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Abstract 

This paper introduces an approach to mine field-tested design solutions when 
defining the architecture of a new product line. The design comparison ap-
proach (DCA) compares design solution alternatives implemented in existing 
systems and analyze the impact of the solutions on these systems. This explicit 
comparison and analysis offer the architect of the to-be-built product line to 
develop an architecture of higher quality by incorporating field-tested, proven 
concepts and strategies. We show the applicability and usefulness of the ap-
proach in two case studies concerned with the architectural design of Eclipse 
plug-ins. 

Keywords: architecture evaluation and reconstruction, design comparison, reverse engi-
neering, product lines. 
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Introduction 

1 Introduction 

Developing software systems is a complex and difficult task. Reuse of existing 
solutions and artifacts is a promising solution for the challenges for today’s 
software-developing organizations and their needs for reducing cost, effort and 
time-to-market, the increasing complexity and size of the software systems, and 
increasing demands for high-quality software and individually customized 
products for each customer. This is especially true for software product lines 
where proactive reuse is one of the main concepts. 

The architectural design phase is the central phase for decisions about how the 
software system will achieve its requirements [17]. The architecture of a soft-
ware system is defined in [14] as the fundamental organization of a system em-
bodied in its components, their relationships to each other and to the environ-
ment, and the principles guiding its design and evolution. Usually architects 
tend to reuse successful solutions based on their background and their experi-
ences. When several software systems are available, the architecture design 
phase would benefit from the experience gained in field-tested solutions. The 
goal of the design comparison approach (DCA) is to explore existing alterna-
tives and to learn about different solutions applied to similar problems, to iden-
tify advantages and drawbacks of the solutions, and to rate them with respect 
to their applicability in the context of the development of new systems. During 
a design comparison, we apply reverse engineering techniques to mine the ex-
isting systems for information needed to perform the actual comparison. DCA 
does not aim at comparing the complete system architectures and designs. In-
stead it focuses on finding the solutions to specific design problem addressed in 
different systems and assessing them. 

Design comparisons are initiated by requests from the architects and they pro-
duce views that highlight certain aspects of the analyzed systems along with a 
ranking of the solutions. A request thereby addresses a specific aspect of inter-
est in architecture development. DCA is expert-driven, iterative and highly con-
text-sensitive to the current design problems. The architects cooperate closely 
together with reverse engineers that know about the capabilities and the 
strengths of different reverse engineering techniques and methods. DCA oper-
ates in a request-driven mode to solve concrete design problems on demand.  

The remainder of the paper is structured as follows: Section 2 discusses typical 
usage scenarios. A detailed description of our approach is provided in section 3. 
Then section 4 presents two case studies centered on design problems we 
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faced while developing Eclipse plug-ins. Section 5 summarizes related work, 
while section 6 draws conclusions and gives an outlook on future work. 
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2 Typical Usages 

DCA supports iterative scenario-based architecture design of a new system (es-
pecially the design of a product line architecture) like PuLSE-DSSA [4, 5] or ADD 
[2]. It aims at answering high-level requests about existing solutions relevant for 
design of the new system. We consider the following four types of high-level 
requests about architectural alternatives: 

• Patterns: Patterns address recurring design problems that arise in specific 
design situations, and present a solution to them [7]. Request about patterns 
may be what patterns are used and what is their impact, what is the solution 
to a requirement or a specific design problem, or why was a pattern applied. 

• Features: Features represent functionality visible to the user of a software 
system. Requests concentrating on features are for instance what common 
or variable features are or how a feature is realized. 

• Quality attributes: A quality attribute is a non-functional requirement pre-
senting a property of the software system. Quality attribute requests deal 
with the following question: does a system achieve a quality attribute (e.g. 
performance, maintainability) and if so, what are the means applied to 
achieve it? 

• Strategies: Strategies in architectural design represent design rationales and 
manage the interaction of patterns, features, and quality attributes and pri-
oritize them. Strategies explain the fundamental architectural design deci-
sion within a system and deal with requests like: what are the consequences, 
difficulties and drawbacks of an applied strategy, or which patterns are in-
volved to realize a strategy. 

