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Abstract— In this work, we propose an extension of established 

image retrieval models which are based on the bag-of-words 

representation, i.e. on models which quantize local features such as SIFT 

to leverage an inverted file indexing scheme for speedup. Since the 

quantization of local features impairs their discriminability, the ability to 

retrieve those database images which show the same object or scene to a 

given query image is decreasing with the growing number of images in the 

database. We address this issue by extending a quantized local feature 

with information from its local spatial neighborhood incorporating a 

representation based on pooling features from deep convolutional neural 

network layer outputs. Using four public datasets, we evaluate both the 

discriminability of the representation and its overall performance in a 

large-scale image retrieval setup. 
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I. INTRODUCTION 

During the last decade, content-based image retrieval (CBIR) has 

not only been a lively field of computer vision research, it also 

became apparent in many successful applications including countless 

apps, which recognize items based on a snapshot taken with a mobile 

device. CBIR aims at preparing a large database of images such that 

all database images can be efficiently searched for candidates showing 

similar scenes or objects to a given arbitrary query image. The seminal 

paper of Sivic et al. [1] introduced the quantization of local features 

such as SIFT [2] for image retrieval proposing the bag-of-words-

model (BoW) which allows to apply text retrieval methods to images. 

To that end, the local features are quantized with a so-called visual 

codebook, i.e. by assigning every feature to one element of the 

codebook which in turn is a large, but limited set of feature 

representatives termed visual words. Thus, the task of matching image 

content can be translated to analyzing the co-occurring visual words of 
images.  

Although enabling computational speed-up and memory benefits, 

the quantization of features in the BoW model impairs the 

discriminative power of the underlying local features. This limits the 

retrieval accuracy in large-scale datasets beyond a few million images. 

Research therefore turned towards global image representations, 

where local features are aggregated with strategies such as VLAD [3] 

or Fisher Vectors [4] into a high-dimensional embedding followed by 

a compression step – mostly PCA and whitening - to encode images 

into compact codes. Searching the image database for similar images 

is hence typically performed by calculating the Euclidean distances 

between the compact code of the query image and the codes from all 

database images. With typical code sizes of 64 to 512 dimensions, this 

exhaustive search is still fast for databases of moderate sizes. Finally, 

the recent advances of convolutional neural networks (CNNs) have 

attracted attention to image retrieval researchers. Using deep-learned 

CNN features out-of-the-box [5] or by pooling responses from fully 

connected [6], [7] or convolutional layers [8–11], competitive and 

better results  than the aggregated local feature approaches have been 
obtained for low dimensional image codes.  

However, if, for instance, all of the image content is encoded (via 

CNN features or aggregation of local features) into just 64 floats, it 

becomes obvious that retrieving very small objects surrounded by 

plenty of heavily cluttered background becomes difficult. In other 

words, to date, neither CNN features nor aggregation of local features 

into global image codes were able to preserve the locality of the initial 

BoW-model at high retrieval performance to large-scale datasets.  

In this work, we therefore analyze the combination of the BoW 

approach with CNN features by extending each quantized feature in 

the BoW-model with more context information from the respective 

local neighborhood. Our contributions are threefold: (1) we propose to 

integrate quantized CNN context information thus adding new 

dimensions to the index of a retrieval system, (2) we propose an 

evaluation framework for analyzing the discriminabiliy of the context 

information and (3) we give an overall large-scale evaluation which 

confirms that in fact more corresponding images can be found when 

adding the features’ contexts.  

The paper is structured as follows: Section 2 presents related work 

for integrating more context information into the BoW model, Section 

3 describes our approach of encoding and subsequently quantizing 

context information. In Section 4, we focus on a proper framework for 

evaluation, followed by Section 5 for details on experiments with 

public datasets. The paper concludes with Section 6. 

