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Abstract—As modern industrial processes become more and

more complex, machine learning is increasingly used to gain
additional knowledge about the process from production data. - P : |
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Up to now these methods are usually based on correlations

. node edges dge uncertaintie
between process parameters and hence can not describe cause- e e g
effect relationships. To overcome this problem we propose a Soft interventions
hybrid (constraint and scoring-based) structure learning methe |7~ """ """ T T IN I T o ———————2
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based on a Bayesian Network to detect the causal structure out ! [Changing process :
of its data. Starting with an empty graph, first the underlying i | parameters »edge uncertaintics),
undirected graph is learned and edges coming from root nodes N il Sttt
are directed using a constraint-based approach. Next a scoring-
based method is used in order to calculate the uncertainty for
each possible directed edge and out of this construct the Bayesian of the process
Network. Finally soft interventions are applied to the process in
order to learn the real causal structure. Our approach is testd Fig. 1. Developed method to learn the causal structure udisgruational
in simulations on a chemical stirred tank reactor and on an and interventional data in process engineering.
experimental laboratory plant.

I. INTRODUCTION

Generally modern processes are complex systems in whildhe idea of this approach is exploited in [15] in form of the
not all relationships are known (i.e. partial reactionstiemi- PC-algorithm and theoretically leads to a subset of dicecte
cal processes). To detect important and yet unknown relticacyclic graphs that all share the same set of probabilistic
between different process parameters, recently machame-le dependency relations. Still one special problem of comgtra
ing algorithms attracted more attention ([20],[6],[9]). based algorithms is that they face problems when the sample
However up to now these methods are usually based sme is low [1]. Furthermore, due to repeating the same
correlations and hence can not describe the effect and tise castatistical tests, errors propagate through the netwodkcam
between the found different process parameters. That's wiead to bad results [17].
without having a thorough expert background it is not pdesibThe second approach uses some scoring metric to find a
to conclude how the application of the found knowledge (i.graph which returns the model with the highest scoring. This
in form of changing process control) will have effect on thapproach is usually more robust than performing a consgtrain
process. based method but does not imply that the most probable model
One approach to overcome this problem and to detect causlglb describes the underlying causal structure.
structures in process data is to use Bayesian networks (BIRs)thermore, as explained in [14] both approaches sufben fr
[14] that are compact graphical representations of joiobps the fundamental problem that they can only identify the nhode
bility distributions. Recently these models have arousedhm up to its Markov equivalence. This means that both methods
attention especially in the area of system biology [3],[48H can only find models that imply the same set of (conditional)
cognitive science [5]. Still in process engineering BN ané/o independences implied in the data.
used for fault diagnosis [7] and monitoring [19] tasks but nd’he only way to distinguish between Markov equivalent
for the detection of cause-effect relationships in data.tRis models is to perform interventions. An intervention means
reason we will examine the use of BN to detect unknowihat some manipulation has been performed from the outside
causal associations in measurement data coming from grocas some part of the process. Interventions can be modeled in
factors. In addition, we will use interventional data (L& different ways (see [2] for an overview). Traditionally yhare
distinguish between possible causal structures found én tmodeled by clamping a variable to a fixed value (i.e. fixing
observational data. a temperature or a valve in a process). Unfortunately, ysual
Regarding Bayesian Networks there are essentially twoskintthis can not be applied to industrial processes as this would
of approaches for learning the structure. The first one tries most cases harm the installed plant.
to find a graph which satisfies all the statistical constginFor this reason we propose to useft interventionsas
implied by the empirical conditional independences in thad described in [12] to distinguish between the found Markov



equivalent models. The advantage of this modeling is that
depending on a user selected pushing factor, the force of th&«Ti
impact of the intervention can be described in the BN. Namely
small changes as for example changing the set point are
described asoft pushingand interventions where a parameter

is fixed to one value are described fzrd pushing

To learn the underlying causal structure of a process we
propose the following method outlined in figure 1. Starting

with an empty graph, first the skeleton (the underlying undi- @ @
rected graph) is learned and edges coming from root nodes

are directed using a constraint-based approach. Using this _IW
approach means that the found partially directed graph is in

terms of causality correct. Next a scoring-based method g 2. lllustration of the chemical stirred tank reactor ahd underlying
presented in [3] is used. This method calculates the uringrta causal structure derived from the differential equations.

