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Abstract

Force predictions of soil-tool interaction using the Discrete Element Method (DEM)
are widely established. In addition to an acceptable prediction quality, the efficient
simulation of granular material on high performance clusters with modern paral-
lelization strategies for the industrial application is indispensable. But for relevant
problem sizes such simulations are so far not realtime capable. Further on, the
inclusion of the human-machine interaction at a driving simulator combined with
soil-tool simulation poses many interesting research questions. We therefore strive
for sufficient performance regarding computation time. Consequently, we consider
alternative models and algorithms to achieve realtime capability.

In this thesis, we focus on the interaction of a digging tool with soil, and consider the
example of an excavator bucket interacting with a soil trench. We therefore study a
variety of modeling approaches to enable accurate soil-reaction force predictions in
realtime. First, we compare three classes of particle contact models. We examine
not only the suitability for accurate realtime prediction, but also evaluate the
particle models with respect to accurate and efficient generation of training data
for machine learning models. The classical penalty DEM solves Newton’s law on an
acceleration level. Nonsmooth Contact Dynamics (NSCD) solve the equations of
motion on the velocity level, require less smoothness, and allow for larger time steps.
Position Based Dynamics (PBD) originates in the computer graphics community
and solves the contact problem on the position level. While PBD and NSCD are
more efficient, force computations are more reliable using penalty-based DEM. We
further present several basic ideas regarding hybrid models.

Thereafter, we discuss two data-based methods of the field of supervised learning
which allow force predictions in realtime. First, we present a DEM Lookup Table
approach, which accesses previously computed data efficiently in an online phase.
Second, we consider a DEM Recurrent Neural Network approach to emulate the
dynamics arising in the excavation and to enhance the prediction quality for more
complex excavation maneuvers. Finally, we deploy the application of the derived
methods at the driving simulator RODOS and evaluate the developed algorithms
regarding accuracy and practicability.

Keywords: Discrete Element Method, Nonsmooth Contact Dynamics, Position
Based Dynamics, Multibody Dynamics, Data-Based Modelling, k-Nearest Neighbor
Search, Recurrent Neural Networks, Machine Learning
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Zusammenfassung

Zur Kraftvorhersage bei Boden-Werkzeug-Wechselwirkungen ist die Diskrete Ele-
mente Methode (DEM) ein weit verbreiteter Ansatz. Neben akzeptabler Vor-
hersagegenauigkeit ist die effiziente Simulation granularer Materialien mit Hoch-
leistungsrechnern und Parallelisierungsstrategien für die industrielle Anwendung
unabdinglich. Jedoch sind solche Simulationen für relevante Problemgrößen noch
nicht echtzeitfähig. Außerdem ist die Bodensimulation für die Mensch-Maschine-
Interaktion an einem Fahrsimulator ein interessanter Forschungsgegenstand. Dafür
ist eine hinreichende Effizienz notwendig. Aus diesem Grund betrachten wir alter-
native Modelle und Algorithmen, um echtzeitfähige Boden-Werkzeug-Interaktion
zu ermöglichen.

In dieser Arbeit erforschen wir die Boden-Werkzeug-Wechselwirkung am Beispiel
einer Baggerschaufel, die in einem Bodenbett gräbt. Hierzu untersuchen wir unter-
schiedliche Modellierungsansätze, um mögliche echtzeitfähige Lösungsstrategien mit
hoher Genauigkeit zu entwickeln. Zunächst vergleichen wir drei Algorithmenklas-
sen, um den Partikelkontakt aufzulösen. Dazu überprüfen wir die Partikelmodelle
hinsichtlich ihrer Eignung zur Kraftvorhersage in Echtzeit, und bewerten diese
in Bezug auf effiziente Generierung verlässlicher Trainingsdaten für Modelle des
maschinellen Lernens. Die klassische DEM löst Newtons Gesetz auf Beschleuni-
gungsebene. Nichtglatte Methoden (NSCD) formulieren den Partikelkontakt auf
Impuls-Geschwindigkeitsebene, erfordern geringere Glattheit und erlauben größere
Zeitschrittweiten. Positionsbasierte Dynamik (PBD) ist eine Simulationsmethode
aus dem Gebiet der Computergrafik und löst den Kontakt auf Positionsebene auf.
Obwohl PBD und NSCD effizienter sind, ist die klassische DEM für Kraftberech-
nungen besser geeignet. Weiter diskutieren wir verschiedene, grundlegende Ideen
bezüglich hybrider Modelle.

Daraufhin präsentieren wir zwei datenbasierte Methoden aus dem Bereich des über-
wachten Lernens, die eine Prädiktion der auf das Werkzeug wirkenden Bodenkräfte
in Echtzeit ermöglichen. Zum einen stellen wir einen DEM-Lookup-Tabellen-Ansatz
vor, bei dem zuvor berechnete Daten, in effizienter Weise adressiert werden. An-
dererseits untersuchen wir einen DEM-Rekurrente-Neuronale-Netze-Ansatz, um
die Dynamik des Grabvorgangs abzubilden und die Genauigkeit für komplexere
Manöver zu erhöhen. Schlussendlich realisieren wir die Anwendung der herge-
leiteten Methoden am Fahrsimulator RODOS und untersuchen die entwickelten
Algorithmen hinsichtlich ihrer Genauigkeit und Anwendbarkeit.

Stichworte: Diskrete Elemente Methode, Nichtglatte Kontaktdynamik, Positionsba-
sierte Dynamik, Mehrkörperdynamik, Datenbasierte Modellierung, Lookup Tabel-
len, k-nächste Nachbar Suche, Rekurrente Neuronale Netze, Maschinelles Lernen
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Notation

Ω domain
q generalized coordinates, function variable
x position vector
v velocity vector
p unit quaternion, parameter vector
g constraint
δ distance overlap

G = ∂g
∂q

constraint derivative

A algebra
C(X, Y ) space of continuous functions from X to Y
Cm(X, Y ) space of m-times continuously differentiable

functions from X to Y
εa∞ absolute maximum error function
εa
L2

absolute L2-error function

εa
L1

absolute L1-error function

εr∞ relative maximum error function
εr
L2

relative L2-error function

εr
L1

relative L1-error function

F , F, FX, FY, FZ force vector, force scalars
T , T, TX, TY, TZ torque vector, torque scalars
σn normal stress
τ shear stress
N normal distribution
µn normal expectation value
σ normal standard deviation

Physical Parameters

r radius
µ local friction coefficient
φ angle of friction
ρ density
n porosity
E Young modulus
d cutting depth (LUT-parameter)
θ angle of incidence (LUT-parameter)
v longitudinal velocity (LUT-parameter)
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1 Introduction

Combine particle models and data-based modeling for realtime force predictions.
One-line summary of this thesis.

The efficient simulation of physical phenomena presents a challenging task. Many
engineering problems in the past century have been overcome and understood
using complex modeling techniques, e.g. based on ordinary and partial differential
equations or different formulations of contact. However, not only the complexity
of a system is of interest, but also how to efficiently perform a simulation. The
execution time of a complex computation is often limiting factor, increasing the need
for numerical efficiency. The bottleneck is mostly not the imagination and creativity
of researchers, but often the computational resources of computing architectures.
As the construction of high-performance systems became more and more refined
and the density of transistors doubled around every two years (Moore’s law), it
was possible to simulate large complex systems not only in two but also in three
dimensional space. In recent years, this trend has slowed down and parallelization
and memory access become more and more important for computation speedup.
Even today, solving such large systems still requires huge computation times.

