
Rheinische

Friedrich-Wilhelms-Universität Bonn

Master thesis

Studying Dynamics of User Behavior. Heterocedastic Time
Series Forecasting and Clustering of Inhomogeneous Poisson

Process

Author:
Kostadin Cvejoski
Matr. Number: 2709674

First Examiner:
Prof. Dr. Christian Bauckhage

University of Bonn

Second Examiner:
Prof. Dr. Stefan Wrobel

University of Bonn

Submitted: August 24, 2016

Declaration of Authorship

I declare that the work presented here is original and the result of my own
investigations. Formulations and ideas taken from other sources are cited as such.
It has not been submitted, either in part or whole, for a degree at this or any other
university.

Location, Date Signature

Acknowledgements

First of all I would like to thank my thesis advisor Cesar Ali Ojeda Marin from the
Fraunhofer-Institute for Intelligent Analysis and Informations System (IAIS). His door
was always open for me and whenever I had a question he was always there offering me
his support. I am also very grateful to Sifa Rafet for spending the time to read and
discuss parts of my thesis. Without their passionate participation and input, the work
could not have been successfully conducted.

I would like to also express my appreciation to my examiners: Prof. Dr. Christian
Bauckhage and Prof. Dr. Stefan Wrobel. Thank you for giving me the opportunity to
be a part of the Fraunhofer-Institute for Intelligent Analysis and Informations Systems
research, and igniting my passion to dive deeper into the Machine Learning field.

Finally, I must express my very profound gratitude to my wife, for providing me with
an inexhaustible support and continuous encouragement throughout my years of study
and the whole process of researching and writing. This accomplishment would not have
been possible without her. Thank you.

3

Abstract

Complex time series patterns are generated by the behavior of a large number of different
users in so the called “question and answering” web platforms. This calls for flexible,
accurate and descriptive techniques for studying the dynamics of such systems. In this
study, we extend the Sparse Input Gaussian Process formalism, in order to incorporate
functional description of the input dependent noise. Such procedure also provides a regu-
larization method that improves the accuracy of the predictions. We compare our results
with the results of the other Gaussian Process methods, and apply the methodology to
time series from the questions and answer web site Stackoverflow.

For finding the common behavior between the users we propose the scale invariant
Dynamic Piecewise Similarity measures and the K-PSC clustering algorithm for clus-
tering time series in order to provide much more descriptive cluster centroids then the
centroids from the K-Means clustering algorithm.

Contents

1. Introduction and Related Work 11

2. Theory 13
2.1. Gaussian Process . 13

2.1.1. Linear Regression and Linear Basis Function Model 13
2.1.2. Gaussian Process for Regression 14
2.1.3. Learning the Hyperparameters in Gaussian Process for Regression 17

2.2. Covariance Functions . 18
2.2.1. Preliminaries . 18
2.2.2. Examples of Covariance Functions 19

2.3. Sparse Approximation of Gaussian Process 22
2.3.1. Sparse Input Gaussian Process (SPGP) 23
2.3.2. Sparse Input Gaussian Process with Variable Noise (SPGP+HS) . 25
2.3.3. Sparse Input Gaussian Process with Functional Variable Noise

(SPGP+FUNC-HS) . 27
2.4. Poisson Processes . 29
2.5. Clustering Time Series of User Behavior 30

2.5.1. Problem Definition . 31
2.5.2. Dynamic Piecewise Time Series Similarity Measure 31
2.5.3. K-Piece Wise Spectral Centroid 33

3. Coarse Grained Analysis of Population 37
3.1. Experimental Setup . 37
3.2. Results . 37
3.3. Analysis of the Learned Kernels Parameters 40

4. Fine Grained Analysis of Population 43
4.1. User Behavior Models Results . 43
4.2. Common Patterns in the Users Behavior 45

5. Conclusion and Feature Work 48

A. Mathematical Background 50
A.1. Matrix Properties . 50
A.2. Gaussian Distribution . 50

5

Contents

B. Gaussian Process Derivations 52
B.1. Derivation of the Sparse Input Gaussian Process with Functional Variable

Noise . 52
B.2. Gradient Calculation of the Negative Log Marginal Likelihood of the

Sparse Input Gaussian Process with Functional Variable Noise 54
B.3. Kernels Derivatives . 55

C. Fine Grained Analysis Clusters 58

6

List of Figures

2.1. Fig. (a) shows three functions drawn at random from a GP prior by
joining a large number of evaluated points. Fig. (b) shows three random
functions drawn from the posterior, i.e. the prior conditioned on the five
noise free observations indicated. In both plots the shaded area represents
the point-wise mean plus and minus two times the standard deviation for
each input value (corresponding to the 95% confidence region), for the
prior and posterior respectively. 15

2.2. (a): a square exponential covariance function; (b): three functions, ran-
domly sampled from three Gaussian processes, defined by a square expo-
nential covariance functions with different length scales. 18

2.3. (a): a rational quadratic covariance function; (b): three functions, ran-
domly sampled from three Gaussian processes, defined by a rational quadratic
covariance functions with l = 1 and different values for α. 19

2.4. (a): a covariance functions from the Matérn class;(b): three functions,
randomly sampled from three Gaussian processeswith Matérn covariance
functions with different values of ν and l = 1. 20

2.5. (a): covariance functions that is product of SQ and periodic covariance
function; (b): three random function sampled from a Gaussian processes
with SQ/periodic covariance functions with different values for the period
p, where l1 = 1 and l2 = 1. 21

2.6. Similarity matrix is obtained by applying the SE-PER covariance function
with amplitude c = 1, period p = 1, and different values for the length-
scales (l1, l2) on discretized x-axis of 200 equally spaced points between 0
and 3. 22

2.7. Synthetic heteroscedastic data set learned by full Gaussian Process model
Fig. (a); synthetic heteroscedastic data set learned by sparse pseudo-
input Gaussian process (SPGP) Fig.(b). In both plots the shaded area
represents the point-wise mean plus and minus two times the standard
deviation for each input value (corresponding to the 95% confidence re-
gion). The red lines at the bottom in the Fig. (b) represent the locations
of the pseudo-input points. 25

7

List of Figures

2.8. Synthetic heteroscedastic data set learned by sparse pseudo-input Gaus-
sian process with heteroscedastic extension (SPGP+HS) model. The red
pluses are representing the locations of the pseudo-input points, and the
size of the pluses is proportional to the magnitude of the influence of
a pseudo-input point to the prediction. Pseudo-input points that have
large pluses influence the prediction more, hence the uncertainty associ-
ated with that point is smaller. The shaded area represents the point-wise
mean plus and minus two times the standard deviation for each input
value (corresponding to the 95% confidence region). 26

2.9. Synthetic heteroscedastic data set learned by sparse pseudo-input Gaus-
sian process with functional heteroscedastic extension (SPGP+RBFSIN-
HS) model. The red pluses are representing the locations of the pseudo-
inputs. The size of the plus is proportional to the influence of this pseudo-
input to the prediction. Pseudo-inputs that have large pluses influence
the prediction more, hence the uncertainty associated with that point is
smaller. 27

2.10. User intensity functions generated from a Poisson point process. 31
2.11. (a) six time series, five of them have the same shape (two picks) and one

time series that is considered as outlier; (b) cluster centroids, one centroid
is found by K-means, the other by K-PSC. The centroid found by the K-
PSC algorithm is much more descriptive and resistant to outliers then the
centroid found by K-means. 34

3.1. Spectral Density Estimation of the Stackoverflow dataset using periodogram.
We observe two peaks, one at two and a half days and the other at five
days, where the latter peak is double the period of the former peak period. 38

3.2. Models learned with SPGP+SIN-HS for the “Java” and “iOS” tags for
2014 data set. 40

3.3. Decomposition of the SPGP+SIN-HS model for the “android” tags in the
different kernels. We observe four main behaviors: mean trends, seasonal
trends, weekly periods and weekly noise. 42

4.1. Intensities of Poisson point process models and arrivals of four user from
the Stackoverflow dataset. Read points are called induced points, and are
used for approximating the full Poisson point process. Bayesian optimiza-
tion method is used for finding the location of the induced points. The
shaded area represents the point-wise mean plus and minus two times
the standard deviation for each input value (corresponding to the 95%
confidence region) . 44

4.2. Average Silhouette Coefficient using DPT similarity measure for different
values of R (number of pieces). 45

4.3. 46

8

List of Figures

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 58

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 59

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 60

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 61

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 62

C.1. Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With
every centroid, 10 users randomly chosen from the corresponding cluster
are also presented. 63

9

List of Algorithms

1. K-PSC clustering algorithm: K-PSC(X, K,R, σ) 35

10

1. Introduction and Related Work

“Question answering” (QA) sites have gained considerable popularity over the last couple
of years. In these Internet platforms users pose questions and answers to the public, in
order to exchange knowledge. Yahoo Answers, Quora and the Stack Exchange family of
sites provide platforms facilitating the formation of Internet communities that in turn
provide natural and seamless ways for organizing and obtaining knowledge [Ada+08].

Dynamical aspects of such QA sites have been studied in different contexts so far.
Previous works in this area include: studying causality aspects through quasi experi-
mental designs [OTJ10]; user churn analysis through classification algorithms such as
support vector machines or random forests [PAT14]; and predictions of the future value
of question answer pairs, according to the initial activity of the question post [And+12].

In contrast to previous works, where long term activity of users are being predicted,
we focus on time series analysis related to user-defined tags. This approach offers a
possibility of a daily detailed analysis of users behavior. We concentrate on the QA site
Stackoverflow in our work, because this platform has an already established reputation
on the web, and boasts a community of over 5 million distinct active users, who have
provided more than 18 million answers to more than 11 million questions. Thanks to
the shear size of the corresponding data set, as well as the regular activity of the user
base, we were able to mine temporal data in order to uncover defining aspects of the
dynamics of the users behavior.

Our work of analyzing the temporal dynamics of the users is divided into two seg-
ments. The first segment is analyzing the collective users behavior related to a specific
tag, through modeling changes in attention as a variability in the fluctuation of time
series of occurrences of users defined tags, which can be categorized as a special case of
heterocedasticity or input dependent noise. In the second segment we focus on finding
common user posting behavior.

Due to the complexity of the user-system interaction (millions of people discuss thou-
sands of topics), flexible and accurate models are required in order to guarantee a reli-
able analysis. The Bayesian setting and Gaussian Process (GP) framework [Ras06] have
shown to provide an accurate and flexible tool for time series analysis in the recent years,
and can be used to create accurate models. In particular, the possibility of incorporating
error ranges, as well as different models trough the selection of different kernels, allows
interpretability of the results.

We provide an extension of sparse input Gaussian Processes [SG12; SG05] which
allow us to model functional dependence in the time variation of the fluctuations. In
practical experiments, we study the top 10 different tags for the Stackoverflow data set
over different years, spanning a data set of over 2.9 million questions. We find that our
model outperforms the predictions made by the simple GP model under variable noise.

11

1. Introduction and Related Work

In particular, we discover weekly and seasonal periodicity patterns, as well as random
behavior in monthly trends.

The goal of our second segment is to find common behavioral patterns among the users.
This task is performed by clustering the time series of postings for each user, and cluster
centroids are taken as representatives of common users behavioral patterns. Analyzing
each user as time series of postings however is not possible, because the majority of
the users (almost 94%) on an individual level show a posting behavior of less then ten
postings in 2014, where the posting behavior of all the users together show a regular
activity. This behavior may occur because of many reasons, but mainly because of the
users limited working capacity. This leads to a sparsity of data, that makes it difficult
to analyze the users behavior with a GP model, therefore we use a point process. Point
processes are standard models when the objects of study are the number and repartition
of otherwise identical points on a domain, usually time or space.

Similar work has been done for analyzing user behavior [Mal+08], where a Poisson
Point Process (PPP) is used to explain the heavy tails in e-mail communication. How-
ever, the number of users that were analyzed is much smaller than we want to analyze,
due to the computational complexity of the PPP. Recent development of a fast approxi-
mation [SR14] of the PPP makes it possible to apply this model on much bigger scale. In
this approximated PPP model the intensity function is modeled by our extended sparse
GP, which is learned by using Monte Carlo sampling.

For clustering the intensity functions of every PPP we have developed a new scale
invariant similarity measure, called Dynamic Piecewise Time similarity measure, and
K-PSC clustering algorithm that is a generalization of the K-SC [YL11]. Our algorithm
is able to find more descriptive cluster centroids than the normal K-means clustering
algorithm. Also, we do not find any seasonal behavior of the individual users like we
have found in the collective behavior.

The theory behind the models used in this work is presented in the next chapter. We
formally introduce the Gaussian Process framework and provide details regarding our
extensions towards variable noise models. In section 2.4 we present brief introduction
of Poisson Point process. Then, in section 2.5, we introduce the Dynamic Piecewise
Time similarity measure and the K-PSC clustering algorithm. In chapter 3 we show
an analysis of the periodicity of the time series of tag activity in the Stackoverflow
data set. Next, we compare our prediction results with those of other models, and
also discuss the advantages of introducing functional dependencies on noise terms. In
chapter 4 we present the common patterns of the user behavior, that we discovered using
the Dynamic Piecewise Time similarity measure and the K-PSC clustering algorithm.
Finally, we provide conclusions and directions for future work.

12

2. Theory

2.1. Gaussian Process

For modeling the collective temporal dynamics of the users with respect to a tag, can be
done by building a model that describes that dynamics. Gaussian process is a Bayesian
non-parametric method which is commonly used for regression tasks. The main advan-
tages of this method are its non-parametric nature, the possibility of an interpretation
of a model through flexible kernel selection, and the confidence interval (error bar) it
provides with every prediction.

The non-parametric nature of this model comes from defining a prior probability
distribution over the infinite space of functions. Working with a distribution over the
infinite space of functions may seem difficult. The practice shows however, that for a
finite training set it is enough just to consider the values of the function evaluated at
the input points. In this way we work with a finite space. For a better understanding of
the Gaussian process model, we will derive one type of a Gaussian process model from a
linear regression example, by working in terms of a distributions over functions f (x,w).
More detailed information for the Gaussian process can be found in [Ras06] and [Bis06].