for each possible directed edge and out of this construets th

BN. Calculating the uncertainties in the graph tells if inca

be trusted in the the found BN or not. Finally we perform sofVhile

interventions to learn the real causal structure. - 1 @)

The performance is tested on a chemical stirred tank reactor T i

and on an experimental plant where liquid is pumped around

in cycles. Herebyr; describes the number of statesXn, ¢; the number
The paper is structured as follows: In section Il BNs aref possible states of the grapfy;, andI” describes the Gamma
reviewed and learning through soft interventions is exmldi function.

Section Il explains the developed hybrid approach for dé is assumed that the available data is not generated by
tecting causal structures in observational data. Finalttien €xperiments but available as usual production data inegudi
IV shows the obtained results using our approach with ag@me statistical significant variation for input and outdata

without using interventional data on a . and that the number of selected process parameters is suffici
to detect all causal dependencies. In addition it is assumed
[I. LEARNING BAYESIAN NETWORKS that the causal structure stays unvaried if interventiors a

, performed on the process [14].
Formally a BN consists ofX;, X;, X, ... nodes that rep-

resent in our case process parameters and are linked togethe

using directed or undirected edges.

Assuming that all node& are available and a priori globally A- Learning through soft interventions
independent, a BN can be computed using the product of th
marginal likelihod of each family (a node and its parents) ig
the net.

Hard pushing is usually not suitable for industrial proesss
s this would mean that some parameters would have had to
be clamped to exactly one value and this would in most cases
4 harm the process. For that reason soft interventions inted
P(XEN|G) = Hp(:c}:N\xEN) 1) by [12] are used as hereby variables do not have to be fixed
! to one value.
Soft interventions mean that an intervention just incredbe
In herex? describes the value of the nodeindn describes |ikelihod that a node enters a target stafedepending on a
the possible states of the considered family, denoted’by  pushing forcev; between0...0c]. If w; is chosen to bé there
For a family the marginal likelihood can be calculated usingas been some small mechanism change, without any target

=1

the following equation including the model paramefr state, forw; — oo an intervention has been performed where
the process variable is effectively cut off from its parents

plat Mgy FEN) = /[ I p@}lze,,69)p(67)do; In the mathematical framework of a BN an intervention is
n;Fr=0 modeled in form of so called intervention nodes ( for ' =

_ . (2 force). IsF = 1, this means there has been an intervention

For a family the parameter priors have to satisfy local ir5n nodei and the model parametef$ are used. IS =
dependences as well. For this the BDeu (Bayesian Dirichigle model parameters without interventigh are selected.
equivalence uniform) prior is selected which is described For this equation 2 has to be extended to consider the
[8] by using the following equation: interventions in the marginal likelihood. Now the likelibd

@ I(on)) @ I(as; + Ny)) is separated into two categories, namely in a part where

p(etN|xEN) = H i v Y2 (3) the nodes are observed and a part where there has been an
P Dlag + Ny) o Tlay) intervention. In other wordg? and#! need to have different




hyper parametel’s. Detected skeleton and root node edges Directed edges using observational data

PN FEN) = [T o oo, 680)lp(69) 60 Cay @% @) Cag @{ (1)

This leads to the following description using the BDeu prior @ @
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Equation 6 shows that the pushing of the intervention solely
depends on the selection of the parameter vaitge This
can be modeled by assuming that there is a determinidtig- 3. Calculation of the causal structure after 1000 petidns using

. . 0 1 - . _only observational data. The left plot shows the found gskeleand the
r8|at'0n5h|p betweemij and g described over a pUShIngcollisions coming from root nodes, the right plot shows thiected edges

factorw; as follows: after calculating the edge uncertainties.

a}j = a?j + wiey @)

In this equationt = z} is the target value and the vectotthat entered the candidate set during the growing phase are
e: = (0,...,0,1,0,...,0) whereas the value of one is describingemoved. False positives are variables that are indepéenden
the direction in which the BDeu prior is pushed in directiorX; given some subset of all variables.

of the target value.