Today, industrial applications ask for realtime capable modeling techniques. In
this work, we approach this problem from two different perspectives. On the one
hand, we can work with existing physical models, exchange expensive features
for computationally cheaper but also less accurate ones and use Model Order
Reduction (MOR) to obtain realtime capability. With simplified physical models,
one might run into examples, where the accuracy is low. On the other hand, the
collection of data with an expensive offline model and the online application of
data-based modeling approaches often yield more promising and refined results.

The latter approach has become popular in the new millennium, as machine learning
techniques gained a still ongoing boost in popularity and the number of research
papers in this area grew substantially. In contrast, it is often criticized that machine
learning models lack a physical interpretation and a system may fail completely
with a so called adversarial attack. To know the capabilities, but also the limits of
a model, is an important aspect to keep in mind.
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1 Introduction

Figure 1.1: Driving Simulator RODOS at Fraunhofer ITWM, see [Kle]

Realtime capable algorithms are in demand when it comes to Human-in-the-
Loop (HiL) applications. Here, an operator interacts with a machine, e.g. with a
driving simulator and responds to its feedback. The RObot based Driving and
Operation Simulator (RODOS) at Fraunhofer ITWM is suitable for excavation, see
Figure 1.1. An operator interacts with a machine, generating a typical input signal.
The operator signals are transferred to a simulation model, which computes the
dynamics and motion of the vehicle. After filtering the signal, we compute the
inverse kinematics, resulting in the machine actuation. The operator receives visual
and motion feedback. The gap between expected motion, fitting the visualization
and the experienced motion, which inevitably arises due to the limited configuration
space of the machine, may cause motion sickness. The driving simulator serves
several purposes. First, the simulator environment allows the reproduction of
dangerous scenarios, which should be avoided in real experiments. Second, a
driving assistant system can be modeled and tested in the simulator with different
operators without the necessity of building expensive prototypes. Third, the
development of autonomous vehicles and the drivers experience with them is
another interesting application. Fourth, the driving simulator serves as an operator
training site, which is less expensive compared to a full scale excavator. Also, in
terms of reducing CO2-emission, a driving simulator running on renewable electric
energy is beneficial. So far, CO2-neutral alternative engines, e.g. based on hydrogen
fuel cells or fully electric, are commonly not available for construction machinery
and form part of current research and exist only for prototypes, see [JCB].

2



1.1 State of the Art

We aim at realtime capable soil-tool prediction, that is we require the execution time
of a simulation to be strictly smaller than the simulated time. That corresponds to
a realtime factor below one, see Section 2.4.3 for a more formal definition. With our
algorithms to predict correct draft forces in realtime, we pave the way for inexpensive
operator training for excavation. Furthermore, the correct assessment of soil-tool
forces enhances the physics of important application scenarios, e.g. excavation of
a soil pit, straiten the slope of soil. This significantly improves the model fidelity
in the virtual development process of earthmoving machinery, in particular of
excavators.

Within this thesis, we investigate the trade-off between the computation of highly
accurate reaction forces and realtime capability. Within the close future, the
computer hardware impedes the computation of complex models involving thousand
or even millions of particles for the prediction of forces in realtime. That is why we
discuss alternative mathematical approaches to overcome the problem of accurate
force predictions in realtime.

1.1 State of the Art

In this Section, we briefly review the development of particulate simulation and
discuss a selection of software products incorporating particle methods for the
simulation of granular material. Particle related soil simulation software has been
developed since the publication of the seminal paper by Cundall and Strack [CS79]
introducing the Discrete Element Method (DEM). They started by simulating disks
of different radii in the 1970s and extended their approach to three dimensions
in the late 1980s. In the last three decades there have been numerous advances
in the field, namely the development of numerous particle models, the modeling
of particles as polydisperse spheres, multi-spheres, ellipsoids, or polyhedrons, the
simulation of complex application scenarios and industrial processes, just to name
a few.

Soil simulation in realtime has been addressed in previous work. There have been
several attempts and ideas, however most approaches fail on the accurate prediction
of draft forces. Renouf et al. used nonsmooth particle methods in realtime in
[RAD05], but back then succeeded only with very limited particle samples of about
100 particles. Holz et al. suggested a voxel-based approach in [HBK09]. They later
enhanced their model to be applied in a driving simulator, see [HAT15]. Servin
et al. proposed an adaptive merged particle approach in [SW16], a data-based
approach based on regression of velocity fields in [WS21] and a terrain server with
a continuum model in [SBN21].

3



1 Introduction

1.2 Contributions of this Thesis

We analyze different particle models on their suitability for efficient soil-tool
interaction simulation. Hybrid physical ideas are discussed as well. We propose
two approaches from the field of supervised machine-learning which are realtime
capable. We implement and parametrize them for the application at the RODOS,
see [Kle15a].

During the progress of this work, we contributed two conference publications on a
DEM Lookup Table (LUT) approach:

• Soil modeling with a DEM Lookup approach. J. Jahnke, S. Steidel and M.
Burger, PAMM 2019 [JSB19]

• Efficient Particle Simulation Using a Two-Phase DEM-Lookup Approach.
J. Jahnke, S. Steidel, M. Burger and B. Simeon, ECCOMAS MBD 2019
[Jah+20]

We furthermore addressed two parametrization alternatives in the following confer-
ence proceedings:

• Parameter Identification for Soil Simulation based on the Discrete Element
Method and Application to Small Scale Shallow Penetration Tests. J.Jahnke,
S. Steidel and M. Burger, S. Papamichael, A. Becker and C. Vrettos, PARTI-
CLES 2019 [Jah+19]

• Triaxial Compression Tests and Direct Shear Tests in the Parametrization
Procedure of Soil modeled with the Discrete Element Method. S. Steidel, J.
Jahnke, X. Chang, A. Becker and C. Vrettos, PARTICLES 2021 [Ste+21]

Parts of these publications are included in Chapter 3, Chapter 4 and Chapter 5.

We evaluated three particle simulation approaches regarding their suitability for
efficient soil-tool reaction force prediction. We further studied Recurrent Neural
Networks (RNNs) and developed a DEM RNN approach.

1.3 Scope of this Thesis

I expect you, dear reader of this thesis, to have studied at least one year of
undergraduate mathematics and to be familiar with or at least keen to learn the
basic concepts in numerical mathematics, soil mechanics and technical mechanics.
Engineers, interested in soil mechanical applications, who have followed introductory
courses on mathematics are also encouraged to read this thesis. When we use

4



1.4 Outline

more advanced mathematics, we try to be self-contained if possible and refer the
reader to the literature. When proofs are mentioned or non-essential mathematics
is required to understand, we mention the main results. Many concepts in Chapter
2 are only touched briefly, without discussing the theory in depth.

Our goal is not to cover every aspect in full detail, but to transport the main ideas
on the different roads towards realtime capable soil simulation. The aim of this
thesis is the description of the relevant concepts and promising alternatives for the
application of realtime force prediction with special focus on the application at an
excavation driving simulator.