2.1.1. Linear Regression and Linear Basis Function Model

The linear regression model is a linear combination of input variables with the parame-
ters of the model

y (x,w) = w0 + w1x1 + . . .+ wDxD (2.1)

where x = (x1, . . . , xD)T are the input variables and w = (w1, . . . , wD) are the model
parameters. Due to the linear combination of the input variables and the model param-
eters, this model shows significant limitations (poor results with non-linear problems).
Extending the linear regression model to the non-linear class of problems is possible by
considering linear combination with a fixed number of non-linear functions of the input
variables with the model parameters

f (x,w) = w0 +
M−1∑
m=1

wmφm (x) (2.2)

where φi (x) are called basis functions, and M is the total number of parameters in the
model. The w0 is called bias parameter, and it is often convenient for it additional basis

13

2. Theory

function to be defined φ0 (x) = 1, therefore we have

f (x,w) =
M−1∑
m=0

wmφm (x) = wTφ (x) (2.3)

where w = (w0, . . . , wM−1)
T and φ = (φ0, . . . , φM−1)

T .
Using non-linear basis functions allows the function f (x,w) to be non-linear function

of the input vector x. However, this function is called linear model because it is linear in
w. There are many different functions that can be used as basis functions, one example
is

φm (x) = exp

(
(x− µn)2

2σ2

)
(2.4)

where µi is the locations of the basis function with the input space and σ is the spatial
scale of the function.

2.1.2. Gaussian Process for Regression

In section 2.1.1 we have defined the linear regression model, we shall continue with de-
riving the Gaussian process model by defining a distribution over the functions y (x,w).
Let us consider the model defined by Eq. (2.3) and define prior probability over the
parameters w given by an isotropic Gaussian of the form

p (w) = N
(
w | 0, α−1I

)
(2.5)

where α−1 is the precision of the distribution. Different values of w define different func-
tions over x, therefore, by defining a probability distribution over w we are implicitly
defining a probability distribution over the functions f (x). We evaluate the function
f (x) at the training points x1, . . . ,xN , therefore, we are interested in the joint distribu-
tion of the function values f (x1) , . . . , f (xN), which we denote with f where fn = f (xn)
for n = 1, . . . , N . Using Eq. (2.3) this vector is calculated by

f = Φw (2.6)

where Φ design matrix with elements Φnm = φm (xn). Because, f is a linear combina-
tion of Gaussian distributed variables given by the elements of w, also f is a Gaussian
distributed variable. Having this fact we only need to find the mean and the covariance
of the distribution over f . Having in mind that the probability distribution over w given
by the Eq. (2.5) induces probability distribution over f , defined as

E [f] = ΦE [w] (2.7)

cov [f] = E
[
ffT
]

= ΦE
[
wwT

]
ΦT = α−1ΦΦT = C (2.8)

where C is the Gram matrix with elements

Cnn′ = k (xn,xn′) = α−1φ (xn)T φ (xn) (2.9)

14

2. Theory

4 2 0 2 4

input, x

2

1

0

1

2
o
u
tp

u
t,

 f
(x

)

(a) Three sample functions from the prior

4 2 0 2 4

input, x

3

2

1

0

1

2

3

o
u
tp

u
t,

 f
(x

)

(b) Three sample functions from the posterior

Figure 2.1.: Fig. (a) shows three functions drawn at random from a GP prior by joining
a large number of evaluated points. Fig. (b) shows three random functions drawn from
the posterior, i.e. the prior conditioned on the five noise free observations indicated. In
both plots the shaded area represents the point-wise mean plus and minus two times the
standard deviation for each input value (corresponding to the 95% confidence region),
for the prior and posterior respectively.

where k (x,x′) is a kernel function.
A major point in the Gaussian process model is that the join distribution over f1, . . . , fN

is completely specified by the mean and the covariance. In most of the application we
do not have any information about the mean of f (x), so we will take it to be zero. This
is the same as choosing the prior over the weight values to be zero in a basis function
point of view. Then the specification of the Gaussian process model is completely given
by the covariance of the f (x), which is given by the kernel function

E [f (xn) f (xn′)] = k (xn,xn′) . (2.10)

Usually, we define the kernel function directly, instead of indirectly through choice of
basis functions. In section 2.1 we can see how we can influence the process by the choice
of the kernel function.

If we want to apply the Gaussian process model to regression problems practically, we
have to consider the noise which is added to the target values, which is given by

yn = fn + εn (2.11)

where fn = f (xn) and εn is a random noise added independently to each target value. For
the regression problem, we will consider a noise process that have Gaussian distribution
defined by

p (yn | fn) = N (yn | fn, σ) (2.12)

where σ is the noise hyperparameter. Because the noise is independent for each data
point, the joint distribution of the target values y = (y1, . . . , yN)T conditioned on the
values of f = (f1, . . . , fN) is given by

p (y | f) = N (y | f , σIN) . (2.13)

15

2. Theory

From the definition of Gaussian process, the marginal distribution of p (f) is given by

p (f) = N (f | 0,C) (2.14)

where the kernel function that calculates C is chosen to express the similarity of two
input points. If the input points xi and xj are similar, then the value of k (xi,xj) should
express stronger correlation than the one for dissimilar points. The notion of similarity
between two points may vary from application to application.

For finding the marginal distribution p (y) conditioned to the input points x1, . . . ,xN ,
we have to integrate over f . Using Eq. (A.7) the marginal distribution of y is given by

p (y) =

∫
p (y | f) p (f) df = N (y | 0,K) (2.15)

where the covariance matrix K has the elements

K (xn,xn′) = k (xn,xn′) + σδnn′ (2.16)

The main goal of the solution of a regression problem is to be able to predict a target
variable for a new input point. So far we have only derived the joint distribution over
set of points. Let us now consider the training set of target values yN = (y1, . . . , yN)
and input points x1, . . . ,xN , our goal will be to predict yN+1 for given xN+1. In order to
make the prediction, we have to evaluate the predictive distribution p (yN+1 | yN ,XN+1),
where XN+1 denotes the vector (x1, . . . ,xN ,xN+1). To find this conditional distribution
first we have to calculate the marginal distribution p (yN+1), where yN+1 denotes the
vector (y1, . . . , yN , yN+1), then we apply Eq. (A.12) to calculate the conditional distri-
bution. From 2.13, the joint distribution over y1, . . . , yN+1 is given by

p (yN+1) = N (yN+1 | 0,KN+1) (2.17)

where KN+1 is a covariance matrix with elements given by Eq. (2.16). Then we can
apply the Eq. (A.12) to find the conditional distribution from the joint distribution. We
partition the covariance matrix as follows

KN+1 =

(
KN k
kT c

)
(2.18)

where KN is the N × N covariance matrix, the vector k has elements k (xn,xN+1) for
n = 1, . . . , N and the scalar c = k (xN+1,xN+1) + σ. Using the Eq. (A.12) the condi-
tional distribution p (yN+1 | y) which is also called predictive distribution is a Gaussian
distribution given by

p (yN+1 | y) = N
(
m (xN+1) , σ

2 (xN+1)
)

(2.19)

m (xN+1) = kTK−1N y (2.20)

σ2 (xN+1) = c− kTK−1N k (2.21)

16

2. Theory

From the results of the Gaussian process derivation we can see that the mean and the
covariance of the process are functions of the new input point xN+1.

The main computational cost in the Gaussian process is the N ×N matrix inversion,
which requires O (N3). This matrix inversion must be performed only once for given
training data. For making prediction of new input point, we have vector by matrix mul-
tiplication, which has a computational cost of O (N2). The matrix inversion operation
can be a problem if we have large training set or training set with high dimensionality.
There are many approximations of the Gaussian process model for regression that im-
prove the computaional cost. In the section 2.3 we shell present one approximation, and
in section 2.3.3 we extend this model by adding regularization term that controls the
overfitting of the data. Gaussian processes are very flexible regression models, and the
model is limited by the covariance function. Using GP makes modeling non-stationary
process really hard, because of the construction of a non-stationary covariance func-
tion. Section 2.2 presents properties of the covariance functions, as well as examples of
covariance functions.

2.1.3. Learning the Hyperparameters in Gaussian Process for
Regression

The choice of the covariance function, as well as the parameters of that function, control
the prediction of a Gaussian process. The parameters of the covariance function control
the length scale of the correlation, as well as the precision of the noise. These parameters
are called hyperparameters, and we will infer their values from the training data.

One technique of learning the hyperparameters for a Gaussian process is to maximize
the log likelihood function of the process p (y | θ), where with θ we denote the hyper-
parameters of the Gaussian process, and it is a vector comprised of the parameters of
the covariance function. Maximization of the log likelihood function can be done with
gradient based optimization techniques, like conjugate gradients [FR64].

The log likelihood function of a Gaussian process has the following form

ln p (y | θ) = −1

2
ln |KN | −

1

2
ytK−1N t− N

2
ln (2π) . (2.22)

For the optimization we need the gradient of the log likelihood function with respect to
the hyperparameters θ. Using Eq. (A.3) for K−1N and Eq. (A.4) for ln |CN |, we obtain

∂

∂θi
ln p (t | θ) = −1

2
Tr

(
C−1N

∂CN

∂θi

)
+

1

2
tTC−1N

∂CN

∂θi
C−1N t. (2.23)

In fully Bayesian treatment we need to evaluate marginals over θ weighted by the prod-
uct of the prior p (θ) and the likelihood function p (t | θ). In practice though, exact
marginalization is intractable, therefore we need to approximate.

In this section we have derived the Gassian process model for regression from the linear
basis function model. The covariance function in the Gaussian process model has an
important role, changing the properties of the covariance function leads to changing the
model. Therefore, in the next section we will explore different covariance functions.

17

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input distance

0.0

0.2

0.4

0.6

0.8

1.0
co

va
ria

nc
e

l = 1

l = 3

l = 0.3

(a)

−4 −2 0 2 4

input, x

−3

−2

−1

0

1

2

3

ou
tp

ut
,f

(x
)

(b)

Figure 2.2.: (a): a square exponential covariance function; (b): three functions, ran-
domly sampled from three Gaussian processes, defined by a square exponential covari-
ance functions with different length scales.

2.2. Covariance Functions

The covariance function is of crucial importance in a GP regression model. The GP
model defines distribution over functions, and the covariance function defines the prop-
erties of a sample function drawn from that distribution. Furthermore, the assumption
we have about the possible properties of the target function is encoded into the covari-
ance function itself. Also, the choice of the covariance function defines the notion of
similarity between the data points. In supervised learning data points x that are close
to each other are most likely to have similar y values. Therefore, training points that are
close to a new test point should be more informative than the points further from the
new test point. The covariance function then provides the possibility of interpretation
of the model through its learned parameters. In section 2.2.1 are introduced some basic
terms and properties of covariance functions. Further in section 2.2.2 are presented ex-
amples of covariance functions. More detailed analysis of different types and properties
of covariance functions could be found in [Ras06].

2.2.1. Preliminaries

If a covariance function is a function of x − x′ than it is called stationary, and it is
invariant to translation in the input space. If it is a function of |x− x′| than it is called
isotropic, and it is invariant to all motions. Covariance functions that depend only on
x and x′ through x · x′ are called dot product covariance functions. An example of
a such covariance function is k (x,x′) = σ2

0 + x · x′. These functions are invariant to
rotation of the coordinate system, but not to translation. Given a set of input points
X = {xi | i = 1, . . . , N} the Gram matrix K is calculated as Kij = k (xi,xj), and if k is
a covariance function then K is called covariance matrix.

18

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input distance

0.0

0.2

0.4

0.6

0.8

1.0
co

va
ria

nc
e

α = 2

α = 0.5

α = 2000

(a)

−4 −2 0 2 4

input, x

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ou
tp

ut
,f

(x
)

(b)

Figure 2.3.: (a): a rational quadratic covariance function; (b): three functions, ran-
domly sampled from three Gaussian processes, defined by a rational quadratic covariance
functions with l = 1 and different values for α.

2.2.2. Examples of Covariance Functions

In this section we shall present different types of stationary covariance functions over
the input domain X that is a subset of the RD.

Squared Exponential Covariance Function

The first covariance function that we are presenting is the squared exponential (SE)
covariance function defined as

kSE (x,x′) = c2 exp

(
(x− x′)2

2l2

)
(2.24)

where c is the variance and l is the length-scale. The length-scale of a function can
informally be understood as the distance within the input space, where one should move
in order for the function to change significantly. Such covariance function is infinitely
differentiable, which means that a GP using this function has mean square derivatives
of all orders, therefore it is very smooth.

In the figure 2.2 one can see, that the function drawn from a process modeled with
a SE covariance function with a long length-scale l = 3 is much smoother, then the
function drawn form a process modeled with a short length-scale l = 0.3.

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance function is defined as

kRQ (x,x′) =

(
1 +

(x− x′)2

2αl2

)−α
(2.25)

19

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input distance

0.0

0.2

0.4

0.6

0.8

1.0
co

va
ria

nc
e

ν = .5

ν = 2

ν = 10

(a)

−4 −2 0 2 4

input, x

−3

−2

−1

0

1

2

3

ou
tp

ut
,f

(x
)

(b)

Figure 2.4.: (a): a covariance functions from the Matérn class;(b): three functions,
randomly sampled from three Gaussian processeswith Matérn covariance functions with
different values of ν and l = 1.

with α, l > 0. This covariance function can be seen as an infinite sum of squared expo-
nentials with different length-scales. A sum of covariance functions is also a covariance
function itself. The limit of a rational quadratic covariance function when α → ∞ is a
SQ covariance function with a length-scale l, Eq. (2.24).

Figure 2.3 presents the behavior of a RQ covariance function for different values of α. A
GP process using RQ covariance function is also an infinitely mean square differentiable.

Matérn Class of Covariance Functions

The Matérn class of covariance functions is given by

kMatern (x,x′) =
21−ν

Γ (ν)


√

2ν (x− x′)2

l

ν

Kν


√

2ν (x− x′)2

l

 (2.26)

where ν and l are positive, and Kν is a modified Bassel function [AS64]. This class
of functions has also a connection with the SE covariance function. For the case when
ν →∞ we obtain a SE covariance function. When setting ν to 1

2
, then a special case of

a SE covariance function emerges

k (x,x′) = exp

(
−|x− x′|

l

)
(2.27)

and the corresponding process is called Ornstein-Uhlenbeck process [UO30]. This process
is mean square continuous but not mean square differentiable. The most interesting
cases in Machine learning of Matérn class are when ν = 3

2
and ν = 5

2
. In Figure 2.4 are

presented covariance functions from the Matérn class with different values for ν.

