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ABSTRACT

 We consider spacer fabrics,  who are plates or shells  composed of two knitted plane layers
connected by vertical beams. Several small parameters occur in the structure, the period, the
thickness of the fibers and the height of the spacer fabric. Our aim is to compute the effective
stiffness and permeability of such spacer fabrics. In order to reduce the computational effort and
simplify  the  computational  model,  homogenization  and  dimension  reduction  techniques  are
applied to replace the fabric by an equivalent two-dimensional plate or shell with effective elastic
properties and simultaneously to keep the resolved micro-structure for the fluid simulation, to
compute its effective permeability. The corresponding analysis for the scale separation and the
detailed  description  of  the  algorithm can  be  found  in  [7].  The  relation  between  the  small
parameters and the kind of the loading determine the dominance of the bending or tension of
beams on the micro-level. This paper demonstrates the algorithm on an application example. We
compute the elastic properties of a spacer fabric and its effective permeability for different stages
of the compression of the spacer fabric. Numerical examples were performed by the successive
application of the multi-scale simulation tools, Fiber FEM and GeoDict, developed at Fraunhofer
ITWM and  compared  with  the  corresponding  experimental  results,  based  on  measurements
performed at the TU Dresden. 
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1 PREPROCESSING. STUDY OF THE GEOMETRY

The spacer fabrics considered in this article are based on work by Helbig [5], where the precise
description can be found. The real physical samples were provided by company ESSEDEA and
TU Dresden. They consist of two thick horizontal layers interconnected by knitting of thin threads
(called monofiles), forming a 3D-structure (see Figure 1). Several types of material are available.
Each is  parameterized  by the distance  between the  layers,  dist,  the  number  of  columns  the
monofile crosses when going diagonally between the layers, diag and the radius of the monofile
threads radius. Two provided samples were of thickness 20mm and 50mm. Both were analysed
carefully in order to understand the inner structure of the material. A basic knitting pattern can be
understood from Figure 2, where a magnified 3D model is presented. A combination of these
basic elements forms rows and columns of the entire material. Its structure is presented in more
details in Figure 3. Although only two types of material were available, at the modelling stage,
eight different types were simulated using different parameters, in order to understand better the
dependencies  between the geometry and effective elastic and permeable properties. Two real
physical samples are referred to as Samples 4 and 8.

   
Figure 1. 50 mm spacer fabric, side view. Figure 2. Basic knitting element of Helbig structure.

2 EFFECTIVE ELASTIC PROPERTIES OF PERIODIC PLATES

We assume that this periodic structure is composed of thin beams. All in all when treating such a
plate, we encounter several different small parameters. Firstly, we should mention that the period
of the structure denoted by ε is very small, i.e. ε ≪ 1. Besides that we also consider the thickness
of the mentioned fibers r ≪ ε. Our goal should then be to close the gap between the calculations
of the homogeneous plate and the heterogeneous plate. The technique of our choice, which links
this periodic structure to a homogeneous plate, is called homogenization, where we exploit the
plate's  periodicity.  We will  later  homogenize  the shells  with  this  technique.  The appropriate
scaling, i.e. the choice of the small parameters, will be of particular importance. We start with the
homogenization  and  dimension  reduction  of  the  shell  and  the  computation  of  its  effective
stretching and bending properties. This will allow us to replace the heterogeneous porous plate by
an equivalent homogeneous anisotropic plate.
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3 Homogenization

First, the periodic 3D direct problem is introduced. Consider a bounded Lipschitz domain 
Ωε ⊂ (−L,L)2 × (−εh/2, εh/2), of the thickness x3 ∈ (−εh/2, εh/2). The domain is
ε-periodic in ℝ2 with periodically distributed holes. We study the following elliptic problem for
linear elasticity in the domain as mentioned in [6, p.12].

where e(∙) is the symmetric part of the gradient and f ε is the volume force. For further notes on 
this topic we refer to [6]. In general, we follow the Homogenization approach as discussed in [4]. 
In order to simplify the solution to equation 2.1 we study its asymptotic expansion as

where (wpq)3×3×3  lieves in Y , the periodicity cell.  The limiting in-plane equation is

 
The limiting equation of bending and equivalent homogeneous plate can then be determined as

where the homogenized coefficients cijkl, according to [4, p.154-157], are calculated as

And the u(3)
ij, i,j ∈ {1,2} are the Y-periodic solutions to the cell problems

3



3D Fabrics and their applications 8-9 September 2016, Roubaix (France)

where the δtl are perturbations of the periodic conditions. Before we consider solving the cell-
problems, we state a small remark about the bending stresses.