Ill. HYBRID STRUCTURE LEARNING APPROACH

To learn the causal structure our developed method starts ﬁs Step 2: Directing root node edges

ing the MMPC algorithm [17] to find the underlying skeleton after finding the skeleton the root nodes of the graph are
(graph without directed edges) in the data. Out of the fouRfbtected. This step reduces the possible BNs that can be
skeleton the root nodes are detected by looking for colisioconstructed by calculating the edge uncertainties further

as this step has the advantage that assuming faithfulnéks fo find these nodes the detection of collisions in the skeleto
in the data the found structure is in terms of causality @brrejs performed. The idea behind collisions is shown in Table
Out of the found partially directed acyclic graph the most ith the representation of the conditional independences
possible BN is found by calculating the uncertainty of eadfinding that the nodex; and X5 are independent conditional
edge in the BN. This has the advantage compared to othigy X, is consistent with a chain and a fork. This means that
scoring-based methods that it can be seen directly if it @n fhese structures can not be detected uniquely but coltision
trusted on the found BN or not (if uncertainty in the BN igan pe used to direct edges in the skeleton and imply a unique
high or low). representation concerning the conditional independence.

In industrial processes root nodes represent input paesset

That means finding these nodes reduces significantly the num-

This step reduces the number of possibles graphs that ¢an ot possible graphs that can be detected when calculating
possibly be constructed out of the available measuremeat dg, edge uncertainties.

using the scoring-based approach described in sectid. lll-

A. Step 1: Detecting skeleton

For calculation of the skeleton the MMPC (max-min parents TABLE |
and children) algorithm is used which is separated in twO PossIBLE REPRESENTATIONS OF DAG AND ITS (CONDITIONAL)
phases summarized here for completeness. For a more INDEPENDENCES
detailed EXpl_anat'Qn’ we refer to [17]. . DAG Representation (Conditional) Independences
In the growing (first) phase, nodes that are conditionally ~Chain X, — Xp — X; X L X; | Xk
dependent on a nod&’; are selected as a possible set of _Fork Xi = Xp = X; X LX; | Xy

Collision X = X +— Xj X; L Xj but X; 1 X]' | Xk

parents and children according to a heuristic function @max
min heuristic). lteratively a nodeX; enters the candidate
set if it maximizes the minimum association (defined as theAs [17] shows that constraint-based methods lose their
minimal conditional dependency of a nodg and X;) to X; statistical power as the test for conditional independesce
given the current candidate set. This means that each tiene tepeatedly applied, only collisions that include at leasé o
node is selected which is most unlikely to be conditionallyoot node are used for describing the graph. The other edges
independent from the subset of the current candidate set. Emne directed using the scoring based approach describéeé in t
phase is finished after all dependent variables have entefetbwing section.

the candidate set. To calculate the conditional independences implied in e d

In the shrinking (second) phase, the false-positive véegabthe G2 statistic as described in [15] is used.



C. Step 3: Calculating edge uncertainties 2 Observational data

In this step the resulting graph from step one is used to 5
calculate the uncertainties of each edge. The clear adyanta
of this method is that it shows on which edges in the BN
exist uncertainties and if it can be trusted on the found lyrap

10 Intervention on nodc

L, edge error

or not. 2
The weighting of the edges is performed by calculating 0 100 200 300 400 500 600 700 800 900 1000
the marginal likelihood function by using the equation as Productions

described in [3] :

Interventional data after 1000 observations

P(ka—mj)Xl:N'Gj)
P(Xl:N|G‘)
In this equation the nominator and the denominator can bews

calculated separately. The nominator is calculated throug ) o
the sum of the individual marginal likelihood of each Graph '