The main case where the design comparison approach can improve the quality 
of the architecture is migration towards product line engineering. Clements [9] 
defines product line engineering as a set of software-intensive systems sharing 
a common, managed set of features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed from a common set of 
core assets in a prescribed way. The migration from single system development 
towards product line engineering is a challenging task for software develop-
ment organizations. The commonalities of the existing, individual systems have 
to be merged into the product line infrastructure, and the product line architec-
ture has to support the derivation of the future members. When designing this 
architecture, we recommend reusing the field-tested, proven solution imple-
mented in the existing systems. The question that arises now is which of the 
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different alternative solutions fit best to the requirement and the qualities at-
tributes of the product line architecture to be built. Applying the architecture 
comparison approach contributes in the migration case by giving guidance in 
how to select the most suitable of the given alternatives.  

Copyright © Fraunhofer IESE 2004 4 



The Design Comparison 
Approach 

3 The Design Comparison Approach 

When the architect of a product line faces a problematic design decision for the 
product line architecture, a possible source to solve the problems are solutions 
given in existing systems. To learn about benefits and consequences of such so-
lutions, the potential reuse candidates (either concepts or implementations) 
have to be compared and rated. In order to understand the solutions and their 
properties the product line architect demands information about them, a so-
called high-level request. Responses to requests enable learning about success-
ful solutions and their consequences.  

The design comparison approach (DCA) is initiated by such requests. Together 
with evaluation criteria (elicited from stakeholders) and optionally a product 
map these inputs are processed into a response, which summarizes the various 
characteristics of the solutions embodied in selected systems and rate them 
with respect to the given criteria. To analyze the best solutions, the product line 
architect consults the rating produced in the final of 5 steps of the approach 
(see Figure 1 for an illustration of the DCA approach). These steps exchange 
feedback either within or across iterations. The result of DCA, a response, can 
result in follow-up iterations or new requests. To accomplish its goals, DCA in-
volves three major roles: 

• Product line architect: The architect designs the architecture of new sys-
tems. He decomposes it into components, decides how these components 
interact, determine commonalities, provides mechanisms to handle variabili-
ties and their resolution, and formulates the system’s design principles. 

• Expert: A system expert knows his system very well and understands the 
strategies, patterns and concepts applied in the existing system. The original 
architect of a system constitutes often a good system expert.  

• Reverse engineer: The reverse engineer applies techniques to extract the 
information needed to answer a request from existing systems. 

The role of the architect and of the expert can be performed by the same per-
sons in cases where the architect of the new system is also an expert for one of 
the existing systems being compared. 
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Figure 1 Design Comparison Approach Overview 

3.1 Request Analysis 

This step refines the high-level request, operationalized the evaluation criteria, 
and produces specifications for the views that should be available to support 
the analysis and comparison of solutions as well as strategies implemented by 
the selected systems.  

In most cases, the architect initially provides high-level requests that cannot be 
directly answered because they are too abstract, too broad, or too complex. 
Therefore the approach starts with a request analysis that breaks request down 
into operational pieces, which can be processed by the subsequent steps. The 
final step “Packaging and Rating” delivers responses to overall, high-level re-
quests. To evaluate the success of each system in fulfilling these detailed re-
quests, the architect and the reverse engineer refine and operationalize the 
evaluation criteria as needed (e.g., performance or maintainability). The con-
crete parameters of a criterion are often strongly linked to the application con-
text (e.g., the operation should have a response time of at most 5 seconds). For 
a product line, this context can be expressed by a product map relating the en-
visioned application instances of the product line and their features [21]. 

Given the detailed requests and the operationalized criteria, the reverse engi-
neer produces a specification of the views that would represent the aspects 
covered by the request and support their evaluation of criteria. These specifica-
tions are the main input of view refinement and reconstruction step. The re-
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verse engineer and the architect often trade-off between how well these views 
support the evaluation and the effort needed to obtain them. 

The architect prioritizes the fine-grained requests and the criteria to schedule in 
which order they will be considered and which views should be produced first. 
This is done because the evaluation of some requests may terminate the further 
processing of the high-level requests; while others can result in new concrete, 
fine-grained requests. 

3.1.1 Refinement Example 

Assuming that the architect of a product line considers using the model-view-
controller (MVC) pattern within his design, but he is uncertain about its impact 
and the level of flexibility needed. He could make a high-level request about the 
experiences with the MVC pattern in the existing systems. The request cannot 
be answered directly; it has to be refined. The derived fine-grained requests are: 

1. In which systems is the MVC pattern applied? 

2. What are consequences of using MVC with respect to certain criteria (e.g., 
performance, maintainability)? 

3. How many views, controllers, and model layers are present in the imple-
mentation?  

4. Are the views hierarchical? 

5. What are the consequences in terms of performance, complexity and main-
tainability of the answer to request 3 & 4? 

6. Do the pattern instances among the different system aim at solving the 
same problems? Are these instances comparable? 

