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ABSTRACT

The choice of an appropriate illumination design is one of the most important steps in creating successful machine
vision systems for automated inspection tasks. In a popular technique, multiple inspection images are captured
under angular-varying illumination directions over the hemisphere, which yields a set of images referred to as
illumination series. However, most existing approaches are restricted in that they use rather simple patterns
like point- or sector-shaped illumination patterns on the hemisphere. In this paper, we present an illumination
technique which reduces the effort for capturing inspection images for each reflectance feature by using linear
combinations of basis light patterns over the hemisphere as feature-specific illumination patterns. The key idea
is to encode linear functions for feature extraction as angular-dependent illumination patterns, and thereby to
compute linear features from the scene’s reflectance field directly in the optical domain. In the experimental
part, we evaluate the proposed illumination technique on the problem of optical material type classification of
printed circuit boards (PCBs).

Keywords: Optical feature extraction, hemispherical illumination functions, reflectance fields, illumination
series, material classification, multivariate image analysis, automated visual inspection

1. INTRODUCTION

The choice of an appropriate illumination design is one of the most important steps in creating successful
machine vision systems for automated inspection tasks. Since in image acquisition all information about a scene
is encoded in the reflected light field, the incident light field provided by the illumination must be able to reveal
the information about a workpiece that is relevant to the inspection task. Particularly in real-time machine
vision applications, where time is a major constraint, appropriate illumination can greatly simplify digital image
processing tasks and improve their processing time and reliability. For instance, via an illumination that results
in inspection images where defects are measured with high signal-to-noise ratio, simple image thresholding may
suffice for defect detection, and computationally expensive and time consuming image processing algorithms can
be avoided.

For many inspection tasks it is difficult or even impossible to find a single optimal illumination condition, and
therefore, inspection images under multiple different illumination conditions have to be captured and analyzed.
In a widely used technique, inspection images are captured under angular-varying illumination directions over
the hemisphere, which yields a set of images referred to as illumination series.1–3 However, most of the existing
approaches from the literature are restricted in that they use rather simple and unspecific illumination patterns
like point- or sector-shaped patterns on an illuminating hemisphere. As a consequence, many images with densely
sampled illumination directions are needed to capture the reflectance properties of the workpiece under study.
On the other hand, densely sampled illumination series are often highly redundant, since images of the same
object obtained under similar illumination conditions are correlated.

In automated visual inspection, capturing illumination series with many images is problematic for two reasons:
First, in many industrial applications there are severe constraints on inspection time, and hence it is desirable
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to capture and process as few inspection images as possible. Second, large illumination series lead to high-
dimensional reflectance features that must be evaluated. However, from statistical learning theory it is known
that the complexity of any classification problem grows with the number of input features. As a consequence,
more training examples are needed to train a classifier due to the curse of dimensionality .4 In order to reduce
the dimensionality of the feature space, methods from feature subset selection have been applied to determine
the informative illumination directions for a given inspection task. Jehle et al.5 used a random forest classifier to
learn optimal illumination directions for material classification by using embedded feature selection. A completely
unsupervised approach to reduce the dimensionality of illumination series is presented by Gruna et al.,6 where
redundant illumination directions are eliminated using spectral clustering.

In this paper, we aim to reduce the effort for capturing the reflectance properties of an object by using
problem-specific extended patterns over the illuminating hemisphere. The key idea is to encode linear functions
for feature extraction as angular-dependent illumination patterns, and thereby to compute features from the
scene’s reflectance field directly in the optical domain. To this end, we first need to model image formation
under arbitrary extended hemispherical illumination directions.

Modeling the appearance of objects under different illuminating directions has long been an active research
area in both machine vision and computer graphics7,8 . In traditional approaches, the geometry and the material
properties of an object are described by separate models, e.g., by a CAD model and a Bidirectional Reflectance
Distribution Function (BRDF), which is a function of incident and reflected light directions, specified in a local
coordinate frame at the object’s surface. However, measuring the BRDFs of real-world objects can be very
difficult if the object’s geometry is complex or not known in advance. An alternative to modeling the shape
and the material properties of an object explicitly is to capture the appearance of the object directly. That is,
the direct relationship between an incident illuminating light field and the light field reflected off the scene is
modeled. This model is referred to as the reflectance field9 of the scene. As such, the reflectance field describes
the light transport between illuminating and outgoing light field, and it includes all global illumination effects
like interreflections, shadows or subsurface light scattering.

