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Abstract—As modern industrial processes become more and
more complex, machine learning is increasingly used to gain
additional knowledge about the process from production data.
Up to now these methods are usually based on correlations
between process parameters and hence can not describe cause-
effect relationships. To overcome this problem we propose a
hybrid (constraint and scoring-based) structure learning method
based on a Bayesian Network to detect the causal structure out
of its data. Starting with an empty graph, first the underlying
undirected graph is learned and edges coming from root nodes
are directed using a constraint-based approach. Next a scoring-
based method is used in order to calculate the uncertainty for
each possible directed edge and out of this construct the Bayesian
Network. Finally soft interventions are applied to the process in
order to learn the real causal structure. Our approach is tested
in simulations on a chemical stirred tank reactor and on an
experimental laboratory plant.

I. I NTRODUCTION

Generally modern processes are complex systems in which
not all relationships are known (i.e. partial reactions in chemi-
cal processes). To detect important and yet unknown relations
between different process parameters, recently machine learn-
ing algorithms attracted more attention ([20],[6],[9]).
However up to now these methods are usually based on
correlations and hence can not describe the effect and the cause
between the found different process parameters. That’s why
without having a thorough expert background it is not possible
to conclude how the application of the found knowledge (i.e.
in form of changing process control) will have effect on the
process.
One approach to overcome this problem and to detect causal
structures in process data is to use Bayesian networks (BNs)
[14] that are compact graphical representations of joint proba-
bility distributions. Recently these models have aroused much
attention especially in the area of system biology [3],[10]and
cognitive science [5]. Still in process engineering BN are only
used for fault diagnosis [7] and monitoring [19] tasks but not
for the detection of cause-effect relationships in data. For this
reason we will examine the use of BN to detect unknown
causal associations in measurement data coming from process
factors. In addition, we will use interventional data ([12]) to
distinguish between possible causal structures found in the
observational data.
Regarding Bayesian Networks there are essentially two kinds
of approaches for learning the structure. The first one tries
to find a graph which satisfies all the statistical constraints
implied by the empirical conditional independences in the data.
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Fig. 1. Developed method to learn the causal structure using observational
and interventional data in process engineering.

The idea of this approach is exploited in [15] in form of the
PC-algorithm and theoretically leads to a subset of directed
acyclic graphs that all share the same set of probabilistic
dependency relations. Still one special problem of constraint-
based algorithms is that they face problems when the sample
size is low [1]. Furthermore, due to repeating the same
statistical tests, errors propagate through the network and can
lead to bad results [17].
The second approach uses some scoring metric to find a
graph which returns the model with the highest scoring. This
approach is usually more robust than performing a constraint-
based method but does not imply that the most probable model
also describes the underlying causal structure.
Furthermore, as explained in [14] both approaches suffer from
the fundamental problem that they can only identify the model
up to its Markov equivalence. This means that both methods
can only find models that imply the same set of (conditional)
independences implied in the data.
The only way to distinguish between Markov equivalent
models is to perform interventions. An intervention means
that some manipulation has been performed from the outside
on some part of the process. Interventions can be modeled in
different ways (see [2] for an overview). Traditionally they are
modeled by clamping a variable to a fixed value (i.e. fixing
a temperature or a valve in a process). Unfortunately, usually
this can not be applied to industrial processes as this would
in most cases harm the installed plant.
For this reason we propose to usesoft interventionsas
described in [12] to distinguish between the found Markov



equivalent models. The advantage of this modeling is that
depending on a user selected pushing factor, the force of the
impact of the intervention can be described in the BN. Namely
small changes as for example changing the set point are
described assoft pushingand interventions where a parameter
is fixed to one value are described ashard pushing.
To learn the underlying causal structure of a process we
propose the following method outlined in figure 1. Starting
with an empty graph, first the skeleton (the underlying undi-
rected graph) is learned and edges coming from root nodes
are directed using a constraint-based approach. Using this
approach means that the found partially directed graph is in
terms of causality correct. Next a scoring-based method as
presented in [3] is used. This method calculates the uncertainty
for each possible directed edge and out of this constructs the
BN. Calculating the uncertainties in the graph tells if it can
be trusted in the the found BN or not. Finally we perform soft
interventions to learn the real causal structure.
The performance is tested on a chemical stirred tank reactor
and on an experimental plant where liquid is pumped around
in cycles.
The paper is structured as follows: In section II BNs are
reviewed and learning through soft interventions is explained.
Section III explains the developed hybrid approach for de-
tecting causal structures in observational data. Finally section
IV shows the obtained results using our approach with and
without using interventional data on a .

