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Abstract 

 

Minimum energy paths for generating intrinsic, extrinsic and twin planar faults were 

calculated for a number of face-centered cubic (fcc) metals via ab initio techniques. It is found 

that when the lattice is faulted sequentially, the interaction with the existing fault tends to 

remain minimal for nearly all the fcc metals. Accordingly, a universal scaling law may be 

deduced based on a single parameter – the ratio between the intrinsic stacking fault energy and 

the relevant energy barrier. 
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The plastic deformation of crystalline ductile materials at low temperatures is mediated by 

dislocation slip as well as mechanical twinning [1-3]. In comparison to coarse-grained 

polycrystalline materials, an enhanced dislocation density due to emission of partial dislocations, 

perfect dislocations and microtwins from grain boundary sources have been reported in several 

nanostructured fcc metals [4-9]. The underlying fundamental processes and defect structures are not 

yet fully understood. For example, in materials with high energies of intrinsic stacking faults (ISF) 

and high coherent twin boundary energies such as Al, twinning is believed to be difficult. 

Nevertheless, atomistic simulations and experimental observations suggest twinning to occur readily 

in Al [4,5]. On the other hand, recent experiments indicate that the yield strength as well as ductility 

can be enhanced in materials with low ISF-energies such as Cu [10-13] and stainless steels [14] due 

to preexisting nanoscale twins. However, similar effects do not seem to exist in Al [15-19]. 

Energies of planar faults are fundamental properties underlying mechanical deformation, 

solid-state phase transformation and diffusion of alloying elements in materials of different 

crystalline structures [1-3]. The minimum energy barrier, namely, the unstable fault energy, provides 

an essential measure to produce a stable fault within a perfect lattice [20-22]. Both stable and 

unstable fault energies can be calculated according to the minimum energy pathway along a fault 

plane, also known as the generalized stacking-fault (GSF) energy curve or γ-surfaces. Although GSF 

energies for fcc metals and alloys have been well-studied recently via various computational 

approaches [23-34], it remains unclear how planar faults multiply and interact with existing faults in 

different materials. 

In this paper, energies associated with intrinsic stacking faults, ISF, extrinsic stacking faults, 

ESF, and twin faults, TF, in fcc lattice are calculated to elucidate correlations among stable and 

unstable fault energies. To clarify the general material dependence, we shall try to deduce a universal 

scaling law based on a single parameter,  , the ratio between the ISF-energy and the unstable 
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stacking fault energy associated with an ISF. In order to do so, the minimum energy barriers of 

following paths were calculated (see Fig. 1, for Al, Cu and Pt): 

γ(perfect lattice → ISF) –  the energy path of a crystal when it transformed from a perfect fcc 

lattice into an ISF of energy γisf. The saddle point of the transition defines the unstable stacking fault 

energy, γusf (Fig. 1, diagram on the left side). 

γ(ISF → ESF)  – the energy path of a crystal when it transforms from an ISF into an ESFof 

energy γesf. The saddle point of the transition defines the unstable energy, 1

utf  (Fig. 1, diagram in the 

middle). 

γ(TF → TFʹ) – the energy path for twinning based on a single twin boundary or a twin fault 

(TF) of energy γtf. The saddle point energy defines the unstable energy for twinning, utf   (Fig.1, 

diagram on the right side). An extrinsic fault may develop into two well-separated twin faults to form 

a thick twin lamella in such a way. 

We consider all the common fcc metals Ag, Au, Cu, Ni, Pd, Pt, Ir, Al and Pb in our 

calculations. The γ-surfaces were mapped out via fully converged calculations with the climbing-

image nudged elastic band (ciNEB) method [35] in combination with the ab initio density-functional 

theory (DFT). The NEB method [36] is an efficient path technique for finding corresponding 

minimum energy paths between a given initial and final state of a transition, with essentially no 

limitation on the degrees of freedom for atomic/ionic relaxations.  

DFT computations were performed using the Vienna ab initio Simulation Package (VASP) 

[37,38]. The full-potential projector augmented-wave method was used with core-valence electron 

interactions treated within the standard Blöchl scheme [39,40]. The supercell contains 12~21  111  

layers, with a vacuum gap corresponding to 3~4  111  layers in the <111> direction to accommodate 

out-of-plane relaxations. The supercell volume and its shape were fixed during energy minimizations 
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of the elastic band. If the magnetism does not influence appreciably the ground energy difference 

between the fcc and the hcp phase, it is unlikely to change the corresponding unstable fault energies 

significantly. Therefore, all our calculations were done in non-magnetic state. Details for 

computations can be found in Table 1. 