Figure 1. Summary of the proposed system for extending the 

information content of a local feature (magenta point) using features 

from pooling CNN layer activations. In the end, the BoW quantization 

of a feature is enriched with a quantized value encoding its 

neighboring context and inducing a second dimension in the index.  
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II. RELATED WORK 

Many advancements of the bag-of-words model have been 

proposed which aim at different aspects of the image retrieval pipeline 

in order to incorporate more information into the retrieval process. We 

neglect methods for short-list re-ranking via spatial verification [12], 

[13] or query expansion [14–17] since they rely on proper initial 

retrieval results or assume multiple corresponding database images 

and are too expensive to be applied to all images in the database. In 

contrast to that, the approaches which incorporate additional 

information into the inverted file indexing scheme (termed index), are 
applied to all images and can be separated into three strategies: 

Extending the accumulator: These methods extend the 

accumulator, which - for every query - holds bins for the scores of all 

the database images by new dimensions assuming that irrelevant 

features will spread along multiple bins of one database image while 

corresponding features will accumulate in one or few of the bins of a 

similar image. For instance, Jegou et al. [18] use orientation and scale 

information of SIFT features to push database images with features 

having consistent differences in scale and orientation compared to the 

query image. Zhang et al. [19] process the position of the features 

introducing a larger accumulator called “offset space” in X and Y 

image dimension. Shen et al. [20] extends that accumulator yielding 

invariance to translation, rotation and scale differences resulting in 

16,000 bins for each target image (16×X, 16×Y, 8×Scale, 

8×Orientation). Besides the benefit that retrieved objects are localized 

in the target images, these extensions of the accumulator add 

additional storage requirements to the main memory hosting the index. 

Furthermore, initialization and evaluation of large accumulators takes 

a lot of time for large-scale datasets.  

Filtering of features: Another approach is to keep the accumulator 

compact (one bin per database image) and to use additional 

information in the index to filter matches prior to casting votes into 

the accumulator. Zhang et al. [21] determine the four closest features 

in the image coordinate space and capture their appearance and 

relative geometry. During retrieval, each BoW-match is further 

examined as to how many of the four neighboring features are 

consistent. While keeping the accumulator space compact, this 

filtering of features during retrieval requires significantly more 

computational resources since still all entries of the feature’s visual 

word in the index have to be processed. Furthermore, in realistic 

image data with challenging transformations, a larger neighborhood 

than just four features is relevant and within this larger neighborhood, 

only a fraction of features match.  

2D-Index: In order to overcome the runtime, performance and 

storage limits of both accumulator extension and filtering of features, 

Zheng et al. [22] uses a multi-index. The first dimension of the index 

is still dedicated to the BoW vectors while the second dimension is 

based on the color name descriptor [23], which is an 11-dimensional 

descriptor mapping color values to 11 categories. Using a Color-

Codebook of size 200, every feature in the index is assigned up to the 

100 closest Color-Words which however obviously eliminates the 

advantages of the second dimension because still up to 50% of the 

index has to be traversed. 

In this paper, we follow the latter strategy of integrating context 

information as a second dimension into the inverse file. However, 

with CNN features, we use different features as basis for the second 

dimension. Adding such a new dimension to the index is attractive in 

multiple aspects: In contrast to the filtering strategy, the runtime 

during retrieval can be optimized because only features which match 

both dimensions have to be considered for the accumulator. 

Depending on the parameters, this can allow storing the inverse file on 

a disk rather than in main memory which is a current limit in terms of 

scalability. Furthermore, since fewer entries will end up in the 

accumulator, sparse implementations become feasible which can be 

evaluated faster. Finally, retrieval accuracy can benefit from the 

second dimension because many incorrect matches of features are 

discarded that match w.r.t. the first dimension only (the quantized 

local feature descriptor) but not in the second dimension (the larger 

context of the feature). See Figure 2 for an illustration of the index 

when adding new dimensions based on context of features. Please 

note that, for the OR combination, many cells have to be processed 

during retrieval (see the yellow cells in Figure 2). However, still much 

less than in the previously mentioned Filtering of features approach of 

[21] and – most notably - without any filtering operation (only 

memory accesses). 

 

III. ENCODING CONTEXT INFORMATION 

The aim of considering the larger context of a local feature is to 

include information about the larger neighborhood which may have 

certain similarities in other images of the same object or scene. When 

trying to represent the environment it is essential that the 

representation supports the existing invariances of the features 

(translation, scale and rotation for the SIFT features used in this work) 

to keep these invariances in a final CBIR system. We propose a 

representation based on pooling features from deep convolutional 

neural network layer outputs.  