II. L EARNING BAYESIAN NETWORKS

Formally a BN consists ofXi, Xj , Xk, ... nodes that rep-
resent in our case process parameters and are linked together
using directed or undirected edges.
Assuming that all nodesX are available and a priori globally
independent, a BN can be computed using the product of the
marginal likelihod of each family (a node and its parents) in
the net.
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In herexn
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For a family the parameter priors have to satisfy local in-
dependences as well. For this the BDeu (Bayesian Dirichlet
equivalence uniform) prior is selected which is described in
[8] by using the following equation:
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Fig. 2. Illustration of the chemical stirred tank reactor andthe underlying
causal structure derived from the differential equations.

While

αij =
1

qiri
(4)

Herebyri describes the number of states inXi, qi the number
of possible states of the graphXGi

andΓ describes the Gamma
function.
It is assumed that the available data is not generated by
experiments but available as usual production data including
some statistical significant variation for input and outputdata
and that the number of selected process parameters is sufficient
to detect all causal dependencies. In addition it is assumed
that the causal structure stays unvaried if interventions are
performed on the process [14].

A. Learning through soft interventions

Hard pushing is usually not suitable for industrial processes
as this would mean that some parameters would have had to
be clamped to exactly one value and this would in most cases
harm the process. For that reason soft interventions introduced
by [12] are used as hereby variables do not have to be fixed
to one value.
Soft interventions mean that an intervention just increases the
likelihod that a node enters a target statex∗

i depending on a
pushing forceωi between[0...∞]. If ωi is chosen to be0 there
has been some small mechanism change, without any target
state, forωi →∞ an intervention has been performed where
the process variable is effectively cut off from its parents.
In the mathematical framework of a BN an intervention is
modeled in form of so called intervention nodesFn

i ( for F =
force). IsFn

i = 1, this means there has been an intervention
on nodei and the model parametersθ1i are used. IsFn

i = 0
the model parameters without interventionθ0i are selected.
For this equation 2 has to be extended to consider the
interventions in the marginal likelihood. Now the likelihood
is separated into two categories, namely in a part where
the nodes are observed and a part where there has been an
intervention. In other wordsθ0i andθ1i need to have different



hyper parameters.
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This leads to the following description using the BDeu prior:
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Equation 6 shows that the pushing of the intervention solely
depends on the selection of the parameter valueα1

ij . This
can be modeled by assuming that there is a deterministic
relationship betweenα0

ij and α1
ij described over a pushing

factorωi as follows:

α1
ij = α0

ij + ωiet (7)

In this equationt = x⋆
i is the target value and the vector

et = (0, ..., 0, 1, 0, ..., 0) whereas the value of one is describing
the direction in which the BDeu prior is pushed in direction
of the target value.

III. H YBRID STRUCTURE LEARNING APPROACH

To learn the causal structure our developed method starts us-
ing the MMPC algorithm [17] to find the underlying skeleton
(graph without directed edges) in the data. Out of the found
skeleton the root nodes are detected by looking for collisions
as this step has the advantage that assuming faithfulness [14]
in the data the found structure is in terms of causality correct.
Out of the found partially directed acyclic graph the most
possible BN is found by calculating the uncertainty of each
edge in the BN. This has the advantage compared to other
scoring-based methods that it can be seen directly if it can be
trusted on the found BN or not (if uncertainty in the BN is
high or low).

