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Abstract—The distributed Cloud Computing paradigm is con-
tinuously being adopted within the domain of industrial au-
tomation. The most distinguishing feature of these Edge Clouds
relates to their ability to provide low-latency and even hard
real-time services. As infrastructure deployments can be rather
heterogeneous in their nature, service providers require precise
means for estimating end-to-end application latency behavior,
in order to know the performance boundaries that can be met
for defining certain Service Level Agreements (SLAs). Although
network performance tools exist for many years, mechanisms
for assessing hard real-time performance of applications in
distributed Edge Cloud environments have not been considered
extensively yet. Therefore, we use a built-in feature of the Linux
Kernel, the extended Berkeley Packet Filter (eBPF), to measure
delays between targeted endpoints in the kernel stack, that enable
the user to gain deeper and more accurate measurements of
events as compared to generalized approaches (as accurate as
eBPF / the time-stamping facility from the kernel). As a result,
the real-time behavior of particular Edge Cloud deployments,
including its hosted applications, can be profiled in detail by
end-users as well as service-providers. Within our evaluation
we have monitored a cyclic transmission of packets with a
scheduled delay of under 190 µs and measured a round trip
time under 2 ms. Future work include profiling the real-time
behavior of potentially hosted time-critical applications, such
as virtual Programmable Logic Controllers (vPLCs), over real-
time networks, such as Time Sensitive Networking (TSN); the
extension towards dynamically configured real-time networks;
and finally its application to future organic, self-optimizing Ultra-
Reliable Low-Latency Communication 6G core networks.

Index Terms—eBPF, Edge Computing, IoT, IIoT, Industry 4.0,
NFV, PLC, TSN, vPLC

I . I N T R O D U C T I O N

The distributed Cloud Computing paradigm is being adopted
in the domain of Operational Technologys (OTs) in the form of
Edge computing infrastructures, especially where low latency
and real-time capabilities are required. Industrial applications
are often time-critical in nature. I.e., an end user relies on
the assurance received from the application providers that a
designated operation can be completed in a specified time
frame. Under this premise, a sub-system constituting other
time-critical applications can work in parallel to achieve the
overall goal of the industrial process. Time critical applications
are addressed and studied in the field of real-time systems,
where systems should produce logically correct output under

stipulated time constraints. Such time constraints are dictated
by the natural evolution of the system states in the environment
where a given system is operating [5, 36].

When focusing on Edge-based real-time applications in
industrial automation domain, Software-based Programmable
Logic Controllers (PLCs) pose considerable challenges in terms
of determinism and reliability on a given Edge computing
infrastructure. In this context, a virtual Programmable Logic
Controller (vPLC) encapsulates functional aspects of PLC
as a software package, such that it can run on commodity
hardware. This transformation enables the opportunity to
bring DevOps practices closer to OT environments. Although
PLCs follow standards such as IEC 61131-3 and IEC 61499,
implementations are often proprietary technologies, which have
existed since decades, delivering reliable and deterministic
control characteristics, crucial to industrial processes. Since
vPLCs can be hosted on commodity Edge Computing hardware,
which may or may not be optimized for industrial applications,
there is an inherent need to assess the capability of the execution
platform towards hosting vPLCs including underlying real-time
networks.

This document draws the requirements for a measurement
framework keeping in view the use case provided by end user.
More specifically, this includes that (1) the measured process is
an industrial application, (2) the industrial application comprises
of a controller configured and exercised on private cloud facility
provided by an Edge Cloud provider, (3) the controller is able
to further control an Input/Output (I/O) through the means of a
real-time capable networking technology for example industrial
field bus or Time Sensitive Networking (TSN), and (4) the Edge
Cloud infrastructure and application providers, as well as final
end-users, intend to measure capabilities of an Edge Computing
infrastructure, towards hosting time-critical real-time control
logic applications. Thus, the requirement specification captures
the preferable features of a measurement framework in the
direction of extraction of relevant Key Performance Indicators
(KPIs) required to assess feasibility of hosting time critical
applications, especially for vPLCs.