1.4 Outline

In this thesis, we present two fundamentally different roads to a realtime capable
soil-tool interaction model based upon particle-based soil models. On the one hand,
we have the acceleration and simplification of existing particle models. On the other
hand, we precompute relevant data offline and rely upon methods of supervised
learning. In Chapter 2, we lay out some mathematical groundwork needed for
the following. In Chapter 3, we present three different common algorithms to
model particulate systems. We compare them in terms of stability, efficiency
and robustness. In Chapter 4, we aim towards more efficient models for soil-tool
interaction. Therefore, we look at a simple two dimensional model and point
out its limitations. We use our insight from the previous chapter to formulate
some ideas regarding hybrid particle models. Finally, we present two data-based
models, namely a DEM LUT approach and a DEM RNN approach. In Chapter 5, we
present further results regarding the parametrization. Further, we investigate a
bucket trench experiments and validate the DEM model. We discuss the coupling of
the GRAnular Physics Engine (GRAPE) and the data-based models with different
models of an excavator. Finally, we deploy the two realtime models from the
previous Chapter 4 at the driving simulator RODOS, present several numerical
studies, and discuss practical choices within the aforementioned models.
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2 Mathematical Foundation

In this Chapter, we will introduce the most important mathematical concepts,
which are needed throughout this work. To describe the trajectory of many particle
systems in Chapter 3, we need certain concepts like basic Ordinary Differential
Equation (ODE) theory, function spaces and multibody dynamics. For data-based
models, developed in Chapter 4, we require concepts from the field of Supervised
Learning, more specifically on Lookup Tables and Neural Networks.

First, we will introduce vector and relevant function spaces in Section 2.1 in order
to fix the notation and for the description of particle systems. Then, we take a
brief glance at ODEs and common numerical schemes in Section 2.2. Multibody
Systems are covered in Section 2.5 as they play an important role, not only for
the modeling of earthmoving machinery, but also as a concept to describe particle
systems. Thereafter, we will make a short digression into stochastic calculus in
Section 2.3, as some effort went into describing time series in the context of Lookup
tables as a stochastic process in Chapter 4. In the succeeding Section 2.4, we
cover the main aspects on Lookup Tables and Feedforward and Recurrent Neural
Networks, both needed in Chapter 4. Finally, we present some error functions in
Section 2.6, which will be needed in Chapter 5 to measure the prediction quality
and accuracy of our models.

2.1 Function Spaces

Hilbert and Banach Spaces We recall that a vector space V over a field K, is a
space with a mapping

+ : V × V −→ V
and a compatible mapping

· : K × V −→ V .
The K-vector space V forms an Abelian group with respect to +, the vector addition.
The second mapping · is called scalar multiplication.

7
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Definition 2.1.1. A norm is a mapping ‖·‖ : V −→ K, with the following
properties.

• Non-negativity, i.e. for every x ∈ V : ‖x‖ ≥ 0.

• Definiteness, i.e. ‖x‖ ⇔ x = 0.

• Compatibility with scalar multiplication, i.e. for x ∈ V , α ∈K: ‖αx‖ =
|α|‖x‖.

• Triangle inequality, i.e. for x,y ∈ V it holds ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A Banach space (V , ‖·‖V) is a complete vector space V with a norm ‖·‖V . A Hilbert
space (V , 〈·, ·〉V) is a complete vector space V with an inner product 〈·, ·〉V .

The inner product naturally induces a norm ‖·‖V =
√
〈·, ·〉V . Thus every Hilbert

space is a Banach space with respect to the induced norm.

The most commonly used example of a vector space is the R-vector space Rn with
the Euclidean norm ‖·‖2. If it is clear from context, we usually omit the subscript

2 for better readability.

The following repetition of fundamental functional analytical results is based upon
[Alt16, Chapter 3, pp. 37]. Let Y be a Banach space, and Ω ⊂ Rn.

Definition 2.1.2. The K-vector space of continuous functions is defined as the set

C0(Ω;Y ) := {f : Ω −→ Y, f is continuous on Ω} .

The following definition is more general and contains the previous one for m = 0.

Definition 2.1.3. For any integer m ≥ 1, we denote the space of m-times differ-
entiable functions as the set

Cm(Ω;Y ) := {f : Ω −→ Y | f is m-times coninuously differentiable in Ω} .

Definition 2.1.4. A vector space V endowed with a K-bilinear mapping

×V : V × V −→ V
(a, b) 7−→ a×V b

which we call vector product. We call V an algebra.

Example 2.1.5. The vector space R3 with the cross product ×R3 is an algebra.

8



2.1 Function Spaces

Example 2.1.6. Every function space F ⊂ C0(Rm,Rn) endowed with componen-
twise pointwise multiplication (also called Hadamard product)

×F : F × F −→ F

(f, g)(x) 7−→



f1(x)g1(x)

. . .
fn(x)gn(x)




is an algebra.

Let us first fix some notation in order to lose abstraction and be more concrete. We
denote a column vector by x lying in the vector space Rn for some n in the natural
numbers. More specifically, we consider x to be a matrix with only one column,
i.e. x ∈ Rn×1. The transpose of x is denoted by xT lying in the dual space R1×n of
Rn×1. As noted previously, the scalar product induces a norm 〈x,x〉 = xTx ∈ R.
We will often consider vector valued functions x(t) ∈ F(R≥0,Rn), depending on
time t, which can be interpreted as curves in Rn. Here, R≥0 describes the non-
negative real numbers, i.e. the left-bounded interval [0,∞), and F some function
space, e.g. F ⊂ Cm. If it is clear from context, we may omit the parameter t,
that is, we write x instead of x(t). For a numerical discretization of x(t) at time
steps t0, . . . , ti, . . . , tf , we will write xi := x(ti). If we consider the norm of a vector
‖x(t)‖2, the total time derivative is given by

d‖x(t)‖2

dt
=
〈x(t), ẋ(t)〉
‖x(t)‖2

.

We will need this term in order to formulate a damping term in the Discrete
Element Model in Chapter 3. Keeping these introductory notions in mind, we may
define the following function spaces. Let X, Y be Banach spaces and Ω ⊂ X an
open set.

Definition 2.1.7. A function f : Ω→ Y is called Hölder-continuous if for some
α ∈ (0, 1] and for every x,y ∈ Ω it holds

‖f(x)− f(y)‖ ≤ C‖x− y‖α. (2.1)

Let us recall the definition of Lipschitz continuity, we also refer to [Soh03, Chapter
4, p. 140].

Definition 2.1.8. A function f : Ω→ Y is called globally Lipschitz-continuous if
it is Hölder continuous and α = 1. That is

‖f(x)− f(y)‖ ≤ C‖x− y‖ for all x,y ∈ Ω. (2.2)

9
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We say that f is locally Lipschitz-continuous if for x ∈ Ω, there exists an ε > 0
such that for all y in the ball Bε(x) ∩ Ω it holds the Lipschitz condition. That is

‖f(x)− f(y)‖ ≤ C‖x− y‖ for all y ∈ Bε(x) ∩ Ω. (2.3)

The function space of all Lipschitz-continuous functions will be denoted by

Lip(Ω;Y ) := {f : Ω −→ Y | f is Lipschitz-continuous on Ω} .

For the following definition, we refer to [Nat64, p. 243].

Definition 2.1.9. A function f : [a, b]→ R is said to be absolutely continuous, if
for every ε > 0 there exists a δ > 0, such that for a non-overlapping set of intervals
[ti, ti+1], with

∑ |ti+1− ti| ≤ δ, we have
∑ |f(ti+1)− f(ti)| ≤ ε. The function space

of absolutely continuous functions will be denoted by

AC([a, b];R) := {f : [a, b] −→ R | f is absolutely continuous on [a, b]} .