Remark. The bending stresses can be computed from 2.5 as shown in [4] as 

4 Dimension reduction

In the next step we want to account to the fact, that the solid pieces of the plate structures are
beams. Therefore, we introduce a reduction of our periodic cell-problem to beam models and
compute the effective properties. The computation of these have been presented earlier and we
follow the techniques in [4], which have also been applied in [6]. We consider a one-dimensional
geometry of a periodicity cell (a graph or fiber network) and take a node n.  For one of its adjacent
edges e ∈ E(n) define γ(e,n) to be directional vector of the edge pointing to n. Furthermore, let
(g1, g2, g3) be the global base and for each edge e, (le1, le2, le3) defines the local base
and Ce is the transformation matrix, such that (le1, le2,  le3) = (g1, g2, g3) Ce. According to the
homogenization  technique  the  coefficients  are  obtained  from  cell-problems  with  periodic
boundary conditions on the graph. The cell-problems that we look at are indexed by two numbers
i  ∈ {1,2,3} and j  ∈ {1,2,3}, such that (i,j) ≠ (3,3) and can be formulated as follows: find the
periodic displacement fields uij ∈ Y  → ℝ1×6, such that the auxiliary vector field mij = uij + Sij ,
which was shifted by the unit  perturbations,  corresponding to the tension,  shear,  bending or
torsion experiments, solves the following problem
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In this system we denote by χ the longitudinal component. The numerous constants that appear in
the equation are the area of cross-section Ae, the area moments w.r.t. the second and third axis Ie

2,
Ie

3 and the polar moment Me of the element. For a beam with radius r, these are determined as 
Ae= r�  2, Ie

2 = Ie
3 = r�  4/4 and Me= r �  4/2. The last two constants are the Young’s modulus

Ee and the shear moduli Ge of the element. The notation [∙]i:j means the i-th to j-th component of
the vector. Anyway, we should specify how the perturbations Sij for the cell-experiments look like.
In general they are determined as 

          

The operator F denotes the transformation of the unit 3D-vectors into the 3 rotational degrees of 
freedom. They are based on the formulas of [1] defined as

with ω being the cross-section of the beam and z = (z1, z2, z3) in the local coordinate system, s.t.

where xln denotes the left node in the global coordinate system. Given the solution for these cell 
experiments we are able to calculate the effective properties of the cell on a beam level. If we 
follow [4, chapter 5] on this topic, then the bending coefficients are calculated as

where  σij (y) are the corresponding stresses, hence we need to introduce a stress interpolation 
regarding our beam model. With our cell experiments we obtain 3 spatial displacements 
components and 3 angular displacement components for every node, i.e. for a whole beam we 
have 12 degrees of freedom. In [2], an approach to achieve form this 12D a 4D field and finally a 
3D field is shown. If we take a beam with nodes u and v and components 
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then the 4D field is obtained via a polynomial interpolation, as explained in [2, p.92], where we 
multiply our component vector with the interpolation matrix R  ∈ ℝ4×12, such that

Given this 4D field, we can follow [3] to introduce it to a 3D field, where the components are 
given as

The parameter � is a warping constant. Such a 3D interpolation is necessary for visualization 
purposes. A higher order approximation may be obtained if desired. Anyway, [3] showed 
furthermore that using these interpolations and the initial 4D field we can calculate the stresses in 
connection to Hooke’s law. Eventually, we get to the point, where we can calculate the local stress
field as

with μ being the second Lamé constant.  Let us denote a beam in its local coordinate system by 
z ∈ [−ak, ak] × ωε.  If we pass our beam and local stress field into global coordinates and plug 
it in formula 2.14, this yields