8

P(fwk‘)f”j |Gj7 Xl:N) =

dge error

described as follows: 0 20 40 60 80 100 120 140 160 180 200
Productions
P L XTNGy) = P(Gi|Gy)P(X"N|Gr) (9
(Faisz, 1G5 GEE:G (Gl G5) P Gr) () Fig. 4. L1 edge error of the chemical stirred tank reactor using only
LEG;

observational data and performing interventions. The loplet shows two
The denominator results in the sum of the marginal likelghod!erent types of intervention namely performing soft andchpushing
from each possible family for each node and a following

multiplication over the number of nodes: cao — ca is accompanied by two follow up reactions

ca — cg andcy — c¢ that are both resulting in unwanted
P(X"N|Gy) H > P(GrlG)p(N|zEN)  (10)  byproducts. .
k GreG; The control of the inflowl/;,, is used as a control to keep the
The value for the direction of each edgé — X, can differ concentratiort 4 on a constant value. The process is illustrated

from zero to one. In this case a value of zero means that fﬂef'gure 2. The r_elevant equatu.)r‘@;, cp and cc of the
edge X; — X, does not exist, a value of one means th&rocess are described as follows:

the direction of the edge exists for sure and 0.5 describes th éa = —ki(T)ea —ks(T)ea + [cao — calVin (12)
maximum value of the uncertainty of the edge namely it would ts = ki(T)ea — ka(T)en — cuVin (13)
symbolize an undirected edge. . .

tc = k3(T)ea —ke(T)ec — ccVin (14)

IV. RESULTS The kinetics k1 (T), k2(T') and k3(T) are modeled using

The proposed approach is used to learn the causal struciifghenius functions of the temperature and are calculated a
of a chemical stirred tank reactor and an experimental setyg|iows:

For validation and visualization of the experimental resthe (B )
L, edge error is calculated as described in [13]. This error is ki(T) = kjpe Ti#2715 (15)

defined as follows: The enthalpy balance regarding fluid temperaffirand cool-

Ly= 3> Y i Ter (Xi = X5)(1 = P(X; = X;) ing jacketT}, leads to the following two differential equations.
1= J=1 T (2
+lg(Xi = X;)(1 = P(X; < Xj) T =o[Tx =T+ [T — T)Vin (16)
+g-(Xi L X;)(1 - P(X; L X)) (11) Ty = B[T - TihQ 17)

The parametef« (X; — X;) is used as an indicator. If it has Within herea and 3 are compound factors and describe the

the valuel, this means that there is a directed edge— X; coefficient of the reactor- and fluid temperature. The patame

in the real graphG*. As the L, edge error is calculated usingy describes the heat conductive coefficient between heating

the edge uncertainties, the error can have a non integnaé valpower and the reactor temperature. A much smaller than

£ the edge in the graph is directed frdfy — 7.

The used values are shown in table 1. The BN corresponding
To validate the method data coming from a chemic&b the used differential equations is illustrated in figura?

continuous stirred tank reactor with jacket cooling is usedlell.

for analysis. The reactor is fed with a solution of a reactant 1) Generating a feature databasdo capture the process

with the concentration 4o. The reactant undergoes a chemicalynamics that are required to detect the causal structutesin

reaction following the so called van de Vusse scheme [18&lata the start-up phase of the reactor is used.

Thereby the desired main reaction with the concentratioRsr this several start-up runs are performed while theahiti

A. Chemical stirred tank reactor



values of the concentrations, cg, c¢, the fluid temperature
Tr; and the reactor temperatufg are varied from run to run.
Furthermore, the mean value of the concentratignand the
temperaturd’;,, are varied and the inflow,, is kept constant.
As the start-up of the process is an instationary phase the
generated data cannot be used directly and a feature éstract
[11] has to be performed to describe each run. For this theg
mean value is calculated for each process value between th
beginning and the end of the start-phase. By definition the
start-phase is finished as the concentration reaches its Fig. 5. Experimental setup where liquid is pumped around irlesycOn

stationary value. the right hand side the actor/sensor structure of the psoiseshown which
is reconstructed from data.