Definition 2.1.10. A function f : [a, b]→ R and any discretization P = (xk)
n
k=0

with a = x0 < · · · < xn = b of the interval [a, b], we set

V (f, P ) :=
n∑

j=1

|f(xj)− f(xj−1)|.

Then we call

V b
a (f) =: sup {V (f, P ) : P is a partition of [a, b]} (2.4)

the total variation of f. The function f is of bounded variation, if V b
a (f) is finite.

The function space of functions with bounded variation will be denoted by

BV ([a, b];R) := {f : [a, b] −→ R | f has bounded variation on [a, b]} .

Theorem 2.1.11. Let f : R→ R be Lipschitz. Then it is also absolutely continu-
ous.

Proof. Let ε > 0, and set δ = ε/C. Then for any intervals [xi, yi] with
∑

i |xi−yi| ≤
δ, we have that

∑
i |f(xi)− f(yi)| ≤ C

∑
i |xi − yi| < δ.
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2.2 Ordinary Differential Equations

2.2 Ordinary Differential Equations

Let us recall the notation of an ODE , which generally can be written implicitly
as

F (t,y, ẏ) = 0,

where y : R≥0 −→ Rn is the unknown. It becomes an Initial Value Problem (IVP)
by adding the term

y(t0) = y0.

Locally, by the implicit function theorem we may write

ẏ = f(t,y),

y(t0) = y0, (2.5)

which corresponds to the explicit formulation.

Theorem 2.2.1 (Picard-Lindelöf). Let E ⊂ [t0, T ]×Rn and f : E → Rn, (t,y) 7→
f(t,y) be continuous and locally Lipschitz continuous in the second variable y, see
also Definition 2.1.8. Then for every (t?, c) ∈ E there exists an ε ≥ 0 such that the
Initial Value Problem (2.5) has a unique solution.

Proof. The proof can be found in [Arn73, Section 3.1, p. 221] or [For17, Section 12,
p. 168].

Among all the numerical schemes designed to solve an ODE, the simplest one is
the explicit or forward Euler method. Here we choose a not necessarily equidistant
time grid

t0, t1 = t0 + h0, . . . , tN = T,

to discretize the interval [t0, T ]. Then, we start approximating y by ỹ using

ỹ(t1) = y(t0) + f(t0,y(t0))h0. (2.6)

Or generally given the approximated solution ỹ(ti) of y(ti) at time ti, we compute

ỹ(ti+1) = ỹ(ti) + f(ti, ỹ(ti))hi. (2.7)

Usually, we consider an equidistant discretization with h = hi for all i = 1, . . . , N.
It is well-known, that the forward Euler is a first order method, which converges
for a variety of problems given that the time step is small enough. Especially
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stiff problems are often better treated using implicit methods. The implicit Euler
requires a slight change in Equation (2.7), namely

y(ti+1) ≈ y(ti) + f(ti+1,y(ti+1))hi. (2.8)

The equation is only defined implicitly, because the unknown y(ti+1) also appears in
f . This is more difficult to solve for one time step, but often worthwhile, as shown
in [HW91, p. 2ff] and also in their great educational paper on numerical methods
for ODEs [HL15]. There is a wide range of theory on ODEs and their numerical
solution using higher order methods, which we will not cover here, because we will
not address any of it in the upcoming chapters.

2.3 Stochastic Calculus

The following section is based upon [Eva12; KP99]. We aim to introduce the basic
concepts regarding stochastic integrals to be able to formulate stochastic processes
for a Stochastic Differential Equation (SDE). We need this for an improved version
of the DEM Lookup approach, presented in Section 2.4.1.

Preliminaries Let (Ω,A, P ) be a probability space. Here, Ω corresponds to a
sample space and A is a σ-algebra, that is:

• A consists of subsets of Ω.

• A contains the sample space Ω.

• If A ∈ A then A also contains its complement Ac.

• For A1, · · · , An, · · · ∈ A, the union ∪∞j=1Aj is contained in A.

Furthermore, P : Ω→ R describes a probability measure on Ω, namely

• P (Ω) = 1 and P (∅) = 0.

• If A = ∪∞j=1Aj for disjoint Aj, it holds that P (A) =
∑∞

j=1 P (Aj).

Definition 2.3.1. Let A = B(R) denote the Borel σ-algebra. A function X : Ω→
R is called A-measurable if for every Borel-set A ∈ B(R), it hold that X−1(A) is
contained in A.

Definition 2.3.2. An A-measurable function X : Ω → R is called a random
variable.
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Definition 2.3.3. If X is integrable, the expected value E[X] is defined as the
Lebesgue integral over Ω, i.e.

E[X] =

∫

Ω

X(ω)dP (ω).

Definition 2.3.4. A family of random variables X = {Xt, t ∈ [0, T ]}, where the
index set [0, T ] denotes an interval in R and can be considered as a time, is called
a stochastic process.

Notation 2.3.5. A stochastic process X can be considered as a mapping

X : [0, T ]× Ω→ R, (t, ω) −→ X(t, ω) := Xt(ω).

For ω ∈ Ω we denote by

Xω : [0, T ]→ R, (t) −→ Xω(t, ω) := Xt(ω)

the sample path of ω ∈ Ω.

Construction of Brownian Motion

Definition 2.3.6. Let {Wt, t ∈ [0, T ]} = W be a stochastic process with

• W0 = 0 almost surely.

• Wt −Ws is normally distributed, i.e Wt −Ws ∼ N (0, t− s),
• For 0 = t1 < t2 < · · · < tn+1 = T the increments Wt2 −Wt1 , . . . ,Wtn+1 −Wtn

are independent,

• W ω is continuous for almost every ω ∈ Ω.

Then W is a Brownian motion, see Figure 2.1 for different sample paths of a
Brownian motion.

For the simulation of a Brownian motion using the Euler-Maruyama scheme, it
suffices to consider the following:

• Wt −Ws ∼ N (0, t− s),
• Xh ∼ N (0, 1)⇒

√
hXh ∼ N (0, h),

• Wt+h ≈ Wt +
√
hXh.

Definition 2.3.7. A familiy of sub-σ-algebras At0 , . . . ,Atn , · · · ⊂ A with that
property that for 0 ≤ s ≤ t As is contained in At is called a filtration of A.
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Figure 2.1: Different sample paths of a Brownian motion W. The square-root of
the variance is displayed in black.

Definition 2.3.8. Let At ⊂ A be a sub-σ-algebra of A and X : Ω −→ R a random
variable. E[X|At] is the almost surely unique function from Ω to R satisfying

a) E[X|At] is At-measurable,

b)
∫
A
XdP =

∫
A
E[X|At]dP for all sets A ∈ At.

The random variable E[X|At] is called the conditional expectation of X with
respect to At.

Remark 2.3.9. The conditional expectation has the following properties:

a) E[E[X|At]] = E[X],

b) E[X|At] = X if X is At-measurable, i.e. for all A ∈ B(R) : X−1(A) ∈ At.

2.4 Supervised Learning

Supervised Learning describes the general procedure of learning a function mapping
input data to output data. Training data consists of a relation of some input
I ⊂ Rm and some output O ⊂ Rn. Here, we assume N tupels (uk,yk) ∈ I ×O for
k = 1, . . . , N . A supervised learning algorithm uses the training data to generate
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an inferred function. This function may be written as

f : Rm −→ Rn,

u 7−→ y := f(u). (2.9)

The general procedure in supervised learning goes as follows. First, we analyze the
relevant data and gather a training set by measurement or simulation. Second, we
choose suitable input feature data, which characterizes the input data. This should
be as small as possible but large enough to capture all features. Then a suitable
learning algorithm can be selected. In this work, we focused on LUTs and on RNNs.
Thereafter, we perform the model generation by applying the learning algorithm.
Finally, we test the model with data, ideally not included in the training data
set.

