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Abstract— A growing number of companies use mobility data in 

their day-to-day business. However, as the data grows older, new 

data has to be collected in order to keep applications up-to-date. 

Consequently, it is of great importance to know the impact that a 

different mobility sample may cause. This aspect of analysis has 

been largely neglected in mobility data mining research so far. In 

this paper we therefore analyze the robustness of performance 

measures with respect to a changed GPS sample in outdoor 

advertisement. The evaluation of outdoor advertising campaigns 

is a challenging application because it requires the evaluation of 

mobility data on a very fine spatial level. Thus, the application 

has a higher dependency on routes of individual test persons than 

classical mobility surveys. In our robustness analysis we apply 

bootstrapping and subsampling in order to measure the effect of 

a) a repeated mobility survey and b) a mobility survey of smaller 

size. We conduct our experiments on a real-world data set from 

Swiss outdoor advertising. Our results show that the effect is 

comparably small for a typical campaign and may be mitigated 

further by increasing the campaign size. 

 

Keywords— mobility mining, robustness analysis, sampling, 

GPS, outdoor advertising, bootstrap, standard error 

I. INTRODUCTION 

During the past years the interest in the exploitation of 

mobility information has increased significantly. Algorithms 

have been developed e.g. for the clustering of trajectories, 

detection of relative motion patterns or anonymization of 

movement data. However, all these approaches are restricted 

to a given trajectory sample. As tracking technologies have 

become more easily available and less expensive over the past 

years, mobility surveys can be repeated over time. Therefore, 

the question arises how stable measurement results and 

derived variables are when mobility surveys are extended or 

replaced after some time. What happens to an application that 

relies on mobility data when measurements are repeated 

several years later in the same geographic region, with a 

different mobility sample? Can we estimate the robustness of 

results in advance? Can we learn from a given GPS-Survey 

which variance to expect due to a different, possibly smaller 

sample in the upcoming survey?  

These are critical questions for many applications. In this 

paper we analyze how a substitution of an old GPS survey and 

a possible reduction of the sample size affect performance 

measures in outdoor advertisement. Our analysis is based on a 

real-world business application for the Swiss Poster Research 

Plus (SPR+). SPR+ conducted a GPS mobility survey with 

over 11.000 test persons for 7-10 days in major Swiss 

conurbations over the past years. The data is used to 

determine the number and (spatial) distribution of poster 

passages. The usage of GPS data has the advantage that poster 

performance can be differentiated with respect to the location 

of poster sites as well as the socio-demography and origin of 

target groups. In this paper we focus on the performance 

measure reach, which is one of the most important measures 

in the advertising branch. Reach describes the percentage of 

population that passes at least one poster of the campaign 

within a given period of time.  

As the data grows older, new data has to be collected in 

order to keep performance measures up-to-date. However, as 

poster performance has a direct influence on the pricing of a 

site, the update process is a critical task. It is therefore of great 

importance to know in advance which impact a changed GPS 

sample may cause. In addition, as the first GPS survey has 

been comparably large, a reduction of the sample size may be 

necessary to decrease survey costs. Therefore, we are also 

interested in the influence that a reduced sample size has on 

poster performance. 

In this paper we estimate the robustness of poster reach for 

a given sample size by bootstrapping and determine the 

impact of prospective smaller samples by subsampling with 

different sizes. In addition, we vary the size of the poster 

campaigns in our experiments because it is an important 

variable for the stability of performance measures.  

We believe that this type of analysis is relevant for a 

number of applications where GPS samples have to be 

replaced after a given period of time as it helps to understand 

the flexibility and limitations of a given GPS sample. 

The remaining of this paper is organized as follows. In the 

next section we discuss related work. Section III introduces 

our analysis approach. Section IV applies the approach to the 

Swiss mobility survey and Section VI concludes our work. 