Some requests aim at obtaining context information that support further re-
quest requests (e.g., 1, 3, 4, and 5). For them, it is not necessary to develop 
concrete criteria. For other requests the architect should provide concrete 
evaluation criteria. To evaluate maintainability, for example (e.g., request 2 & 
5), he describes modification scenarios. In order to identify acceptable perform-
ance, the architect indicates the maximal response time for the critical opera-
tions. 

Both for purely informative and criteria-bound requests, the reverse engineer 
specifies the views that are available for the evaluation or that will be recon-
structed for it. For evaluating the MVC’s maintainability, a description of the in-

Copyright © Fraunhofer IESE 2004 7



The Design Comparison 
Approach 

volved classes’ interface is enough. For the performance evaluation, interaction 
diagrams or message sequence charts might be needed. 

3.2 System Selection 

In this step, the reverse engineers and the experts select the systems they will 
compare to respond to the given request. The goal is selecting few valuable sys-
tems that will bring most insights during a comparison for a limited effort.  

When code reuse is an important factor, then only systems that are compatible 
with the existing implementation will be considered. When the design solutions 
are more relevant than code reuse, then other system can also be considered. 

A checklist helps the reverse engineers and the expert to select the systems. The 
checklist reflects the main factors, which influence the systems selection strat-
egy. These factors are available architectural views, presence or absence of a 
dominant system, the design stage of the new system, the market success, and 
the properties of the system. The type of the requests and the effort available 
for comparing systems are cross-cutting selection factor.  

The effort available for comparing systems and the effort required to recon-
struct the views and analyze them constraint the systems can be evaluated. 

The actual system selection is a human-based activity that depends strongly on 
the context. There are no fix rules how to combine the different factors. How-
ever, the reverse engineer and the expert have a better chance to select the 
right system if they use the proposed checklist.  

3.3 View Refinement and Reconstruction 

For each of the systems selected, this step produces views that fulfill the specifi-
cation produce during request analysis. It either reconstructs new views or finds 
and adapts existing views provided by the documentation of the system. To 
support this task, DCA takes advantage of a reverse architecting techniques 
catalogue. The views capture the aspects of the system needed to evaluate the 
operationalized criteria properly.  

To act as an effective basis for comparison, two software systems should be de-
scribed at the same level of abstraction. Often the descriptions available for the 
selected systems are at very different level of abstraction. In this case one de-
scription is either refined or abstracted. When the effort for refining them is too 
high and the information contained in the view is not essential for answering 
the requests, the detailed views are abstracted. When answering a request re-
quires information not present in the available system description, we apply re-
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verse engineering techniques on the different systems to reconstruct the views 
containing this information or completing existing views. Such goal-driven 
techniques are performed to exploit just the required information from the ex-
isting software systems and to focus only on the aspects relevant to the re-
quests.  

A reverse engineering infrastructure provides a reverse architecting techniques 
catalog. The techniques from this catalog are selected based on the view speci-
fication and the criteria coming from the request analysis. The selection of the 
appropriate technique is done by the reverse engineer, while the execution of a 
specific technique in most cases requires involvement of system experts. 

For instance, if a request aims at comparing aspects of different implementa-
tions of the same feature, then techniques like feature location [12] or feature 
reverse engineering [13] have to be applied. Another example is two compo-
nents providing the same functionality: to evaluate them their interfaces have 
to be documented [16] and the dependencies on other components have to be 
revealed [5]. Techniques like the reflexion model [18] and can be used to reflect 
the mental model of expert with the actual implementation. For the MVC ex-
ample, the reconstructed views show the classes composing the MVC patterns 
and their relationships. In addition, object diagram can captured typical scenar-
ios at run-time. Reverse techniques applied in this case are for instance pattern 
matching [20], pattern completion [5], or dynamic techniques capturing the ob-
ject instances at different points in time [19]. 

The reverse engineers drives the view refinement and reconstruction step be-
cause he knows of the power and capabilities of the available techniques, he 
can asses the expected value of their output, and he is able to estimate the re-
quired effort to apply a technique. 