2.4.1 Lookup Tables

The general idea of Lookup Tables is old and has been used for several hundred years
for example in the manual computation of logarithms or sines, [LW92; Bür20]. If we
want to evaluate a possibly nonlinear function in an efficient way, we precompute
data at specific points in a previous offline phase. These function values are stored
in a data structure - in previous centuries a table - and can be accessed efficiently
while for points in between some interpolation routine can be applied. Logarithm
tables have been in use in school education in Europe until the introduction of the
first electronic calculators in the early 70s.

Therefore, let us consider Equation (2.9), where f is a possibly nonlinear function.
For u ∈ Rm, we perform a Taylor approximation at u = ui + ∆u:

f(u) = f(ui) +
df

du
|ui(u− ui) +O((u− ui)2). (2.10)

Several approximation routines can then be stated, e.g. the definitions in [Her08,
Chapter 4, p. 61] and [Kre14, Chapter 1.3.3, p. 11f]. Let us therefore prescribe an
equidistant discretization of a hypercube P ⊂ Rm, given by u1, . . . ,uN .

Definition 2.4.1 (Lookup 0). The Lookup 0 approximation of the function f
at point u is given at the closest point ũ = arg minu1,...,uN‖u − ui‖2. Then the
approximation yields

f(u) ≈ f(ũ).
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Definition 2.4.2 (Lookup 1). The Lookup 1 approximation of the function f
at point u is given at the closest point ũ = arg minu1,...,uN‖u − ui‖2. Then the
approximation yields

f(u) ≈ f(ũ) +
df

du
|ũ(u− ũ).

Definition 2.4.3 (TPWL). The Trajectory Piecewise Linear (TPWL) approxima-
tion of a function f at a point u is defined by the k closest points ũ1, . . . , ũk. These
can be found by successively computing the closest point of the set P \{ũ1, . . . , ũ`}
for ` = 1, . . . , k. Then we obtain the sequence of closest points ũ1, . . . , ũk with

‖u− ũ1‖2 ≤ ‖u− ũ2‖2 ≤ . . . ‖u− ũk‖2.

Then the TPWL approximation is given by

f(u) ≈
k∑

i=1

ωif(ũi),

for suitable unit weights, that is
∑k

i=1 ωi = 1.

The right choice of the weights is discussed in the following. In the original work
of Rewieński [Rew03], they propose to use exponentially decaying weights based
on the Euclidean Distance

d` = ‖u− ũ`‖ for ` = 1, . . . , k.

With the above construction, d1 = min1,...,k d` is the minimum distance of the
nearest neighbor. We set the weights ω̃` = exp(−βd`/d1) and scale them to unit
length by

ω` =
ω̃`∑k
i=1 ω̃i

.

The artificial parameter β is set to the value 25 in [Rew03, Chapter 3, p. 41]. If it
is reduced, the closer points gain more influence and vice versa.

We consider a different approach for the weights. For all points ui ∈ P ⊂ Rm, we
assume a normal Gaussian distribution and compute the standard deviation σP .
The standardized Euclidean distance is defined by

d` =
‖u− u`‖

σP
for ` = 1, . . . , k.

We compute the weights by normalizing the standardized Euclidean distance

ω` =
d`∑k
i=1 di

.
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Figure 2.2: Visualization of a single neuron of an artificial Neural Network.

The Lookup 0 approach is a simple form of interpolation of a multi-dimensional
function. Lookup 1 incorporates the derivative at point ũ. With a sufficiently
smooth function f, we expect convergence in the order O(h).

The TPWL approach incorporates more neighboring points, but is also a pure
interpolation routine. Following the idea of Taylor expansion, by including higher
derivatives, we increase the order of convergence, given that the approximated
function is sufficiently smooth.

2.4.2 Feedforward Neural Networks

Feedforward Neural Networks (FNNs) consist of at least one input layer and an
output layer, several hidden layers may lie in between. Each layer consists of nodes,
also called neurons. A neuron consists of a weight vector w and a bias b, and an
activation function fa(·), see Figure 2.2. Several neurons form a layer in the Neural
Network. We may collect the weights to form a weight matrix W . Furthermore,
each layer comprises a typically nonlinear activation function fa. The input u
is then processed to compute the output y = N(u), where N is the nonlinear
function defined by the neural network. The training is typically based on back
propagation, adjusting the weights and biases in the nodes successively, starting
at the output layer [RHW86; LeC+12]. The trained network is called a FNN, if
the nodes do not form cycles. More specifically, the information passes only in
one direction, without influence of previous time steps. FNNs can approximate any
continuous function. We introduce the main ingredients to formulate Theorem
2.4.11 of Universal Approximation for FNNs. The proof is by Kurt Hornik [HSW89]
and relies upon the Stone-Weierstrass theorem. The following definition is by
[SZ06].
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Definition 2.4.4. A real-valued function fσ : R −→ R is called a sigmoid, if
fσ is monotonically increasing and if it is bounded. That is for a < b, it holds
fσ(a) < fσ(b),

fσ(a) ∈ [α, β], lim
a→−∞

fσ(a) = α and lim
b→∞

fσ(b) = β.

Usually, we set α = 0 or α = −1 and β = 1.

Let us recall the Definition 2.1.4 of an algebra from Chapter 2. We consider subsets
A ⊂ CI which are closed with respect to addition and scalar multiplication.

Definition 2.4.5. An Algebra A vanishes on no point of a compact set K ⊂ RI

if for every x ∈ K, there exists an f ∈ A such that f(x) 6= 0.

Definition 2.4.6. An Algebra A separates points on a compact set K ⊂ RI if for
pairwise different x,y ∈ K,x 6= y there exists an f ∈ A such that f(x) 6= f(y).

Now, we are able to formulate the main ingredient in the proof of Theorem 2.4.11.

Theorem 2.4.7 (Stone-Weierstrass). Let A be an algebra of real continuous
functions on a compact set K. If A separates points on K and if A vanishes at no
point on K, then A lies ρK-dense in the space of real continuous functions.

Proof. The proof can be found in [Soh03, Chapter 9.4, p. 383].

Definition 2.4.8. The class of all Lebesgue measurable functions from RI to Rn

is denoted by MI,n =M(RI ;Rn).

Definition 2.4.9. Let AI with I ∈ N be the set of all affine mappings

A : RI −→ R,x 7−→ A(x) = 〈w,x〉 − ψ,

where x,w ∈ RI and ψ ∈ R.

Definition 2.4.10. For a Borel-measurable function f = (f1, . . . , fn)T : R −→
Rn ∈ M1,n, we set ΣI,n(f) =

{
NN : RI −→ Rn | NN(x) =

∑J
j=1 Vjf(Aj(x))

}
.

Here, x ∈ RI and Vj ∈ R1×n, where the product between Vj and f is the Hadamard
product, i.e. we multiply both column vectors componentwise. The affine mapping
Aj belongs to AI and J ∈ N.