Converged minimum energy pathways were show in Fig. 1 (lower panel) for Al, Cu and Pt. 

All obtained stable and unstable fault energies were summarized in table 1. As may be seen in table 1, 

these fault energies were found to correlate according to the following linear relations: 

(i) For stable faults, the energy γesf is close to γisf and nearly twice of γtf, i.e., γisf γesf 2γtf, 

consistent with the well-known rule of thumb in literature [1]. It implies that both ISFs and ESFs can 

be thought of as one pair of TFs on neighboring planes, with energies nearly the same as for two 

well-separated TFs. 

(ii) When a fault is produced by sliding two parts of a crystal across a single atomic plane, the 

transition state energy satisfy  

1 1
usf utf isf utf2

       (1) 

This relation implies that the resisting force of the lattice neither changes significantly from one 

pathway to another, nor is it altered by an existing fault. In other words, when the lattice is faulted 

sequentially, Eq. 1 holds as long as the interaction with existing fault remains minimal. It applies for 

nearly all metals we considered so far except for Pt which shows reduced energy barriers along both 

ESF and TF pathways (Fig. 1). 

Based on these observations, the ratio isf usf    (see table 1) can be used as a 

characteristic material measure by which a scaling law can be deduced according to Eq. 1 

1

utf usf 2 1       (2) 
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As can be seen in Fig. 2, the plot reveals that, from Ag to Pb, our data scales remarkably well 

according to the linear relation, Eq. 2. The Lennard-Jones (LJ) system has been included as a 

limiting case on the left hand side because for this well-studied model material the stacking fault and 

twin fault energies are nearly zero, with Λ 0 and 1

utf usf  1. On the right hand side, Al (Λ 0.8) 

and Pb (Λ 0.88) are found to locate quite close to the other limiting case, a fcc material with Λ=1 

and 1

utf usf  =3/2. For Pt the value of Λ is found to be exactly unity, however, the 1

utf usf  ratio for 

Pt turns out to be merely 1.07, far from expected. To understand why Eq. 1 applies to other metals 

but not to Pt, we examined both ionic displacements and charge distributions when the lattice is 

faulted. 

For metals with large Λ values, charge density plots reveal that γ-surfaces are dominated by 

directional bonds associated with s-p band for the simple metals such as for Al and Pb or partially 

filled d-band for transition metals such as Ni, Pd, Ir and Pt. When two parts of a crystal are displaced 

relative to each other, the bonds retreat locally to resist shear (see e.g. Fig. 3a for Al). The reduced 

bonding gives rise to the energy of the γ-surface. If the change in bonding characteristic is confined 

within two adjacent planes, the energy barrier remains unaltered from one path to another (Eq. 1 and 

Fig. 1). This justifies that usf , together with isf , may define a characteristic material measure (Λ) 

such that Eq. 2 applies. 

As shown in Fig. 3a, to generate a fault in Al, only ions belonging to the two adjacent {111} 

fault planes undergo large strains and significant charge redistributions. That is, as a fault (e.g. ESF 

or TF) is generated based on an existing fault (e.g. ISF) a minimum interaction with the existing fault 

is maintained due to the lattice rigidity. 

This does not apply for Pt. In the case of Pt, the electronic structure is changed significantly 

in at least two {111} atomic planes. Several atomic planes are therefore involved and couple strongly 

as a new fault is generated (Fig. 3b). As can be seen in Fig. 3b, together with the change of bonding 
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characteristic, atoms in several adjacent {111} lattice planes are displaced due to strong interactions 

between the existing fault and the newly generated fault. 

The linear scaling shown in Fig. 2 is also supported by results in several previous 

publications [25-32]. Data obtained recently for a number of fcc elements via Naval Research Lab 

Tight-Binding (NRLTB) codes [26,27] have been depicted in the same plot. They scale equally well 

and obey the same trend despite the fact that the calculated Λ’s for the same element depend on the 

particular set of tight-binding parameters. While stacking fault energies of alloy systems may depend 

strongly on alloying elements and concentrations, we found that Eq. 2 still applies for Cu-Al alloys 

[32] (Fig. 2). 