Since in 2012 Deep Convolutional Neural Networks (CNNs) 

yielded stunning results in classification tasks [24], they turned out to 

effortlessly improve the state-of-the-art in many other computer vision 

domains [5]. For image retrieval, the use of convolutional layer 

activations [8–11] showed to result in better performance than the 

fully-connected layers [6], [7]. More specifically, images are typically 

represented by a global descriptor which is obtained by sum or max-

pooling over the feature channel maps of the last convolutional layer 

of the neural network. We adopt this for representing one local 

feature’s context information using the 512 feature maps of the 

conv5_3 layer of the pre-trained VGG16 network  [25]. For taking 

into account the different aspect ratios, we actually use three different 

networks for landscape, portrait and quadratic images respectively 

which results in feature maps of three different sizes. Images are 

rescaled to 800 pixels for the longest side before being processed by 

the networks.  Since we are interested in a local representation, we 

Figure 2. Visualization of an inverted file-based index for image 

retrieval which is extended with additional dimensions arising from 

the proposed quantized context features. Red points depict local 

features of images in the index and orange cells contain the subset of 

features which have to be processed for one query image feature 

during the retrieval. Please note that, after introducing new 

dimensions, fewer features have to be processed as all features are 

spread along all dimensions. The yellow cells indicate a setup where 

two context feature dimensions are combined by OR instead of AND 

(which is used in the orange cells). 



 

 

perform pooling only in a spatial quadratic region with its position and 

size being determined by the local feature’s position and scale. Please 

note that this rougly preserves the invariances w.r.t. scale and 

orientation of the underlying SIFT features. Finally, the spatially 

pooled features are l2 normalized. For quantizing the context features, 

we use k-means clustering. Figure 1 summarizes the proposed feature 

for encoding context information. 

 

IV. EVALUATION FRAMEWORK 

When designing a feature for encoding the larger neighborhood of 

a local feature in order to enhance its bag-of-words representation, the 

best evaluation would naturally be to measure the benefits with 

respect to the retrieval accuracy of an overall image retrieval system. 

However, often, indexing large image datasets with all context 

features cannot be carried out each time for balancing every 

parameter. We therefore propose a way to evade this by compiling a 

dataset framework which only considers the relevant parts, i.e. which 

models the retrieval system’s view to the features. More precisely, we 

consider the two possibilities every BoW-match can be looked upon: 

either it is a correct match arising from a real object correspondence or 

it is an incorrect match originating from the quantization loss or 

random background clutter etc.  

Given the datasets, we thus compile these two sets of feature pairs 

(correct and incorrect BoW matches) and evaluate the involved 

quantized context numbers accordingly, i.e. the feature pairs of a 

correct BoW match should also agree w.r.t. their quantized context 

number whereas for incorrect BoW matches, we want the context 

numbers to be different. We therefore measure the False Negative 
Rate (FNR, the number of correct BoW matching pairs that are not 

quantized to the same value) and the False Positive Rate (FPR, the 

number of incorrect BoW matches that are unluckily quantized to the 

same value). Ideally, both FNR and FPR are low to not loose any 

recall and to skip all incorrect matches during retrieval, respectively. 

We additionally perform experiments by combining different context 

features using AND and OR combinations. In these cases, FNR and 

FPR are adapted accordingly, e.g. for AND, a False Negative occurs if 

for a correct BoW match none or only one context feature yields 
identical quantized values. 

 

V. EXPERIMENTS 

For experiments, we use four public datasets often used in CBIR:  

• Oxford5k [13] containing 5,062 images including 5 query images 

and several corresponding images for each of 11 different buildings.  

• Paris6k [26] containing 6,392 images including 5 query images and 
several corresponding images for each of 11 different buildings.  

• Holidays [18] containing 1,491 images of 500 different scenes. 

• Landmarks [6] originally containing 213,678 images of 672 

different landmarks. We use the “clean” subset and due to broken 

links and after removing landmarks without corresponding images, 

we obtained 35,224 images of 586 landmarks.  

 

From all images - rescaled to 800 pixels for the longest side - we 

extract SIFT features [2] at Difference-of-Gaussians Keypoints and 

apply the RootSift normalization[14]. Using the features from Oxford 

dataset, we generate a visual Codebook of size 100,000 by 

hierarchical k-means clustering which is used for bag-of-words 

quantization of local features in all our experiments.  