The function NN corresponds to a Neural Network with one hidden layer. We can
now state the Theorem on Universal Approximation.
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Figure 2.3: Visualization of a FNN and a RNN

Theorem 2.4.11 (Universal Approximation of FNN). Let f be a non-constant
continuous function f : R 7→ Rn. Then ΣI,n(f) is uniformly dense on compacta in
C(RI ;Rn).

Proof. See Appendix A.2.

As a consequence, we may state that every continuous function g : RI → Rn can
be approximated to arbitrary accuracy by a function in ΣI,n(f).

2.4.3 Recurrent Neural Networks

A RNN contains cycles between the hidden nodes. That is, the output of a hidden
node of a previous time step serves as input of the hidden nodes of the next time
step, see Figure 2.4. The idea for this illustration comes from [GBC16, Figure 10.3,
p. 373]. This time-dependent behavior is suitable to mimic a discrete dynamical
system. Let us recall that a discrete dynamical system with input u and output y
may be written as

st+1 = f(st,ut),

yt = h(st). (2.11)

The first part of Equation (2.11) is called the state transition. The second part
refers to the output equation [SZ06]. It can be shown that every dynamical system
can be approximated by a Recurrent Neural Network up to arbitrary accuracy. It is
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possible to prove that for every ε > 0 and for any given input u and any given output
y, there exists a Recurrent Neural Network NN , such that ‖NN(u)−y‖ < ε. This
property is called universal approximation. Note that we did not further specify
the net architecture or size. The proof is based upon Schäfer, see [SZ06], which
builds upon Theorem 2.4.11 by Hornik, see [HSW89]. We recapitulate their proof
in the appendix.

Definition 2.4.12. For any Borel-measurable function f(·) : RJ 7→ RJ , we define
the class RNN(f) by functions of the form

st+1 = f(Ast +But − ψ),

yt = Cst. (2.12)

Theorem 2.4.13 (Universal Approximation of RNN). Let us consider a discrete
dynamical system

st+1 = g(st,ut),

yt = h(st), (2.13)

where g : RJ ×RJ 7→ RJ is Borel-measurable and h : RJ 7→ Rn is continuous. Then
there exists an element of RNN(f) which approximates the dynamical system
given by Equation (2.13).

Proof. See Appendix A.2 or [SZ06].

The universality property is a key ingredient for the theoretical ability of FNNs.
Given enough hidden nodes, it suffices to train a network with one hidden layer and
approximate any continuous function with arbitrary accuracy. A further powerful
property, which we just want to mention here, is that Recurrent Neural Networks
are - in a certain sense - Turing complete [SS92].

Scaling of Input and Output Data From a practical point of view, it is absolutely
advisable to scale the training data. In the following, we want to share our experience
and describe different aspects of scaling input and output data. First, we consider
a relatively general scaling operation. Thereafter, we present two scaling variants
depending on the statistical distribution of the data.
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Figure 2.4: Visualization of the recurrent structure of an RNN. The current state
serves as input for the hidden state of the coming time step.

Scaling Variant 0: Let us assume that we have collected sufficient training
data (uk,yk) for k = 1, . . . , N . Here, the index k can be understood as a time
discretization. Then we may compute for each input variable i for i = 1, . . . , n the
maximum M(i) = maxk=1,...,N uk(i) and the minimum m(i) = mink=1,...,N uk(i).
Here, i denotes the index of the input dimension, and k the index for a time step.
Then, the scaling function

Si : [m(i),M(i)] −→ [−1, 1],

u(i) 7−→ ũ(i) := −1 +
u(i)−m
M −m (1− (−1)),

maps all data to the interval [−1, 1]. The inverse scaling function is given by

(
Si
)−1

: [−1, 1] −→ [m(i),M(i)]

ũ(i) 7−→ m+
ũ(i) + 1

1− (−1)
(M −m).

This ensures that all input data lie in the hyper cube [−1, 1]n. Analogously, we can
proceed with the output data. Both transformations ensure that back propagation
converges faster, but have the drawback of the requirement to compute the minima
and maxima.

Scaling Variant 1: A different scaling mapping can be defined by assuming a
normal distribution in the data. For each input column, we compute the expected
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value over all training data by E[u(i)] = 1
N

∑N
k=1 uk(i) and the standard deviation

σ[u(i)] = 1
N

∑N
k=1 ((uk(i)− E[u(i)])2). Then rescaling is performed for all k =

1, . . . , N by

ũk(i) :=
uk(i)− E[u(i)]

σ[u(i)]
.

The analogous scaling works also for the output data. Again, we need to store the
expected value and the standard deviation in the input data for each i = 1, . . . , n
and in the output data for each i = 1, . . . ,m.

Scaling Variant 2: Another option is less physical and ignores the fact, that the
input columns may have different physical units. For each time step k, we compute
the expectation over all inputs i, namely E[u(k)] := 1

n

∑n
i=1 uk(i) and the standard

deviation σ[u(k)] = 1
n

∑n
i=1 ((uk(i)− E[u(k)])2). The input is then scaled by

ũk(i) :=
uk(i)− E[u(k)]

σ[u(k)]

in each time step k = 1, . . . , N. The advantage of this scaling operation is that
storing any processed input data is not necessary. A drawback is the loss of physical
interpretability of the data. This approach is closer to a black box model, where
we disregard a physical explanation of the data.

Training and Data Collection In the context of excavation, we record the motion
of the bucket while digging at a driving simulator. That way, we can generate
plausible input trajectories. The trajectories consist of position x and current
orientation p, i.e. in generalized coordinates q = (x,p), as well as their derivatives
˜̇q = (v,ω). As for the DEM Lookup approach, see Section 4.3.1, we start with an
offline simulation of the full DEM model. That maps the bucket trajectory to the
force torque output, i.e. we obtain our data (uT ,yT )T . We divide the data into
training and test data.

Overfitting A common problem when using Neural Networks is overfitting. Dur-
ing training, the weights and biases are updated in order to minimize the distance
between the function f from Equation (2.9) and the approximated function N .
But after sufficient iterations, this can lead to the behavior that the training data
is approximated correctly, while the error on the test data increases. We can coin
this in terms of the following definition
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2.5 Multibody Systems

Definition 2.4.14. Let (U, Y ) ⊂ I ×O be training data and (Ũ , Ỹ ) test data and
ε. A neural net N : I −→ O is overfitted to (U, Y ) if there exists a neural net N2

such that

ε(N(U), Y ) ≤ ε(N2(U), Y ),

but ε(N(Ũ), Ỹ ) > ε(N2(Ũ), Ỹ ).

Simulation in Realtime Let us state a formal definition of realtime capable
simulation or an algorithm.

Definition 2.4.15. Consider a time series in the time interval [t0, T ] and a simu-
lation routine describing the time series. If the execution time τs of the simulation
is strictly smaller then the length τp of the interval [t0, T ] for all time series, the
simulation routine is realtime capable. The realtime factor rf is defined as

rf =
τs
τp
.

