, the fuzzed PDU has to be sent as a 
payload of the underlying layer. E.g. sending a fuzzed COAP 
message is not possible anymore on the provided TTCN-3-
Port, since it raises a codec error, but sending a UDP payload 
will not introduce this issue. 

Running the Fuzzing campaign means generating multiple 
fuzzed PDU for each in 2) recorded PDU. It might be 
necessary to recalculate certain field of the PDU, like 
checksums or timestamps for decreasing the number of similar 
rejections by the SUT. Each fuzz PDU gets send to the SUT as 
shown in Figure II. At the same time, the reaction of the SUT 
gets monitored.  

6) Log the results 
Logging can be performed in different ways, but it’s 

important that it includes the reaction of the SUT. At least it 
should be frequently checked if the SUT still responds. Those 
kinds of checks have to be implemented or at least configured 
based on each type of SUT. A cheap to implement version of 
such a check can be the execution of the regular conformance 
test suite after a certain amount of fuzz tests. 

V. CONCLUSION 

We've introduced security testing as an addition to the IoT-
Testware. Our fuzzing approach of using a conformance test 
suite as the basis for fuzz testing ensures a high specification 
coverage. Automatic generation of fuzz test for each protocol 
that can be analyzed makes the application of security testing 
very easy. Our solution is capable of finding vulnerabilities as 
shown with ITS devices [14] and instabilities in COAP and 
MQTT implementations. 

VI. OUTLOOK 

With an introduction of a proper TRI implementation in 
Eclipse Titan, more sophisticated approaches like automated 
model exploration can be utilized to increase performance and 
reduce implementation effort. 

Moreover, the results obtained in this paper can be made 
available for test suites of the IoT-Testware project. Because of 
the time-consuming execution of security tests with the help of 
the fuzzing approach, due to the big amount of generated data, 
could be a criterion for users to not use it. We suggest 
introduceing a lighter version of the fuzzing approach. That 
includes a reduced amount of fuzzed data that are fixed for the 
dedicated test suite.  

Another field we are applying security tests is providing a basic 

test specification for IoT devices. This so-called 



www.embedded-world.eu 

 

   

Figure II - Schematic overview of running the generated fuzzed data within the 

test ecosystem. 

foundational security profile [20] defines a subset of 
security requirements from the IEC 62443 standard that 
represents the lowest security level, i.e. security level 1. With 
this set at hand, concrete formal test specification is written. 
Normally, standardization bodies or the industry don't provide 
those test specifications. 

REFERENCES 

[1] S. Gallagher, “How one rent-a-botnet army of cameras, DVRs caused 
Internet chaos”, online, accessed 17-august-2018 

[2] K. Zetter, “Inside the Cunning, Unprecedented Hack of Ukraine's Power 
Grid”, online, accessed 17-august-2018 

[3] K. Zetter “A Cyberattack Has Caused Confirmed Physical Damage for 
the Second Time Ever”, online, accessed 17-august-2018 

[4] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of Things 
(IoT): A Vision, Architectural Elements, and Future Directions”, 
Elsevier Science Publishers B. V., 2013, pp. 1645-1660 

[5] H. Chaouchi, “The internet of things: connecting objects”, John Wiley & 
Sons, 2013 

[6] ETSI, “Intelligent Transport Systems (ITS); Communications 
Architecture”, ETSI EN 302 665, 2010 

[7] B. P. Miller, L. Fredriksen, B. So, “An empirical study of the reliability 
of UNIX utilities”, Communications of the ACM, vol. 33, pp. 32-44, 
1990  

[8] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, “SNOOZE: toward a 
Stateful NetwOrk prOtocol fuzZEr”, pp. 343-358, 2006 

[9] A. Takanen, J. DeMott, C. Miller, “Fuzzing for Software Security 
Testing and Quality Assurance”, Artech House, Inc., 2008 

[10] I. Schieferdecker, J. Großmann, M. Schneider, “Model-Based Security 
Testing”, Electronic Proceedings in Theoretical Computer Science, pp. 
1-12, 2012 

[11] C. Willcock, “An Introduction to TTCN-3”, Wiley, 2011 

[12] A. Wiles, “Experiences of using TTCN-3 for Testing SIP and OSP”, 
2001 

[13] X. Luo, W. Ji, L. Chao, “T3FAH: A TTCN-3 based fuzzer with attack 
heuristics”, WRI World Congress on Computer Science and Information 
Engineering, pp. 744-749, 2009 

[14] D. Knoblauch, J. Großmann, “Fuzz testing ITS”, UCAAT, 2016 

[15] ETSI, “ETSI ES 201 873-5 Methods for Testing and Specification 
(MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-
3 Runtime Interface (TRI)”, pp. 1-320, 2015 

[16] L. Zhou, X. Yin, Z. Wang, “Protocol Security Testing with SPIN and 
TTCN-3”, 2011 IEEE Fourth International Conference on Software 
Testing, Verification and Validation Workshops, pp. 511-519, 2011 

[17] G. Ziegler, “Run-time test configurations for load testing”, 2007 

[18] G. Ziegler, G. Réthy, “Performance testing with TTCN-3”, 2006 

[19] E. Lelik, “Negative Testing in Eclipse Titan: Fuzzing basics.”, online, 
accessed 20-august-2018 

[20] A. Wardaschka, A. Rennoch, S. Hackel, “Formalized Test Purposes for 
an Industrial Security Profile”, Proceedings 3rd GI/ACM Workshop , 
pp. 1-6, 2018 

 

 