For metals of low-Λ, such as Cu with a filled d-band, the bonding can be mapped quite well 

on central-force type atomic interactions. The scaling law revealed by Eq. 2 in general applies. In 

some cases, central-force interatomic potentials underestimate the ratio 1

utf usf  although the ratio Λ 

may be reproduced reasonably well [26,28]. The scaling law (Eq. 2) therefore constitutes a useful 

guidance for fitting empirical interatomic interactions [41]. 

A more generalized version of Eq. 2 can be written as 1

utf usf 12    . The minimum 

interaction principle satisfies if 1 1  (see table 1) and the planar fault configuration in this case is 

characterized by localized bonding effects. We found that for hcp metals such as Mg, the same 

scaling rule ( 1 1 ) is obeyed when faults are generated sequentially along basal planes [42]. 

In nanosctructured fcc metals, the trend to emit partial dislocation, perfect dislocation and 

twin can be understood in terms of the energy barriers on γ-surfaces. For large values of Λ (e.g., Al), 

emission of trailing partials leading to perfect dislocations is generally favored over twin nucleation 

( usf isf   vs. 1

utf isf  ), but once nucleated twins can grow readily ( utf tf    vs. usf ) [4,15-18]. 

For small values of Λ (e.g., Cu), there is little difference in the barriers associated with twin growth 

and the emission of independent leading partials, so the latter is likely to dominate the response to 
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deformation and the strengthening role due to existing twins can be expected to be most significant 

[10-16]. 

The scaling law of Eq. 2 comprises a broad range of fcc materials. If Eq. 2 holds, it can be 

readily applied to reveal a general trend of mechanical twinning for fcc metals. Based on mechanical 

analyses of dislocation versus twin emission from a crack-tip [43], a dimensionless measure, the so-

called ‘twinnability’, was introduced by Tadmor and Hai [44] as an intrinsic material property. Asaro 

and Suresh [45] proposed that in nanostructured fcc materials, the situation of dislocation vs. 

microtwin emission from grain boundary sources is similar to that from a crack-tip. They considered 

the most favorable geometry condition for twinning and derived a modified twinnability measure 

  1

usf isf utf3 2T        (3) 

The twinability T offers a mechanical criterion: if T>1, twin emission is favored over the emission of 

a trailing partial dislocation and thus of the emission of a perfect dislocation. Using the single ratio Λ 

and our scaling law, T can be converted into 

   3 2 1 2T       (4) 

Using the same set of data as in Fig. 2a, the computed twinability Τ according to Eq. 3 is plotted in 

Fig. 2b together with the scaling trend based on Eq. 4. It is evident that to evaluate the trend of twin 

emission for different fcc materials, one has to consider Λ instead of the ISF energy alone. 

Eq. 4 suggests that in general twinning should be prohibited in nanostructured metals with 

Λ>0.8. Otherwise, twinning constitutes a competitive mode of deformation along with dislocation 

mediated slip. This is in agreement with experimental observations of twinning in metals such as Cu, 

Ni and Pd [7-9]. In the plot, Al represents a marginal case for allowing twin emission, which is also 

consistent with the experimental conclusion that twinning rarely occurs for this metal [18]. However, 

it has been argued that in nanoscale domain, small grain size increases the partial dislocation 
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separation distance, aiding twinning [7]. For Pt, twin emission is most difficult according to our 

results as well as NRLTB calculations [26,27]. Since the twinnability measure given by Eqs. 3 and 4 

relies on the assumption that microtwin emission from grain boundary sources is similar to that from 

a crack-tip, it may fail if deformation twinning occurs via different mechanisms [46-50]. 
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Table 1 Stable and unstable fault energies calculated using ciNEB-DFT methods (units in 

mJ/m
2
). Correlation parameters, α0, α1 , β1 and β, are dimensionless ratios defined according to 

isf 0 tf   , esf 1 tf   , 1 1
utf isf 1 usf2

      and utf usf  

 , respectively. The parameters α0, α1 are 

close to 2, and β1 and β are close to unity for all metals considered except for Pt. The ratio 

isf usf    has been introduced as a characteristic material measure. [Details for DFT calculations: 