2.5 Multibody Systems

The following is based upon [Woe16]. A Multibody System (MBS) consists of NB

flexible or rigid bodies, described by masses and moments of inertia. Here, we
focus only on rigid multibody systems. Furthermore, the bodies are connected
by NJ joints and NF force elements. The total number of degrees of freedom is
denoted by ND. We distinguish between open multibody systems, which can be
described as systems in chain or in tree structure and closed systems, see Figure 2.5.
Closed systems lead to a system of equations in form of a Differential Algebraic
Equation (DAE), while open systems can be described by an ODE. The motion of a
multibody system can be constrained. Such a constraint

g = 0 (2.14)

is called holonomic if it depends on the generalized coordinates q, i.e. g(q(t)) = 0.
A constraint is rheonomic if it explicitly depends upon time t, i.e. g(q(t), t) = 0.
Otherwise, if the constraint does not explicitly depend upon time t, it is called
scleronomic. The equality in Equation (2.14) marks a two-sided or bilateral con-
straint. If we can replace the equality in Equation (2.14) by an equality, i.e. g ≥ 0,
we have a one-sided or unilateral constraint.
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Figure 2.5: From left to right: sketch of open multibody systems in chain or tree
structure or a closed multibody system

Rigid Bodies A rigid body may translate, corresponding to 3 degrees of freedom,
and rotate, corresponding to another 3 degrees of freedom. It is further constrained
by joints, which might reduce the total number of degrees of freedom.The bodies
are assumed to be rigid. A rigid body is located in a global coordinate frame
I = {ex, ey, ez} . We may assign a body-fixed coordinate frame K =

{
eKx , e

K
y , e

K
z

}

to each body. A coordinate frame consists of a rotation matrix RIK and a point
pI with respect to the global coordinate frame. We usually set pI in the center of
gravity of a body.

System State Each rigid body is defined by its position x ∈ R3. Furthermore, we
need to account for the rotation of each body with respect to the global reference
frame. This can be achieved by defining three angles θ = (α, β, γ), which may
result in ambiguities as the rotation sequence with respect to the three principal
axes has to be known. Another possibility is the use of rotation matrices, but
here singularities may occur. Therefore, in all numerical experiments we will use
unit quaternions p = (p1, p2, p3, p4), which can be understood as a 3-dimensional
submanifold of R4. Unit quaternions and their properties are explained in more
detail in the Appendix A.1. In this context, however, we will focus on angles θ,
which eases the notation with respect to inertia tensors. To summarize, we present
translational, rotational and general coordinates of kinematic units of interest in
Table 2.1.

With a slight abuse of notation, we will not distinguish in this thesis between the
7N dimensional vector q̃ and the 6N dimensional vector q. The reason is, that
we prefer to work with quaternions on a position level. On a velocity level, it is
often more intuitive to work with angular velocities ω, resulting in the general
velocities q̇. Also when computing the product between a mass matrix M ∈ R6×6
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2.5 Multibody Systems

kinematic unit translational rotational general
dimension 3 3 6 7
position x θ q = (x,θ) q̃ = (x̃,p)

velocity v ω q̇ = (v,ω) ˙̃q = (v, ṗ)

acceleration a α q̈ = (a,α) ¨̃q = (a, p̈)
jerk j ζ

...
q̃ = (j, ζ)

...
q̃ = (j,

...
p)

Table 2.1: Kinematic notation and translational, rotational and general coordinates

and a generalized vector q̃, it is more convenient to write q. On the position level,
we prefer to use quaternions, as they avoid any singularities and write q̃.

Euler-Lagrange Formalism Let us consider a dynamical system with kinetic
energy T and potential energy V . The kinetic energy T depends upon the mass
matrix M(q) and the generalized velocities q̇, so we may write

T =
1

2
q̇TM(q)q̇.

The external forces

fext = −∂V
∂q

. (2.15)

depend upon the potential V . Let us consider the gravitational force, given by
V = Mgqz, where qz denotes the vector with entries in the third translational
component

qz := (02, q(3),03, . . . ,02, q(6(N − 1) + 3),03).

Then we can formulate the Lagrange equation as

L = T − V .

We obtain the equations of motion by referring to the Lagrange-formalism, namely
considering

d

dt

∂L
∂q̇
− ∂L
∂q

= 0.
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The first part yields

∂L
∂q̇

= M(q)q̇

thus
d

dt

∂L
∂q̇

=
dM(q)

dt
q̇ +M(q)q̈

= q̇T
∂M(q)

∂q
q̇ +M(q)q̈

Secondly, by definition we obtain

∂L
∂q

=
1

2
q̇T
∂M(q)

∂q
q̇ − ∂V

∂q
,

leading to

d

dt

∂L
∂q̇
− ∂L
∂q

= q̇T
∂M(q)

∂q
q̇ +M(q)q̈ − 1

2
q̇T
∂M(q)

∂q
q̇ +

∂V

∂q

= M(q)q̈ +
1

2
q̇T
∂M(q)

∂q
q̇ +

∂V

∂q
.

It can be shown, that the term −1
2
q̇T ∂M(q)

∂q
q̇ corresponds to Coriolis and centrifugal

forces. In the case of body coordinates of discs or spheres, the moment of inertia
Ib is constant in time and the term vanishes. By introducing the total force

f = −1

2
q̇T
∂M(q)

∂q
q̇ + fext,

we arrive at Newton’s equations

M q̈ = f .

Additional algebraic constraints

g(q, q̇, t) = 0

lead to reaction forces, which we add in form of a term GT (q)λ(t) on the right-hand
side of the first equation, where G = ∂g

∂q
. Summing up, we write

Mq̈ = f +GT (q)λ(t)

g(q, q̇, t) = 0.
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2.6 Error Measures

Nonsmooth or penalty based Lagrange multipliers The Lagrange multiplier
λ(t) may be computed as measures in order to enforce almost perfectly rigid
collisions. On the other hand, in the penalty-based formulation, we take λij(t) =
knδij + dnδ̇ij where δij = −g(qi, qj), see also [SRS00, p. 327].

Joints To connect two bodies i and j with a joint, we need to specify two
additional points Pi,Kai and Pj,Kaj on body i and j respectively. The rotation
between Kai and Ki is constant, as both frames are on the respective rigid body.

A kinematic joint constrains two rigid bodies in a specific way. The number of
constraints b and the number of Degrees of Freedom (DOF) f, equals 6, that is

f + b = 6.

A joint Gij is defined implicitly by an equation of the form

gij(qi, qj, t) = 0.

Here the function
gij : R7 × R7 × R −→ Rbij

is assumed to be smooth, where bij describes the number of constraints.

2.6 Error Measures

Aiming at the correct prediction of time series, we need to define a suitable error
measure. We want this to be independent of the trajectory of the tool, the time
discretization and in addition to express meaningful information on the quality of
approximation. Therefore, we define the following error functions. Let y be the
reference solution and ỹ some approximation of y. For vector valued time series
y, we consider each component separately. We assume an equidistant time step
∆t = ti − ti−1 for all i = 2, . . . , N .

Definition 2.6.1. We define the following three error measures. The maximum
error

εa∞(y, ỹ) = max
t∈[t0,tN ]

|y(t)− ỹ(t)| ≈ max
i=1,...,N

|y(ti)− ỹ(ti)|

describes the maximal distance of a time series from another. The L2 error

εa
L2

(y, ỹ) =

√∫ tN

t0

|y(t)− ỹ(t)|2 dt ≈
√ ∑

i=1,...,N

|y(ti)− ỹ(ti)|2 ∆t
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is an error function, in an integral sense, where larger distances have a greater
influence. The L1 error

εa
L1

(y, ỹ) =

∫ tN

t0

|y(t)− ỹ(t)| dt ≈
∑

i=1,...,N

|y(ti)− ỹ(ti)|∆t

is another integral error function, which sums up all absolute errors linearly over
time.