II. RELATED WORK 

A. Estimation of Performance Measures in Outdoor 

Advertising 

Outdoor advertisement is one of the oldest advertising 

media and continues to play an important role in the 



advertisement industry. In 2008 the turnover was 684 million 

CHF (about 460 million Euros) in Switzerland. In recent years 

the market has changed rapidly. The change is predominately 

caused by two factors, namely the competition with other 

advertising media and the emergence of digital media. First, 

outdoor advertisement competes with other media including 

the classic television, radio and press as well as the modern 

online ads and direct mailing. In order to become incorporated 

by media planners in an advertisement mix, transparent 

measures are needed for the performance of a campaign. 

Typical measures are (1) the reach of a campaign, which is the 

percentage of persons within a target group defined by socio-

demographic attributes that has had contact with a campaign 

in a certain time interval (often one week), and (2) the number 

of total contacts this group has had [1]. GPS technology has 

established itself as a new standard in Switzerland and 

Germany, greatly improving the possibilities of fine-grained 

media planning. Other countries, such as Austria and the UK, 

are currently preparing GPS studies, and it can be expected to 

become a worldwide standard. Fig. 1 shows the GPS 

trajectories of 1,956 test persons in Zurich, which we use for 

our experiments. 

 

Fig. 1 GPS trajectories of test persons in Zurich 

Given the trajectories of all test persons and the visibility 

areas of the poster panels, the resulting passages can be 

calculated by geographic intersection (Fig. 2).  

 

 

Fig. 2 Geographic intersection of poster sites and trajectories 

Afterwards, the passages are weighted with individual 

contact factors of the poster sites, which results in the so 

called visibility adjusted contacts (VAC). The contact factors 

weight a passage according to several criteria, including speed, 

size, exposure time and angle of the panel. For example, if 

people pass a poster site by car they usually pass it faster than 

if they walk or cycle. The resulting VAC are then used to 

calculate poster performance measures. 

Note that in this paper we perform our experiments based 

on poster passages instead of VAC because we would like to 

obtain a better understanding of the spatio-temporal influence 

of different trajectories in general. 

A. Mobility Data Analysis 

Mobility data analysis has been conducted for a long time in 

the area of travel surveys. In recent years also many data 

mining algorithms have been developed for mobility data. In 

this section we give a short description of both research 

direction and delineate our work from existing approaches. 

The main focus of travel surveys is the analysis of general 

movement characteristics on a regional or national level. They 

are typically repeated after a specified period of time to 

monitor urban or national changes in mobile behavior. One 

example is the study Mobility in Germany [2] which is based 

on a computer assisted telephone interview (CATI) and 

records personal mobility for a single day. The study evaluates 

variables as average travelled kilometers per day, commuting 

behavior or utilized means of transportation. The analysis is 

conducted on coarse spatial level (e.g. nationwide, statewide) 

and therefore relies on a large and comparably stable mobility 

sample. In comparison, our application requires the evaluation 

of individually selected poster campaigns, which may range 

from a few poster sites to a few hundred posters. Therefore, 

the number of people that contribute poster passages is less 

than the complete sample. In addition, depending on the 

spatial distribution of the campaign, the composition of 

passing people changes. Thus, it can be expected that a 

changed GPS sample has a higher influence on our application 

than in classical mobility surveys. 

In recent years trajectory data has drawn the attention of the 

data mining community. Algorithms have been developed for 

the clustering of (parts of) trajectories [3,4,5], detection of 

relative motion patterns [6,7] or sequential analysis of 

movement [8,9,10]. However, all these approaches focus on 

algorithmic developments and do not consider the sample 

perspective. All results are restricted to the one provided 

trajectory sample. However, it is unknown how results may 

change over time or how large samples are required to be in 

order to guarantee stable results under a changed mobility data 

set.   

D. Bootstrap and the Estimation of Standard Errors 

Most surveys use a data sample in order to study some 

quantity θ of a defined population. Besides the estimate θ̂  it is 

then important to know the accuracy of the estimate. The most 

commonly used accuracy measure is the standard error (se), 

which states the standard deviation of the estimate induced by 

the data sample. If we know the standard error, we can 

determine, for example, confidence intervals for the true value 



of θ. Although the standard error is a very simple measure for 

statistical accuracy, it has the disadvantage that for most 

quantities – with exception to the mean – it cannot be 

computed by a formula from the data sample [11]. One 

solution to this problem provides the bootstrap method as 

introduced by Efron in 1979 [12]. It offers a very easy, 

simulation-based way to estimate the standard error and other 

quantities from a data sample. 