We provide an overview of the state of the art and related
work. The related work is organized using a typical industrial
control use case of a computing node that directs a remote
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I/O controller via a network path. We further divide the use
case into 3 specific topics of computing node, network and
remote I/O, and present the related work for each identified
topic. Although we found monitoring architectures targeting
specific domains, there was a lack of a monitoring system
that enabled user to select and monitor a specific event and at
the same time being user friendly. Our approach, which
is referred as MessTool in the remainder of the paper, is
designed to not only be able to assess the above specified
requirements, but also to make it easier for the user to apply
complex profiling approaches for software systems flexibly
and reliably. We focus incorporating available open source
solutions, so that it is possible for the user to apply the
tools and to extend them. As one main contribution of this
paper, we provide details about the overall architecture and the
implementation of MessTool framework that can profile end-to-
end time behavior of distributed edge applications, considering
the outlined requirements.

We have evaluated the implementation against currently
used server systems, with mock applications that simulate the
behavior of a vPLC; an application that periodically transmits
a network packet with a maximum delay of 190 µs in the
software stack and the network round trip time measured at a
preferred point in the operating system with under 2 ms. The
framework is used to measure the execution characteristics
of the application on the computing system. Furthermore,
the framework itself is evaluated to determine the precision
and accuracy of the measurements obtained on monitoring
real-world use cases.

It is in our view that the designed framework will help Edge
Cloud infrastructure and application providers to profile their in-
frastructure for specific application requirements. Further work
may include the measurement and dynamic re-configuration
of real-time TSN networks based on user specified intents /
requested Service Level Agreements (SLAs) [38]; as well as
the adoption of lessons learned for High-Precision Networking
(HPN) in the context of future 6G networks. Finally, the time
behavior of an infrastructure could be an integral part of its
Digital Twin (DT) along with its topology and therefore provide
valuable information for use-cases such as capacity planning.

The remainder of the paper is structured as follows. In
section II, we give a brief overview of related work in the
context of available approaches and tools related to the topics of
measurement and monitoring. section II provides an overview
of the state of the art and related work. In the subsequent
Section III the architecture and implementation of the system
is presented. The evaluation results obtained from analyzing
the framework on a realistic server infrastructure and mock
applications is discussed in Section IV. Finally, we close by
giving some conclusions and considerations and describe future
work in Section V.

I I . R E L AT E D W O R K

A. General Approaches

In order to collate the related work, a hypothetical use case
that embodies a real-time behavior is presented. Figure 1 shows

Fig. 1: Industrial Control Use Case.

the industrial control process, where a control application or
a software-based PLC executing in a virtual environment on
a server system, controls an I/O device through a dedicated
communication network. For a given action performed by the
I/O, it can be observed that the control application is responsible
for providing timely control input to the I/O. Furthermore,
the underlying communication network should also be able
to satisfy the timing requirements stipulated by the control
application; e.g., TSN compliant network.

In order to measure a system, we have to first identify
the characteristics of the system, and then administer right
strategy to measure a given characteristic. In run-time reflection
frameworks, the monitoring system is a collection of logging,
monitoring, diagnosis and migration layers [28]. An abstract
notion of specifying the system behavior in the form of events,
traces and their associated specifications was presented [2].

Several architectures have been proposed for monitoring
distributed real time systems. A practical discussion on the
importance of run-time monitoring of flight safety critical
systems and an architecture is available in [15]. The integration
of contrasting approaches of rigorous time-triggered and flexible
event-triggered traffic based control, emphasizing the role of
deterministic networking for hard-real system was proposed
in [12]. Breadcrumbs was proposed for monitoring timing
constraints of event flows follows a decentralized approach [25].
A non-invasive monitoring system for automotive vehicles
was discussed [23]. Real-time systems are required to
exhibit both logical and temporal correctness of the produced
result. Therefore, the challenge of monitoring distributed
real-time systems relies on differentiating between causality
of an error due to logical or a temporal incorrectness[39].
A run time environment for monitoring real-time systems
by inserting traceable events in the execution program and
monitoring the events during run-time was proposed in [7].
The Brace architecture was proposed for distributed monitoring
of real-time systems in [41]. Furthermore, the knowledge of
architecture and functioning of real-time systems has impacts
in proposing balanced strategies for monitoring system as
discussed in [24]. There is research conducted in the direction
of run-time verification of timing constraints, such as [21].