In summary, the view refinement and reconstruction step produces the views 
on the selected systems required to evaluate them. Thereby will different re-
quest results in different views on the systems, and the reverse engineer may 
decide not to reconstruct a view for a selected system because the expected 
value does not justify the effort. 

3.4 Evaluation 

In the fourth step, the expert evaluates the solutions used in the selected sys-
tem by applying different techniques on the set of views capturing each sys-
tem’s solution. The expert evaluates the solutions with respect to one criterion 
at a time so that he can rank the results of the evaluation and express them 
into joint abstractions. 
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3.4.1 Evaluation Techniques 

The expert (supported by the reverse engineer if appropriate) applies one or 
more of the following techniques to evaluate the solutions with respect to the 
criteria developed during the request analysis:  

• Simulation: Within a simulation, the reverse engineer observes or measures 
the system characteristics relevant to the request. The presence of dead-
locks, for example, can be detected during simulation. 

• Instrumentation: In this technique, part of the code related to a request is 
instrumented and run to gain insight into the working of each system as it is 
currently implemented. 

• Prototyping: Prototyping is a technique that executes a simplified version 
of a system to observe and measure some property of the final system. In 
our approach, modifying and adjusting the existing implementation to the 
given request is one efficient way to produce a prototype. In this case, only 
the aspects related to the request and supporting it are kept in the system. 
Everything else is removed.  

• Context analysis: This analysis reveals the dependencies of a key element 
of the implementation of a solution targeted by the request. The goal of this 
activity is to get a better understanding of how the architectural alternatives 
are embodied in the system and to identify possible side-effect that may oc-
cur when reusing it in other contexts. 

• Scenario analysis: This technique gathers and applies scenarios that exer-
cise different aspect of a request (e.g., different quality attributes) on each 
of the selected software systems. The expert applies the scenarios and iden-
tifies risks associated with certain scenarios [10]. 

• Model sensitivity analysis: For this technique the expert or the reverse 
engineer build a numeric model of the solution and analyze the relevant cri-
teria while varying different parameters. 

The success of a technique depends on the type of request, the information 
available and the system studied. Each technique, however, produces informa-
tion about only one individual system at a time. Therefore the next activity 
within the composition step is the creation of a joint abstraction. 

3.4.2 Creation of Joint Abstractions 

The creation of a joint abstraction combine the information found in the indi-
vidual systems. Here the results of the existing systems are aggregated and 
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brought in the context of the product line space. We propose the following 
means to represent joint abstractions: 

• Comparison matrix: A comparison matrix lists the different, individual sys-
tems selected as columns and the criteria related to the requests as rows. 
The responses for each system (or the subjects of the analysis) are then filled 
into the proper cells. The reverse engineer and the expert can now reason 
about advantages and disadvantages of the different alternatives and refine 
results by evaluation of other criteria in further iterations. 

• Product line views: The product line views capture information about all 
selected systems and focus on the complete product line. These views sup-
port identifying variabilities and commonalities among systems. 

After building joint abstractions, the expert produces a partial solution ranking 
that indicates how well each solution fulfilled the given criterion.  

3.5 Packaging and Rating 

Whereas the previous step evaluated single, operationalized criteria, this step 
compose the information gained about the selected system in order to derive a 
final response to the product line architect’s high-level request. The rating can 
be regarded the opposite step to the break-down of the request done step one 
of DCA. The low-level results are combined to give one response to the high-
level request. The operationalized criteria and the product map thereby guide 
the rating. The reverse engineers support the product line architects in interpre-
tation of the ranking data. The final decision is made by the architects having 
the goals and the requirements of the to-be-designed product line architecture 
in mind.  

The recording of the results includes the responses together with the initiating 
requests, the selected systems and reasons for their selection, and if available, 
integration and usage information about the gained responses. The recording 
supports potential reuse of results in further iterations and documents decisions 
and rationales. The response recording step should be supported by a knowl-
edge repository that facilitates the access, the manipulation, the storage and 
the management of the responses gained so far. 

In summary, the rating done by the product line architects can initiate addi-
tional requests to obtain further information, or they decide whether to accept 
the best rated solution or to reject the potential reuse candidates provided by 
the selected systems. 