 As stated in [11] the standard error of a data sample can be 

obtained by bootstrap as follows. Let x = (x1, x2, …, xn)  

denote a data sample and x
*i

 = (x
*

1, x
*

2, …, x
*

n)  denote a 

bootstrap sample which is generated by n times randomly 

sampling with repetition from the original data sample x. We 

repeat the sampling r times in order to obtain a number of 

independent bootstrap samples x
*1

, x
*2

, …, x
*r

. From each 

sample we calculate the so-called bootstrap replication i*θ̂  

with i = 1..r of our quantity of interest. The estimate of the 

standard error then results from the standard deviation of the 

bootstrap replications 
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If the number r of replications approaches infinity, the 

estimate sê approaches the ideal bootstrap estimate for the 

given sample. Typically, the number of replications lies 

between 25 and 200. 

III. METHOD OVERVIEW 

In this section we give an overview of our approach to 

analyze the robustness in repeated mobility surveys. We 

explain the workflow and introduce all involved components. 

We rely on the well-understood bootstrapping and 

subsampling method, and apply them systematically in the 

spatial trajectory context.  

The aim of our work is twofold. First, we would like to 

estimate the variance in poster performance for a changed 

GPS sample of the same size. Second, we would like to 

estimate the variability that a reduced GPS sample causes in 

order to determine appropriate sample sizes for future surveys. 

In both cases our statistic of interest is the reach of poster 

campaigns. Naturally, reach varies with the specific campaign 

under consideration. However, the reach of randomly selected 

poster campaigns of a given size in a city is comparably stable. 

Note that an increasing number of posters in a campaign has a 

stabilizing effect on performance measures, because local 

effects are more often allowed to cancel each other out. We 

conduct our experiments therefore for varying sizes of poster 

campaigns. For each campaign size we randomly select 

several campaigns and average the observed effects. 

In order to measure the effect of a changed GPS sample of 

the same size we set up a bootstrapping scenario. As described 

in Section II, bootstrapping allows to estimate the standard 

error of arbitrary statistics and therefore fits our application. In 

our scenario we repeatedly create bootstrap samples based on 

the complete GPS data set and evaluate the reach of selected 

campaigns. From each application of the bootstrap we obtain 

the standard error for a specific campaign. This error is then 

averaged over all campaigns of the same size. The details of 

our experiment setup are shown in Alg. 1. 

 

ALG. 1: BOOTSTRAP ON FULL SAMPLE  

Input: 

 = set of campaign sizes { }100,....,20,10=cS  

 = set of test persons Pers, set of poster locations Loc 

  and set of poster passages Pass 

 = # bootstrap repetitions rb, # campaign repetitions rc 

Output: 

 = )ˆ,,ˆ,ˆ(ˆ
1002010 eseseses K= vector with estimates of 

  standard error for campaign sizes Sc 

Method: 

  1: for {)( cSs ∈  // iterate over campaign sizes 

  2:  for {)..1( crj =   // iterate over rc campaigns per size  

  3:  C = sample (Loc, s)   // sample campaign 

  4:  for (i = 1..rb) {  // calc. bootstrap replications 

  5:  ),,(ˆ* PassCPerstionrapReplicacalcBootsti
=θ   

  6:   }  

  7:  )ˆ,,ˆ,ˆ(ˆ *2*1* br

j stdes θθθ K=   // calc. stand. error 

  8:  } 

  9:  )..1|ˆ(ˆ
cjs rjesavges ==  // average se per camp. size 

10: } 

11: )ˆ,,ˆ,ˆ(ˆ
1002010 eseseses K=  

 

When we analyse the effect of a reduced GPS sample, we 

can distinguish two situations. The first situation observes 

solely the effect of a smaller sample size. The second situation 

monitors also the effect of a newly drawn sample of smaller 

size. We represent both situations in our second experiment. 