In our approach, we assume that the illuminating light field is distant, i.e., the incident illumination only
varies directionally and thus is spatially constant across the illuminated object. Thus, we define the illuminating
light field as function

L : Ω+ → R+ (1)

over the upper illuminating hemisphere Ω+ := [0, π/2]× [0, 2π), which describes the incident radiance ([L] =
W/sr·m2) reaching the object from direction ω := (θ, φ) ∈ Ω+. In addition, we assume a fixed camera viewpoint
which reduces the 4D reflected light field to a 2D projection, which can be parameterized on the camera sensor’s
image plane.10

Since we represent the illuminating and the outgoing light field as 2D functions, the reflectance field becomes
a 4D function R(ω,x) where the outgoing illumination directions are parameterized in image pixel coordinates
x ∈ [0, n1)× [0, n2) ⊂ Z2. For the camera, we assume a linear response so that image gray levels are proportional
to the irradiance received by the sensor. Then, the grayscale image g(x, L(ω)) captured under the hemispherical
illumination function L(ω) is

g(x, L(ω)) =

∫
Ω+

R(ω,x)L(ω) dσ(ω) , (2)

where the 4D reflectance field R(ω,x) of the imaged scene describes the light transport between incident illumi-
nation directions and image pixels.

2. CATADIOPTRIC ILLUMINATION DEVICE

In order to capture illumination series with extended illumination patterns over the hemisphere, we developed
a catadioptric illumination device which is shown schematically in Figure 1a. The device is able to image small
objects with a diameter up to 20 mm under arbitrary hemispherical illumination patterns. To this end, the
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Figure 1. (a) Catadioptric illumination device for illuminating small objects with arbitrary hemispherical illumination
patterns. A digital LCD projector, a Fresnel lens, a parabolic reflector with a center hole and a digital camera are aligned
along their optical axes. By placing the optical center of the projector at the focal point of the Fresnel lens, all emitted
light rays intersect at the focal point F of the reflector. (b) Schematic x-z-section through the parabolic reflector’s center
F . A ray QR parallel to the parabola’s axis is reflected to the ray RF incident to the focal point F of the parabola. A
point P on the hemisphere Ω+ can be mapped to the corresponding point Q on the projector image plane (x-y-plane) by
parabolic projection (red lines) or via stereographic projection (green line) from the sphere’s south pole S.

object is placed at the focal point of a parabolic mirror and is illuminated by a digital light projector. At the
same time, we capture high dynamic range images of the object from a fixed camera position. Jehle et al.5 use
a very similar device in their work. However, our device, developed independently, differs in a wax coating of
the parabolic mirror to obtain a more homogeneous illumination of the object under study.

The projector serves as programmable light source that allows controlling the relative radiance along the
emitted light rays independently. In our experiments, we used a colorimeter∗ to linearize the projector’s intensity
transfer function. Assuming a pinhole model for the projector, each projector pixel can be thought of as source
of individual light rays that diverge from the optical center of the projector. By placing the projector at the
focal point of the Fresnel lens, the diverging light rays from the projector are converted into parallel rays and so
an orthographic projection system is obtained.

The parabolic reflector is then used to transform the orthographic light field. Since the projected light field
is parallel to the optical axis of the reflector, the light rays are reflected so that they intersect at the focal point
F of the parabolic reflector. Since the parabolic reflector can be described by a regular paraboloid, and incident
and reflected light rays are coplanar with the optical axis, only a planar cross-section of the reflector must be
considered (see Figure 1b). We establish a Cartesian coordinate system with its origin at the focal point F of
the parabolic reflector and its z-axis aligned with the optical axis of the device, pointing into the direction of
the camera. Hence, the surface of the parabolic mirror can be described by the graph

{(x, y, z) : f − x2 + y2

4f
− z = 0} , (3)

where f denotes the focal length of the reflector.