Here we denote by yln,3,k the third coordinate of the kth beam’s left node in Y. The rest follows from 
integration. The limiting bending stresses however are provided by substituting this expression in 
2.6 such that we obtain

where x ∈ Ω and z ∈ [−ak, ak] × ωε. This expression can also be written in the form

with the concentration factor B(z) computed as
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and the Ξi given by

5 MODELLING. ELASTIC PROPERTIES

The spacer fabrics were modelled using 1D-beam model, i.e. every thread of the actual model is
represented as a union of straight 1D-segments (see Figure 4). Although this model is used for the
sake of simplicity it actually represents the original material reasonably well, since the radius of
the threads is small comparing to the length of the lines, i.e. the distance between horizontal
layers. Since the model is one-dimensional it allows for fast and effective computation of effective
elastic properties of the structure considered as a homogeneous material. Using the own software
FiberFEM eight generated samples were simulated and effective properties were obtained. Table 1
contains the parameters of all tested samples, as well as the results of computer simulations. Used
elastic properties of threads were provided by TU Dresden and are mentioned in the table below.
The size of the periodicity cell was: width=1,875 mm., length=1,19 mm.

                                                                        

Figure 4. Radius and elastic properties of threads. Structure of Sample 2.

Table 1. Effective elastic properties of generated fabrics.

The results of the simulations show that the increase of the radius of the threads leads to the 
growth of Young's modulus. Similar effect is observed when parameter diag grows. 

Another property of great interest is permeability of the material, i.e. the its ability to allow 
fluids to pass through. This property may vary provided that the material is compressed. Here a 
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big role plays another important advantage of the 1D model: it provides a fast and efficient way to
simulate large deformations of the material. Using this feature the dependency between the level 
of compression of the material and its permeability was studied. 2% and 10% compression in 
vertical direction Z was applied to the samples 4 and 8, since they represent actual physical 
samples. The resulting deformed geometry is shown in Figure 5, as well as the local stress caused 
by deformation. The description and the results of flow simulation are discussed in the section 
below. 

Figure 5. Local stresses in the fabric under compression.

6 PERMEABILITY OF DEFORMED AND UNDEFORMED MATERIAL

As it was mentioned before, permeability of the porous material describes its property to let fluids
flow through it. Permeability depends on the inner geometry of the material, especially on the
amount of pores. It does not depend on the type of fluid, so the obtained results are valid for any
type of fluid, for example water, blood or even air.

The software called GeoDict provides an effective framework for flow simulation and for
computing the permeability of the porous material. It uses voxel representation of material, so all
1D models generated before were converted into voxel formats. Computation only requires a
small representative element, periodicity cell, which still contains enough information about the
material. For flow simulation the pressure difference of 0.02 Pa was applied to all samples. The
results are effective permeable properties, as well as the velocity and pressure fields (see Figure
6). Table 2 contains permeability for eight generated samples in three spatial dimensions X, Y and
Z. Here direction Z is vertical direction from one horizontal layer to another, while X and Y
denote two horizontal directions parallel to horizontal layers.

Figure 6. Examples of velocity and pressure visualization for Sample 4.
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Table 2. Permeability of different samples.

The results of the simulations show the predictable result that the increase of radius of the 
threads leads to the decrease of permeability since the part of the material occupied by solid body 
grows.

The relation between compression and permeability was investigated. To this end 
compression of 2% and 10% was applied in Z-direction. On resulting deformed geometry another
flow simulation was conducted. The results for Sample 4 are presented in Table 3. The velocity 
fields in vertical and horizontal directions are visualized for undeformed geometry and 10% 
compressed geometry in Figure 7.

Table 3. Permeability for compressed Sample 4.

Figure 7. Comparison of velocities in Y- and Z-directions in deformed and underformed
configurations.

The results show that small compression leads to the growth of permeability. However further
compression results in fast drop of permeability. The horizontal flow in deformed geometry is 
concentrated in the middle region, while in undeformed state it is distributed uniformly through 
the thickness.
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