The rest of the section provides related work in targeted
areas, ordered as remote I/O controllers, computing node and
network as shown in Figure 1.
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B. Remote I/O

The monitoring of I/O controllers has been particularly
challenging, because of the unavailability of standardized
tools to obtain event traces, since most of these devices are
proprietary. The scientific literature shows the possibility of
monitoring indirectly either by analyzing the control traffic or by
actually seeking the digital I/O. A non-invasive monitoring of
distributed real-time systems was proposed in [40]. Pellizzoni
et al. [31] propose to monitor Commercially Off The Shelf
(COTS) device peripherals against their assumed specifications.
Hadžiosmanović et al. [19] provide an approach to monitor
PLC variable state changes induced as a result of malicious
control packets sent via the network to the PLC by an attacker.
Kleines et al. [27] provide direct inputs to peripherals of PLC
devices from Siemens and test for their performance, by method
of analyzing the signals from output peripherals of the PLC. In
another approach, Cruz et al. [10] use a remote device deployed
along with a PLC to transparently intercept communications
messages received by another PLC. Geier et al. [14] present
a hybrid monitoring system that uses hardware capabilities
such as an Field Programmable Gate Array (FPGA) to monitor
systems. An analysis on using PLCs for measuring the size
and complexity of PLC programs in different control logic
methods has been conducted in [29]. Although this approach
was suggested in the context of security, it could also be used
for monitoring of remote I/O controllers, as noted in [16, 32].

C. Network

In the field of monitoring of networks, we point to scientific
literature relevant to the scope of this manuscript for monitoring
metrics such as end to end latency. Chao et al. [6] have tried
to measure the precise latency of unidirectional data flows in a
non-real time network. Decotignie [11] shows the adaptation
of Ethernet to accommodate industrial use cases, providing
insights into measuring industrial Ethernet. Prytz [33] has
shown a comparison of performance between real-time Ethernet
networks EtherCat and PROFINET IRT. Steiner et al. [37] have
attempted to explain how the networking worlds of Information
Technology (IT) and OT can be brought together with the
help of TSN. TSN has been instrumental in bringing real-
time networking capabilities nearer to consumers with COTS
hardware, which was otherwise managed by vendors offering
proprietary products. Furthermore, research conducted in the
direction of assessing the capabilities of TSN for real-time
networking is promising [8, 13, 17]. Apart from scientific
literature available on measuring networking protocols and
technologies, several network monitoring tools are available
for Linux based machines.

In the direction of extracting timestamp measurements as
intended by the proposed measurement tool, it is important
to consider time synchronization. In particular, this is im-
portant for monitoring distributed systems. Research in the
direction of TSN already covers topics of time synchronization,
however, important papers related to time synchronization are
available [9, 42].

D. Computing Node

In the field of monitoring computing nodes capable of real-
time task execution, research has progressed in the direction
of the feasibility of monitoring critical tasks. Jevtic et al. [22]
propose a multi-level hybrid monitor for hard real-time systems.
Bernat et al. [3] introduce the concept of weakly hard real-
time systems as opposed to hard real time systems for the
purpose of accommodating a flexible treatment of systems.
Scholz et al. [35] analyzed performance implication of packet
filtering using extended Berkeley Packet Filter (eBPF) [20].
The research has progressed in proposing frameworks and
strategies for monitoring real-time tasks in [1, 4, 18, 26, 30,
34].

While it is a challenge to monitor I/O controllers or PLCs,
the recent development efforts in the Linux kernel has made
it possible to instrument and monitor system events. Many
tools have existed and continue to exist to aide developers
for the purpose of debugging. The Linux kernel has facilities
which can be used to emit events when a particular function
or a kernel symbol is executed. Six main data sources are
Kernel Probes (kprobes and kretprobe), User Probes (uprobe
and uretprobe), Kernel Tracepoints and User Statically-Defined
Tracking (USDT). The data source being part of the Kernel
infrastructure, enables the user to instrument and retrieve
data values from the software stack, which are known to be
production safe, because they execute directly in the context
of program execution. The Linux Kernel also provides the
observer infrastructure that can be used to retrieve data from
sources. Tools in that domain are ftrace, eBPF, perf, SystemTap,
and LTTng.

Existing tools and frameworks are either non-mutable and
restrictive, or are highly specialized for use cases. In the former
category, users can obtain measurements readily and there is
less room for modification. However, in the latter category,
users are open to a plethora of complex tools which need
skilled administration to obtain the right measurements.

This paper focuses on measuring the real-time capabilities of
an edge server that runs on Linux. Furthermore, the provided
framework in the paper enables the user to administer highly
specific filter to isolate specific event in the execution of
software and, extract contextual and relevant details when the
event occurs.