3.6 Summary 
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DCA is an iterative, expert-driven approach to learn about alternatives, solu-
tions and strategies embodied in existing systems. DCA uses reverse engineer-
ing techniques to obtain information from existing systems. During all the 
steps, feedback, learning effects, and insights gained are used to improve the 
results of later or ongoing iterations. In short, DCA seeks at mining solutions 
(concepts and/or implementations) from existing system in order to support the 
product line architects in their work. 
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4 Eclipse Plug-In Case Studies 

To support its PuLSE method research, the software product line (SPL) depart-
ment at IESE develops product line tools based on Eclipse. Eclipse is a basic tool 
integration platform where additional functionality is provided by plugins. 

The two case studies presented here fall in the context of our effort for building 
the tool infrastructure from which individual product line tools are derived. The 
first case study takes place in the context of defining a graph representation 
supporting efficient reverse engineering techniques within our Eclipse product 
line infrastructure. The goal is to identify the best graph representation for our 
product line from multiple reverse engineering tools previously developed offer-
ing solutions: different internal representations, implemented in different lan-
guages, designed for different purposes. The second case study involves ad-
dressing a request to understand “internal model management” in Eclipse IDE 
plug-ins. Our IDE tools should share an infrastructure that is compatible and 
easy to integrate together with other plug-ins not developed in-house. The goal 
in this case was to reuse both, concepts and code. 

4.1 Reverse Engineering Graph Representation 

IESE SPL decided to integrate multiple reverse engineering and metric tools into 
its infrastructure. These tools often manipulate large hierarchical graphs and 
require efficient representation. Before defining a new graph representation 
with its interface, the architect formulates a request about determining the best 
field-tested solutions. He also defines that these solutions should be considered 
from the criteria performance, representation size, as well the maintainability 
and extendibility. He also provides a list of existing and envisioned tools and the 
features they need (i.e., a simple form of a product map). 

Starting DCA with request analysis, the architect refined the request into the 
following questions: 

1. Which representation offers the most compact memory representation? 

2. Which representation offers the fastest access and manipulation? 

3. How scalable is each representation? 

4. Which API supports to application that is easy to use and maintain? 

5. Which representation is easier to maintain? 
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6. Does the implementation offer a regression test? 

7. Does it have a cache or could a cache be added easily to increase scalabil-
ity? 

He binds the refined requests to the given criteria and makes them operational 
by adding concrete values or evaluation mechanisms. For the representation 
size (request 1), for example, he asserts that a typical small graph containing 10 
000 nodes, 40 000 edges, and 2 500 annotations should occupy less than 5 
Meg. For the performance (request 2), he identifies specific operations that are 
typically performed on the graph and for some of them he specifies an upper 
bound on their execution time. He identifies operations like accessing neighbors 
of a node, collapsing node into components and computing the edges among 
lifted components, or identifying if pairs of nodes belong to the same compo-
nents. He also specifies, for example, that traversing the graph above through a 
depth-first search should take less than 1 second on a reference machine. 
When he has operationalized the criteria, the architect prioritizes them. 

Next, the architect and the reverse engineer specify the views needed to answer 
the fine-grained requests based on the operationalized criteria. In this case, 
they decided to include the following views: 

• a conceptual view semantic net representing the relations among key con-
cepts in the representations 

• a data model of the representations annotated with storage requirements  

• an API description  

In the system selection, the reverse engineer selected two prior graph imple-
mentations that serve the same purpose in other contexts and one internal rep-
resentation used in Eclipse. For each implementation, an expert was available 
and was briefly consulted to check if he believed that the representation was 
adequate for the envisioned purpose. The first prior implementation (R-Rfv) was 
written in Refine and had been used as a basis for many research tools. It was 
developed with a focus on compact representation and flexibility. The second 
representation (P-Rsf) had been developed in Perl, to be portable. The focus 
was on simplicity and efficiency. The third representation (JavaE) is part of the 
internal model management of JDT rooted at the JavaElement. It does not con-
stitute a generic graph representation, but rather one specific to the entities 
represented in the java development environment. Further representations in 
Eclipse were considered, but not selected for the evaluation because no expert 
was available for these representations and more effort would go in the recon-
struction of the view than what was available. 
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Figure 2 Simplified Data Model 

The reverse engineer performed view reconstruction by interviewing expert 
and using information from the source code browsers. The conceptual views 
were constructed by interviewing the system experts. The reverse engineer re-
constructed the data model using code browsers and the API by consulting the 
source files. Figure 2 depicts a simplified data model for the graph representa-
tion of the three solutions considered. 

