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First nearest neighbor models are routinely used for atomistic modeling of covalent materials.
Neighbors are usually determined by looking for atoms within a fixed interaction range. While these
models provide a faithful description of material properties near equilibrium, the limited interaction
range introduces problems in heterogeneous environments and when bond breaking processes are
of concern. We demonstrate in this letter that the reliability of reactive bond-order potentials is
substantially improved by using an environment-dependent first nearest neighbor definition.

PACS numbers: 34.20.Cf, 62.20.mj, 62.20.mt, 68.35.Af, 64.70.K-, 61.48.De

Many physical processes in condensed matter are stud-
ied by molecular dynamics employing empirical inter-
atomic potentials1. Millions of atoms and micron-scale
systems are now accessible by order-N scaling tech-
niques2. This is closely related to a rigorous reduction
of the interaction range rc in the employed empirical
potentials. While metallic potentials usually involve at
least third nearest neighbors (NN)1, state-of-the-art co-
valent potentials consider first NN bonds only3–5. Unfor-
tunately, there is a serious problem related to the drastic
reduction of rc. In general, one can state that the faster a
bond energy vanishes as a function of distance, the larger
the forces required for bond-breaking. This leads to a se-
rious overestimation of critical loads and shear stresses
in fracture mechanics and tribology, which existing po-
tentials fail to describe properly6,7.

In this letter, this failure is demonstrated and cured
for the Brenner bond-order potential (BBOP)3. This
prominent hydrocarbon potential has been designed to
give reasonable estimates for the energetics and struc-
tures of solid phases and molecules and it has been
successfully used in numerous studies8. Figure 1 il-
lustrates three problematic cases. A crack tip in dia-
mond shows artificial blunting (Fig. 1a) instead of an
expected brittle fracture9. Experimentally, carbon nan-
otubes break brittle at low temperatures10, while BBOP
predicts a ductile necking (Fig. 1b). Furthermore, a
shear-induced diamond-to-graphite transition11,12 is not
captured correctly (Fig. 1c). The BBOP critical shear
stresses (72 GPa and 75 GPa for a positive and a negative
shearing direction, respectively13) underestimate corre-
sponding reference values (175 GPa and 95 GPa) from
density functional (DFT) calculations11. Even worse, the
ordering of these values is reversed and the final structure
is wrong for one shear direction.

Likewise, structural problems arising in the descrip-
tion of amorphous carbon (a-C) materials14 (essentially
a misestimation of the sp2/sp3 phase equilibrium) can
be traced back to a too small rc. Naively extending rc
to include further neighbor shells changes the potentials’

properties (e.g. leading to too weak elastic behavior and
a tendency to close-packed structures), since bond in-
tegrals for more distant neighbors can generally not be
determined by extrapolation of first NN interaction en-
ergies15.

In this work, we retain the idea of considering first NN
interactions only while dynamically adjusting rc depend-
ing on the local atomic environment of a bond. This can
be achieved by determining NNs from a criterion other
than distance. We show that empirical screening func-
tions as introduced by Baskes16 can be combined with
BBOP to a computationally efficient scheme that avoids
the aforementioned deficiencies. This procedure can be
considered an empirical incarnation of analytic bond-
order formulations which directly mimic environment-
dependence of bond-integrals using screening functions17.
The screening approach has to be distinguished from
coordination-dependent short range cutoff procedures18
that only improve equilibrium properties without fixing
the bond-breaking problem.

The original BBOP total energy3 which we use in this
work19 is given by a sum over repulsive (Vr) and attrac-
tive pair potentials (Va)

E =
∑
i<j

(Vr(rij) + bijVa(rij))fc(rij). (1)

Here rij denotes the distance between atom i and j, bij
the bond-order and fc a cut-off function3 which smoothly
zeroes the interaction beyond a critical distance. In the
following, we propose a modified cut-off scheme (Fig. 2a)
that uses this simple formulation only for very small rij .
For larger rij , the interaction might be reduced by a third
atom k. We consider a bond between atoms i and j to
be entirely screened by atom k if the coefficient

Cijk =
2(Xik +Xjk)− (Xik −Xjk)2 − 1

1− (Xik −Xjk)2
(2)

falls below a critical value Cmin, while an unscreened
bond corresponds to Cijk > Cmax. Here, Xik =
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FIG. 1: (Color online) The failure of the original Brenner potential. (a) A crack on a diamond (111) surface and (110)
crack plane shows crack tip blunting and does not propagate at 10% strain in contrast to common experimental wisdom. (b)
Quasistatically pulling a 5 × 5 carbon nanotube leads to ductile behavior whereas quantum calculations and low temperature
experiments predict brittle fracture. (c) Diamond transforms to graphite under shear loading. In addition to underestimating
the necessary shear stress, the Brenner potential shows the wrong transition behavior in one of the loading directions. DFT
calculations predict a different rotation of the graphene planes after the transition for the “positive” (left) and “negative”
(right) shear direction. Insets: Results obtained using the modifications presented in this paper.