20

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input distance

0.0

0.2

0.4

0.6

0.8

1.0
co

va
ria

nc
e

p = 1

p = 2

p = 0.5

(a)

−4 −2 0 2 4

input, x

−3

−2

−1

0

1

2

3

ou
tp

ut
,f

(x
)

(b)

Figure 2.5.: (a): covariance functions that is product of SQ and periodic covari-
ance function; (b): three random function sampled from a Gaussian processes with
SQ/periodic covariance functions with different values for the period p, where l1 = 1
and l2 = 1.

Creating New Covariance Functions from Old

It is also possible to create a new covariance function with combinations of covari-
ance functions already defined. This extends the flexibility of the GP and gives a
possibility to model complex functions. The sum of two independent covariance func-
tions is also a covariance function k (x,x′) = k1 (x,x′) + k2 (x,x′). Constructions like
these can also be used for summing covariance functions with different length-scales.
The product of two independent covariance functions is also a covariance function,
k (x,x′) = k1 (x,x′) k2 (x,x′).

We shall introduce a new covariance function that is a result of a product combination
between a SE covariance function and a periodic covariance function (SE-PER)

kse−per (x,x′) = c2 exp

(
−(x− x′)2

2l21

)
exp

−2 sin2
(
π (x−x′)

p

)
l22

 (2.28)

where c is the amplitude of the function, p is the period of the periodic component, l1 is
the decay-time of the periodic component and the l2 is the smoothness of the periodic
component. In Figure 2.5b are presented the SE-PER covariance functions with different
values for the period p. One can see that in Figure 2.5a the amplitude of the covariance
function is not constant, but it is decaying. This decay is controlled by the length-scale
of the SE covariance function.

In Figure 2.6 are presented similarity matrices generated with SE-PER covariance
functions. With the change of the length-scales of the covariance function the notion of
similarity between two points changes. The length-scale of the periodic part is respon-
sible for the width of each period, short periodic length-scale correspond to tide period.
The length-scale of the exponential part correlates to the decay of the amplitude, short
exponential length-scale forces the amplitude of the function to decay faster.

21

2. Theory

l1 = 0.5,l2 = .3

0

1

l1 = 1,l2 = .3

0

1

l1 = 1,l2 = .3

0

1

l1 = 0.5,l2 = 1
1

l1 = 1,l2 = 1
1

l1 = 2,l2 = 1
1

l1 = 0.5,l2 = 3
1

l1 = 1,l2 = 3
1

l1 = 2,l2 = 3
1

Figure 2.6.: Similarity matrix is obtained by applying the SE-PER covariance function
with amplitude c = 1, period p = 1, and different values for the length-scales (l1, l2) on
discretized x-axis of 200 equally spaced points between 0 and 3.

2.3. Sparse Approximation of Gaussian Process

The flexibility and the non-parametric nature of the Gaussian process model has also its
disadvantages. Namely, an inversion of N×N matrix have to be done. This results with
computational complexity of the model of O (N3) operations, where N is the number of
training points. Many approximation techniques try to reduce the computational cost
and apply Gaussian processes to large problems in machine learning.

All proposed approximation techniques can be roughly divided into two classes. The
first class contains methods that approximate the full posterior by introducing matrices
of lower rank M < N , whereas the second class contains methods that try to approx-
imate using matrix-vector multiplication conjugate methods. Detailed overview of the
approximation methods is elaborated by [QW07].

In this section we present approximation methods that belong to the first class, and
many of those are called sparse approximation [SB01; WS01; Csa02; CH; CO02; SWL03;
See03]. All these methods have in common the modeling of the full posterior, trough
taking only a subset of the latent variables exactly. For the latent variables, some kind of
an approximation that has low computational cost is used. All of the methods however
choose a subset M (active set) of the training data with size M � N , and try to lower the
computational cost to O (M2N). The M points used for the approximation are chosen
by an information criteria. For example [SWL03] uses very fast approximate information
criterion, that greedily selects points to the active set. However, this leads to difficulties
of learning the kernel hyper-parameters by maximizing the marginal likelihood of the GP

22

2. Theory

using gradient ascent. The reselecting of the active set causes non-smooth fluctuations
of the gradients of the marginal likelihood, which results with difficulties of converging
to a good local maxima.

In section 2.3.1 we present sparse pseudo-input Gaussian process [SG05] approxima-
tion method that overcomes the problem of learning the hyperparameters of the process.
Next in section 2.3.2, we describe an extension to the model [SG12], which gives a flexi-
bility to it, for modeling a data with input dependent noise. Finally in section 2.3.3 we
examine the overfitting problem that occurs in the model for specific data sets, and we
provide a solution to the problem.

2.3.1. Sparse Input Gaussian Process (SPGP)

[SG05] have designed an approximation model for the full GP, called sparse pseudo-input
Gaussian process (SPGP) regression model. This model enables a search for the kernel
hyperparameters and the active set in one smooth join optimization. This is possible
due to the fact that they allow the active set (pseudo-inputs M) not to be only a subset
of the training data. With parametrization of the covariance function of the GP by
the pseudo-inputs, one has the possibility to learn the pseudo-inputs in gradient ascent.
This is a major advantage since it allows an improvement of the fit of the model by fine
tuning the location of the pseudo-inputs.

In order to derive this computationally tractable model, that still preserves the prop-
erties of the full GP, [SG05] have examined the predictive distribution of the GP with
predictive distribution defined by Eq. (2.19). The mean and the covariance of the pre-
dictive distribution can be considered as functions that are parametrized by the location
of the N training pairs. Every training pair has an input value x and target value y.

The likelihood of the SPGP model is defined by the predictive distribution of the
GP, and it is parametrized by a pseudo data set D. The active set is called pseudo
data set because the points can take any position, and they are not restricted to the
training points. The size of the pseudo data set is M , and it contains pseudo inputs

X = {xm}Mm=1 and pseudo targets f =
{
fm
}M
m=1

. The sparsity of the model arise from

the fact that M � N . The pseudo targets are denoted with f instead of y because they
are not real observation, and therefore there is no need to add noise variance to them.
This setup leads to single data point likelihood defined as

p
(
y | x,X, f

)
= N

(
y | kx

TK−1M y, Kxx − kx
TK−1M kx + σ2

)
(2.29)

where [KM]mm′ = K (xm,xm′) and [kx]m = K (xm,x), for m = 1, . . . ,M . The target
data is generated i.i.d. given the input data, hence we have the complete data likelihood
defined as

p
(
y | x,X, f

)
=

N∏
n=1

p
(
yn | xn,X, f

)
= N

(
y | KNMK−1M f , σ2Γ

)
(2.30)

where σ2Γ = Λ + σ2IN , Λ = diag (KN −QN), [KNM]nm = K (xn,xm), and QN =
KNMK−1M KMN . Defining Gaussian prior distribution p

(
f | X

)
over the pseudo inputs f

23

2. Theory

makes it possible to integrate out the pseudo targets. The prior distribution p
(
f | X

)
is

defined by
p
(
f | X

)
= N

(
f | 0,KM

)
. (2.31)

The posterior distribution over the pseudo targets f can be calculated using Bayesian
rule on Eqs. (2.30) and (2.31), and it is given by

p
(
f | D,X

)
= p

(
y | x,X, f

)
p
(
f | X

)
= N

(
KMM−1KMNσ

−2Γ−1y,KMM−1KM

)
(2.32)

where M = KM + KMNσ
−2Γ−1KNM . The predictive distribution for a given new point

x∗ is calculated by integrating the likelihood Eq. (2.29) and (2.32) and it is given by

p
(
y∗ | x∗,D,X

)
=

∫
p
(
y∗ | x∗,X, f

)
p
(
f | D,X

)
df = N

(
y∗ | µ∗, σ2

∗
)

, (2.33)

where

µ∗ = kT∗M
−1KMNσ

−2Γ−1y

σ2
∗ = K∗∗ − kT∗

(
K−1M −M−1)k∗ + σ2.

Learning the model involves learning the hyperparameters Θ = {θ, σ2} and the locations
of the pseudo inputs X, which can actually be done in one join smooth optimization max-
imizing the marginal likelihood with respect to the parameters. This can be calculated
using Eqs. (2.30) and (2.31), and the marginal likelihood is defined by

p
(
y | x,X

)
=

∫
p
(
y | x,X, f

)
p
(
f | X

)
df

= N
(
y | 0,KNMK−1M KNM + Λ + σ2I

)
(2.34)

The marginal likelihood can be maximized with respect to
{
X,Θ

}
using gradient ascent.

The details of the calculation of the gradients are presented in section B.1 using Cholesky
factorization. The exact form of the gradients will of course depend on the functional
form of the covariance function. The dominant computational cost in this model is
the matrix multiplication KMNσ

−2Γ−1KNM in M which is O (M2N). The inversion of
Λ + σ2I is not expensive since this matrix is diagonal.

Although the SPGP is not specifically designed to model non-stationary functions,
parameterizing the model on the location of the pseudo input points provides some kind
of non-stationarity. This non-stationarity is of course a side effect or an artifact to the
approximation of the full GP. This provides the possibility to model an input dependent
noise using GP. An input dependent noise

yn = fn + εn, εn ∼ N
(
0, σ2

y

)
(2.35)

follows it is own distribution, and the intensity of the noise is varies in different regions
of the input space.

24

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

input, x

2

1

0

1

2

o
u
tp

u
t,

 f
(x

)

(a) full Gaussian process

0 2 4 6 8 10 12

input, x

1.0

0.5

0.0

0.5

1.0

1.5

o
u
tp

u
t,

 f
(x

)

(b) SPGP

Figure 2.7.: Synthetic heteroscedastic data set learned by full Gaussian Process model
Fig. (a); synthetic heteroscedastic data set learned by sparse pseudo-input Gaussian
process (SPGP) Fig.(b). In both plots the shaded area represents the point-wise mean
plus and minus two times the standard deviation for each input value (corresponding to
the 95% confidence region). The red lines at the bottom in the Fig. (b) represent the
locations of the pseudo-input points.

Two different models, that model synthetic data sets with input depend noise are
presented in Figure 2.7. This kind of data sets are also called heteroscedastic data sets.
We can see that the SPGP model fits the data much better by moving some of the
pseudo-input points to the right. The origin of this non-stationary behavior of the
SPGP model comes from the fact that the noise of the model on the locations where the
pseudo-inputs are is σ2. As we move away from the pseudo input points the noise grows
to Knn + σ2. This behavior of the SPGP is a subject of a further research in [SG12].

2.3.2. Sparse Input Gaussian Process with Variable Noise
(SPGP+HS)

In section 2.3.1 we have presented the sparse pseudo-input [SG05] approximation of the
GP. The main goal of designing this model is to improve the computational complexity
of the GP model from O (N3) to O (M2N), where the M is the size of the pseudo data
set, and N is the size of the training data set. A non-stationary behavior emerges by
allowing the pseudo-input points to take any position in the input space. The possibility
of modeling heteroscedastic data set with the SPGP model is very powerful. Although,
the model shows a non-stationary behavior, the fact that this behavior is a side effect
and not a property, does not enable the user to influence it.

The limitation of the SPGP to model variable noise can be best seen in Figure 2.7b.
Although the SPGP has a single global noise level σ2, the predictive variance will only
drop to this level in regions close to the pseudo-input points. The predictive covariance
away from the pseudo-input points will rise to c + σ2, because the correlation in this

25

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

input, x

2

1

0

1

2

o
u
tp

u
t,

 f
(x

)

Figure 2.8.: Synthetic heteroscedastic data set learned by sparse pseudo-input Gaussian
process with heteroscedastic extension (SPGP+HS) model. The red pluses are repre-
senting the locations of the pseudo-input points, and the size of the pluses is proportional
to the magnitude of the influence of a pseudo-input point to the prediction. Pseudo-
input points that have large pluses influence the prediction more, hence the uncertainty
associated with that point is smaller. The shaded area represents the point-wise mean
plus and minus two times the standard deviation for each input value (corresponding to
the 95% confidence region).

region cannot be modeled. The SPGP adjusts the location of the pseudo-input points
during training, in order to take an advantage of the non-stationarity behavior of the
sparse covariance function. The influence of the pseudo input points on the predictive
distribution is all or nothing at the position where they are. Occasionally though this can
cause a problem for some of the data sets, because it forces all the pseudo-input points
to be shifted to one place, and the predictive distribution at that place is modeled well.
At the other parts of the function however, the correlation is modeled poorly, because
there are no pseudo-inputs.

For solving this problem [SG12] introduce extra uncertainty parameter to every pseudo-
input point. The altered covariance of the pseudo-input points have the following form

KM → KM + diag (h) (2.36)

where h is a positive vector of uncertainties that needs to be learned. If hm = 0, then the
particular pseudo-input point behaves exactly like SPGP. As hm grows, the associated
pseudo-input point has less influence on the predictive distribution. This means that the
pseudo-input points does not have the same role like in SPGP all or nothing, but they
can be gradually turned off. If hm →∞, then the pseudo-input point associated with the
uncertainty is ignored. Defining an uncertainty vector like this, allows defining different
noise variance in the prediction in different regions. The heteroscedastic extension of
the SPGP model is referred to as SPGP+HS. The extra parameters h in the SPGP+HS
model are learned by the gradient based maximum likelihood. In Figure 2.9 one can see
the power of the SPGP+HS model, where the pseudo-input points have moved left and

26

2. Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

input, x

2

1

0

1

2

o
u
tp

u
t,

 f
(x

)

Figure 2.9.: Synthetic heteroscedastic data set learned by sparse pseudo-input Gaussian
process with functional heteroscedastic extension (SPGP+RBFSIN-HS) model. The
red pluses are representing the locations of the pseudo-inputs. The size of the plus is
proportional to the influence of this pseudo-input to the prediction. Pseudo-inputs that
have large pluses influence the prediction more, hence the uncertainty associated with
that point is smaller.

right from the middle. This is possible because the uncertainty associated with every
pseudo-input point can gradually reduce the influence of the point to the predictive
distribution.

In this section we have presented the extension of the SPGP model by associating
uncertainty to every pseudo-input point, which makes SPGP more powerful and makes
applying this model to heteroscedastic data sets possible. However, this flexibility also
can lead to problems of overfitting for certain data sets. The authors of the SPGP+HS
model do not provide a method of how to deal with this problem. In the next section,
we introduce an extension to the SPGP+HS model, which provides a solution to avoid
overfitting and make the SPGP+HS more robust.