A x-z-slice through the parabolic reflector is schematically illustrated in Figure 1b. We refer to the x-y-plane
as the projector image plane of the orthographic projection system and identify points in this plane by projector
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Figure 2. (a) Impulse-like illumination patterns on the hemisphere. (b) Parabolic projection of the hemispherical illu-
mination pattern shown in (a). Since the parabolic projection is conformal, the shape of circles are conserved, however,
their radii increases with increasing polar angle.

pixel coordinates. A light ray from the projector pixel Q parallel to the optical axis is reflected at R and passes
through the focal point F . In order to illustrate the fact that the illumination device is able to produce arbitrary
hemispherical illumination patterns L(ω), we consider the upper hemisphere of illumination directions Ω+ that
has radius 2f and is centered at F . Then there is a one-to-one correspondence between the ray QR, originating
in the projector image plane, to the virtual light ray PF , originating at the point P on the hemisphere Ω+.

To physically generate arbitrary hemispherical illumination patterns, we need to transform the desired hemi-
spherical light field L(ω) to the projector image plane. To this end, we consider the back-projection Q of the
point P , which is the orthographic projection of the intersection R of the parabola and the virtual ray FP . This
projection is referred to as parabolic projection11 and can be used to parameterize directions over the hemisphere
in a plane. Geyer at al.12 showed, that the parabolic projection is equivalent to the well-known stereographic
projection, which is also illustrated in Figure 1b.

To obtain a simple transformation rule for the parabolic projection, we identify points on the hemisphere
Ω+ using spherical coordinates, i.e., P = (θ, φ) where (θ, φ) ∈ Ω+, and points in the projector image plane
(x-y-plane) in polar coordinates, i.e., Q = (ρ, ϕ) where (ρ, ϕ) ∈ [0, 2f ] × [0, 2π). Since for the polar angle θ the
following trigonometric relationship

tan θ =
|FQ|
|RQ|

=
ρ

f − ρ2

4f

(4)

is true, the transformation Φ: Ω+ → [0, 2f ] × [0, 2π) from the illuminating hemisphere to the projector image
plane can be expressed as

(θ, φ) 7→ (2f tan
θ

2
, ϕ) . (5)

Note that due to the position of the camera, the polar angle θ in the presented device is limited to θmin to
prevent a direct illumination of the camera. To sum up, we are able to produce arbitrary illumination patterns
by emitting the parabolic projection of L(ω) to the projector image plane.

3. OPTICAL FEATURE EXTRACTION IN ILLUMINATION-SPACE

3.1 Image series with basis illumination patterns

An illumination series of the object under study with point-shaped illumination patterns provides our basis
for computing a new set of problem-specific illumination patterns. For this purpose, we define an impulse-like



illumination basis function on the hemisphere. Let ωj = (θj , ϕj) be a distant illumination direction on the
hemisphere. Then, we define the impulse-like illumination function as

Lrect
ωj

(ω) := rect

(
−1

2
+

2dA(ω,ωj)

δ

)
, (6)

where

dA(ω1,ω2) := arccos(sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2) (7)

denotes the central angle distance between the two directions ω1 and ω2, and δ is the angular diameter of the
illumination pattern as seen from the center of the illuminating hemisphere. By regularly sampling illumination
directions from the illuminatable hemisphere and setting δ to a constant value, we obtain a set {Lrect

ωj
(ω)}mj=1 of

basis light patterns. Figure 2a shows a set of m = 60 impulse-like illumination patterns with unit radiance on
the hemisphere.

We use the basis illuminations to sequentially illuminate the object under study and capture the image series
{g(x, Lrect

ωj
(ω))}mj=1 of congruent grayscale images.

These grayscale images can be stacked and interpreted as the m channels of a so-called multivariate image,
where each channels is associated with a basis illumination pattern. Thus, each image pixel contains a m-
dimensional vector of measured intensities. The multivariate image is considered as three-dimensional n1×n2×m
data structure, where two spatial dimensions represent the n1 × n2 pixels in the image plane and the third
dimensions represents the m variable illumination conditions. In this work, we do not consider spatial pixel
correlations and discard all spatial information. Thus, we can unfold the n1×n2-pixel images of the illumination
series into column vectors gj , j = 1, . . . ,m with dimension n = n1n2 and express the multivariate image data
as two-dimensional n×m matrix G = [g1,g2, . . . ,gm]. In the following, we consider each image pixel, i.e., each
matrix row vector gT

i , as an object (or sample), while we consider each matrix column gj as particular feature (or
variable) of the objects. Since we are dealing with illumination series, a matrix row gT

i contains all the measured
reflectance features under the different illumination conditions for pixel xi. By representing the illumination
series as data matrix G, multivariate statistical techniques can be used for illumination series analysis.13