In addition to the evaluation of different campaign sizes as in 

the previous experiment, we now vary also the size of the GPS 

sample. Similar to the sampling of campaigns, we draw 

several subsamples for each GPS sample size to compensate 

sampling effects. 

In order to measure the effect of smaller sample sizes only, 

we calculate the root mean squared error (RMSE) for each 

GPS subsample when compared to the performance measure 

of the full GPS sample. Naturally, we expect that the error 

increases with decreasing sample and campaign size. An 

interesting question hereby is the relationship and the strength 

of both quantities. 

In order to measure the combined effect of changed samples 

and small sample sizes, we again apply a bootstrap schema. 

Hereby, we first reduce the GPS sample size and then apply 

bootstrap on the reduced set. Again, we draw several GPS 

subsamples of the same size in order to reduce random effects. 

Alg. 2 shows the details of both experiments. 

 

 



ALG. 2: BOOTSTRAP AND SUBSAMPLING FOR VARYING NUMBERS OF GPS 

PERSONS 

Input: 

 = set of campaign sizes { }100,....,20,10=cS  

 = set of person subsample sizes in percent 

  { }5.97,,0.5,5.2 K=sS  

 =  set of test persons Pers, set of poster locations Loc 

  and set of poster passages Pass 

 = # bootstrap repetitions rb, # campaign repetitions rc 

  and # subsample repetitions rs  

 

Output: 

 = rmse = (rmsets) and sê = (sêts) with s ∈ Sc and t ∈ Ss 

  matrix with estimates of RMSE and standard error 

  for campaign sizes Sc and subsample sizes Ss  

Method: 

  1: for {)( cSs ∈  // iterate over campaign sizes 

  2:   for {)( sSt ∈  // iterate over person subsample sizes  

  3:     for {)..1( crj =  // iterate over rc campaigns per size 

  4:    C = sample (Loc, s)  // sample campaign 

  5:       for {)..1( srk = // iterate over rs persons groups 

   per  subsample size 

  6:         D = sample (Pers, t)  // sample pers. subsample 

  7:  for (i = 1..rb) {  // calc. bootstrap replication 

  8:  ),,(ˆ* PassCDtionrapReplicacalcBootsti
=θ  

  9:  } 

10:  )ˆ,,ˆ,ˆ(ˆ *2*1* br

jk stdes θθθ K=   // calc. stand. error 

11:  ),,( PassCDcalcReacherrjk =   // calc. error 

   ),,( PassCPerscalcReach−  

12:  } 

13:  
s

r

k

jkj rerrrmse
s

∑
=

=
1

2   // calc. RMSE over subsamp. 

14:     } 

15:  sêts = avg(sêjk  |  j = 1..rc, k = 1..rs) // average results 

16:  rmsets = avg(rmsej   |   j = 1..rc)  // average results 

17:  } 

18:  } 

19: sê = (sêts) 

20: rmse = (rmsets) 

 

IV. EXPERIMENTS 

A. Application Data and Experiment Setup 

In this section we apply our approach to a large real-world 

dataset in Switzerland. The GPS-study captures the mobility 

of about 11,000 test persons residing in 12 Swiss conurbations. 

The number of test persons per region depends on the size of 

each of the surveyed conurbations. The survey period of each 

test person lasts seven days. In addition to mobility data the 

empirical study contains information about the poster sites 

(55,000 in Switzerland). Besides geographic coordinates, a 

visibility area for each panel is defined from within which the 

poster can be seen. Given the trajectories of an individual and 

the visibility area of a poster panel, all resulting passages can 

be calculated by geographic intersection and the performance 

measures can be derived. For this paper we restrict our results 

to the conurbation of Zurich with 1,956 test persons and 

10,093 poster sides. In total, the test persons generate 

2,071,124 poster passages within 7 days. 