(1) Cutoff energies (eV) for plane wave basis sets, from Ag to Pt: 337, 328, 312, 302, 253, 326, 300, 

324 and 288; (2) Brillouin zone sampling was performed using the Methfessel-Paxton smearing 

method with the k-point meshes: 18×25×2 for Al, 12×17×2 for Ag, Cu, Au and Pb, 12×15×3 for Ni 

and Ir, 11×17×2 for Pd and Pt, respectively; (3) Equilibrium lattice parameter (a0, Å), from Ag to Pt : 

4.166, 3.635, 4.174, 3.52, 3.86, 3.955, 4.05, 5.044 and 3.98; (4) The supercell contains 20~21  111  

layers or 40~42 ions, except for Ni and Pd (12-layer, 24 ions).] 

 

 γisf γesf γtf γusf 1

utf  utf   α0 α1 β1 β Λ 

Silver 16 12 8 91 100 93 2.08 1.56 1.0 1.01 0.18 

Copper 36 40 18 158 179 161 2.0 2.22 1.02 1.02 0.23 

Gold 25 27 12 68 79 72 1.98 2.16 0.98 1.04 0.36 

Nickel 133 138 65 258 323 251 2.05 2.12 0.99 0.97 0.52 

Iridium 334 327 160 625 818 624 2.09 2.04 1.04 1.0 0.53 

Palladium 134 129 63 202 261 190 2.13 2.05 0.96 0.94 0.66 

Aluminum 112 112 50 140 196 135 2.24 2.24 1.0 0.96 0.80 

Lead 48 48 23 55 79 53 2.07 2.05 1.0 0.96 0.88 

Platinum 286 284 137 286 305 189 2.09 2.07 0.57 0.66 1.0 
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Figure Captions 

Fig. 1 Fault/twinning pathways by displacing the two parts of a crystal along a (111) fault plane. 

The displacement along each pathway is given by the Burgers vector of a Shockley partial 

dislocation, 0
S 112

6

a
b . Upper panel: schematic of stacking faults formation via  111 112  slip 

in fcc metals. Lower panel: minimum energy pathways (γ-surfaces) for Al, Cu and Pt, obtained via 

converged NEB-DFT calculations. Along each path, five images were used to build the elastic band 

between the given initial and final state. The saddle point energy (the energy extremes) defines the 

unstable fault energy. The γ-surface is defined by  0E E A   , where E  is the energy of the 

optimized elastic band, 0E  is the energy of the fault-free state and A is the area of the fault plane. 

Stable and unstable energies are marked following the pathway for Al. Vertical bars measure the 

relation 1 1
usf utf isf utf2

     , which applies to Al and Cu but not for Pt. 

 

Fig. 2 Scaling plot of stable and unstable fault energies. Filled symbols represent our ciNEB-DFT 

results. Cross symbols in grey color are data obtained via NRLTB methods (non-NEB calculations) 

[26,27]. With increasing Λ, those elements are Ag, Pb, Cu, Pd, Au, Ir, Pb', Al, Pt, Ir' (a prime appears 

if a different set of tight-binding parameters was used for the same element). For Cu-Al alloys 

(atomic percent of Al), data were taken from Ref. 32. 

 

Fig. 3 Charge distributions associated with forming an ESF in Al (a) and Pt (b). Vector plots at 

the right side represent ionic displacements between the saddle point image and its neighboring ‘up-

hill’ image (cross symbols, cf. Fig. 1, lower panel), magnified by a factor of 2.5 (ionic positions of 

the initial image (ISF) and the final image (ESF) are drawn with open circles and dots, respectively; 

as guide for eyes, dashed and full lines are used to indicate ionic positions at different states). 
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Charges are depicted at an iso-surface value, 0.18 eÅ
-3

 for Al and 0.23 eÅ
-3

 for Pt, with ions shown 

by blue balls. In both metals the atomic bonds are highly directional. Like other metals, redistribution 

of charges in Al appears almost solely within the two adjacent fault planes, underlying that the 

interaction between faults tends to be minimal. In Pt, extended redistributions across about 5 (111) 

layers (marked by horizontal dashed lines) are observed, suggests strong coupling between faults or 

change of bonds involving multiple (111) layers for both stable and unstable fault configurations. 

 

Fig. 4 The universal trend of twinning according to a twinnability measure (T) defined by Asaro and 

Suresh [45]. 
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