Applikationsbezogene Gefügeoptimierung von magnetischen Formgedächtnisaktoren

Andrea Böhm, Miguel Panesso, Kenny Pagel, Welf-Guntram Drossel

19. September 2019

Werkstoffwoche in Dresden

Motivation - Ferromagnetic Shape Memory Alloys

Single crystals: Mechanism of MIR-effect relies on two facts

- 1. Mobile twinning \rightarrow preferential deformation mechanism
- 2. High magneto-crystalline anisotropy (c/a ratio)

→ Application: Development of actuator systems based on FSMA

Fabrication of Ni-Mn-Ga actuator sticks

Processing steps

Processing step 1: Raw material preparation Chemical composition

Processing steps 2 - 3:

Induction melting and Single crystal growth

Bridgman technology and Single crystalline MAGNETOSHAPE® material source: Laufenberg, ETO MAGNETIC GmbH

Processing step 4: Heat treatment for homogenization

- ➔ Measurement of thermal properties using DSC
- → Differences in phase transformation behaviour

Processing step 5: Determination of orientation

Processing step 6: Cutting and Polishing

Metallographic investigations on the surface condition of an actuator stick produced by EDM process

Processing step 6: Cutting and Grinding

 \rightarrow good surface qualities (S_a < 0.5 µm) were achieved

→ No MFIS measurable

Processing step 6: Cutting and Polishing

→ Very good surface qualities, roughness value S_a is < 0.3 µm → No MFIS measurable

Processing step 6: Cutting and at last Vibration Polishing

 \rightarrow No traces of processing recognized

Processing step 7: Training

Special dilatometer: deformation and quenching dilatometer (TTT-diagrams)

Processing step 7: Training

Time-Temperature-Transformation diagram

Previous results: Ni-Mn-Ga samples with post-heat treatments

Processing step 7: Training Results – comparison

Measurement results for heat treatment of single crystalline Ni-Mn-Ga+X samples

Processing step 7: Training

Functional tests of the prepared actuator sticks for application

- compression load along two directions
- Stress-strain curves of a vibration-polished Ni-Mn-Ga actuator stick as a function of the number of cycles (training)

Processing step 7: Training MFIS measurements

ACKNOWLEDGMENTS

Financial support by the BMBF [Federal Ministry for Education and Research] under contract 03XP0042D (project: MAREGA) is acknowledged.

All the authors would like to thanks to ETO MAGNETIC GmbH for providing the materials.