A. Step 1: Detecting skeleton

This step reduces the number of possibles graphs that can
possibly be constructed out of the available measurement data
using the scoring-based approach described in section III-C.
For calculation of the skeleton the MMPC (max-min parents
and children) algorithm is used which is separated in two
phases summarized here for completeness. For a more
detailed explanation, we refer to [17].
In the growing (first) phase, nodes that are conditionally
dependent on a nodeXi are selected as a possible set of
parents and children according to a heuristic function (max-
min heuristic). Iteratively a nodeXi enters the candidate
set if it maximizes the minimum association (defined as the
minimal conditional dependency of a nodeXi andXj) to Xj

given the current candidate set. This means that each time the
node is selected which is most unlikely to be conditionally
independent from the subset of the current candidate set. The
phase is finished after all dependent variables have entered
the candidate set.
In the shrinking (second) phase, the false-positive variables
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Fig. 3. Calculation of the causal structure after 1000 productions using
only observational data. The left plot shows the found skeleton and the
collisions coming from root nodes, the right plot shows the selected edges
after calculating the edge uncertainties.

that entered the candidate set during the growing phase are
removed. False positives are variables that are independent of
Xi given some subset of all variables.

B. Step 2: Directing root node edges

After finding the skeleton the root nodes of the graph are
detected. This step reduces the possible BNs that can be
constructed by calculating the edge uncertainties further.
To find these nodes the detection of collisions in the skeleton
is performed. The idea behind collisions is shown in Table
I with the representation of the conditional independences.
Finding that the nodesX1 andX3 are independent conditional
on X2 is consistent with a chain and a fork. This means that
these structures can not be detected uniquely but collisions
can be used to direct edges in the skeleton and imply a unique
representation concerning the conditional independence.
In industrial processes root nodes represent input parameters.
That means finding these nodes reduces significantly the num-
ber of possible graphs that can be detected when calculating
the edge uncertainties.

TABLE I
POSSIBLE REPRESENTATIONS OF ADAG AND ITS (CONDITIONAL)

INDEPENDENCES.

DAG Representation (Conditional) Independences
Chain Xi → Xk → Xj Xi ⊥ Xj | Xk

Fork Xi ← Xk → Xj Xi ⊥ Xj | Xk

Collision Xi → Xk ← Xj Xi ⊥ Xj but Xi 6⊥ Xj | Xk

As [17] shows that constraint-based methods lose their
statistical power as the test for conditional independenceis
repeatedly applied, only collisions that include at least one
root node are used for describing the graph. The other edges
are directed using the scoring based approach described in the
following section.
To calculate the conditional independences implied in the data
theG2 statistic as described in [15] is used.



C. Step 3: Calculating edge uncertainties

In this step the resulting graph from step one is used to
calculate the uncertainties of each edge. The clear advantage
of this method is that it shows on which edges in the BN
exist uncertainties and if it can be trusted on the found graph
or not.
The weighting of the edges is performed by calculating
the marginal likelihood function by using the equation as
described in [3] :

P (fxk→xj
|Gj , X

1:N ) =
P (fxk→xj

, X1:N |Gj)

P (X1:N |Gj)
(8)

In this equation the nominator and the denominator can be
calculated separately. The nominator is calculated through
the sum of the individual marginal likelihood of each Graph
described as follows:

P (fxk→xj
, X1:N |Gj) =

∑
Gk∈Gj

P (Gk|Gj)P (X1:N |Gk) (9)

The denominator results in the sum of the marginal likelihood
from each possible family for each node and a following
multiplication over the number of nodes:
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1:N
k |x1:N

Gk
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The value for the direction of each edgeXi → Xj can differ
from zero to one. In this case a value of zero means that the
edgeXi → Xj does not exist, a value of one means that
the direction of the edge exists for sure and 0.5 describes the
maximum value of the uncertainty of the edge namely it would
symbolize an undirected edge.

IV. RESULTS

The proposed approach is used to learn the causal structure
of a chemical stirred tank reactor and an experimental setup.
For validation and visualization of the experimental results the
L1 edge error is calculated as described in [13]. This error is
defined as follows:

L1 =
∑n

i=1

∑n

j=i+1 IG⋆(Xi → Xj)(1− P (Xi ← Xj)

+IG⋆(Xi → Xj)(1− P (Xi ← Xj)

+IG⋆(Xi ⊥ Xj)(1− P (Xi ⊥ Xj) (11)

The parameterIG⋆(Xi → Xj) is used as an indicator. If it has
the value1, this means that there is a directed edgeXi → Xj

in the real graph.G⋆. As theL1 edge error is calculated using
the edge uncertainties, the error can have a non integral value.

