Applikationsbezogene Gefügeoptimierung von magnetischen Formgedächtnisaktoren

Andrea Böhm, Miguel Panesso, Kenny Pagel, Welf-Guntram Drossel

IWU
19. September 2019

Werkstoffwoche in Dresden

Motivation - Ferromagnetic Shape Memory Alloys

Single crystals: Mechanism of MIR-effect relies on two facts

1. Mobile twinning \rightarrow preferential deformation mechanism
2. High magneto-crystalline anisotropy (c/a ratio)

\rightarrow Application: Development of actuator systems based on FSMA

Fabrication of Ni-Mn-Ga actuator sticks

Processing steps

Processing step 1: Raw material preparation Chemical composition

Fraunhofer

Processing steps 2-3:

Induction melting and Single crystal growth

Bridgman technology and Single crystalline MAGNETOSHAPE® material

Processing step 4: Heat treatment for homogenization

after fabrication

+ heat-treatments
\rightarrow Measurement of thermal properties using DSC
\rightarrow Differences in phase transformation behaviour

Processing step 5: Determination of orientation

State of the art:

SEM with EBSD
a-axes c-axis

Processing step 6: Cutting and Polishing

initial surface: eroded

Metallographic investigations on the surface condition of an actuator stick produced by EDM process

Processing step 6: Cutting and Grinding

\rightarrow Surface defects from wire eroding processing can be eliminated
\rightarrow good surface qualities ($\mathrm{S}_{\mathrm{a}}<0.5 \mu \mathrm{~m}$) were achieved
\rightarrow No MFIS measurable

Processing step 6: Cutting and Polishing

left: area roughness; right: line roughness

Results of surface roughness measurements after grinding and polishing:
\rightarrow Slight waviness of the surface in the range of $\pm 0.5 \mu \mathrm{~m}$

\rightarrow Very good surface qualities, roughness value S_{a} is $<0.3 \mu \mathrm{~m}$ \rightarrow No MFIS measurable

Processing step 6: Cutting and at last Vibration Polishing

Roughness value S_{a} lies in the range of $0.23-0.28 \mu \mathrm{~m}$.
The sectional view has shown:
\rightarrow Very homogenous surface, almost without impurities

\rightarrow No traces of processing recognized

Processing step 7: Training

Special dilatometer: deformation and quenching dilatometer (TTT-diagrams)

Processing step 7: Training

Previous results: Ni-Mn-Ga samples with post-heat treatments

Processing step 7: Training

Results - comparison

Measurement results for heat treatment of single crystalline Ni-Mn-Ga+X samples
Fraunhofer

Processing step 7: Training

Functional tests of the prepared actuator sticks for application

- compression load along two directions
- Stress-strain curves of a vibration-polished Ni-Mn-Ga actuator stick as a function of the number of cycles (training)

Processing step 7: Training
 MFIS measurements

Permagraph:
Static magnetic field up to 3 T

- Hard magnetization axis

ACKNOWLEDGMENTS

ミI gruppe (MAREGA)

 2. andrus

Financial support by the BMBF [Federal Ministry for Education and Research] under contract 03XP0042D (project: MAREGA) is acknowledged.

All the authors would like to thanks to ETO MAGNETIC GmbH for providing the materials.