3.2 Feature extraction in illumination-space

Illumination series contain large amounts of information regarding the reflectance properties of the illuminated
objects. However, images of the same object obtained under similar illumination conditions are likely correlated
and thus, densely sampled illumination series are highly redundant. Therefore, an obvious first step in the
analysis of illumination series is to perform some type of dimensionality reduction or feature extraction to
extract low-dimensional reflectance features.

Given the multivariate image data G ∈ Rn×m, dimensionality reduction can be achieved by a linear trans-
formation W ∈ Rm×l that maps the pixel feature vectors gT

i in the m-dimensional feature space to g̃T
i in the

l-dimensional (with l < m) reduced features space:

g̃T
i = gT

i ·W , i = 1, . . . , n. (8)

In multivariate data analysis, the entries in the new constructed feature vector g̃T
i are called latent variables.

These combine and compress the original variables in order to fulfill certain mathematical properties that are
useful for data analysis, e.g., the optimal representation of the original objects in the latent variable space or
the optimal separation of given object classes. Linear latent variables are defined by a loading vector, which are
the column vectors wk, k = 1, . . . , l in W. Equation (8) can be geometrically interpreted as projection of the
multivariate data onto the linear sub-space spanned by the loading vectors. The projection coordinates are then
referred to as the scores of the latent variables.

Equation (8) can be written as a single matrix equation

G̃ = G ·W , (9)



where the obtained scores form the score matrix G̃ ∈ Rn×l with reduced dimensionality. Now the score matrix
can be folded back to a three-dimensional data structure with dimensions n1×n2× l, so that the matrix columns
g̃k can be interpreted as so-called score images. Each image pixel in the score image now contains a new feature
vector with reduced dimension. Depending on the aim of multivariate image analysis, the score images can be
constructed to have desired properties with regard to subsequent analyzing steps.

From Equation (9) it is clear, that the columns g̃k of G̃ are linear combinations

g̃k =

m∑
j=1

wjk gj , k = 1, . . . , l (10)

of the columns of G. By folding the vectors back to images, the score image can be written as linear combination
of the illumination series according to

g̃k(x) =

m∑
j=1

wjk g(x, Lrect
ωj

(ω)) . (11)

Equation (11) indicates that the score image g̃k(x) is computed in image-space, that is, as linear combination of
a previously recorded illumination series.

However, the computation of score images can also be performed directly in illumination-space by utilizing
the linearity of light transport. This becomes apparent when we substitute Equation 2 into Equation 11 and
interchange the sum and the integration:

g̃k(x) =

m∑
j=1

wjk

∫
Ω+

R(ω,x)Lrect
ωj

(ω) dσ(ω) (12)

=

∫
Ω+

R(ω,x)

m∑
j=1

wjkL
rect
ωj

(ω)︸ ︷︷ ︸
=:LLC

k (ω)

dσ(ω) (13)

=g(x, LLC
k (ω)) .

This means, the score image g̃k(x) can be computed in the optical domain by encoding the loading vector wk

as illumination pattern

LLC
k (ω) :=

m∑
j=1

wjkL
rect
ωj

(ω) , (14)

and by capturing the image g(x, LLC
k (ω)) of the illuminated object.

However, it is important to note that the linear combination in Equation (14) is under the restriction that
the coefficients must be non-negative, i.e, wj ≥ 0, since it is not possible to emit illumination patterns with
negative radiance. Therefore, we decompose the illumination pattern LLC

k (ω) into two patterns

LLC
k (ω) = LLC+

k (ω)− LLC−

k (ω) (15)

where LLC+

k (ω) :=
∑m
j=1 w

+
jkL

rect
ωj

(ω) encodes the positive and LLC−

k (ω) :=
∑m
i=1 w

−
jkL

rect
ωj

(ω) the negative
coefficients, respectively. The new coefficients are then calculated as follows:

w+
jk :=

{
wjk wjk ≥ 0

0 else
and w−

jk :=

{
0 wjk ≥ 0

−wjk else .
(16)

The image under “negative” illumination is the computed by g(x, LLC
k (ω)) = g(x, LLC+

k (ω))− g(x, LLC−

k (ω))
in image-space after the acquisition of the both images.