TABLE I
MODEL PARAMETERS OF CHEMICAL STIRRED TANK REACTOR Observational data

Reduction of water flow

k10, koo = 1.28 - 1012h=1  kgo = 9.04 - 10%h~1 g \
Ei1,E> =9758.3 E3 = 8560 s,

o =10.82n1 B =86.68n"1 <

gl =0.147 g0

CA,SP = 1.5%‘;} Tsp = 115K % 500 1000 1500
Ty sp = 108K Vep = 0.1hr—! Sample points

cap =624 Ty, = 404K

Interventional data after 1500 observations

P

&
n

2) Results:In figure 3 the results after 1000 productions
are shown. On the left side the skeleton including the found
collisions is shown, on the right side the resulting BN after
calculating the edge uncertainties. The previously wraetgct
edges fromcqg — c¢p andcag — c¢ are removed after cal-

S

L, edge error
=
G

N}
SRR

culating the edge uncertainties. Furthermore, the twatiagis 0 0 " Sample points 200 230
edges, namely the edges — ¢ andT — cp were removed
as well and declared as being unimportant. Fig. 6. L1 edge error for observational data and after interveninghen t

. . . process. Using only observational data, the BN generated fthe data has
In flgure 4 the upper p|0t illustrates thel Edge error against an L, edge error of four. Using interventional data the error carrdduced

the used number of productions. Having only a small amougttwo.
of productions shows a high uncertainty included in the sdge

of the BN as the error fluctuates a lot. Finally after 750 runs

the L1 edge error converges towards an error of two. value.
To detect the real real causal structure and finally dirgdtire

last two edges of the graph interventional data has to be us@d
In detail an intervention will be performed on the parameter Finally the method is tested on an experimental laboratory
cag. For this the process parametef, is once clamped to plant. This station consists essentially of two contaimdnere

the value6.5 which corresponds ta) — oo (hard pushing). liquid is pumped around in cycles with different valve po-
For thisw is selected ag0'°. In the other case the parametesitions [4]. The pumping power is kept constant during the
cao is fixed to the values.5 but still including a variance of whole time which means that the process is run in feed-
o2 = 0.5 (soft pushing). For this case the value.ois selected forward control. The process as well as the structure of the
to be 0.01. For a thorough discussion on how to exactly sefensors and actors is shown in figure 5. In addition there is
value of w we refer to [12] as this is out of scope in thisa stop cock between the pump and the flow meter where a
publication. (soft) intervention can be performed to push the process int
The results of the two interventions are shown in the lower different set-point.

plot of figure 4. This shows that both types of interventiomlfinlt has to be mentioned that this process does not include
the right underlying causal structure of the stirred tardcter. collisions meaning that during the first phase the skeletitin w
Performing a hard pushing results aftér productions in the be obtained but no edges will be directed. As well as in the
right causal structure, while performing only soft pushiakes chemical reactor it is assumed that no information except th
60 productions until the right causal structure has been fourmdeasured data is available.

This shows that small parameter changes are already safficie

to detect the real causal structure only that it takes longéf 1) Results: The results using only observational data are
they are found compared to clamping a parameter to a fixeldown in the upper plot in figure 6. This shows that after 700

Experimental laboratory plant



Detected skeleton Edge uncertainties Edge uncertainties
observational data after interventions

D,
=

data points the BN has converged witlLaedge error of four
after fluctuation between an edge error of three and of five.

Figure 7 shows the resulting BN including the skeleton and @
the directed edges after calculating the edge uncertairfiee
skeleton shows that not all conditional independencesidoel @
detected. By calculating the edge uncertainties in spitthef
chemical reactor no edges were removed but all edges poin @
in the direction of the liquid flow and thus describing thehtig

causal associations.

To reduce thd.1 edge error and to detect the underlying causal @
structure as a next step soft interventions are performed. |
detail the stop cock is used to reduce the liquid flow in the @
process by half. For this the pushing factoris selected to
have the valué).5. i ) )

The results of the intervention are shown in figure 6 in (., PHErent sieps of the caculaton of e causalae, Afer
lower plot. After fifty data points thé.1 edge error is reduced two additional directed edges.

to three and after a total of 200 data points another edge can

be directed and the error is further reduced to a value of two.

By performing only an intervention in form of reducing théechnique can be adapted to learn the structure of a dynamic
water flow it is not possible to reduce the edge error furtheBayesian network as the factor time is not yet included.
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