B. Bootstrap on Full GPS Sample 

In the first experiment we evaluate the effect of a changed 

GPS sample for different campaign sizes. We hereby apply 

bootstrap with 30 repetitions in order to determine the 

standard error. We varied the campaign size between 10 and 

100 posters by an increment of 10, and averaged results over 

15 different campaigns per size. Table I and Fig. 3 show the 

average reach and average standard error as computed by 

bootstrap for the different campaign sizes. Clearly, the reach 

increases with the number of posters in the campaign. The 

standard error, however, decreases with increasing campaign 

size. This behavior is expected, because larger campaigns 

allow to cancel out local effects more often. 

TABLE I 

AVERAGE REACH AND STANDARD ERROR FOR VARYING CAMPAIGN SIZES 

camp. size 10 20 30 40 50 60 70 80 90 100 

avg. reach 38.8 58.7 67.0 74.9 79.3 83.3 84.3 86.5 89.2 90.1 

avg. se 1.5 1.4 1.4 1.3 1.2 1.1 1.1 1.0 0.9 0.9 

 

 

Fig. 3 Average reach and standard error for varying campaign sizes 

Fig. 3 shows that the standard error for all campaign sizes 

is comparably small. Fig. 4 shows again the standard error as 

obtained by bootstrapping, however magnified to show the 

differences in detail. The figure also contains a linear 

regression function which has been derived from the data. It 

illustrates the linear relationship between the standard error of 

a changed GPS sample and the size of poster campaigns. In 

practice, this means that the number of posters in a campaign 

has a direct influence on the variability of performance 

measures. 

In Zurich a typical campaign contains about 50 posters. The 

average standard error for this size has a value of only about 

1.5% of the average reach, which is an acceptable variation in 

practice. For the standard case we thus conclude that the 



complete exchange of the Zurich GPS sample does not lead to 

large changes in performance measurements for randomly 

distributed campaigns. 

 

 

Fig. 4 Average standard error for varying campaign sizes 

 

C. Subsampling and Bootstrap with Reduced Size 

In the second experiment we evaluate the effected that a 

smaller sample size has on the variability of performance 

measures. We again varied the campaign size between 10 and 

100 posters by an increment of 10 and averaged results over 

15 different campaigns per size. In addition, we formed 

groups between 2.5 and 97.5 percent of the sample size by an 

increment of 2.5 percent. For each group size we drew 15 

different samples of test persons in order to avoid random 

effects. In total, our results are thus averages over 225 

experiment runs per selected campaign and subsample size. 

In a first step we evaluated the error induced only by a 

decreased GPS sample size and calculated the root mean 

squared error (RMSE) when evaluating reach based on a GPS 

subsample instead of the full sample. The results for a subset 

of subsample sizes are depicted in Table II, and Fig. 5 

visualizes the results for all subsample and campaign sizes. 

The RMSE is highest for a small campaign and subsample 

size while it is lowest for a large number of posters and test 

persons. Again, we can see a linear dependency between the 

campaign size and the RMSE. However, for decreasing 

sample sizes the RMSE increases exponentially. Until a 

sample size of about 40 percent the RMSE curve is still even 

and afterwards increases rapidly. In practice, this means that 

we may decrease the GPS sample to about 50 percent of its 

current size and still obtain reliable results of average reach. 

However, the current evaluation considers only performance 

measures calculated for the total population. If we are 

interested in the reach of a certain socio-demographic group, 

the sample size will decrease additionally. Therefore, rather 

than applying the statistics to the total sample number, they 

must be applied to the smallest socio-demographic group that 

is of interest for evaluation. In the case of unevenly distributed 

characteristics, our experiments suggest to implement a 

stratified sampling process, so that the area with harmful 

RMSE can be avoided. 