(rik/rij)2 and a geometric explanation for this coefficient
is given in Fig. 2b or Ref. 16. The total screening func-
tion Sij is then given by Sij = 0 if the bond ij is entirely
screened and otherwise by

Sij =
∏

k,Cijk<Cmax

exp

[
−
(
Cmax − Cijk

Cijk − Cmin

)2
]
. (3)

Finally, a modified cut-off function is defined by

fc(rij) = f12
c (rij) + (1− f12

c (rij))f34
c (rij)Sij (4)

where f12
c (r) is the original and f34

c (r) an additional cut-
off function. The former switches the interaction off be-
tween radii r1 and r2 and the latter between r3 and r4
(Fig. 2a). These functions are identical to those used in
the original formulation of the potential3. Equations (2)-
(4) can be regarded as an empirical recipe. Ref. 17 pro-
posed a physically motivated scheme for angular screen-
ing in the same context which does not have the simplic-
ity and numerical efficiency of the approach presented
here. Considering the empirical nature of the original
BBOP we felt that eqns. (2)-(4) are more adequate.

Table I documents our choice of r1, r2, r3, r4, Cmin

and Cmax. These parameters were determined as fol-
lows. We considered the work of separation E111(z) and
E110(z) of two unrelaxed diamond (111) and (110) sur-
faces, respectively. Here, z is the separation of the sur-
faces. The cut-off parameters were identified by requir-
ing smoothness of these functions such that the square of
their second derivatives were minimized while restricting
the maximum cut-off to 4.0 Å. This fit did not involve
additional ab-initio data but gave reasonable agreement
with ab-initio calculations (inset in Fig. 4b). Spurious
wells in the cohesive force functions −∂E111(z)/∂z and
−∂E110(z)/∂z, were removed by choosing individual r3
and r4 values for the pair potentials Va and Vr (r3ar, r4ar),
the bij formula and the dihedral energy (r3bd, r4bd) as

FIG. 2: Cut-off formulation for the bond ij. (a) Four cut-off
radii are used. The interaction is always computed if rij < r1.
For r1 < rij < r4 screening is considered. The inner gray
region switches between these two cases and the outer gray
region smoothly zeroes the potential. (b) Screening of the
bond ij: Ellipses (dashed-line) are constructed through all
third atoms k with i-j being the first half axis. The coefficient
Cijk is then given by the square of the fraction of the second
half axis to the first half axis. For further details see text.

well as for the neighbor and conjugation cut-offs occuring
in the bij (r3nc, r4nc).

The parameters Cmin and Cmax were restricted to the
range between triangular (Cmax ≤ 3) and square struc-
tures (Cmin ≥ 1) and were optimized to reproduce hy-
bridization curves for amorphous carbon. Both values
were sampled in steps of 0.1 and we found that in the
vicinity of Cmin = 1.0 and Cmax = 2.0 the results
were closest to those obtained by other methods (see
Fig. 3) within the error bars from 10 independent runs.
Amorphous carbon (a-C) samples with 512 atoms were
quenched from the melt similar to previous studies that
employed DFT20,21 or density functional based tight-
binding (DFTB)22. Temperature control was achieved by
velocity rescaling. After 0.5 ps equilibration at 5000 K the
sample was cooled down exponentially to 300 K in 0.5 ps,
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r1[Å] r2[Å] Cmin Cmax

1.95 2.25 1.0 2.0

r3ar[Å] r4ar[Å] r3bd[Å] r4bd[Å] r3nc[Å] r4nc[Å]

2.179347 2.819732 1.866344 2.758372 1.217335 4.0

TABLE I: Radii and critical Cmin/max used for the hydrocar-
bon potential. Note, that in this parametrization two graphite
planes interact and the inter-plane distance has a local mini-
mum at 3.34 Å. The cohesive energy of graphite is −7.41 eV.
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FIG. 3: (Color) Properties of quenched a-C. (a) Hybridiza-
tion (fraction of sp3 sites) as a function of density for a-C. (b)
Ring statistics of the a-C samples at a density of 2.9 g/cm3.
Inset: Pair distribution for the same samples. The data has
been averaged over 10 consecutive runs. 512 atom samples are
used in the Brenner and DFTB calculations while the DFT
data was computed using 64 atom samples21. The hybridiza-
tion was determined by counting neighbors within a cut-off of
1.85 Å.

followed again by 0.5 ps of equilibration. The resulting
structure was analyzed with respect to sp3 content, as
well as pair distribution and ring statistics23.