2.3.3. Sparse Input Gaussian Process with Functional Variable
Noise (SPGP+FUNC-HS)

In section 2.3.1, we have introduced an approximation of the full GP model, the sparse
pseudo-input Gaussian process. Parameterizing the covariance function of the SPGP
model by the pseudo-input points resulted with a non-stationary behavior of the model,
and provided a possibility of modeling heteroscedastic data sets, and showed a behavior
over which we have no control of. Next, in section 2.3.2 we presented an heteroscedastic
extension to the SPGP model. This extension provides the possibility to control the
degree of the influence of every pseudo-input point on the predictive distribution, and
makes the model more flexible, which on the other hand raises the possibility of overfit-
ting certain data sets. In this section we examine different solutions to the problem of
overfitting.

27

2. Theory

Everything that was done until now is done within the Bayesian framework, therefore
it would be natural to continue to work in this framework and be consistent. The first
step we should do is to define prior distribution over the vector h of uncertainties. Once
we have done that we need to derive the predictive distribution of the process, including
the prior distribution over the uncertainty vector. However, taking this approach leads to
calculating computationally intractable integral. We can overcome this problem by using
some sampling algorithm and approximate the computation of this integral. This makes
the algorithm more complex for implementation, and also increases the computational
complexity. Even though, continuing to work in the Bayesian framework would be the
natural and most compact way to solve the problem of overfitting, we end up with a
complex algorithm.

The fact that we work with data sets with input depend noise, informs us that the
noise is generated by some unknown function. Therefore, the simplest approach of
solving this problem would be to define an uncertainty function of the pseudo-input
points. The covariance function of the SPGP+HS with functional noise is defined as

KM → KM + diag
(
fh
(
X
))

(2.37)

where fh is the uncertainty function and X are the pseudo-inputs. The exact form of
the uncertainty function depends on the data set we want to model. Having a prior
knowledge about the nature of the noise, would help us in choosing the right uncer-
tainty function. Defining the heteroscedastic extension in this way makes the learning of
the parameters of the uncertainty function by the gradient based maximum likelihood
possible. In this way we are able to interpret the parameters of the heteroscedastic
noise function as parameters that govern the noise of the model. Another advantage
of having a heteroscedastic function is that it is restricting the parameter search space
when learning the model. This restriction can be beneficial when training, because it
removes the sub optimal local maximas. This results with much faster convergence when
learning the model and also the chance of overfitting is reduced. We refer to our new
heteroscedastic function model as SPGP+FUNC-HS.

Here we introduce two types of heteroscedastic noise functions, that we think are
suitable for modeling user behavior time series. In general any function that describes
best the noise of the given data set can be used. The first heteroscedastic noise function
that we introduce is the simple sine function

fh (xm) = c sin (2πωxm + ϕ) , (2.38)

where c is the amplitude, ω is the frequency and ϕ is the phase. We refer to this model
as SPGP+SIN-HS. The second heteroscedastic noise function we introduce is a product
of the sine function and the RBF kernel and is defined by

fh (xm,hm) = c2e−
(xm−hm)2

2l2 sin (2πωxm + ϕ), (2.39)

where c is the variance, hm is a mean associated with every pseudo-input xm point in the
RBF kernel, l is the length scale of the RBF kernel. The mean in the RBF kernel can

28

2. Theory

be initialized by random or set by the user, if the user has a prior knowledge. Setting
a mean for every pseudo-input point divides the whole input space into regions, and
in each region we have a function which governs the uncertainty associated with every
pseudo input. The uncertainty function defined in this way is behaving like a mixture
of experts. We refer to this model as SPGP+RBFSIN-HS model. We have also tried
to use a polynomial with different degrees as heteroscedastic function, but it showed a
poor performance.

2.4. Poisson Processes

Finding a common behavior between the users requires to model individually every
user. However, the data we have for every user is spares, since we are working with
data generated from human behavior i.e. user have limit how much can work. Modeling
this behavior with GP models is not possible, however the recent development of a
Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
[SR14] makes possible of modeling the behavior of a user with the intensity function of
the Poisson process. Modeling a user behavior using Poisson point process is done for
explanation for heavy tails in e-mail communication [Mal+08].

In this section, we describe the Poisson process, therefor we refer to the book “Stochas-
tic Processes, Theory for Applications” [Gal13] for a more detailed description. A Pois-
son process is a simple and widely used stochastic process, for modeling the times at
which arrivals enter a system. Arrivals may occur at arbitrary positive times, and its
probability at any particular instant is 0. Hence, it is convenient to define a Poisson
process in terms of the sequence of interarrival times X1, X2, . . . ,, which are defined to
be IID.

An arrival process is a sequence of increasing random variables 0 < S1 < S2 < · · · ,
where Si < Si+1 means that Si+1 − Si is a positive random variable. The random
variables S1, S2, . . . are called arrival epochs, and represent the times at which some
repeating phenomenon occurs. In order to fully specify the process by the sequence
S1, S2, . . . of random variables, it is necessary to specify the joint distribution of the
subsequences S1, S2, . . . Sn for all n > 1. Any arrival process also can be specified by an
alternative stochastic process. The sequence of interarrival times X1, X2, . . . , are positive
random variables, defined in terms of arrival epochs by X1 = S1 and Xi = Si − Si−1 for
i > 1. Similarly, given the Xi, the arrival epochs Si are specified as

Sn =
n∑
i=1

Xi. (2.40)

The joint distribution of X1, . . . , Xn for all n > 1 is sufficient to specify the arrival
process.

Other alternative for specifying an arrival process is the counting process N (t), where
for each t > 0, the random variable N (t) is the number of arrivals up to t, and including
time t. A counting process {N (t) ; t > 0} has a stationary increment property, if every

29

2. Theory

t′ > t > 0, N (t′) − N (t) has a same distribution function as N (t′ − t). We define
Ñ (t, t′) = N (t′) − N (t) as the number of arrivals in the interval (t, t′] for any given
t′ ≥ t. A counting process {N (t) ; t > 0} has a independent increment property if for
every integer k > 0, and every k-tuple of times 0 < t1 < t2 < · · · < tk, the k-tuple of
random variables N (t1) , Ñ (t1, t2) , . . . , Ñ (tk−1, tk).

One example of an arrival process is a Poisson process. This process is best described
by the the interarrival times. They provide the most convenient description of a Poisson
process, because the interarrival times are defined to be IID. An arrival process for witch
the sequence of interarrival times is a sequence of IID random variables is called renewal
process. A Poisson process is a renewal process in which the interarrival intervals have
exponential distribution i.e. for some real λ > 0, each Xi has the density

fX (x) = λ exp (−λx) (2.41)

where x ≥ 0, and λ is called the rate of the process, because for any interval of size t,
λt is the expected number of arrivals in that interval. An alternative definition of the
Poisson process is that, it is a counting process that satisfies Eq. (2.42) and has the
stationary and independent increment properties.

Pr{Ñ (t, t+ δ) = 0} = e−λδ ≈ 1− λδ + o (δ)

Pr{Ñ (t, t+ δ) = 1} = λδe−λδ ≈ λδ + o (δ)

Pr{Ñ (t, t+ δ) ≥ 2} ≈ o (δ) . (2.42)

The currently specified Poisson process is characterized by a constant arrival rate λ,
however it is often useful to consider a more general type of process, in which the
arrival rate varies as a function of time. A non-homogeneous Poisson process with time
varying arrival rate λ (t) is defined as a counting process {N (t) ; t > 0} which has the
independent increment property and, for all t ≥ 0, δ > 0, also satisfies

Pr{Ñ (t, t+ δ) = 0} = 1− λ (t) δ + o (δ)

Pr{Ñ (t, t+ δ) = 1} = λ (t) δ + o (δ)

Pr{Ñ (t, t+ δ) ≥ 2} = o (δ) (2.43)

where Ñ (t, t+ δ) = N (t+ δ)−N (δ).

2.5. Clustering Time Series of User Behavior

The problem of finding common user behavior we map to a clustering of the intensity
functions of the users. In this section we define a problem of clustering time series, and we
propose the Dynamic Piecewise Time similarity measure and K-PSC clustering algorithm
as a solution for this problem. Our solution can be considered as a generalization of the
K-SC clustering algorithm proposed by [YL11].

First of all, we assume we have time series of some kind of user behavior. It can be
for example, the user dynamics of watching videos on Youtube, postings on Tweeter, or

30

2. Theory

50 100 150 200 250 300 350

Time (days)

0.040

0.045

0.050

0.055

0.060

0.065

0.070
In

te
n
si

ty

(a)

0 50 100 150 200 250 300 350 400

Time (days)

0

2

4

6

8

10

12

14

16

In
te

n
si

ty

(b)

Figure 2.10.: User intensity functions generated from a Poisson point process.

the postings of a question or an answer to some Q&A web site. Then we try to find
common behavior patterns between the users. Finding a common behavior pattern can
be considered as clustering time series. The centroids are representatives of the common
behaviors between the users.

2.5.1. Problem Definition

We have N sets of arrivals, where each set corresponds to a particular user. An arrival
is a time stamp when a particular action was taken by the user, for example posting a
question, watching a video on Youtube, etc. Then we create a time series for every user
by taking the number of arrivals at time t, where t is measured in some time unit e.g
days. Most of the cases when we do not have enough arrivals to create time series for a
particular user. The reason for this is because we work with data generated by a human
that have limit in how much can work. In that case we have to look for alternatives, for
example create a Poisson point process for every user and cluster the intensity function
of the process as time series. The intensity function from a Poisson point process does
not provide the exact number of actions at the time step t. Therefore one criterion in
designing a similarity measure would be to not take into account the intensity of the
intensity function. Thus, we would like to group the time series in groups depending on
the similarity of their shape and position on the time axis, and not taking into account
the intensity of the time series.

2.5.2. Dynamic Piecewise Time Series Similarity Measure

In order to cluster time series based on their shape and location on the time axis, first
of all we have to discuss, how we can measure similarity between two time series based
on the above mentioned criteria. In Figure 2.10 are presented samples of intensities
from Poisson point processes. We can see that there are intensities with similar shape

31

2. Theory

but different volume, therefore we would like our similarity measure still to consider
these two time series as similar. Additionally, we would like our similarity measure to
consider two time series as similar, when they have similar shape, but one of those time
series is shifted by some delta. The delta should be user defined and it should be time
unit e.g days. This can be seen in Figure 2.10b, where the red time series is shifted by
approximately 30 days or one month.

Even though there have been proposed many time series distance measures and clus-
tering algorithms, there is still a no exact solution to the problem we try to solve i.e.
the solution is problem dependent. The commonly used metric Dynamic Time Warp-
ing [Mül07] can detect that two time series are similar even if they are shifted by some
delta. However, if the intensities of the time series are different then this measure fails to
consider them as similar. [YL11] propose a similarity measure and clustering algorithm
that is invariant to scaling and translation. This similarity measure gives solution to the
to criterion of scaling invariant, but not to the problem when the time series are shifted
by some delta. Influenced from the distance measure designed by [YL11], we propose
a similarity measure that is invariant of scaling, but can still detect time series with
similar shapes shifted by some delta.

Consider the two time series x = {xi}Di=1 and y = {yi}Di=1, where D ∈ N0 is the
dimensionality of the time series and xi, yi ∈ N0. Then, we divide the two time series
into R equal parts, where 0 < R ≤ D, then we obtain the following transformed time
series, p = {ps}Rs=1 and q = {qt}Rt=1.

We propose the Dynamic Piecewise Time similarity measure

d2 (p,q) =
1

2R
min
α

R∑
s=1

R∑
t=1

k[0,1] (s, t) d̃α (ps,qt) (2.44)

The Dynamic Piecewise Time similarity measure Eq. (2.44) offers the freedom of choosing
the shape similarity measure d̃α between any two pieces of the time series, and the
temporal kernel k[0,1] that defines the way in which the parts of two time series are
compared. The particular choice of the kernels depends on the application. In our case
of finding common user behavior patterns for shape similarity measure, we propose

d̃α (ps,qt) =
‖ps − αqt‖2
‖p‖2 (2.45)

where α is a scaling factor. For the choice of the temporal kernel we propose using a
RBF kernel

k[0,1] (s, t) = exp

(
−(s− t)2

2σ2

)
. (2.46)

Other possible option for temporal kernel could be the uniform kernel k[0,1] (s, t) =
I{|s−t|<δ}. This kernel compares every piece from the first time series with parts of the
second time series that are close in time, and the δ defines how close two pieces have to
be.

32

2. Theory

For finding the minimum of d2 (p,q) w.r.t α we have to calculate the derivative ∂d2(p,q)
∂α

,
and then set to 0 and find the α that minimizes the distance.

∂d2 (p,q)

∂α
=

∂

∂α

1

2R
min
α

R∑
s=1

R∑
t=1

k[0,1] (s, t)
‖ps − αqt‖2
‖p‖2

= − 1

R‖p‖
R∑
s=1

R∑
t=1

k[0,1] (s, t) pTs qt +
α

R‖p‖
R∑
s=1

R∑
t=1

k[0,1] (s, t) ‖qt‖2

Setting the derivative to 0, we have for α

α =

∑R
s=1

∑R
t=1 k[0,1] (s, t) pTs qt∑R

s=1

∑R
t=1 k[0,1] (s, t) ‖qt‖2

(2.47)

For calculation and implementation convenience we shall replace the double sums
with matrix operations. In order for this to be done, we define three matrices. The first
matrix is

K =

k (0, 0) · · · k (0, R)
...

. . .
...

k (R, 0) · · · k (R,R)

 (2.48)

is R×R matrix where kij = k[0,1] for i, j = 1, . . . , R. The second matrix K̃ = K⊗IG is
of size GR×GR where G = ceil

(
D
R

)
, ⊗ is the Kronecker product and IG is the identity

matrix of size G. The third matrix

L = diag

k (0, 0) , . . . , k (0, 0)︸ ︷︷ ︸
G

, . . . , k (R,R) , . . . , k (R,R)︸ ︷︷ ︸
G

 (2.49)

is diagonal matrix of size GR×GR where every element of K is repeated G times along
the diagonal. Finally, the α that minimizes the distance between two time series

α =
xT K̃y

β
(2.50)

where β = yTLy.
Using the matrix notation we rewrite the distance measure in the following form

d2 (x, y) =
1

2R‖x‖2
(
xTLx− 2αxT K̃y + α2yTLy

)
. (2.51)

2.5.3. K-Piece Wise Spectral Centroid

In this section we will present an extended version of the K-SC algorithm [YL11], that
clusters time series based on the Dynamic Piecewise Time similarity measure, called

33

2. Theory

0 50 100 150 200 250 300 350 400

Time (days)

0.2

0.4

0.6

0.8

1.0

1.2
In

te
n
si

ty
×1

×5

(a) Time series

0 50 100 150 200 250 300 350

Time (days)

0.0

0.1

0.2

0.3

0.4

0.5

In
te

n
si

ty

K-PSC
K-Means

(b) Cluster centroid

Figure 2.11.: (a) six time series, five of them have the same shape (two picks) and one
time series that is considered as outlier; (b) cluster centroids, one centroid is found by
K-means, the other by K-PSC. The centroid found by the K-PSC algorithm is much
more descriptive and resistant to outliers then the centroid found by K-means.