TABLE II 

AVERAGE ROOT MEAN SQUARED ERROR FOR REDUCED GPS SAMPLES 

camp. size 10 20 30 40 50 60 70 80 90 100 

su
b

sa
m

p
le

 s
iz

e 

2.5% 8.7 8.2 8.7 7.9 6.9 6.9 5.4 6.1 5.7 4.9 

10.0% 3.9 4.1 4.2 3.5 3.8 3.1 3.0 2.6 2.5 2.5 

25.0% 2.3 2.3 2.3 2.1 2.0 1.8 1.7 1.8 1.4 1.5 

50.0% 1.5 1.4 1.2 1.2 1.1 1.0 1.0 1.1 0.8 0.9 

75.0% 1.0 1.0 0.9 0.9 0.9 0.9 0.8 0.9 0.7 0.7 

90.0% 0.7 0.7 0.6 0.7 0.7 0.6 0.6 0.7 0.5 0.5 

97.5% 0.7 0.6 0.5 0.6 0.6 0.5 0.5 0.7 0.4 0.4 

 

 

 

Fig. 5 Average root mean squared error for reduced GPS samples 

So far, our experiment accounts only for variability due to 

smaller sample sizes of a given GPS sample. However, it does 

not consider variation due to a different and smaller GPS 

sample. We therefore added a bootstrap scenario to the 

subsampling experiment. More detailed, for each combination 

of campaign and subsample size (and iteration of randomly 

drawn set of posters and persons of the given sizes) we 

performed bootstrap with 30 repetitions. The obtained results 

are depicted in Table III and Fig. 6. Note that the surface in 

Fig. 6 is smoother as in Fig. 5 because each experimental run 

contains 30 bootstrap repetitions. 

The trend in the results is similar to our previous 

observations. The standard error reacts indirect proportional to 

the subsample and campaign sizes. One difference, however, 

is the error height. For a subsample size of more than 25 

percent, the standard error obtained by bootstrap lies above 

the RMSE error of subsampling. In these cases, the actual 

exchange of the GPS sample introduces additional variance. 

For subsample sizes below 25 percent, the values of both 

experiments are about equal, which means that the subsamples 

are nearly independent of the original sample. In general, the 

differences between the errors of both experiments are not 

high. Therefore, we can conclude that the simultaneous 

reduction and exchange of the GPS sample may be carried out 

in practice without large implications for the price calculation 

of campaigns. 

Both experiments show another interesting result. For small 

numbers of test persons the impact of a large campaign on the 



RMSE or standard error is higher than for large numbers of 

test persons. This is a welcome effect in practice, because it 

means that in case of small sample sizes larger campaigns 

may reduce the error to a reasonable size. 

 

TABLE III 

AVERAGE STANDARD ERROR FOR NEWLY DRAWN REDUCED GPS SAMPLES 

camp. size 10 20 30 40 50 60 70 80 90 100 

su
b

sa
m

p
le

 s
iz

e 

2.5% 8.2 8.5 8.1 7.3 6.9 6.2 6.1 5.8 5.0 4.7 

10.0% 4.0 4.2 4.0 3.7 3.5 3.2 3.0 2.8 2.7 2.5 

25.0% 2.5 2.6 2.5 2.3 2.2 2.0 1.9 1.9 1.7 1.6 

50.0% 1.8 1.9 1.7 1.6 1.6 1.4 1.4 1.3 1.2 1.1 

75.0% 1.5 1.5 1.5 1.3 1.3 1.2 1.1 1.1 1.0 0.9 

90.0% 1.3 1.4 1.3 1.2 1.2 1.1 1.0 1.0 0.9 0.9 

97.5% 1.3 1.3 1.3 1.2 1.1 1.0 1.0 1.0 0.9 0.8 

 

 