I I I . M E S S T O O L

In order to provide the reader with a supporting structure,
this section is divided into three subsections: measurement
design, measurement distribution architecture, and component
and implementation details. While the first two subsections
introduce the general measurement design and each component
of the framework individually, the last subsection provides
details of how the components work together. Additionally,
the main important design constraints (for the components) are
provided as well.
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A. Measurement Design

Frameworks that target measurement of software systems
are usually event based. The propagation of an event is from
Event Sources to Event Sinks. When the event occurs at the
source, a measurement framework samples a required metric
and records it. This snapshot of the event can be captured at
one or more locations in the path traversed by the event, from
source to sink.

Fig. 2: General design of measurement framework.

Figure 2 consolidates the general design concept of systems
that run on a Linux-based operating system. Here, the dashed
line arrows depict the flow of configuration events, whenever
new probes are brought into the system. Additionally, the solid
line arrows depict the flow of probed event data, whenever the
probe’s attached events are triggered. For a software system,
by default, the Event Source can be narrowed to the execution
of a specific part of code (as instructions executed by the
processor(s)). With built-in features of the Linux Kernel,
a user is able to register a probe, to a particular location
in the execution sequence of the software stack. When the
processor executes the monitored code part, the Kernel triggers
the registered probe, subsequently handing over the control to
a dedicated Observer, along with contextual information from
the execution.

The Observer comprises a set of actions or a function, that
can record the contextual data and sample the required metrics.
To this end, the Event Sink is then responsible to extract the
required information and forward it for further processing. The
execution window of the Event Source and the Observer are
strictly monitored by the Kernel. The Event Sink is a user
application, thus clearly defining the roles and boundaries of
each component in the design.

B. Measurement Distribution Architecture

This subsection describes the overall architecture of the
MessTool, designed as a platform for distributed measurements.
MessTool follows a component-based design architecture,
where each component has a dedicated role and can be viewed
as a micro-service. Therefore, each component exposes its
functionality through dedicated interfaces. All of the main
components of the MessTool are designed to strictly run on
the Edge Server site, whereas the main component for user
interactions can be deployed more freely, regarding location.
The Collector takes a mixed role and can be accessed by the
user directly, for simplified scenarios.

User Services are provided mainly through:
• Monitoring Manager (MM): Provides the primary in-

terface to the user. This allows a user to specify her
intentions of what aspect, of which Edge Server is to be

measured. Through this interface, the user also receives
vital information about the status of her configurations.

• Collector: Provides a simplified interface through which
a user can access measured data collected by MessTool.

Figure 3 depicts all main components of the MessTool’s
architecture and provides an architectural view on the two
service categories.

The roles of Edge Server Services are detailed below:
• Monitoring Agent: Provides the primary interface to the

Monitoring Manager and, with that, acts as its main
mechanism to configure required probes, based on to
be executed measurements.

• Probe Config Agent: Acts as an Event Sink and provides
actual means to insert/remove probes. Since the actual
probing mechanism can vary from system to system, this
needs decoupling from the Monitoring Agent.

• Aggregator: Provides means to aggregate data from probe
data to be able to combine/meld them into a single
measurement. On the one hand this allows combining
data from multiple probes, on the other hand this also
allows to meld multiple data points from a single probe
(computing time delays from probe events).

• Collector: collect measurements and provide those to a
user or to an externally provided database.

Fig. 3: MessTool Architecture

C. Component and Implementation Details

Figure 3 depicts an example deployment of MessTool
components, where all components are placed inside a virtual
machine. Additionally, a database (external to MessTool) and
its dedicated User Interface (UI) are deployed natively onto the
Edge Server system. Other deployment strategies are possible
too, such as running all components directly on the Edge Server
or even mixed setups. This is the most common one.
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In Figure 3 various probes ("P1" to "P4") are configured to
allow for measurements regarding a given industrial application
that leverages the Network Stack. While "P1" depicts a probe
allowing to trace events (functions) in user-level, "P3" allows
to trace events inside the execution of the Kernel. Similarly,
"P1" and "P2" depict special probes for the network stack, used
by that application. Moreover, dashed arrows depict the flow
of configuration data from the Monitoring Manager towards
a given probe "P1", whereas solid arrows depict the flow of
measurement data from probes "P3" and "P4" towards the
database.