K-Piece Wise Spectral Centroid (K-PSC). K-PSC is iterative algorithm similar to the K-
means algorithm [J A79], but finds clusters under the DPT similarity measure Eq. (2.44)
more efficiently. The K-means algorithm iterates over two steps, the assignment and
refinement step. At the assignment step, the algorithm assigns every item to the closes
cluster based on the Euclidean distance. In the refinement step the clusters centroids
are recalculated. By iterating through those two steps the algorithm minimizes inter
cluster distance. The K-PSC algorithm works similarly, but uses only the DPT similarity
measure. In the refinement step, the K-means algorithm for calculating the new centroids
simply averages over the items belonging to the same class. Our similarity measure is
scale invariant, therefore not all of the items belonging to the same class contribute
the same in averaging for calculating the new centroid. The simple averaging used in
K-means is not suitable in our scenario, therefore we have to scale every item in order
to find a cluster centroid differently. This can be seen in Figure 2.11. The time series
shown in Figure 2.11a are clustered with the K-Means and the K-PSC algorithms, and
the results are shown in Figure 2.11b. The centroid found by the K-Means is more
sensitive to outliers, whereas, the K-PSC scales every time-series differently in order to
find the cluster centroid, and this scaling decreases the influence of outliers.

Next, we define the K-PSC algorithm. We are given a data set of time series xi, a
number of clusters K and a number of pieces R where we divide the time series. The
goal is to find for each cluster k the assignment Ck of time-series, and the centroid µk
of the cluster that minimizes a function F

F =
K∑
k=1

∑
xi∈Ck

d2 (µk,xi) . (2.52)

The K-PSC algorithm has the same assignment step as the K-means and the K-SC

34

2. Theory

Algorithm 1: K-PSC clustering algorithm: K-PSC(X, K,R, σ)

Data: Time series xi, i = 1, . . . , N , The number of clusters K, The number of
pieces R, σ is the length scale of a RBF kernel

Initial cluster assignments C = {C1, . . . , CK};
G = ceil

(
D
R

)
;

K← k[0,1] (i, j), where i, j = 1, . . . , R;

K̃← K⊗ IG;

L← diag

k (0, 0) , . . . , k (0, 0)︸ ︷︷ ︸
G

, . . . , k (R,R) , . . . , k (R,R)︸ ︷︷ ︸
G

;

repeat

C̃ ← C;
for j = 1 to K do

M←∑
xi∈Ck

(
L− 2AT

i K̃ + AT
i LAi

)
;

µj ← The smallest eigenvector of M;
Cj ← ∅;

end
for j = 1 to N do

j∗ ← arg minj=1,...,K d (xi,µj);
Cj∗ ← Cj∗ ∪ {i}

end

until C̃ = C;
return C,µ1, . . . ,µK

algorithms. The refinement step, on the other hand is different in all three algorithms.
Finding the centroids µk of the cluster Ck leads to solving the following minimization
problem

µ∗k = arg min
µ

∑
xi∈Ck

d2 (µ,xi) . (2.53)

The solution of Eq. (2.53) should be computationally efficient, because the K-PSC re-
calculates the cluster centroids many times until it converges.

Next, we present the closed form solution of the Eq. (2.53). We combine Eqs. (2.51)
and (2.53)

µ∗k = arg min
µ

1

‖µ‖2
∑

xi∈Ck

(
µTLµ− 2αix

T
i K̃xi + α2

ix
T
i Lxi

)
. (2.54)

Then we replace αi with Eq. (2.50)

µ∗k = arg min
µ

1

‖µ‖2
∑
xi∈Ck

µTLµ− 2

(
µT K̃xi
β

)T

µT K̃xi +

(
µT K̃xi
β

xi

)T

L

(
µT K̃xi
β

xi

)

35

2. Theory

We flip the order of xTi µ
T K̃xi and we have the simplified expression

µ∗k = arg min
µ

1

‖µ‖2
∑

xi∈Ck

µT
(
L− 2AT

i K̃ + AT
i LAi

)
µ

where Ai =
K̃xTi ⊗xi

β
and⊗ is the outer product. Substituting

∑
xi∈Ck

(
L− 2AT

i K̃ + AT
i LAi

)
by a matrix M we arrive at the following minimization problem

µ∗k = arg min
µ
µT

M

2R‖µ‖2µ. (2.55)

The solution to this minimization problem is the eigenvector um corresponding to the
smallest eigenvalue λm of matrix M [GV12].

The proposed K-Piece Wise Spectral Centroid clustering (Algorithm 1) extends the
K-SC algorithm [YL11] and can be consider as generalization.

36

3. Coarse Grained Analysis of
Population

In section 2.3 are presented approximations method of the full GP model. The SPGP+HS
model [SG12] reduces the computational complexity of the full GP model, and as a side
effect provides the possibility to model heteroscedastic data sets. Our proposed model
RSPGP+HS extends the SPGP+HS model by defining an uncertainty function of the
pseudo-input points, and is more robust to overfitting. Having an uncertainty function
RSPGP+HS also provides the option to interpret the parameters of the function of the
noise.

In this chapter, we present and discuss the results of the forecasting from the daily
postings behavior of the users of the Stackoverflow Q&A web platform. First we show
an analysis of the periodicity of the time series of tag activity as apparent from the
Stackoverflow data set. Next, we compare our prediction results with those of other
models and discuss the advantages of introducing functional dependencies on noise terms.

3.1. Experimental Setup

The performances of our models are tested using publicly available data-dumps of Stack-
overflow1. The data set is one dimensional, and it contains the number of questions and
answers of postings classified by tag for every business day. The models are trained
on a data sets containing information about the daily postings in the time between
01.02.2014 and 31.08.2014. The evaluation of the models is done by a validation set that
has postings for the first 21 working days in September 2014.

3.2. Results

The performance of the presented models in section 2.3 highly depends on the choice of
the kernels used for calculating the covariance matrix. When working with GP models,
an additional analysis is required, to select the proper kernels for the covariance matrix.
Because we work with a data set that contains some kind of user behavior, we suppose
that it may have some periodicity in the behavior of the users. Thus, we have done
spectral density estimation [MIK05; Ham94; OSB16] analysis of the time series using a
periodogram analysis [MIK05; Ham94; OSB16]. This analysis shows the power (ampli-

1Downloadable URL: www.archive.org/details/stackexchange

37

3. Coarse Grained Analysis of Population

101 102

Time Periods Log(Days)

105

106

107

108

109

1010

P
S
D

 [
V

**
2

/H
z]

Figure 3.1.: Spectral Density Estimation of the Stackoverflow dataset using peri-
odogram. We observe two peaks, one at two and a half days and the other at five
days, where the latter peak is double the period of the former peak period.

MSE NLPD NLML
GP RBFSIN HS SIN GP RBFSIN HS SIN GP RBFSIN HS SIN

android 960.88 692.03 887.45 720.75 4.65 4.49 4.61 4.49 -1076.37 -948.40 -1149.22 -993.23
c# 1029.06 881.11 950.64 894.61 4.70 4.62 4.64 4.62 -1003.23 -949.54 -962.43 -961.62
c++ 1216.94 533.68 5068.20 675.84 4.84 4.45 6.02 4.66 -717.14 -698.50 -756.95 -716.58
html 681.57 678.19 774.17 754.95 4.47 4.45 4.51 4.50 -841.93 -784.78 -798.28 -820.60
ios 2598.35 1474.72 3064.63 1660.90 5.82 4.81 5.53 4.86 -757.36 -737.24 -750.69 -740.49
java 1917.86 1431.70 3446.30 1782.17 5.12 4.90 5.79 4.95 -1098.13 -1034.83 -1087.29 -1068.30
javascript 2992.30 1869.61 2396.68 2102.05 6.09 4.97 5.52 5.22 -1493.42 -883.31 -1054.49 -1044.76
jquery 808.26 825.28 989.07 1163.88 4.57 4.77 4.69 4.73 -957.31 -932.99 -866.17 -862.45
php 5892.26 907.07 5379.89 2745.40 6.83 4.60 6.13 5.15 -1042.95 -883.65 -945.85 -853.21
python 604.89 702.25 744.28 881.65 4.44 4.58 4.53 4.62 -782.68 -842.76 -787.24 -788.14

Table 3.1.: Results showing the MSE and NLPD (smaller better) on 2014 question
test set and NLML (larger is better) on 2014 question training set. GP indicates pure
Gaussian process, HS indicates sparse pseudo-input Gaussian process with heteroscedas-
tic noise, SIN-HS sparse pseudo-input Gaussian process with sine functional noise and
RBFSIN-HS sparse pseudo-input Gaussian process with sine in combination with RBF
kernel functional noise.

tude) of the time series as a function of frequency. In this way we are able to discover
if there are some periodicities, and at what frequency they occur.

We present a periodogram of the time series data that we analyzed in Figure 3.1. Since
all of our tag related time series have almost the same periodogram, we show only one of
them. For the purpose of better interpretability of the periodogram, we have converted
the frequencies into periods, in order to observe how many days a period lasts. There
are two apparent peaks, where the first peak is at two and a half days, and the second
peak is at five days. In this case the period of five days is appearing as an echo of the two
and a half days period, therefore we dismiss the second period and we take into account
only the first period. Additional characteristics of this data set are some irregularities
as well as a long term rising trend in the overall time-series.

Having this information at hand, the models that have the best performance are using

38

3. Coarse Grained Analysis of Population

MSE NLPD NLML
GP RBFSIN HS SIN GP RBFSIN HS SIN GP RBFSIN HS SIN

android 1097.05 1098.29 1041.58 1031.10 4.80 4.79 4.81 4.78 -903.82 -919.78 -913.40 -927.61
c# 2889.76 2723.95 2998.26 2878.46 5.24 5.18 5.24 5.22 -1007.62 -983.75 -989.81 -995.13
c++ 1602.27 1436.71 3491.81 3010.85 4.89 4.85 6.21 5.15 -825.76 -805.98 -886.82 -775.62
html 1856.82 2016.96 2162.96 1904.25 4.98 4.99 5.02 4.96 -1082.09 -957.67 -907.46 -954.44
ios 3944.90 1541.55 5156.82 5017.53 5.74 4.87 5.48 5.41 -831.93 -839.15 -778.98 -777.68
java 3207.22 2987.25 4085.50 3090.13 5.38 5.19 5.35 5.20 -1283.56 -1016.72 -1024.00 -1047.48
javascript 5360.20 4869.97 5434.37 5374.24 5.61 5.50 5.68 5.51 -1141.66 -1110.28 -1139.14 -1131.77
jquery 1817.16 1728.42 1749.74 1725.81 5.12 5.03 5.07 5.00 -976.82 -1021.99 -1009.31 -1023.81
php 2950.13 2948.65 3076.88 2982.74 5.16 5.16 5.20 5.17 -1011.84 -1015.56 -995.81 -994.36
python 911.70 606.00 1660.13 605.22 4.64 4.64 4.90 4.64 -867.67 -820.73 -792.96 -813.29

Table 3.2.: Results showing the MSE and NLPD (smaller better) on 2014 answers
test set and NLML (larger is better) on 2014 answers training set. GP indicates pure
Gaussian process, HS indicates sparse pseudo-input Gaussian process with heteroscedas-
tic noise, SIN-HS sparse pseudo-input Gaussian process with sine functional noise and
RBFSIN-HS sparse pseudo-input Gaussian process with sine in combination with RBF
kernel functional noise.

a covariance function that is a sum of four kernels

k (x, x′) = k1 (x, x′) + k2 (x, x′) + k3 (x, x′) + k4 (x, x′) . (3.1)

The topics of how to choose the kernels and the particular role of each kernel in the
learned model is a subject of discussion in the next section.

We present the result achieved on the top ten tags according to the number of posted
questions and answers in the 2014 Stackoverflow data set. In Table 3.1 are presented the
results from the models modeling the posted questions time series, and in Table 3.2 are
presented the results from the models modeling the posted answers. In order to compare
the prediction models we have used the following measures:

• Mean Square Error (MSE): Accounts for the accuracy of the prediction for an
unseen data

• Negative Log Predictive Distribution (NLPD): Accounts for the confidence
of the predicted values on an unseen data

• Negative Log Marginal Likelihood (NLML): Accounts for how well the model
fits the training data.

For the MSE and the NLPD measures, the smaller values are better, and for the NLML
the larger values are better. The best model of each tag has been chosen using the Akaike
information criterion (AIC) [Bis06]. Models with functional noise perform better in nine
of the ten tags for the answer time series, and eight of the ten tags for the question time
series. The superior performance of the SPGP+FUNC-HS over the full GP is due to the
fact that the data set contains variable noise. Note that for this data set, SPGP+FUNC-
HS performs better, because of the sparsity of the model and the additional functional

39

3. Coarse Grained Analysis of Population

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Oct

Days

500

600

700

800

900

1000

1100
#

 o
f

v
is

it
s

p
e
r

d
a
y

training data

test data

mean

95% conf. interval

peseudo-inputs

(a) “Java”

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Oct

Days

100

150

200

250

300

350

400

450

500

#
 o

f
v
is

it
s

p
e
r

d
a
y

training data

test data

mean

95% conf. interval

peseudo-inputs

(b) “iOS”

Figure 3.2.: Models learned with SPGP+SIN-HS for the “Java” and “iOS” tags for
2014 data set.

noise that is added to the pseudo-input points. The SPGP+HS performs worse than the
best models, because associating only a positive vector of uncertainty to the pseudo-input
points, increases the flexibility of the covariance function. This can lead during search for
an optimal hyperparameter values using gradient ascent, to overfitting and converging
to a sub optimal maxima. Using a functional noise constrains the optimization space
and removes the unwanted local maximas, resulting with much faster converge of the
gradient ascent into a good local maxima. The drawback is that the function of the
noise should follow the distribution of the noise in the data set, otherwise the model will
perform poorly. This is probably the case why the SPGP+FUNC-HS performs worse
on the one tag for the answers and the two tags for the questions. In Figure 3.2 we
present two learned models, one for the “Java” tag (Figure 3.2a) and one for the “iOS”
tag (Figure 3.2b). One can see from the figures, that the model that models the “Java”
tag, strives to predict the test point with the mean. In contrast to the “Java” tag model,
the model of the “iOS” tag predicts the test points as a noise.