Fig. 6 Average standard error for newly drawn reduced GPS samples 

V. CONCLUSIONS 

For a number of companies mobility data has become a 

critical data source. However, as the data grows older, new 

data has to be collected in order to keep the applications up-

to-date. Consequently, it is of great importance to know the 

impact that a different sample has on the application. In this 

paper we analyze the effect of a changed GPS samples for 

outdoor advertising, where mobility data is used to calculate 

performance measures and poster prices. Outdoor advertising 

is a very challenging application because it requires the 

evaluation of mobility data on a very fine spatial level. In 

comparison, classical mobility surveys focus on movement 

characteristics on regional or national level and are therefore 

less influenced by changes in the data sample. Current work 

on mobility mining algorithms has also not considered 

stability of results with respect to the data sample so far. In 

our robustness analysis we apply bootstrapping and 

subsampling in order to measure the effect of a) a repeated 

mobility survey and b) a mobility survey of smaller size. Our 

results show that the induced standard error is comparably 

small. In addition, the standard error shows a linear 

relationship to the size of poster campaigns. When we 

decreased the size of the mobility sample we detected an 

exponential relationship with the standard error. However, the 

increase in standard error remained comparably even until we 

reached a GPS subsample size of about 40 percent. We may 

therefore conclude that the simultaneous exchange of the GPS 

sample and reasonable reduction in size may be carried out in 

practice without large implications for the price calculation of 

campaigns.  

So far our presented evaluations consider only performance 

measures calculated for the total population. In future work 

we intend experiments in a stratified sampling process. The 

total sample number of test persons should be applied to the 

smallest socio-demographic group that is of interest in media 

planning.  

We believe that in future this type of analysis is relevant for 

a number of applications in mobility mining where GPS 

samples have to be replaced after a given period of time as it 

helps to understand the flexibility and limitations of a given 

GPS sample. 

REFERENCES 

[1] J. Z. Sissors and R. B. Baron, Advertising Media Planning, Chapters 4-

5, McGraw-Hill, 2002. 

[2] BMVBS – Bundesministerium für Verkehr, Bau und Stadtentwicklung 

Mobilität in Deutschland, Abschlussbericht (Mobility in Germany 

2008, final report). Available: http://www.mobilitaet-in-deutschland.de, 

2008. 

[3] N. Pelekis, I. Kopanakis, I. Ntoutsi, G. Marketos, G. Andrienko and Y. 

Theodoridis, Similarity search in trajectory databases, In: Proc. of the 

14th IEEE International Symposium on Temporal Representation and 

Reasoning (TIME 2007). IEEE Computer Society Press, pp 129-140, 

2007. 

[4] S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko and 

G. Andrienko, Visually driven analysis of movement data by 

progressive clustering. In: Information Visualization 7(3):225-239, 

2008. 

[5] M. Nanni and D. Pedreschi, Time-focused density-based clustering of 

trajectories of moving objects. In: Journal of Intelligent Information 

Systems (JIIS), 27(3):267-289, Special Issue on Mining Spatio-

Temporal Data, 2006. 

[6] J. Gudmundsson, M. Kreveld and B. Speckmann, Efficient detection of 

patterns in 2D trajectories of moving points. In: Geoinformatica 

11(2):195-215, 2007. 

[7] P. Laube and S. Imfeld, Analyzing relative motion within groups of 

trackable moving point objects. In: Proc. of the 2nd International 

Conference on Geographic Information Science (GIScience’02). 

Springer, pp 132–144, 2002. 

[8] Y. Zheng, L. Zhang, X. Xie and W. Ma, Mining Interesting locations 

and travel sequences from GPS Trajectories. In: Proc. of the 18th 

International World Wide Web Conference (WWW’09). ACM, pp 

791-800, 2009. 

[9] F. Giannotti, M. Nanni, D. Pedreschi and F. Pinelli, Trajectory pattern 

mining. In: Proc. of the 13th ACM SIGKDD International Conference 

on Knowledge Discovery and Data Mining (KDD’07). ACM, pp 330-

339, 2007. 

[10] Y. Yang and M. Hu, TrajPattern: mining sequential patterns from 

imprecise trajectories of mobile objects. In: Proc. of 10th International 

Conference on Extending Database Technology. Springer, pp 664-681, 

2006. 

[11] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, 

Chapman & Hall, 1993.  

[12] B. Efron, Bootstrap Methods: Another Look at the Jackknife, In: The 

Annals of Statistics 7 (1), 1–26, 1979.  