The evaluation relied on scenario analysis and model sensitivity analysis. For 
evaluating the API’s maintainability, the system experts applied change scenar-
ios concerning tool development (e.g., reflexion model, dependency analysis, 
coupling metrics calculation) using the API. R-Rfv and P-Rsf were roughly equal 
for the understandability. JavaE’s API is more complex due to the fact that the 
model is build only when it is needed. 

To evaluate the space efficiency of each representation, the reverse engineer 
derived formulae computing the representation size in terms of the number of 
nodes, edges, and annotations as well as the average data size. This model sen-
sitivity analysis allowed him for different scenarios to analyze the scalability of 
each representation and to estimate the graph size that would fit in memory.  

The reverse engineer considered that building a prototype sufficient to evaluate 
the performance of each representation would require more time than they 
had. Instead the expert of each system simulated the data accesses that would 
be required to perform crucial scenarios as first approximation. A minimal pro-
totype was built to analyze if the performance of the best solution would fulfill 
the performance criteria. 
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R-Rfv P-Rsf JavaE
space efficiency reference graph 1.3 Meg < 5 Meg 4.9 Meg < 5 Meg > 5 Meg

scalability smallest 3.7 * Refine
keep nodes only while 
needed in memory

maintainability API ~ Perl (more functions) ~ Refine only basic functions
understandability explicit concepts node, edge, views relation as tuples fix sed of nodes

API good good indirect & complex
cache none none already presen (LRU)

criteria

t  

Figure 3 Comparison Matrix 

As joint abstraction, the reverse engineer produced a comparison matrix sum-
marizing for each criterion the results of the analysis. Figure 3 presents an ex-
cerpt from this comparison matrix. The reverse engineer ranks the solutions for 
each criterion. In terms of space efficiency and pure size scalability, for example, 
R-Rfv is considerably smaller. The API of R-Rfv and P-Rsf are roughly as main-
tainable and understandable.  

The results of the analysis showed that R-Rfv and P-Rsf are easier to understand 
and to maintain than the JavaE. When the complete graph should be keep in 
less than 5 Megabytes in memory, then the R-Rfv representation is better and 
can accommodate graphs with up to 35 000 nodes and 140 000 edges. How-
ever, for larger graph, an on-demand approach is needed and JavaE already 
provides a good solution, which is integrated in Eclipse. The recommendation is 
to extend the R-Rfv with a cache to face the demand of larger graphs. 

Following the DCA process, the architect obtains a more objective answer to his 
request that systematically exploit the experience from past systems. He used 
this response as basis for his design decision and easily articulated the rationales 
for his decision. 

4.2 The Plug-In Internal Model Management 

To support our own infrastructure of software product line tools, we decided to 
develop a series of Eclipse plug-ins. In particular, we had the goal to develop a 
component browser plug-in that is able to display information about KobrA-
components [1] within the Eclipse platform (models capturing the specification 
and the realization of a component available in XML format had to be visual-
ized by the component browser plug-in). A second plug-in, the frame proces-
sor, dealt with the realization of product line implementation technology, called 
frame processing [3]. Thereby variable parts are captured in separate implemen-
tation units (i.e., frames) and the frame processor takes over the resolution of 
the frames when instantiating a member of the product line. Furthermore the 
goals were to visualize the frame hierarchy and to have an editor for the 
frames. 
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In the beginning the architect recognized that both to-be-developed plug-in 
required an internal model management. We investigated other plug-ins of the 
open source communities that had the same design problem. We found three 
programming language development tools, the JDT [15] (for Java: ~3 000 
classes), the CDT [8] (for C/C++: 2 200 classes) and the CobolDT [11] (for 
COBOL: 1 200 classes) having a solution to our design problem. Because of 
immaturity of the CobolDT, it was decided in the system selection step to leave 
it out. 

So the high-level request the architect had was how is the internal model man-
agement realized in the JDT and CDT and can he reuse the solution for his own 
design purposes. The architect and the reverse engineer then broke down this 
request and had several iterations of DCA to derive an answer. The next para-
graphs will describe some of the main points in applying DCA. 

The architect and the reverse engineer started to refine the request and were 
first interested in feature and classes that implemented the model manage-
ment. The reverse engineer specified to reconstruct behavioral views for open-
ing, saving and creating a project with sequence diagrams. Dynamic technique 
provided the method invocation for each of the features, while static technique 
enabled to collapse the methods into classes, packages, and in the end into 
components. The request was further refined and the information was used to 
build a conceptual view with the help of the system expert (see Figure 4). The 
conceptual view for both, the JDT and the CDT, contains only one variation 
point (stereotype <<variant>>), the compilation unit for Java source code files, 
and the translation unit for C/C++ source code files. The other conceptual 
components were common for both systems. Through inheritance the 
Openable class adds the aspect of being saveable to model elements that have 
a physical representation in the file system and can therefore be manipulated 
and saved.  