3.3. Analysis of the Learned Kernels Parameters

The different kernels trained in Eq. (3.1) allows us to dissect the dynamical behavior
of the population in different scales and patterns. In order to portrait these behaviors,
we calculated the mean function and variance Eq. (2.19) by generating vector k>∗ with
the independent kernels. We present the values of each kernel in the “android” question
data set in Figure 3.3

• Mean trends (Figure 3.3a): are characterizing the behavior of the population
of the users over the length scales in months. They represent the global mean
behavior of the population. We hypothesize that it is driven by the shear size of

40

3. Coarse Grained Analysis of Population

the user base. The more people interested in the tag visiting the site, the more
average number of questions posted per month. Further, this overall trend might
represent the changes in the dominance of this particular tag of questions in the
data set. Because the tags represent programming languages, these trends indicate
changes in the dominance of a language. This is modeled by the use of the rational
quadratic kernel that we define as

k1(x, x
′) = θ26

(
1 +

(x− x′)2
2θ8θ27

)−θ8
(3.2)

• Seasonal trends (Figure 3.3b): these arise in a time scale smaller than the ma-
jor trends and posses both a periodical and a stochastic nature. They represent
changes in the population behavior trough the different months of the year. These
trends are shown with the Ornstein-Ulenbeck kernel which is defined as:

k2(x, x
′) = θ1 exp(−|x− x

′|
θ2

). (3.3)

• Weekly periods (Figure 3.3c): as obtained from the periodogram, this kernel
guarantees the weekly patterns of the users, and represent the fine grained periods
of our data set. We hypothesize that this behavior is related to the natural patterns
of a fatigue during the working week. The analytical form of the kernel is presented
in Eq. (3.4).

k3(x, x
′) = θ23 exp

(
L1 + L2

)
(3.4)

where we define L1 and L2 as

L1 = −(x− x′)2
2θ24

(3.5)

and

L2 = −2 sin2[π(x− x′)/P]

θ25
. (3.6)

• Weekly noise (Figure 3.3d): These are fluctuations appearing in the weakly
behavior, which are natural to expect, due to the statistical nature of our data
set. Randomness in the behavioral pattern of each user might give rise to such
fluctuations. The analytical form of the kernel is defined as:

k4(x, x
′) = θ29

(
1 +

(x− x′)2
2θ11θ210

)−θ11
(3.7)

The models learned are modeling the collective behavior of all users for a given tag.
The model presented in Figure 3.3 answers the question of the collective dynamics of
the system, however each of the sub figure also poses at leas one additional question.
For example, in Figure 3.3a we do not know if the mean emerges from the noise users

41

3. Coarse Grained Analysis of Population

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Days

500

550

600

650

700

750

800

850

#
 o

f
v
is

it
s

p
e
r

d
a
y

training data

mean

95% conf. interval

peseudo-inputs

(a) mean trend k1 Eq. (3.2)

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Days

500

600

700

800

#
 o

f
v
is

it
s

p
e
r

d
a
y

training data

mean

95% conf. interval

peseudo-inputs

(b) seasonal trends k2 Eq. (3.3)

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Days

100

50

0

50

100

#
 o

f
v
is

it
s

p
e
r

d
a
y

training data

mean

95% conf. interval

peseudo-inputs

(c) weekly periods k3 Eq. (3.4)

Feb
Mar

Apr
May Jun Jul

Aug
Sep

Days

60

40

20

0

20

40

60

#
 o

f
v
is

it
s

p
e
r

d
a
y

training data

mean

95% conf. interval

peseudo-inputs

(d) weekly noise k4 Eq. (3.7)

Figure 3.3.: Decomposition of the SPGP+SIN-HS model for the “android” tags in the
different kernels. We observe four main behaviors: mean trends, seasonal trends, weekly
periods and weekly noise.

(users that have posted only once in the system) or from the regular users. Also, the
seasonality of the system presented in Figure 3.3d does not give us information of its
origin. Is the seasonality emergent, or there are users that work seasonal?

Answering these, and similar to these questions, is not possible with the currently
used model, because it does not provide us with enough detailed description. We must
analyze the behavior of the system at much finer level. In the next chapter, we present
results and analysis of the system on user level, i.e. we model the behavior of each
individual user.

42

4. Fine Grained Analysis of Population

Modeling the collective users behavior, in the Stackoverflow web platform, provides an
insight into the general tendencies and the dynamics of the system. The results analysis,
described in the previous chapter, provided us with answers to some questions related
to the collective behavior of the system. However, various additional questions have
arisen, and answering them have required an additional, very meticulous analysis of the
whole system. In order for us to do that, we have done a finer system analysis, through
constructing a behavioral model for every single user.

In this chapter we analyze the behavior of the users in the Stackoverflow web platform.
In section 4.1 are presented learned models of the behavior of each individual user, and
in section 4.2 are presented the common behavioral patterns between the users.

4.1. User Behavior Models Results

Using GPs for modeling the behavior of each user require having enough data for creating
time series. Around 6% of the users of the top ten tags in Stackoverflow dataset have
more than ten arrivals. Thus, it is not possible to create appropriate time series and
then model them with a GP model. However, the Poisson Point process for modeling
the behavior of each user, already presented in section 2.4, offers a solution to this
problem. More specifically we use the scalable nonparametric Bayesian inference on
Poisson process with Gaussian process [SR14]. This is an inhomogeneous Poisson process
with a GP modeling the arrival rate λ. We use the SPGP+FUNC-HS model, and the
hyperparameters are learned using Monte Carlo. The scalability of the model as well
as for the flexibility that offers the GP makes this method attractive. The end result
of the user behavior model depends on the choice of a covariance function of the GP
process inside the Poisson point process. For modeling the behavior of all users we use
the square exponential kernel Eq. (2.24).

In Fig. 4.1 are presented four models of users behavior, modeled with a Poisson point
process. For every single user its arrivals, and the intensity function of the Poisson
process are present. The number, and the distribution of the arrivals, highly are results
of a process defined with the intensity function. Namely, if we integrate the intensity
function of a Poisson point process, it yields a value that is equal to the number of the
arrivals of the user.

The shape of an intensity function depends on the distribution of the arrivals, and
the distribution of the arrivals we assume is defined by two competing processes. The
first process defines the dynamics of a user, namely how often a user decides to post
i.e. how often the user works. The second process defines the intensity of the postings

43

4. Fine Grained Analysis of Population

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

50 100 150 200 250 300 350

Time (t)

(a)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

50 100 150 200 250 300 350

Time (t)

(b)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

50 100 150 200 250 300 350

Time (t)

(c)

0.20

0.25

0.30

0.35

0.40

0.45

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

50 100 150 200 250 300 350

Time (t)

(d)

Figure 4.1.: Intensities of Poisson point process models and arrivals of four user from
the Stackoverflow dataset. Read points are called induced points, and are used for ap-
proximating the full Poisson point process. Bayesian optimization method is used for
finding the location of the induced points. The shaded area represents the point-wise
mean plus and minus two times the standard deviation for each input value (correspond-
ing to the 95% confidence region)

once a user decided to post. The intensity function models both process simultaneously,
without excluding one or the other. However, which process dominates and is shown
in more details by the intensity function, highly depends on the number of arrivals,
and the delta between the posts. The intensity of the picks in the intensity function
corresponds to the delta between the arrivals, and the smaller the delta the larger the
pick. Having too few arrivals forces the Poisson point process method to model the
process on the basis of the intensity of the postings, once a user decided to post. The
users presented in Figures 4.1a and 4.1c have larger number of arrivals, so one can see,
that the intensity function models more the process of how often a user decided to post
instead of the process of the intensity of the users postings. In contrast to it however,
the users presented in Figures 4.1b and 4.1d have quite fewer arrivals in comparison to
the other two Figures, so the intensity function models more the process of the intensity
of the users postings.

Creating intensity functions for every user provide the possibility of analyzing the
behavior of the user. However, modeling the behavior of the user without splitting the
two processes, does not provide an absolutely clear picture of the behavior of the user.
Mixing the two processes in the model of the users behavior also influences the common
users behavior picture, because we would have to compare between models of users that

44

4. Fine Grained Analysis of Population

5 10 15 20 25 30 35 40 45 50

number of clusters

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

A
v
e
ra

g
e
 S

ilh
o
u
e
tt

e
 C

o
e
ff

ic
ie

n
t

R= 365

R= 73

R= 52

Figure 4.2.: Average Silhouette Coefficient using DPT similarity measure for different
values of R (number of pieces).

model two different process.

4.2. Common Patterns in the Users Behavior

Finding common behavior patterns between the users is related to clustering the number
of postings in time. In our case however, the data is too sparse, so we cluster the intensity
functions of the Poisson point process for every user, and as a clustering algorithm we
use the K-PSC algorithm already presented in section 2.5.3. The K-PSC algorithm, like
all the other variants of the K-means algorithm, requires the number of clusters to be
specified beforehand. But because there is no a unique solution of how to choose the
number of clusters beforehand, we first measure the quality of the clustering by running
the K-PSC algorithm multiple times with different number of clusters, and we measure
the Average Silhouette [KR09]. In Figure 4.2 are presented three Average Silhouette
Coefficient as a function of the number of clusters, for different values of R. The higher
value of the Average Silhouette Coefficient is the better. All three functions are similar,
however the function of the Average Silhouette Coefficient for the DPT similarity with
value of R = 365 shows best results. The Average Silhouette Coefficient for the number
of clusters between twenty five and thirty five has the highest value. Although, the
highest value of the Average Silhouette Coefficient is achieved in this range, we choose
the number of clusters to be K = 16, instead of the number of clusters between twenty
five and thirty five, because they are just variants of the sixteen clusters.

In Figure 4.3 are presented the centroids of the clusters obtained using the K-PSC
clustering algorithm for K = 16. One can see from Figure 4.3 that all the clusters have
a single peak except the cluster presented in Figure 4.3a. The picks differ from each
other by their width, the time when they appear, and the time when they peak. Almost
all of the clusters have equal size, on average of 5% of the total number of users.

Although, a seasonal trend of the collective users behavior, in the coarse grained
analysis presented in chapter 3 is observed, here in the fine grained analysis of the

45

4. Fine Grained Analysis of Population

50 100 150 200 250 300 350

Time (t)

0.046

0.048

0.050

0.052

0.054

0.056

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 5644 - 22.17%

(a)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 883 - 3.47%

(b)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 873 - 3.43%

(c)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1187 - 4.66%

(d)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1468 - 5.77%

(e)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1457 - 5.72%

(f)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 932 - 3.66%

(g)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1595 - 6.27%

(h)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1036 - 4.07%

(i)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1268 - 4.98%

(j)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1645 - 6.46%

(k)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1310 - 5.15%

(l)

50 100 150 200 250 300 350

Time (t)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1787 - 7.02%

(m)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1519 - 5.97%

(n)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1255 - 4.93%

(o)

50 100 150 200 250 300 350

Time (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 1594 - 6.26%

(p)

Figure 4.3.

46

4. Fine Grained Analysis of Population

common users patterns, a seasonal behavior of a single user is not shown.
What also catches an eye by analyzing the shown results, is that most of the users

work for a short period of time in the year, usually between one to three months. This
could be also related to a well known phenomenon that users are the most active in the
months when searching for a job. Since we cluster the users in a relatively small number
of clusters, and most of the users are active for a short period of time in the year, the
users who are continuously active are averaged out by the behavior of the most users
and their behavior is not strongly presented by the shown cluster centroids.

The size of the cluster presented by the cluster centroid in Figure 4.3a has almost a
quarter of the total number of users, and the shape of the centroid drastically differ than
the rest of the cluster centroids. The uneven size of this cluster compared to the other
clusters is resulting from the large number of users, who are active for only a couple
of days or for a week at most. Hence, the users corresponding intensity function has a
single sharp peak, and different users have function peaks at a different point of time.
These intensities can not be clustered in one of the other fifteen clusters. We have tried
to reduce the size of this cluster by increasing the number of clusters. However, no
matter how big the number of the clusters is, one cluster is always much larger than the
others. In appendix C we present the cluster centroids of clustering K = 150.

47

5. Conclusion and Feature Work

In this study we have analyzed the temporal dynamics of the Stackoverflow users. For
achieving that, we have taken an approach of analyzing the time-series of posted ques-
tions and answers related to a specific tag. Our analysis is divided into two parts: coarse
grained analysis and fine grained analysis.

In the coarse grained analysis part we study the collective behavior of users that have
posted questions or answers related to a specific tag. In order to accomplish this task, we
have extended the variable noise pseudo inputs Gaussian Process model by introducing
a functional noise variant. The idea of using functional descriptions of noise has offered
us the possibility to study periodic patterns in collective attention shifts, and was also
found to act as a regularizer in model training. Our extended Gaussian Process frame-
work, with functional representations of various kinds of noise, provides an additional
advantage of increased interpretability of the results, as the different kernels, which are
defined solely for this purpose, uncover different kinds of dynamics. In particular, our
kernels revealed major distinct characteristics of the question - answering behavior of
the users. Firstly, there are major trends shown on time scales of about six months,
showing an increase as well as a decrease of interest in particular topics or correspond-
ing tags. Secondly, these major trends are perturbed by seasonal behavior, for instance,
overall activities usually drop during the summer season. Thirdly, on a fine grained
scale, there are weekly patterns characterized by periods of 2.5 days. Finally, there are
noisy fluctuations in activities on daily scales.