The user’s main interface is provided through the Monitoring
Manager. This allows a user to configure new measurement
points in the system, query already configured ones, delete
or update existing ones. For actual measurement retrieval an
externally provided Data Query UI can be accessed by the user
(e.g., allowing for a web-based GUI showing measurement
plots), though the Monitoring Manager allows also to forward
simple measurement queries to the Collector.

Each MessTool component provides two kinds of interfaces
(a) for configuration and (b) for (measurement) data exchange.
The configuration interface is provided through a REST-based
API. A schema file was used to describe each version
of each component’s configuration API. This allowed for
fast prototyping and was necessary also to decide which
configuration information can be abstracted at which level
of component, using a hands-on approach.

The implementation of configuration API is constraint by the
requirement not to interfere with the execution of data transfers
on the data exchange interfaces, whereas the implementation
of the data exchange interface is constraint by the requirement
that a data sink must not interfere with the execution at the
data source.

The Collector is used to decouple the reception of measure-
ment data (from the Aggregator) from the requirements/de-
pendencies of the databases. This allows for support of
multiple database interfaces and formats but also allows to
use – MessTool-internally – specifically designed interfaces for
data transfer. Furthermore, the implementation of the Collector
is designed modular, in a way that allows for simple extension
to new Database formats/interfaces. The Collector also holds
additional (configurable) buffers to allow for batching sequences
of measurements towards the database. This allows to maximize
the efficiency of the connection to the database but also allows
for those scenarios with a (temporarily) unavailable database
connection.

The Aggregator retrieves event data from one or more probes
and aggregates them into a single measurement. Additionally,
the Aggregator is enabled to use received event data from
probe A to annotate received event data from another probe
B – assuming a given causal relationship between both events
and that the relation can be determined (dynamically) by the
Aggregator. If needed, the Aggregator allows to align event
data with different time offsets from multiple probes, as long as
the alignment can be determined statically. It should be noted
that, while possible, the Aggregator is not designed to batch

multiple measurements but provide only a single measurement
(from multiple event sources) each time to the Collector.

The Aggregator-to-Collector data interfaces is implemented
in a way that the Aggregator (source) is not influenced by
the Collector (sink) regarding execution. For the examples as
given in Section IV, an Inter-Process Communication (IPC)
pipe was sufficient – configured in a way that data will be
dropped in overload scenarios. The implementation allows to
extend for other mechanisms, like memory-mapped regions, if
the scenario demands it.

Finally, the mechanism to extract measurements of monitored
events is encapsulated inside the Probe Config Agent (PCA).
The PCA leverages two important features exposed by the
Linux Kernel. These are, kprobes and eBPF. The kprobes are
attachable software hooks provided by the Kernel, to which
we can attach certain software blocks. In an event driven
Linux Kernel, when an event occurs, specific functions are
called by the Kernel to service the event. As a consequence,
by monitoring the execution of a function in the Kernel, it is
possible not only infer the occurrence of the event but also
gain contextual information around the event. To this end,
kprobe can be attached to a Kernel function that we wish to
monitor and a corresponding eBPF code block can be attached
to the hook provided by the kprobe. The Kernel transfers
control to the eBPF code block immediately after the Kernel
function is called and once the code block completes execution
in Kernel context, control resumes to execute the body of
the called Kernel function. Therefore, measurements taken
in the eBPF code block are the most accurate as they are
sampled at the closest proximity possible to the occurrence of
an event. Only a dedicated Kernel module may take competing
closest measurement. The PCA is responsible in attaching
specific filter programs implemented in eBPF to the identified
hooks. The eBPF program is designed to take a timestamp at
the earliest and further apply filtering mechanism to narrow
down to a specific event identified using a combination of
parameters available at the moment in the execution context.
The measurement data with the annotated timestamp are written
into special buffers such that PCA can periodically poll and
extract them. PCA then formats the measured data and shares
it with the Aggregator.