A. Discriminability of CNN-based context features 

Using the evaluation framework described in section 4, we 

evaluate the discriminability of the context features as follows: 

 1) Identifying feature pairs for correct BoW-matches: Given 

the annotations of the datasets, we identify all pairs of images showing 

the same object or scene. Since the Landmarks dataset has some 

groups with very many images, we limit the number of randomly 

chosen pairs for each landmark to 1,000. For each pair of 

corresponding images, we then extract a set of ‘correct matches’ (see 

Section 4) by taking the bag-of-words matches as starting point and 

subsequently keeping only those matches which are proved to be real 

feature correspondences. To ensure this, we also match the raw (not 

quantized) local features of the two images using the well-known ratio 

check (nearest neighbor vs. second nearest neighbor in descriptor 

space) [2] and additionally perform spatial verification, see [27] for 

details on the geometric consistency checks of neighboring features 

we use. As the datasets contain some near-duplicates (taken at the 

same time with the same camera etc. and thus having a lot of matches) 

we limit (by random selection) the number of extracted correct 

matches per image pair to 100. The main reason for that is that the 

matches will subsequently be processed with respect to their local 

image context in the neighborhoods of the respective features, and if 

we allow too many matches per image, the respective contexts will 

often overlap which limits their informative content for the 

experiments. Furthermore, for Paris6k, we limit the number of image 

pairs by random selection in order to obtain a similar number of 

matching features pairs compared to Oxford5k and Landmarks 

datasets. 

  

2) Identifying feature pairs for incorrect BoW-matches: For 

evaluating the ability of the two different context features with respect 

to filtering out incorrect Bow-matches (i.e. for calculating the false 

negative rates, see Section 4) we report results based on two sets of 

feature pairs: 

OxPa_iBoW: we randomly take pairs of images (each time one 

image from Oxford5k and one from Paris6k), calculate the BoW 

matches and randomly keep 30% of them. Given the fact that the 

images from Oxford5k are taken in Oxford and those from Paris6k in 

Paris, virtually all of those should be incorrect BoW matches.  

Figure 3. Evaluation of the discriminability of the proposed context 

features and their combinations for four public datasets (models 

trained on Oxford). Please note the logarithmic scale of the False 

Positive Rate. 



 

 

La_iBoW: we randomly take pairs of images from different 

landmarks of the Landmarks dataset, calculate the BoW matches and 

randomly keep 30% of them. 

 

3) Feature set for learning the quantizers. We train all our 

models, i.e. the Codebook for BoW-quantization of features and the 

quantizers with data from Oxford5k only and use two different sets of 
context features for learning the quantizers:  

Ox_All, consisting of about 2 million context features randomly 

calculated from all features in all Oxford5k images and  

Ox_Buildings, which contains all features of the correct BoW 

matches from Oxford5k dataset, i.e. the latter set contains only 

features from buildings. Both feature sets are k-means clustered into 
10,000 context words to obtain the quantizers.  

See Table 1 for details on numbers of images in the datasets, 

identified pairs of corresponding images, used pairs of images and 

extracted pairs of features, respectively. 

Figure 3 condenses the results for the CNN-based context features. 

As can be seen, the quantizers trained with Ox_Buildings yield fewer 

FNRs at the price of dramatically increased FPRs. In other words, it is 

essential to train the quantizers with background clutter in order to be 

able to filter out incorrect BoW matches. Furthermore, OR-combining 

sum- and max-pooled CNN features interestingly boosts FNR without 

sacrificing too much FPR. For example, the holidays dataset (green 

square) yields a FNR of 63.83% and a FPR of 0.0748%, which means 

that 36 out of 100 correct BoW-matches are saved while only one 

incorrect BoW-match remains out of 1,336.  

 

 B. Large-scale Image Retrieval evaluation 

After modelling the image retrieval system’s view to the context 

features to evaluate their discriminability (FNR vs. FPR), the question 

arises which trade-off to take in order to find as much relevant images 

as possible in large-scale datasets. To this end, we also measure the 

overall benefit of adding the features’ contexts into a complete 

retrieval system. We focus on the quantizers build with Ox_All and 

evaluate the retrieval setup on the datasets with the common mean 

average precision (mAP) values. For the large-scale setups, we 

incrementally add up to one million images from the public 

MIRFlickr1M dataset[28].  

The results in Figure 4 show that integrating both max- and sum-

pooled CNN features as a second and third dimension of the index 

using the OR combination leads to a significant increase of mAP 

scores across all database and sizes. Interestingly, integrating just one 

context feature performs as good as the BoW baseline in most cases 

although much less features have to be processed in the accumulator. 