In the fine grained analysis part we study the temporal dynamics of the system on
more detailed level, namely we search for the common patterns of the daily posting
behavior of the users. The sparsity of the data on user level force us to define a Poisson
point process for each user, and the intensity function of this process models the behavior
of each individual user. Through clustering the intensity function of each user we obtain
the common patterns of the daily posting behavior of the users. For clustering the users
intensity functions we propose the scale invariant Piecewise dynamic similarity measure
and the K-PSC clustering algorithm, which provide us with much more descriptive
clusters than the K-Means algorithm. From the obtained clusters we can see that most
of the users work only for a short period of time during the year, mainly one to three
months. This could be related to a well known trend that users are the most active in
the months when searching for a job. Since we cluster the users in a relatively small
number of clusters, and most of the users are active for a short period of time in the year,
the users who are continuously active are averaged out by the behavior of the majority
of the users and their behavior is not strongly presented by the shown cluster centroids.
Also, we did not observe any seasonality to appear when analyzed on a user level, as
we observed by the analysis of the collective user behavior. Therefore, we can conclude

48

5. Conclusion and Feature Work

that the seasonality that appears in the collective behavior is emergent.
Given the models and results presented in this study, we propose couple various di-

rections for future work. First goal is dividing the assumed two processes defining how
often a user is active and with what intensity. Making a distinction between these two
processes, when we model the users behavior using the Poisson point process will make
clustering the intensities more precise, and will presumably show similarity in the sizes
of the clusters. This will be tested by modeling the whole set of Stackoverflow users.
Second goal is implementing a distributed Gaussian Process framework, in order to ex-
tend our approach towards massive amounts of behavioral data (use of tags, comments,
and likes) that can be retrieved from similar social media platforms such as Twitter or
Facebook.

49

A. Mathematical Background

A.1. Matrix Properties

The Woodbury matrix identity is(
A+ UBUT

)−1
= A−1 − A−1U

(
B−1 + UTA−1U

)−1
UTA−1 (A.1)

where A, U, C and V all denote matrices of the correct (conformable) sizes.
Determinant of sum of matrices can be expressed as:

|A+ UBUT | = |A||B||B−1 + UTA−1U | (A.2)

The derivative of the inverse of a matrix can be expressed

∂

∂x

(
A−1

)
= −A−1

∂A

∂x
A−1. (A.3)

The derivative of the log determinant of a matrix can be expressed

∂

∂x
ln |A| = Tr

(
A−1

∂A

∂x

)
. (A.4)

A.2. Gaussian Distribution

Given a marginal Gaussian distribution for x and conditional Gaussian distribution for
y given x in the form

p (x) = N
(
x | µ,Λ−1

)
(A.5)

p (y | x) = N
(
y | Ax + b,L−1

)
(A.6)

the marginal distribution of y and the conditional distribution of y are given by

p (y) = N
(
y | Aµ+ b,L−1 + AΛ−1AT

)
(A.7)

p (x | y) = N
(
x | Σ

{
ATL (y − b) + Λµ

}
,Σ
)

(A.8)

where
Σ =

(
Λ + ATLA

)−1
(A.9)

50

A. Mathematical Background

If we have joint Gaussian distribution N (x | µ,Σ) with Λ ≡ Σ−1 and we define the
following partitions

x =

(
xa
xb

)
,µ =

(
µa
µb

)
(A.10)

Σ =

(
Σaa Σab

Σba Σbb

)
,Λ =

(
Λaa Λab

Λba Λbb

)
(A.11)

then the conditional distribution p (xa | xb) is given by

p (xa | xb) = N
(
x | µa|b,Λ−1aa

)
(A.12)

µa|b = µa −Λ−1aa Λab (xb − µb) (A.13)

and the marginal distribution p (xa)

p (xa) = N (xa | µa,Σaa) . (A.14)

51

B. Gaussian Process Derivations

B.1. Derivation of the Sparse Input Gaussian Process
with Functional Variable Noise

In this section we will present the detailed derivation of the predictive distribution,
marginal distribution, as well as calculation of gradients of the hyperparameters. Be-
cause, we are also implementing this model, we shall use the Cholesky factorization in
the derivation for better performance in the implementation.

Lets consider the data set D consisting of N input vectors X = {xn}Nn=1 of dimension
D and corresponding real valued targets y = {yn}Nn=1. The distribution of the target
value at the new point is:

p (y | x,D, θ) = N
(
y | kx

T
(
KN + σ2I

)−1
y, Kxx − kx

T
(
KN + σ2I

)−1
kx + σ2

)
(B.1)

Consider a pseudo data set D of size M < N : pseudo inputs X = {xm}Mm=1 and pseudo
targets f = {fm}Mm=1. The single data point likelihood has the following form:

p
(
y | x,X, f

)
= N

(
y | kx

TK−1M f , Kxx − kx
TK−1M kx + σ2

)
(B.2)

where [KM]mm′ = K (xm,xm′) and [kx]m = K (xm,x), for m = 1, . . . ,M .
The target data are generated i.i.d given the inputs, then the complete data likelihood

has the following form:

p
(
y | x,X, f

)
=

N∏
n=1

p
(
yn | xn,X, f

)
= N

(
y | KNMK−1M f , σ2Γ

)
(B.3)

where σ2Γ = Λ + σ2IN , Λ = diag (KN −QN), [KNM]nm = K (xn,xm) and QN =
KNMK−1M KMN . We define Gaussian prior on the pseudo targets:

p
(
f | X

)
= N

(
f | 0,H

)
(B.4)

where H = KM + diag (fh (xm)) , and m = 1, . . . ,M .
To find the posterior distribution over pseudo targets f we use Bayes rule on Eq. (B.3)

and (B.4):
p
(
f | D,X

)
= p

(
y | x,X, f

)
p
(
f | X

)
= N

(
f | µf ,Σf

)
. (B.5)

52

B. Gaussian Process Derivations

The covariance of the posterior distribution of pseudo targets is:

Σ−1

f
= Λ + ATLA

= H−1 + K−1M KMNσ
−2Γ−1KNMK−1M

= H−1 + L−TL−1KMNσ
−2Γ−1KNML

−TL−1

= σ−2L−TML−1 (B.6)

Σf = σ−2LM−1LT (B.7)

where M = σ2LTH−1L + VΓ−1VT , KM = LLT and V = L−1KMN .
The mean of the posterior distribution of pseudo targets is:

µf = Σ
(
ATL (y − b) + Λµ

)
= σ2LM−1LTK−1M KMNσ

−2Γ−1y

= LM−1VΓ−1y (B.8)

Given a new input point x∗, the predictive distribution is then obtained by integrating
the likelihood Eq. (B.2) with the posterior Eq. (B.5):

p
(
y∗ | x∗,D,X

)
=

∫
p
(
y∗ | x∗,X, f

)
p
(
f | D,X

)
df = N

(
y∗ | µ∗, σ2

∗
)

. (B.9)

The mean of the predictive distribution is defined as:

µ∗ = Aµ+ b

= K∗MK−1M LM−1VΓ−1y

= `TM∗β, (B.10)

and the covariance of the predictive distribution is defined as:

σ2
∗ = L−1 + AΛ−1AT

= k∗∗ −K∗MK−1M KM∗ + σ2 + K∗MK−1M σ2LM−1LTK−1M KM∗

= k∗∗ − `T∗ `∗ + σ2 + σ2`T∗L
−T
M L−1M `∗

= k∗∗ − ‖`∗‖2 + ‖`M∗‖2 + σ2 (B.11)

where M = LMLT
M , `∗ = L−1KM∗, `M∗ = L−1M `∗ and β = L−1M VΓ−1y

The marginal likelihood of the model is obtained by integrating the complete data
likelihood Eq. (B.3) with the prior distribution over the pseudo targets Eq. (B.4):

p
(
y | x,X

)
=

∫
p
(
y | x,X, f

)
p
(
f | X

)
df = N (y | µ,Σ) (B.12)

where the mean and the covariance of the distribution are defined as:

µ = 0 (B.13)

Σ = L−1 + AΛ−1AT

= σ2ΓKNMK−1M HK−1M KNM (B.14)

53

B. Gaussian Process Derivations

Calculation of the gradients of the marginal likelihood with respect to hyperparameters
is much easier if we take the negative log of the marginal likelihood and minimize the
marginal likelihood. The negative log marginal likelihood has the following form:

p
(
y | x,X

)
= −1

2
ln |Σ|︸ ︷︷ ︸
L1

−1

2
yTΣy︸ ︷︷ ︸
L2

−N
2

ln (2π) (B.15)

Transforming the L1 using the Eq. (A.2) we have the following form:

2L1 = ln |σ2Γ + KNMK−1M HK−1M KMN |
= ln |σ2Γ||H||H−1 + K−1M KMNσ

−2Γ−1KNMK−1M |
= ln |σ2Γ|+ ln |H|+ ln |σ−2K−1M AK−1M |
= ln |Γ|+ ln |H|+ ln |K−1M AK−1M |+ lnσ2(N−M)

= ln |Γ|+ ln |H| − 2 ln |KM |+ ln |A|+ (N −M) ln
(
σ2
)

, (B.16)

using the Woodbury matrix identity Eq. (A.1) the second part of negative log marginal
likelihood L2 we have transformed to:

2L2 = yT
(
σ2Γ + KNMK−1M HK−1M KMN

)
y

= yT
(
σ−2Γ−1 − σ−2Γ−1KNMK−1M

(
H−1 + KMKMNσ

−2Γ−1KNMK−1M
)
K−1M KMNσ

−2Γ−1
)
y

= σ−2
(
yTΓ−1y − yTΓ−1KNMA−1KMNΓ−1y

)
= σ−2

(
‖y‖2 − ‖L−1A KMNy‖2

)
, (B.17)

where y = L−1Γ y, KNM = L−1Γ KNM , KM = L−1H KM , Γ = LΓLT
Γ, H = LHLT

H and

A = σ2KMH−1KM + KMNΓ−1KNM = σ2KT
MKM + KMNKNM .

B.2. Gradient Calculation of the Negative Log Marginal
Likelihood of the Sparse Input Gaussian Process
with Functional Variable Noise

In this section we will present the calculations of the gradients of the negative log
marginal likelihood with respect to the hyperparameters. The calculations of the gradi-
ents are in general form and the exact form of the gradients will depend on the choice
of the covariance function and the function modeling the variable noise. The gradient
of the first part L1 of the log marginal likelihood has the following form:

L̇1 =
1

2
ln |Γ|+ 1

2
ln |H|+ 1

2
ln |KM |+

1

2
ln |A|

=
1

2
Tr
(
Γ−1Γ̇

)
+

1

2
Tr
(
H−1Ḣ

)
+

1

2
Tr
(
K−1M K̇M

)
+

1

2
Tr
(
A−1Ȧ

)
(B.18)

54

B. Gaussian Process Derivations

where,

Γ̇ = IN + σ−2Λ

= IN + σ−2diag
(
KN −KNMK−1M KMN

)
= σ−2diag

(
K̇N − 2K̇NMK−1M KMN + KNMK−1M K̇MK−1M KMN

)
, (B.19)

Γ̇ = σ−2diag
(
Γ−

1
2 K̇NΓ−

1
2 − 2K̇NMK−1M KMN + KNMK−1M K̇MK−1M KMN

)
, (B.20)

Ȧ = σ2K̇MH−1KM − σ−2KMH−1ḢH−1KM + σ2KMH−1K̇M

+ K̇MNΓ−1KNM −KNMΓ−1Γ̇Γ−1KNM + KMNΓ−1K̇NM

= σ2K̇MKM − σ−2KMḢKM + 2K̇MNKNM −KMN Γ̇KNM , (B.21)

Ḣ = K̇M + diag
(
ḟh (xm)

)
(B.22)

Ḣ = L−1H ḢL−TH (B.23)

K̇M = L−1H K̇M (B.24)

K̇NM = Γ−
1
2 K̇NM (B.25)

The gradients of the second part L1 of the negative log marginal likelihood has the
following form:

L̇2 =
σ−2

2

(
yTΓ−1y − yTΓ−1KNMA−1KMNΓ−1y

)
= σ−2

(
− 1

2
yT Γ̇y + yT Γ̇KNMA−1KMNy − yT K̇NMA−1KMNy

+
1

2
yTKNMA−1ȦA−1KMNy

)

= σ−2

[
− 1

2
yT Γ̇y +

(
L−1A KMNy

)T (1

2
L−1A ȦL−TA

(
L−1A KMNy

)
+ L−1A KMN Γ̇y − L−1A K̇MNy

)]
(B.26)

B.3. Kernels Derivatives

In this section we will present the calculations of the kernel derivatives with respect to
hyperparameters θ and the pseudo-inputs X. The exact form of the kernel derivatives
depends on the exact form of the covariance function we have chosen. In the work we
have done we have used four different kernels. The derivatives of the squared exponential
kernel Eq. (2.24) has the following forms:

55

B. Gaussian Process Derivations

• with respect to the length scale l:

∂ksq (x, y)

∂l
=
c2

l3
(x− y)2 e−

(x−y)2

2l2 (B.27)

• with respect to the amplitude c:

∂ksq (x, y)

∂c
= 2ce−

(x−y)2

2l2 (B.28)

• with respect to x:

∂ksq (x, y)

∂x
= − c2

2l2
(2x− 2y) e−

(x−y)2

2l2 (B.29)

• with respect to y:

∂ksq (x, y)

∂y
= − c2

2l2
(−2x+ 2y) e−

(x−y)2

2l2 . (B.30)

The derivatives of the rational quadratic kernel Eq. (2.25) has the following forms:

• with respect to the length scale l:

∂krq (x, y)

∂l
=
c2
(

1 + (x−y)2
2αl2

)−α
(x− y)2

l3
(

1 + (x−y)2
2αl2

) (B.31)

• with respect to the amplitude c:

∂krq (x, y)

∂c
= 2c

(
1 +

(x− y)2

2αl2

)−α
(B.32)

• with respect to α:

∂krq (x, y)

∂α
= c2

(
1 +

(x− y)2

2αl2

)−α− log

(
1 +

(x− y)2

2αl2

)
+

(x− y)2

2αl2
(

1 + (x−y)2
2αl2

)


(B.33)

• with respect to x:

∂krq (x, y)

∂x
= −

c2
(

1 + (x−y)2
2αl2

)−α
(2x− 2y)

2l2
(

1 + (x−y)2
2αl2

) (B.34)

56

B. Gaussian Process Derivations

• with respect to y:

∂krq (x, y)

∂y
= −

c2
(

1 + (x−y)2
2αl2

)−α
(−2x+ 2y)

2l2
(

1 + (x−y)2
2αl2

) . (B.35)

The derivatives of the Ornstein-Ulenbeck kernel Eq. (2.27) has the following forms:

• with respect to the length scale l:

∂kou (x, y)

∂l
=

c

l2
e−

1
l
|x−y| |x− y| (B.36)

• with respect to the amplitude c:

∂kou (x, y)

∂c
= e−

1
l
|x−y| (B.37)

• with respect to x:

∂kou (x, y)

∂x
= −ce

− 1
l
|x−y|

l |x− y|

(
(<x−<y)

d

dx
<x+ (=x−=y)

d

dx
=x
)

(B.38)

• with respect to y:

∂kou (x, y)

∂y
= −ce

− 1
l
|x−y|

l |x− y|

(
− (<x−<y)

d

dy
<y − (=x−=y)

d

dy
=y
)

. (B.39)

The derivatives of the exponential periodic kernel Eq. (2.28) defined in section has the
following forms:

• with respect to the length scale l:

∂kper (x, y)

∂l
=

4c2

l3
e−

2
l2

sin2 (πp (x−y)) sin2

(
π

p
(x− y)

)
(B.40)

• with respect to the amplitude c:

∂kper (x, y)

∂c
= 2ce−

2
l2

sin2 (πp (x−y)) (B.41)

• with respect to x:

∂kper (x, y)

∂x
= −4πc2

l2p
e−

2
l2

sin2 (πp (x−y)) sin

(
π

p
(x− y)

)
cos

(
π

p
(x− y)

)
(B.42)

• with respect to y:

∂kper (x, y)

∂y
=

4πc2

l2p
e−

2
l2

sin2 (πp (x−y)) sin

(
π

p
(x− y)

)
cos

(
π

p
(x− y)

)
. (B.43)

57

C. Fine Grained Analysis Clusters

We present here the cluster centroids obtained through clustering the users of the Stack-
overflow web platform, who have posted an answer to a question that is related to one of
the top ten tags in 2014, and amount to around 29 000 users. They are clustered in 150
clusters. Alongside the centroids, 10 users who are randomly chosen from the cluster,
and correspond to each centroid, are also presented. Same as the clustering presented in
chapter 4, here a cluster with a size much bigger than the sizes of the other clusters also
appears. These clusters however are much more descriptive than the clusters presented
in the chapter 4, because the size of the clusters is much smaller, which on the other
hand corresponds to a smaller averaging out. By fifteen of the one hundred and fifty
centroids two picks have occurred. In Figure ?? are presented the centroids obtained by
the clustering.