Due to the ability to encoding arbitrary linear functions w and transformations W as sets of illumination
patterns, we can make use of multivariate techniques for linear feature extraction like principal component
analysis (PCA), linear discriminant analysis (LDA) or non-negative matrix factorization (NMF) to compute
problem-specific illumination patterns for automated visual inspection tasks. For that, we first need to capture
an illumination series of the object under study with some basis illumination patterns. In an offline training
stage, the linear transformations for feature extraction and the corresponding illumination patterns are computed
in image-space. During online inspection, the computed illumination patterns are used to extract relevant
reflectance features from the object under study in illumination-space. As consequence, due to shifting linear
feature extraction into the optical domain, no complete illumination series has to be captured during online
inspection.

4. EXPERIMENTAL RESULTS

In a practical experiment, we evaluate the illumination technique presented in the previous Section 3 on the
problem of material type classification of printed circuit boards (PCBs). The automated visual inspection of
PCBs is a challenging problem due to the mixture of different materials such as metals, varnishes, and substrates
of which the PCB elements are composed. Numerous approaches to PCB inspection have been described in
the literature, however, most of them are based on measuring the spectral reflectance of the materials by color
or multispectral imaging.14,15 In this work, we solely use grayscale images (i.e., without color or spectral
information) but evaluate angular resolved reflectance measurements to extract features for material classification.

In a training stage, we recorded an illumination series {g(x, Lrect
ωj

(ω))}60
j=1 of a PCB with the impulse-like

basis illumination function described in Equation (6). The PCB under uniform illumination is shown in Figure
3a. It is composed of three material types: ground substrate and two different conducting elements made of silver
and gold. Since we aim to classify the material into different types, we need to find a linear transformation W
that extracts low-dimensional reflectance features with maximum class separability from the illumination series.
To this end, we utilized Fisher’s linear discriminant analysis (FDA)16 for c = 3 classes to compute an optimal
transformation that minimizes the within-class variability and maximizes the between-class separability of the
extracted features simultaneously. This is equivalent to maximizing the criterion

J(W) =

∣∣WTSBW
∣∣

|WTSWW|
, (17)

where SB denotes the between-class and SW the within-class scatter matrix. An optimal transformation with
maximal class discrimination can then be computed by applying an eigendecomposition on the scatter matrices
of a labeled training data set.17 However, with FDA, the upper bound of dimensions l in the transformed
feature space is c − 1, where c is the number of different classes. Therefore, as a result, we obtain two linear
discriminant functions wFLD

1 and wFLD
2 which we encode as pairs of illumination patterns {LFLD+

1 (ω), LFLD−

1 (ω)}
and {LFLD+

2 (ω), LFLD−

2 (ω)} as described in Section 3.2. In Figures 3b and 3c, the resulting images g(x, LFLD
1 (ω))

and g(x, LFLD
2 (ω)) of the PCB illuminated with the derived illumination patterns are shown. As described

above, for each loading vector containing negative values, two illumination patterns were projected and the
captured images were subtracted according to Equation (15). As a result, we were able to obtain the score
image of a discriminant function by illuminating the PCB with only two illumination patterns. To illustrate the
appropriateness of the score images for material classification, Figure 3d shows the joint histogram of the two
score images. As can be seen, three clusters can be identified, which correspond to the three materials of the
PCB.

Next, we applied the k-means clustering algorithm with k = 3 for unsupervised material classification to the
illumination series {g(x, LFLD

1 (ω)), g(x, LFLD
2 (ω))}. The classification result is illustrated in Figure 4a, where

different colors represent distinct PCB materials. In order to evaluate the performance of the proposed method,
we applied a 10-fold cross-validation scheme to compare the classification results with hand-annotated ground
truth data and calculated the classification accuracy from the resulting confusion matrix.18 In Figure 4b, the
classification accuracy is shown for using only the first discriminant function as illumination pattern (two images
need to be captured) and using both discriminant functions as illumination patterns (four images need to be
captured).
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Figure 3. Images of a printed circuit board (PCB) using different illumination patterns. The illumination patterns are
shown as inset, red intensities encode positive radiance values, green intensities encode negative radiance values. (a) PCB
under uniform illumination. (b)-(c) Images of the PCB by encoding Fisher’s linear discriminant functions as illumination
patterns. (d) Joint histogram of the images shown in (b) and (c).