I V. E VA L U AT I O N

This section details on the evaluation of use cases using
MessTool. As mentioned in Section III, MessTool’s PCA
leverages kprobe and eBPF functionality offered by the Linux
Kernel. A measurement of the monitored event with the
closest proximity possible to the occurrence of an event.
Since the eBPF code is executed in the context of the kernel,
measurements obtained by MessTool are extracted in the kernel
thread. Therefore, MessTool as a framework, offers the user
to target specific events and eBPF filter programs extract
measurements of only the events that matter to the user.
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A. Evaluation Setup
The MessTool framework is implemented as a micro-service

based architecture, as shown in Figure 4, to analyze real-time
applications deployed onto the edge node. That means, all
components of MessTool were containerized and communicate
over RESTful Application Programming Interfaces (APIs).
Moreover, the MessTool operates on all Linux-based systems
where the kernel provides native eBPF support. In addition, the
Kernel is patched with PREEMPT_RT patch set, making the
Kernel fully preemptible by the user application that is assigned
a high priority. The execution environment emulates an
environment of an edge cloud provider, where user applications
are run inside a virtual machine deployed on top of an edge
cloud server running on stock hardware.

In this evaluation, we have chosen two use cases that are
encapsulated in a task block and are scheduled at highest
priority in the preemptible Linux Kernel, such that the use
cases enjoy low latency real-time treatment. It is through the
interface of system calls, that the Kernel is able to arbitrate the
provisioning of the hardware resources to the user applications.
Therefore, when a higher priority application invokes a system
call, the privilege of high priority is lost because the application
now depends on the execution of lower priority Kernel tasks.
Since the system calls are a shared interface, the latency is
unbounded. This phenomenon is called priority inversion. To
emulate such a scenario, we chose to invoke system calls
related to transmission of network packets through the shared
resource of the Network Interface Controller (NIC), that is
shared by all applications on the system. With the MessTool
framework we are able to measure the in-host delay and round
trip time experienced by the high priority user application at
chosen points in the software stack. In this section, for the
measurements taken by MessTool, we make the following
observations with regard to the precision of the annotated
timestamp and the accuracy of the measurement:

1) Accuracy: The accuracy of a measurement depends on
how close a timestamp is logged while monitoring the event.
By design, eBPF probes are attached and executed in between
the point of just after the Kernel function is called and the
Kernel function’s body. This way, the eBPF code attached
to the a designated kprobe, can take a timestamp as early as
possible when an event occurs (just after the Kernel function
is called). Therefore, the timestamps taken by the probes
in MessTool are considered the most accurate measurement
feasible from state of the art.

It is to be noted that, to improve accuracy for cyclic
applications, a systematic approach for process parameter and
system configuration was used. We were using dedicated
process priorities and CPU affinity pinning, as well as real-time
scheduling (SCHED_DEADLINE). Due to the cyclic nature of
applications that were hosted on the edge server, it allowed to
minimize the negative influence from other applications hosted
on the edge server.

2) Precision: The precision of a measurement depends
on the accuracy of the system clock. The MessTool re-
ports the timestamp measurements with nanosecond preci-

sion. This level of precision is enabled by the Linux kernel
CLOCK_MONOTONIC clock. CLOCK_MONOTONIC is
considered to be accurate and immutable as compared to
other clock types. Moreover, the nanosecond precision of
all timestamps in the MessTool framework is preserved and
persisted within the database.

Figure 4 showcases the overall setup of the MessTool
deployed within our evaluation setup.

B. Evaluated Use-Cases

This section presents two use-cases. For each use case we
show how the MessTool framework can be used to collect
required measurements. A summary of respective results is
also provided.

1) In-Host Delay: For our first use case, an industrial
application controls a remote end device. Control operations
are sent to the end device using UDP messages. This allows the
edge-hosted industrial control application to also gain feedback
values from the end device.

The edge-hosted application leverages Linux’ networking
stack. Therefore, sending out a control message from the edge-
hosted application to the end device will trigger system calls
in the Linux networking stack. In a matter of speaking, each
control message will traverse through the networking stack
and, finally, brought to the dedicated NIC. Naturally, there are
delays associated with the process getting initiated and for the
Linux stack to complete the action. The MessTool framework
can be used to measure these delays.

As seen in Figure 5, whenever the control application will
send out another control message to the end device (via UDP)
the __sys_sendto system call is triggered and the control
message data is stored in a dedicated buffer within Linux
kernel. This data buffer will also contain an embedded sequence
number that allows to identify the transmission of a dedicated
control message. As the data buffer is exchanged between
functions in the software stack, the kernel allocates the socket
buffer data structure.