Figure 3 compares the results of our simulation with
DFT20,21, DFTB22 calculations and the unscreened
BBOP. An almost perfect match with the hybridization
(Fig. 3a) of the quantum reference is found over a range of
densities when introducing the screening approach with
the appropriate Cmax and Cmin

24. In ring statistics, the
majority of rings is now shifted from around 9 atoms to 6
atoms substantially improving the agreement with quan-
tum calculations (Fig. 3b). The same holds for the radial
distribution function (inset of Fig. 3b).

In order to evaluate the performance of our modified
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FIG. 4: (Color) Crack propagation on the diamond (110)
plane. Solid lines give the bond length of the bond behind
the crack tip for an increasing stress intensity factor (load-
ing). For a decreasing stress intensity factor (unloading) the
bond length of the bond in front of the crack tip is displayed.
These are the dashed lines. The stress intensities are increased
in steps of 0.05KG. For more information on the DFT calcu-
lations and the specific crack configuration used see Refs. 25
and 26. (a) [110] crack front (b) [001] crack front. Inset: Co-
hesive force function ∂E110(z)/∂z of the unrelaxed diamond
(110) surface as a function of surface separation z.

Brenner potential, we consider two examples: fracture on
a diamond (110) crack plane (Fig. 4) and a shear-induced
diamond to graphite transition (Fig. 1c). Fracture in di-
amond is investigated by considering a small atomistic
region around a crack tip that is either aligned along the
[110] or the [001] direction (see Fig. 4a and Fig. 4b, re-
spectively) and employing the mode I near field solution
of continuum fracture theory to the boundaries25,26. The
stress intensity factor K is stepwise increased and after
each step the system is relaxed to the ground state us-
ing the fast inertial relaxation engine27. Fig. 4 displays
the bond length at the crack tip as a function of K/KG.
Results from the original unscreened24 and our screened
BBOP are compared with reference DFT calculations28.

Without screening functions, the bond never breaks up
to K = 2KG and rejoins at a much to low K < 0.6KG

when starting from an initially open configuration. In-
cluding screening functions, the bond breaks properly.
This is because the maximum of the cohesive force func-
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tion as shown in the inset in Fig. 4b approximately
matches the results from the DFT calculations. Its shape
does however show spurious oscillations. These are at-
tributable to the treatment of the π-electrons within the
Brenner potential. The interpolation prescription for the
F -tables in Ref. 3 leads to unphysical energy barriers
when bonds are collectively broken.

For the [110] crack front the ratio of the stress inten-
sities at which bonds break or rejoin ∆K = K+ − K−

to the critical stress intensities ∆K/KG which describes
lattice trapping are in quantitative agreement with the
DFT. On the other hand, our potential does not repro-
duce the smooth opening of the bond which is seen in
DFT calculations of the easy [001] crack front. The
smooth opening of bonds in the latter case is most likely
an effect caused by the details of the electron density
at the crack tip. Appart from this minor discrepancy,
we can conclude that screening improves the fracture
mechanics of BBOP considerably leading to the correct
brittle behaviour in diamond (Fig. 1a) and in nanotubes
(Fig. 1b).

Finally, we apply the screened BBOP to the transition

from diamond to graphite under shear following the route
in Ref. 11. For both, positive and negative shear we find
a transformation into the same graphitic structure as the
DFT calculations11 (see Fig. 1c). Critical stresses are
285 GPa and 150 GPa for the positive and negative shear
direction, respectively. While this is an overestimation
of the 175 GPa and 95 GPa obtained from DFT calcu-
lations11, the modifications to the Brenner potential do
lead to the proper structures and a proper ordering of
the shear stresses.

In concluding we would like to point out that initial
tests on the silicon-carbide potential of Tersoff5 show sim-
ilarly encouraging results. This fosters the expectation
that the introduction of an environment-dependent cut-
off into simple bond-order potentials will pave the way
to reliable large-scale simulations of fracture and friction
in covalent materials.
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