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 142 - 0.56%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 141 - 0.55%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 191 - 0.75%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 166 - 0.65%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 142 - 0.56%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 40 - 0.16%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 222 - 0.87%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 79 - 0.31%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 96 - 0.38%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 231 - 0.91%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 189 - 0.74%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 199 - 0.78%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

58

C. Fine Grained Analysis Clusters

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0
P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 94 - 0.37%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 125 - 0.49%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 252 - 0.99%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 236 - 0.93%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 214 - 0.84%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 88 - 0.35%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 203 - 0.80%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 106 - 0.42%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 139 - 0.55%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 90 - 0.35%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 158 - 0.62%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 98 - 0.39%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 220 - 0.86%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 166 - 0.65%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 262 - 1.03%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 182 - 0.72%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 167 - 0.66%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 178 - 0.70%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 136 - 0.53%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 228 - 0.90%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 138 - 0.54%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 99 - 0.39%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 216 - 0.85%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 170 - 0.67%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 119 - 0.47%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 125 - 0.49%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 173 - 0.68%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 176 - 0.69%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

59

C. Fine Grained Analysis Clusters

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0
P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 162 - 0.64%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 32 - 0.13%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 104 - 0.41%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 151 - 0.59%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 156 - 0.61%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 273 - 1.07%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 217 - 0.85%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 184 - 0.72%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 72 - 0.28%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 161 - 0.63%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 191 - 0.75%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 181 - 0.71%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 226 - 0.89%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 37 - 0.15%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 2019 - 7.93%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 120 - 0.47%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 122 - 0.48%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 57 - 0.22%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 159 - 0.62%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 188 - 0.74%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 94 - 0.37%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 160 - 0.63%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 261 - 1.03%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 154 - 0.61%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 103 - 0.40%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 169 - 0.66%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 169 - 0.66%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 197 - 0.77%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

60

C. Fine Grained Analysis Clusters

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0
P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 45 - 0.18%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 130 - 0.51%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 136 - 0.53%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 186 - 0.73%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 129 - 0.51%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 263 - 1.03%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 229 - 0.90%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 189 - 0.74%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 107 - 0.42%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 137 - 0.54%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 198 - 0.78%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 238 - 0.94%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 198 - 0.78%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 151 - 0.59%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 177 - 0.70%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 168 - 0.66%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 191 - 0.75%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 214 - 0.84%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 137 - 0.54%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 124 - 0.49%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 181 - 0.71%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 92 - 0.36%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 112 - 0.44%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 151 - 0.59%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 105 - 0.41%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 179 - 0.70%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 165 - 0.65%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 128 - 0.50%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

61

C. Fine Grained Analysis Clusters

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0
P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 112 - 0.44%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 119 - 0.47%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 165 - 0.65%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 192 - 0.75%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 80 - 0.31%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 179 - 0.70%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 210 - 0.83%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 73 - 0.29%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 72 - 0.28%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 184 - 0.72%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 232 - 0.91%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 158 - 0.62%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 108 - 0.42%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 94 - 0.37%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 158 - 0.62%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 171 - 0.67%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 202 - 0.79%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 227 - 0.89%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 125 - 0.49%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 189 - 0.74%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 195 - 0.77%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 123 - 0.48%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 197 - 0.77%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 198 - 0.78%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 107 - 0.42%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 156 - 0.61%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 53 - 0.21%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 181 - 0.71%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

62

C. Fine Grained Analysis Clusters

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0
P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 40 - 0.16%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 231 - 0.91%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 240 - 0.94%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 170 - 0.67%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 258 - 1.01%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 194 - 0.76%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 144 - 0.57%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 196 - 0.77%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 143 - 0.56%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 202 - 0.79%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 139 - 0.55%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 121 - 0.48%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 47 - 0.18%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 213 - 0.84%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 144 - 0.57%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 105 - 0.41%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 100 - 0.39%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 167 - 0.66%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 102 - 0.40%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 252 - 0.99%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 194 - 0.76%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 208 - 0.82%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 192 - 0.75%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 135 - 0.53%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 199 - 0.78%

50 100 150 200 250 300 350

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
is

so
n
 I
n
te

n
si

ty
 λ

(t
)

Cluster size 82 - 0.32%

Figure C.1.: Centroids resulted from clustering (K = 150) the Stackoverflow users who
posted an answer to a question related to the top ten tags in 2014. With every centroid,
10 users randomly chosen from the corresponding cluster are also presented.

63

Bibliography

[Ada+08] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman. “Knowledge shar-
ing and yahoo answers: everyone knows something”. In: Proceedings of the
17th international conference on World Wide Web. ACM. 2008, pp. 665–674
(cit. on p. 11).

[OTJ10] H. Oktay, B. J. Taylor, and D. D. Jensen. “Causal discovery in social media
using quasi-experimental designs”. In: Proceedings of the First Workshop on
Social Media Analytics. ACM. 2010, pp. 1–9 (cit. on p. 11).

[PAT14] J. S. Pudipeddi, L. Akoglu, and H. Tong. “User churn in focused ques-
tion answering sites: characterizations and prediction”. In: Proceedings of
the companion publication of the 23rd international conference on World
wide web companion. International World Wide Web Conferences Steering
Committee. 2014, pp. 469–474 (cit. on p. 11).

[And+12] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. “Discovering
value from community activity on focused question answering sites: a case
study of stack overflow”. In: Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM. 2012,
pp. 850–858 (cit. on p. 11).

[Ras06] C. E. Rasmussen. “Gaussian processes for machine learning”. In: (2006) (cit.
on pp. 11, 13, 18).

[SG12] E. Snelson and Z. Ghahramani. “Variable noise and dimensionality reduction
for sparse Gaussian processes”. In: arXiv preprint arXiv:1206.6873 (2012)
(cit. on pp. 11, 23, 25, 26, 37).

[SG05] E. Snelson and Z. Ghahramani. “Sparse Gaussian processes using pseudo-
inputs”. In: Advances in neural information processing systems. 2005, pp. 1257–
1264 (cit. on pp. 11, 23, 25).

[Mal+08] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. Amaral. “A Poisso-
nian explanation for heavy tails in e-mail communication”. In: Proceedings
of the National Academy of Sciences 105.47 (2008), pp. 18153–18158 (cit. on
pp. 12, 29).

[SR14] Y.-L. K. Samo and S. Roberts. “Scalable nonparametric Bayesian inference
on point processes with Gaussian processes”. In: arXiv preprint arXiv:1410.6834
(2014) (cit. on pp. 12, 29, 43).

64

Bibliography

[YL11] J. Yang and J. Leskovec. “Patterns of temporal variation in online media”.
In: Proceedings of the fourth ACM international conference on Web search
and data mining. ACM. 2011, pp. 177–186 (cit. on pp. 12, 30, 32, 33, 36).

[Bis06] C. M. Bishop. “Pattern Recognition”. In: Machine Learning (2006) (cit. on
pp. 13, 39).

[FR64] R. Fletcher and C. M. Reeves. “Function minimization by conjugate gradi-
ents”. In: The computer journal 7.2 (1964), pp. 149–154 (cit. on p. 17).

[AS64] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Vol. 55. Courier Corporation,
1964 (cit. on p. 20).

[UO30] G. E. Uhlenbeck and L. S. Ornstein. “On the theory of the Brownian mo-
tion”. In: Physical review 36.5 (1930), p. 823 (cit. on p. 20).

[QW07] J. Quinonero-Candela and C. K. Williams. “Approximation methods for
gaussian process regression”. In: (2007) (cit. on p. 22).

[SB01] A. J. Smola and P. Bartlett. “Sparse greedy Gaussian process regression”.
In: Advances in Neural Information Processing Systems 13. Citeseer. 2001
(cit. on p. 22).

[WS01] C. Williams and M. Seeger. “Using the Nyström method to speed up kernel
machines”. In: Proceedings of the 14th Annual Conference on Neural Infor-
mation Processing Systems. EPFL-CONF-161322. 2001, pp. 682–688 (cit. on
p. 22).

[Csa02] L. Csató. “Gaussian processes: iterative sparse approximations”. PhD thesis.
Aston University, 2002 (cit. on p. 22).

[CH] J. Q. Candela and L. K. Hansen. “Learning with uncertainty-Gaussian pro-
cesses and relevance vector machines”. PhD thesis. unknown (cit. on p. 22).

[CO02] L. Csató and M. Opper. “Sparse On-Line Gaussian Processes”. In: Neural
Computation 14.3 (Mar. 2002), pp. 641–668. issn: 0899-7667. doi: 10.1162/
089976602317250933 (cit. on p. 22).

[SWL03] M. Seeger, C. Williams, and N. Lawrence. “Fast forward selection to speed up
sparse Gaussian process regression”. In: Artificial Intelligence and Statistics
9. EPFL-CONF-161318. 2003 (cit. on p. 22).

[See03] M. Seeger. “Pac-bayesian Generalisation Error Bounds for Gaussian Process
Classification”. In: J. Mach. Learn. Res. 3 (Mar. 2003), pp. 233–269. issn:
1532-4435. doi: 10.1162/153244303765208386. url: http://dx.doi.

org/10.1162/153244303765208386 (cit. on p. 22).

[Gal13] R. G. Gallager. Stochastic processes: theory for applications. Cambridge Uni-
versity Press, 2013 (cit. on p. 29).

[Mül07] M. Müller. “Dynamic time warping”. In: Information retrieval for music and
motion (2007), pp. 69–84 (cit. on p. 32).

65

http://dx.doi.org/10.1162/089976602317250933
http://dx.doi.org/10.1162/089976602317250933
http://dx.doi.org/10.1162/153244303765208386
http://dx.doi.org/10.1162/153244303765208386
http://dx.doi.org/10.1162/153244303765208386

Bibliography

[J A79] M. A. W. J. A. Hartigan. “Algorithm AS 136: A K-Means Clustering Al-
gorithm”. In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28.1 (1979), pp. 100–108. issn: 00359254, 14679876. url: http:
//www.jstor.org/stable/2346830 (cit. on p. 34).

[GV12] G. H. Golub and C. F. Van Loan. Matrix computations. Vol. 3. JHU Press,
2012 (cit. on p. 36).

[MIK05] D. G. Manolakis, V. K. Ingle, and S. M. Kogon. Statistical and adaptive
signal processing: spectral estimation, signal modeling, adaptive filtering, and
array processing. Vol. 46. Artech House Norwood, 2005 (cit. on p. 37).

[Ham94] J. D. Hamilton. Time series analysis. Vol. 2. Princeton university press
Princeton, 1994 (cit. on p. 37).

[OSB16] C. Ojeda, R. Sifa, and C. Bauckhage. “Investigating and Forcasting User
Activities in Newsblogs: A Study of Seasonality, Volatility and Attention
Burst”. In: Work On Progress (2016) (cit. on p. 37).

[KR09] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction
to cluster analysis. Vol. 344. John Wiley & Sons, 2009 (cit. on p. 45).

66

http://www.jstor.org/stable/2346830
http://www.jstor.org/stable/2346830

	Introduction and Related Work
	Theory
	Gaussian Process
	Linear Regression and Linear Basis Function Model
	Gaussian Process for Regression
	Learning the Hyperparameters in Gaussian Process for Regression

	Covariance Functions
	Preliminaries
	Examples of Covariance Functions

	Sparse Approximation of Gaussian Process
	Sparse Input Gaussian Process (SPGP)
	Sparse Input Gaussian Process with Variable Noise (SPGP+HS)
	Sparse Input Gaussian Process with Functional Variable Noise (SPGP+FUNC-HS)

	Poisson Processes
	Clustering Time Series of User Behavior
	Problem Definition
	Dynamic Piecewise Time Series Similarity Measure
	K-Piece Wise Spectral Centroid

	Coarse Grained Analysis of Population
	Experimental Setup
	Results
	Analysis of the Learned Kernels Parameters

	Fine Grained Analysis of Population
	User Behavior Models Results
	Common Patterns in the Users Behavior

	Conclusion and Feature Work
	Mathematical Background
	Matrix Properties
	Gaussian Distribution

	Gaussian Process Derivations
	Derivation of the Sparse Input Gaussian Process with Functional Variable Noise
	Gradient Calculation of the Negative Log Marginal Likelihood of the Sparse Input Gaussian Process with Functional Variable Noise
	Kernels Derivatives

	Fine Grained Analysis Clusters