A. Chemical stirred tank reactor

To validate the method data coming from a chemical
continuous stirred tank reactor with jacket cooling is used
for analysis. The reactor is fed with a solution of a reactant
with the concentrationcA0. The reactant undergoes a chemical
reaction following the so called van de Vusse scheme [18].
Thereby the desired main reaction with the concentrations
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Fig. 4. L1 edge error of the chemical stirred tank reactor using only
observational data and performing interventions. The lowerplot shows two
different types of intervention namely performing soft and hard pushing

cA0 → cA is accompanied by two follow up reactions
cA → cB and cA → cC that are both resulting in unwanted
byproducts.
The control of the inflowV̇in is used as a control to keep the
concentrationcA on a constant value. The process is illustrated
in figure 2. The relevant equationscA, cB and cC of the
process are described as follows:

ċA = −k1(T )cA − k3(T )cA + [cA0 − cA]V̇in (12)

ċB = k1(T )cA − k2(T )cB − cBV̇in (13)

ċC = k3(T )cA − k2(T )cC − cC V̇in (14)

The kinetics k1(T ), k2(T ) and k3(T ) are modeled using
Arrhenius functions of the temperature and are calculated as
follows:

ki(T ) = ki0e
(

−Ei
Ti+273.15

) (15)

The enthalpy balance regarding fluid temperatureT and cool-
ing jacketTk leads to the following two differential equations.

Ṫ = α[Tk − T ] + [Tin − T ]V̇in (16)

Ṫk = β[T − Tk]γQ̇ (17)

Within hereα andβ are compound factors and describe the
coefficient of the reactor- and fluid temperature. The parameter
γ describes the heat conductive coefficient between heating
power and the reactor temperature. Asα is much smaller than
β the edge in the graph is directed fromTk → T .
The used values are shown in table II. The BN corresponding
to the used differential equations is illustrated in figure 2as
well.

1) Generating a feature database:To capture the process
dynamics that are required to detect the causal structure inthe
data the start-up phase of the reactor is used.
For this several start-up runs are performed while the initial



values of the concentrationscA, cB , cC , the fluid temperature
TFl and the reactor temperatureTk are varied from run to run.
Furthermore, the mean value of the concentrationcin and the
temperatureTin are varied and the infloẇVin is kept constant.
As the start-up of the process is an instationary phase the
generated data cannot be used directly and a feature extraction
[11] has to be performed to describe each run. For this the
mean value is calculated for each process value between the
beginning and the end of the start-phase. By definition the
start-phase is finished as the concentrationcA reaches its
stationary value.

TABLE II
MODEL PARAMETERS OF CHEMICAL STIRRED TANK REACTOR.

k10, k20 = 1.28 · 1012h−1 k30 = 9.04 · 109h−1

E1, E2 = 9758.3 E3 = 8560

α = 10.82h−1 β = 86.68h−1

γ = 0.1 K
kJ

cA,SP = 1.5mol
m3 TSP = 115K

Tk,SP = 108K V̇SP = 0.1hr−1

cA0 = 6
mol
m3 Tin = 404K

2) Results: In figure 3 the results after 1000 productions
are shown. On the left side the skeleton including the found
collisions is shown, on the right side the resulting BN after
calculating the edge uncertainties. The previously wrong detect
edges fromcA0 → cB and cA0 → cC are removed after cal-
culating the edge uncertainties. Furthermore, the two existing
edges, namely the edgescA → cB andT → cB were removed
as well and declared as being unimportant.
In figure 4 the upper plot illustrates theL1 edge error against
the used number of productions. Having only a small amount
of productions shows a high uncertainty included in the edges
of the BN as the error fluctuates a lot. Finally after 750 runs
theL1 edge error converges towards an error of two.
To detect the real real causal structure and finally directing the
last two edges of the graph interventional data has to be used.
In detail an intervention will be performed on the parameter
cA0. For this the process parametercA0 is once clamped to
the value6.5 which corresponds toω → ∞ (hard pushing).
For thisω is selected as1010. In the other case the parameter
cA0 is fixed to the value6.5 but still including a variance of
σ2 = 0.5 (soft pushing). For this case the value ofω is selected
to be 0.01. For a thorough discussion on how to exactly set
value of ω we refer to [12] as this is out of scope in this
publication.
The results of the two interventions are shown in the lower
plot of figure 4. This shows that both types of intervention find
the right underlying causal structure of the stirred tank reactor.
Performing a hard pushing results after40 productions in the
right causal structure, while performing only soft pushingtakes
60 productions until the right causal structure has been found.
This shows that small parameter changes are already sufficient
to detect the real causal structure only that it takes longeruntil
they are found compared to clamping a parameter to a fixed