Another order of magnitude fewer features are processed using the 

AND combination where both the max-pooled and the sum-pooled 

feature quantizations (and the BoW of course) have to be identical to 

cast votes for a database image. Given this strong filtering mechanism, 

still more than 75% of the corresponding images are found among the 

1 million distractors compared to the BoW baseline.   

 

C. Comparison with other work 

In Table 2 we list other methods which integrate context information 

into the index in order to improve retrieval accurracy. To the best of 

our knowledge, only the coupled multi-index [29] is comparable to 

our strategy of adding new dimensions to the index by quantizing the 

context features. Unfortunately, many interesting papers only give 

results for small database sizes without distractors or only use near-

duplicate retrieval datasets. And even reported large-scale experiments 

cannot be directly compared to our setup for several reasons: 

• Different SIFT Keypoint Detectors  (Hessian-affine vs. DoG) 

• RootSIFT normalization  [30] not used in early works 

• Different distractor sets of 1 million images (Flickr1M, 

MIRFlickr1M, Panoramio1M, self-crawled) 

• Some report evaluation results from models trained on the same 

dataset 

• Feature quantization (Codebook size, hard or soft assignment to 

several visual words) 

• Different Query images (cropped to the object vs. non-cropped 

including clutter; removing true corresponding images in 

distractors) 

VI. CONCLUSION 

 In this work, we proposed ways to increase the discriminability of 

bag-of-words based representations of local features in the context of 

image retrieval. We extended a local feature with more information 

Figure 4. Evaluation of different variants of context features within a large-scale image retrieval setup: compared to the baseline bag-of-words 

model (BoW), integrating the OR-combination of max- and sum-pooled CNN features into the inverse file improves results for all databases of 

all sizes. The zeros on the abscissa indicate that only the images within respective datasets have been used (e.g. 5,062 for Oxford5k) and no 

further images from the MIRFlickr1M-dataset have been added as distractors. Please note the different intervals of the ordinate which shows 

mean average precision. 



 

 

from its larger neighborhood comparing different combinations of a 

representation based on pooling features from deep convolutional 

neural network layer outputs. After defining an evaluation framework 

which models the retrieval system’s view, i.e. which measures 

performance after quantization of the features’ contexts, our 

experiments carried out with four public datasets contrast different 

combinations of sum- and max-pooled CNN features. Leveraging both 

the maximum and the sum of the convolutional layers maps leads to 

significant better retrieval results than the bag-of-words baseline while 

requiring much less memory access. In future work, we will evaluate 

on more recent CNN architectures and examine how different memory 

setups can make use of the proposed multi-dimensional index. For 

instance, during retrieval, if the AND combination of context features 

and BoW features requires very few memory accesses, the index 

could be stored on a soild state disk rather than in the expensive and 
limited main memory. 
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Method Strategy 
Oxford 

BoW 

Oxford 

+Context 

Paris 

BoW 

Paris 

+Context 

Holidays 

BoW 

Holidays 

+Context 

Ours   2D-Index 43.3 47.6 38.0 43.1 64.2 66.7

Coupled Multi-index [22] 2D-Index - - - - 23.0 48.0

Spatial Bag-of-Features [31] Filtering 40.8 55.0 27.8 39.1 - -

Self-Contained Contextual Binary Code [32] Filtering - - 20.8 27.1 31.8 48.4

Multi-order Visual Phrase [21] Filtering 49.3 62.1 - - - -

Geometry-preserving visual phrases [19] Acc. Ext. 41.3 53.2 - - - -

Visual Phraselet [33] Acc. Ext. 44.7 55.7 - - - -

Spatially constrained similarity measure [20] Acc. Ext. 53.5 68.5 63.0 74.1 - -

Weak geometric consistency [18] Acc. Ext. - - - - 32.0 44.0

Table 2. Comparison of different methods that integrate context or the geometry of surrounding features into the index. “Strategy” refers to the 

three different ways for integration (adding a second Dimension or filtering or extending the accumulator during retreival; see Section 2 for 

details). All results are mAP scores calculated on one of the three datasets after adding 1 million distractor images. “BoW” refers to the baseline 

bag-of-words approach and “+Context” refers to the respective approach integrating context. See Section 5.C for more details. 

 