 

Figure 4 Conceptual view of the save feature 
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The fact that both alternatives realized the save feature in almost the same 
manner gave us confidence for the reuse of that solution for our purposes. The 
architect therefore derived requests to investigate the classes responsible for 
model management in more detail. The reverse engineer refined the views on 
the object model, a key concept of both JDT and CDT. The Eclipse platform 
wraps the physical file system with its abstraction for files, folders, projects and 
the workspace, which can be seen as container for those entities. Build upon 
the Eclipse data model the IDEs provide a further abstraction to access these 
entities of a programming language through the API. This means that the IDE 
models add programming language specific semantic to the Eclipse model ele-
ments. For instance, a folder corresponds to a package in Java. From an archi-
tectural point of view these object models are part of a layered architecture 
where the physical file system is the basis, on which the Eclipse platform data 
model is built, on top of are the data models of JDT and CDT. 

The architect then wanted to know what the reasons were for introducing an 
elaborated object model as it would have been also possible to work with the 
abstractions provided from the Eclipse platform. To get a basis for our compari-
son we refined our interest in the request analysis and asked how these models 
are managed.  

Starting with a context analysis to retrieve the structure of the IDE object mod-
els, the reverse engineer learned where the particular object models are physi-
cally located in the plug-in package hierarchies. From existing architectural de-
scriptions [22] he found out that inheritance was a key concept in these mod-
els. Based on this information the reverse engineer traced the root classes of 
both object models and queried the fact base to discover the inheritance hier-
archy. Figure 5 shows an excerpt of the JDTs class and interface model hierar-
chy, which is similar to that of the CDT.  

 

Figure 5 JDT Data Model Excerpt 

From the static structural information of the object model it was not obvious, 
how the model management including typical operations like adding, remov-
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ing, moving and finding elements was realized. Therefore the reverse engineer 
traced these functionalities by several dynamic analyses using instrumentation 
to have a basis for comparing the model management in both IDEs.  

In the scenario analysis the system expert evaluated the reasons why the object 
models are part of the design and implementation strategies in both IDEs. 
Eclipse provides a model view controller framework, where the hooks enforce 
the usage of an object model to ease the integration of a plug-in with the 
Eclipse platform. This goes together with the fact both IDEs make use of the 
JFace GUI framework (i.e., a set of components like tree viewers and table 
viewers) that expects a model based input. To visualize the data the plug-in 
deals with, it would be enough to provide simple proxies for the real world en-
tities like packages or class files in the JDT and feed them to the GUI frame-
work. As an object model is a good concept to deal with the complexities of 
real world entities both models are far more elaborated (i.e., they provide han-
dles to the programming language specific concepts and constructs, so the en-
tities can be accessed without having to deal with the underlying physical re-
sources or intermediate abstractions and dependencies between those entities 
can be computed). The model elements add additional semantics to entities like 
files and folders and provide services which are specific to these entities. The 
use of an object model is a good choice if meta-models for the problem do-
main exist where the meta-model elements can be directly mapped onto classes 
within object models and computation of element dependencies can be real-
ized by querying the object model.  

Commonalities between both implementations are a least-recently-used (LRU) 
cache (removes unused model elements if the cache size is exceeded) on de-
mand loading of model elements (model elements are not loaded, until a user 
opens an element containing them). 

Differences are concerning key features like adding and removing model ele-
ments, which are implemented slightly different. The data for the comparison 
are based on several operations that add and remove elements to the object 
model (e.g., a new project was created in the workspace). In both IDEs, we ex-
amined the process flow to analyze the execution complexity. Here the reverse 
engineer considered the number of involved classes, method calls and the lines 
of code for the analogue operations. Understandability was a subjective crite-
rion for the system expert, which to some extend goes together with complex-
ity but also with the code structure, method naming and code documentation.  

The result of the analysis showed that both models have high reuse potential 
whereby the better understandability is given by the CDT.  The JDT solution is 
more complex but provides a fine-grained event propagation mechanism. 