Flow Pressure Valve

Level

Pump

Fig. 5. Experimental setup where liquid is pumped around in cycles. On
the right hand side the actor/sensor structure of the process is shown which
is reconstructed from data.
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value.

B. Experimental laboratory plant

Finally the method is tested on an experimental laboratory
plant. This station consists essentially of two containerswhere
liquid is pumped around in cycles with different valve po-
sitions [4]. The pumping power is kept constant during the
whole time which means that the process is run in feed-
forward control. The process as well as the structure of the
sensors and actors is shown in figure 5. In addition there is
a stop cock between the pump and the flow meter where a
(soft) intervention can be performed to push the process into
a different set-point.
It has to be mentioned that this process does not include
collisions meaning that during the first phase the skeleton will
be obtained but no edges will be directed. As well as in the
chemical reactor it is assumed that no information except the
measured data is available.

1) Results: The results using only observational data are
shown in the upper plot in figure 6. This shows that after 700



data points the BN has converged with aL1 edge error of four
after fluctuation between an edge error of three and of five.
Figure 7 shows the resulting BN including the skeleton and
the directed edges after calculating the edge uncertainties. The
skeleton shows that not all conditional independences could be
detected. By calculating the edge uncertainties in spite ofthe
chemical reactor no edges were removed but all edges point
in the direction of the liquid flow and thus describing the right
causal associations.
To reduce theL1 edge error and to detect the underlying causal
structure as a next step soft interventions are performed. In
detail the stop cock is used to reduce the liquid flow in the
process by half. For this the pushing factorω is selected to
have the value0.5.
The results of the intervention are shown in figure 6 in the
lower plot. After fifty data points theL1 edge error is reduced
to three and after a total of 200 data points another edge can
be directed and the error is further reduced to a value of two.
By performing only an intervention in form of reducing the
water flow it is not possible to reduce the edge error further.

V. CONCLUSION AND FUTURE WORK

It has been investigated if it is possible to detect not only
correlations but cause-effect relationships in measurement data
coming from industrial processes.
The results show that using the developed hybrid learning
method it is possible to discover the underlying causal struc-
ture of the process by using only measurement data. For this
first a constraint-based method is used to detect the skeleton
of the graph and directing the edges coming from root nodes.
As a second part the edge uncertainties calculated using a
scoring-based method. By using only observational data it is
already possible to detect the cause-effect relationship of the
main parameters without having any prior knowledge of the
process.
In addition soft interventions can be used to detected and direct
more edges from the underlying causal structure. It has been
shown that this approach is useful as it is usually not possible
to clamp nodes to a fixed value without damaging a process
but it is possible to perform small parameter changes. The
results show that performing soft pushing takes some data
points longer than performing hard pushing on the process
but comes to the same results.
The performance of this approach has be shown on a theoret-
ical derived chemical stirred tank reactor and finally by using
an experimental station the practicability of the approachhas
been proven. Regarding the stirred tank reactor the complete
acyclic graph could be found, regarding the experimental plant
the structure could be found with anL1 edge error of two.
There are many interesting directions for further research. A
first part will be to extend this work to develop an active
learning strategy based on the calculated edge uncertainties. In
addition it should be investigated how soft interventions can be
used to uncover the existence of hidden variables that were not
included in constructing the BN. Finally the above described

Detected skeleton  

Flow

Pressure

Level

Pump

Valve

Flow

Pressure

Level

Pump

Valve

Flow

Pressure

Level

Pump

Valve

Edge uncertainties 

observational data

Edge uncertainties

after interventions

Fig. 7. Different steps of the calculation of the causal structure. After
performing all steps the causal structure can be retrieved from the data with
two additional directed edges.

technique can be adapted to learn the structure of a dynamic
Bayesian network as the factor time is not yet included.
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