As identified in the figure, the entry point marking the start
of message transmission is the __sys_sendto system call. The
exit function dev_hard_start_xmit is marking the last known
function before the socket buffer leaves the Kernel. The packet
is handed over to the NIC for scheduling the packet for its
actual transmission.

The difference between timestamps obtained by the MessTool
framework, between the events of entry point and exit point,
constitutes the software stack delay unique to each control
message.

The monitored user application was scheduled at highest
priority of 99 and with scheduling policy SCHED_FIFO and
transmits periodic User Datagram Protocol (UDP) messages
with 1 s interval. The messages were directed to a remote I/O
controller.

Figure 6 shows the histogram of the in-host delay experienced
by the user application, where the delay is between the entry
event of the calling __sys_sendto system call and the exit
event of the Kernel calling the function dev_hard_start_xmit.
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Fig. 4: MessTool: Evaluation Setup.

Fig. 5: Use-Case 1: In-Host Delay.

Fig. 6: Histogram of UDP Cyclic transmission run on Virtual
Machine

The measurements lasted for over 24 hours and show that
the MessTool framework can take measurements for longer
duration.

2) Round-Trip Time: Usually, the Round Trip Time (RTT)
of a network is measured using the Internet Control Message
Protocol (ICMP) protocol. However, more relevant to a
message-based remote-control application is the RTT of its
actual messages handling, including in-host handling. The
RTT can then be seen as the delay between the user process
initiating the task in Linux user-space, followed by reporting
it to Linux kernel, completing the task. It should be noted that
this assumes a periodically executed message exchange.

Fig. 7: Use-Case 2: Round Trip Time

Figure 7 shows the use-case diagram for measuring the RTT
using the Transmission Control Protocol (TCP); Modbus-TCP
to be precise. In this case, the MessTool framework is used
for measuring the RTT against application exchanging periodic
Modbus-TCP messages. The calculation of the RTT is done by
taking the difference between a Modbus-TCP request sent from
the master to the Modbus-TCP response received by the master.
Since Modbus-TCP relies on TCP, a one-to-one relationship
between messages from the master and corresponding responses
from the slave, has to be established using context specific
fields in the header of the TCP messages. We chose to use the
sequence number provided by the Modbus-TCP protocol to
establish the one-to-one relationship between request-response
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message pairs. The numbers 1 to 10 describe the flow of events
(seen globally) regarding the events of message handling.

For this use case, we chose the system calls tcp_sendmsg
(to send the message from master) and tcp_recvmsg (master
receiving the message) as entry and exit functions. Similar
to the previous use case, necessary information for message
identification can be retrieved from the context of each entry
and exit event. The periodic cycle duration between successive
messages transmitted by the master was set to 1 second and the
application was scheduled with priority 99 using the scheduling
policy SCHED_FIFO.

Fig. 8: Histogram of Modbus-TCP RTT on Virtual Machine

Figure 8 depicts the RTT experienced by a Modbus-Master
hosted on an edge server.

V. C O N C L U S I O N A N D F U T U R E W O R K

We foresee that future industrial infrastructures will be
software-defined and that at the same time hard real-time
behavior will still be critical in many industrial control use
cases. Based on this premise, mechanisms are needed to assess
the systems end-to-end time behavior in detail. Therefore,
we proposed means to measure performance in distributed
Edge Cloud environments exploiting extended Berkeley Packet
Filters (eBPF). The main result include a framework that can
be utilized to profile in detail the end-to-end time behavior of
distributed edge applications. As the timestamps sampled by the
probes are as accurate as eBPF / the time-stamping facility from
the kernel it provides the most accurate measurement feasible
from state of the art. Within our evaluation we have monitored
a cyclic transmission of packets with a scheduled delay of
under 190 µs and measured a round trip time under 2 ms.
The presented work provides potential benefits for cloud and
edge infrastructure providers enabling them to profile relevant
applications to gain deep insights into their timing performance.
This allows for estimating within which boundaries certain KPIs
can be held.

Our short-term goal is to profile the end-to-end behavior of
various vPLC applications that are deployed over a number
of TSN interconnected edge nodes. In medium term, we

plan to extend this work towards dynamically configuring
the infrastructure ensuring specific SLAs by using a Central
Network Controller (CNC) and Centralized User Configuration
(CUC). The long-term goals include enabling complex wireless
software-based industrial communication infrastructures to
comply with real-time requirements, such as within future
organic, self-optimizing, TSN-enabled 6G core networks.
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