In addition, the proposed FDA approach is compared to other methods for dimensionality reduction that allow
deriving a set of optimal illumination patterns. In multivariate image analysis, principal component analysis
(PCA) is without doubt the most frequently used method for dimensionality reduction and feature extraction.19

In contrast to FDA, PCA does not optimize the class separability of the extracted features but computes
latent variables (i.e., principal components) with maximum variances that provide an optimal representation of
the original variables. As such, PCA is an unsupervised technique, which does not use any class information
for feature extraction. However, PCA allows extracting up to m principal components, i.e., the dimension
of the transformed feature space is not limited as with FDA. In our experiments, we encoded the first 25
principal components as pairs of illumination patterns {LPC+

k (ω), LPC−

k (ω)}25
k=1 and used these to sequentially

illuminate the PCB. Next, k-means clustering was applied to the captured image series {g(x, LPC
k (ω))}lk=1 with

increasing size l = 1, . . . , 25. As before, the classification accuracy was calculated using ground truth data and
a 10-fold cross-validation scheme. The results are shown in Figure 4b. Finally, we performed dimensionality
reduction by feature subset selection (FS) to obtain a set of illumination patterns. In contrast to the preceding
methods, feature selection preserves the original features and therefore, in our case, returns a subset of the basis
illumination patterns {Lrect

ω1
(ω), . . . , Lrect

ωm
(ω)}. In our experiments, we used forward feature selection20 to obtain
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Figure 4. (a) Segmentation result using k-means clustering on the illumination series consisting of the images shown in
Figure 3b and 3c. (b) Classification accuracies of the PCB test example for different illumination series. The illumination
patterns for the illumination series were computed by principal component analysis (PCA), Fisher’s linear discriminant
analysis (FDA) and feature forward selection (FS).

a good set of illumination patterns by greedily adding the best pattern for material classification at each step.
To evaluate the performance of the individual illumination directions, we applied 10-fold cross-validation on the
ground truth data set. The classification accuracy of k-means clustering for the increasing illumination series
{g(x, Lrect

ωk
(ω))}lk=1, l = 1, . . . , 50 is shown in Figure 4b. Note, since the basis illumination patterns solely encode

positive values, no image pairs had to be captured and processed.

A comparison of the empirically derived classification accuracies in Figure 4b reveals, that the FDA computed
illumination patterns significantly perform best for unsupervised material classification. Furthermore, the best
performance is achieved with a very small illumination series of just four illumination patterns, which encode
the two linear discriminant functions of the 3-classes classification problem. However, by restrict the number of
recordable images to a limit of two, PCA provides the illumination patterns with the best classification accuracy.

5. SUMMARY AND CONCLUSION

We have presented a novel illumination technique for automated visual inspection that uses hemispherical illu-
mination patterns to extract reflectance features directly in the optical domain. Based on the linear properties
of light transport, we showed how these illumination patterns can be computed as linear combination of a set
of basis illumination patterns. For this purpose, we considered illumination series as multivariate images and
utilized techniques from multivariate statistics to derive linear functions for feature extraction in a separate
training stage. Since the computed illumination patterns are highly problem specific, much less images have to
be captured during online inspection to capture the relevant reflectance features of the object under study.

In order to experimentally evaluate the proposed illumination technique, we presented a catadioptric illu-
mination device which is able to generate arbitrary complex illumination patterns over the hemisphere. As
an application example, illumination series of a printed circuit board (PCB) were captured with different illu-
mination patterns and used for unsupervised material classification. A comparison of the empirically derived
classification accuracies revealed, that from Fisher’s linear discriminant analysis derived illumination patterns
significantly perform best for material classification. In addition, the best classification result was obtained by
using only four illumination patterns.
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