DCA provided a systematic analysis of the existing systems and provided us 
with useful results for concepts, features and patterns for the development of 
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our own plug-ins. Based on the above results the architect ranked the CDT al-
ternative higher than the JDT solution since he do not need a fine-grained 
event mechanism that would have introduced unnecessary complexity into the 
development. Therefore the CDT solution was selected as basis for our plug-ins 
under development. 

Although the initial investment of time to analyze the existing systems and the 
subsequent adaptation for our purposes was higher than a development from 
the scratch, the architect profits from reusing sound design concepts in a stable 
architecture that fulfills our requirements with no need for major redesign 
(something that was experienced in other projects starting development from 
scratch). The analysis not only provided tested artifacts from mature software 
systems, which increases the quality of the plug-ins under development but 
moreover we learned about different alternatives for solving similar problems. 
Based on the information gained from the analysis the architect could compare 
the systems systematically and choose the solutions he rated best with respect 
to the requirements.  
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5 Related work 

The software architecture analysis method (SAAM [10]) evaluates the modifi-
ability of software architectures with respect to a set of representative change 
scenarios. The architecture tradeoff analysis method (ATAM [10]) is also a sce-
nario-based method, which extends SAAM to address further quality attributes. 
Its goal is to analyze whether the software architecture satisfies given quality 
requirements and how the satisfaction of these quality requirements trade off 
against each other. In contrast to the design comparison approach, the two 
above methods focus on evaluating the complete architecture of a system using 
expert-driven scenario-based analysis. Our approach evaluates design alterna-
tives using information obtained through reverse engineering techniques of 
field-tested systems. Furthermore, our approach strongly relies on evaluation 
techniques beyond scenario analysis.  

The software architecture comparison analysis method (SACAM) by Stoermer et 
al. [23] aims at comparing the fitness of architecture candidates to be used in 
an envisioned system (i.e., a goal similar to ours). Whereas they rather rate the 
fitness of architectures as a whole with respect to quality attributes and busi-
ness goals, we focus rather on smaller design parts that are reusable in the con-
text of the new product line. In the evaluation phase they focus on scenarios, 
while we propose as well other means (e.g., simulation, instrumentation or pro-
totyping). The SACAM is organized in a workshop-oriented manner. Our design 
comparison approach differs in this point because we emphasize on a close co-
operation of architects, experts and reverse engineers because of the benefits 
of a common understanding of ongoing activities and intermediate results. 

Bosch [6] presents four architecture assessment techniques (i.e., scenario-, 
simulation-, mathematical model- and experience-based assessments). These 
techniques aim at the evaluation whether a system fulfills its quality require-
ments or not. In contrast to our approach Bosch’s approach focuses on the ar-
chitecture of a single system. The scenario- and simulation-based assessments 
are similar to some of our evaluation techniques.  
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6 Conclusion 

In this paper, we presented DCA, an approach to answer the request of a 
product line architect facing hard design decisions by extracting and comparing 
the design alternatives present in field-tested systems. In the two case studies, 
DCA’s systematic analysis of the selected systems provided useful insights about 
concepts, features and patterns that helped the architect to design a product 
line architecture from which two successful instances were derived.  

6.1 Lessons Learned 

Although applying DCA requires additional effort, in our case studies the archi-
tects appreciated the support it provided and estimated that it helped them 
produce a better architecture, with a broader acceptance, and a shared under-
standing. The better architecture can be in part attributed to the addition of 
more objective inputs and the analysis of mature solutions. More people accept 
the resulting design, since they directly contributed as expert or because solu-
tions from their systems made their way into the new design. We expect that 
this facilitates the transition of an organization towards product line engineer-
ing. DCA explicitly supports the documentation of the rationales for key design 
decisions.  

In the case studies, we observed that creating conceptual models of distinct so-
lutions contributed to the common understanding, shared vocabulary, and con-
sidering a broader design space. Based on this experience we are confident that 
the additional effort required by DCA pays off for hard decisions. This hypothe-
sis will be the subject of a future experiment. 

6.2 Future Work 

Ongoing work will perform further case studies and we currently plan to apply 
the approach in industrial migration projects where organizations want to mi-
grate from single system development towards product line engineering.  

In future, we will broaden and refine our catalog of reverse engineering tech-
niques, questionnaires to accelerate the request analysis, and extend our 
evaluation approach catalog. We will formalize the insight gathered through 
the case studies into hypotheses and validate them experimentally where possi-
ble and appropriate. 
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