To compare different meneuvers and different time scales, a relative error is more
suitable to measure the prediction quality of an approximation routine. The follow-
ing definition, based on the aforementioned absolute error, serves the computation
of relative errors with respect to the solution y.

Definition 2.6.2. The relative maximum error

εr∞(y, ỹ) =
εa∞(y, ỹ)

εa∞(y, 0)

accounts to the maximum error with respect to the solution y. Similarly, the
relative L2 error may be written as

εr
L2

(y, ỹ) =
εa
L2

(y, ỹ)

εa
L2

(y, 0)
.

The relative L1 error reads

εr
L1

(y, ỹ) =
εa
L1

(y, ỹ)

εa
L1

(y, 0)
.
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3 Particle Models for Soil
Simulation

In the previous chapter, we laid the theoretical and mathematical headstone for the
remainder of this thesis. In this chapter, we want to focus on three different particle
models and underline their benefits and weaknesses. We follow two goals in this
chapter. First, we want to assess the possibility of constructing a real-time capable
particle model suitable for force prediction. Second, we compare the different
models regarding the generation of offline data, for a machine learning model.
Here, we value accuracy over real-time capability, while still requiring an efficient
simulation.

3.1 Introduction to Particle Methods

Soil simulation based on particles is a reliable proven physical modeling approach.
The drawback is that for higher number of particles the computation time, even
using CPU or GPU clusters, becomes impedimental. However, it is worthwhile
to thoroughly look at different particle modeling techniques because it is only a
question of time that soil simulation using particle methods in real-time becomes
feasible. That is why, in this chapter, we selected three fundamentally different
approaches to model particles in the context of soil simulation. First, we focus on
Position Based Dynamics (PBD), a real-time capable model from the Computer
Graphics community, see Section 3.2. While being efficient, the computation of
forces is cumbersome, and inaccurate. Thereafter, we briefly review Nonsmooth
Contact Dynamics (NSCD) in light of the work of [Kle15b], see Section 3.3. Force
computations are possible, but the method is so far not real-time capable for relevant
number of particles to the author’s knowledge. Finally, we look at the classical
Discrete Element Method (DEM) and lay special focus on a linear contact model
and the nonlinear Hertz-Mindlin-Deresievicz model, see Section 3.4. The accurate
force prediction of elastic materials works also with linear models, see [DD04]. The
nonlinear model in full detail is even further from real-time capability.
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3 Particle Models for Soil Simulation

Interacting particle systems may be seen as systems where all particle trajectories
describe the system state. When two particles collide, we may assume that the
collision happens instantaneously. For perfectly rigid materials, with infinite
stiffness, this corresponds to the exact mathematical solution of such a contact
phenomenon, which is known under the term nonsmooth contact mechanics [Kle15b].
This allows the choice of less restrictive smoothness assumptions.

On the other hand, every physical material has a finite Young modulus, so, we
can consider every collision as smooth on a sufficiently short time scale. This
motivates the use of penalty-based collision algorithms. Smoother functions enable
the computation of contact forces, which have to be estimated in case of nonsmooth
formulations given the impulse and a typical contact duration. Forces arise naturally
in the penalty-based DEM context.

Cundall and Strack introduced the Discrete Element or Distinct Element Method
DEM in 1971 in their seminal paper, see [CS79]. The idea is as follows: consider
distinct elastic objects, that is disks, spheres, polytopes or rigid bodies and calculate
their motion separately to assess a realistic bulk behavior. The main difficulty
lies in the resolution of the objects contact between each other and the choice of
a suitable integration method. There is a rich literature basis. The monograph
[OSu11] describes the application of DEM in the context of geotechnical engineering
and gives a good overview on the most common penalty-based DEM models. We
will present two of them in Section 3.4.

We describe particle systems using Newton’s second law

M q̈ = f , (3.1)

where M denotes the generalized mass matrix, q̈ the generelized acceleration vector
and f all external forces. Additionally, we need to prescribe non-penetration
and friction constraints. The non-penetration condition yiealds an inequality
constraint

g(qi, qj, t) = ‖Πx(qi)− Πx(qj)‖2 − rij ≥ 0

between particle i and j. Here, Πx stands for the orthogonal projection of q on to
its translational components, that is

Πx : R6 −→ R6, q 7→ (x,0)T .

We incorporate friction via a formulation of Coulomb’s law, relating normal and
tangential force via an inequality and the friction coefficient µ. Traditionally,
one distinguishes between sticking friction µs and dynamic friction µd, but we
simplify Coulomb friction setting µ = µs = µd, as the effect is negligible for our
applications.
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3.1 Introduction to Particle Methods

Consider N particles in motion with indices i ∈ {1, . . . , N} . Considering only one
particle, we can rewrite Equation (3.1) for each particle in the form

miẍi = Fi.

Here, mi denotes the mass of the i-th particle, xi its position, ẋi its velocity and ẍi
its acceleration vector and Fi the sum of the forces acting upon the i-th particle.

Collision Detection Different algorithms exist to search for upcoming collisions.
The brute force approach is to check every pair of particles (i, j) for their distance,
calculate the overlap δ = rij − ‖xi − xj‖ and if it is non-negative, we have detected
a collision. This has complexity O(n2), so, with a rising number of particles, we
run into difficulties.

A second approach, which works especially well for two dimensional discrete
element codes, is the use of Delaunay triangulation [Del34; LS80]. Here, we connect
the center of mass points, so that they form a collection of triangles. Delauney
triangulations guarantee to maximize the minimal angle within a triangle for all
triangles. This reduces the problem to checking if a triangle edge is smaller than
the maximum particle diameter. Then it suffices to calculate the overlap only for
these particles.

For larger particle numbers, it is more efficient to separate the total volume into
smaller boxes, using axis-aligned bounding boxes, see [Sch99] with a complexity of
O(n).

Rotation Rotation in dimension d = 2 induces one additional degree of freedom,
which we denote by ω. If we denote the vertical axis by z and the horizontal axis
by x, we rotate around the y-axis. For dimension d = 3, we obtain three additional
degrees of freedom, corresponding to the rotation of the particle around the x, the
y and the z axis. Similarly to the Newton Equation (3.1), the Euler equation

Iiω̇i + ωi × (Iiωi) = Ti (3.2)

describes the rotation. In case of spheres and disks, rotation symmetry leads to no
contribution by the gray part of equation (3.2).

Frame of Reference for a Contact Problem If two discs or spheres i and j
come into contact, we obtain a common contact point, which will be the origin of
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3 Particle Models for Soil Simulation

the contact reference frame. We have a normal direction, whereon we can define
two normal unit vectors

nij =
xi − xj
‖xi − xj‖2

and nji = −nij =
xj − xi
‖xj − xi‖2

,

where xi denotes the center of mass of the i-th body.

3.2 Position Based Dynamics

The basic idea is as follows. First we integrate, then we resolve the constraints
by adjusting the particle positions. Thereafter, we set the velocities to match the
position change.

Rather than solving the particle contact on the acceleration level or on the velocity
level, we can directly change the position so that we do not have interpenetration.
Müller et al. introduced this approach and coined it PBD in their paper [Mül+06].
It is used in the computer graphics community and within simulations where
the contact resolution has little importance. The idea is as follows. If we detect
an overlap of two particles, we reset the positions so that the violation is no
longer present. Let us describe the procedure of PBD for one particle-particle
non-penetration constraint. First, we compute a preliminary position update by

x?(tk+1) = x(tk) + v(tk)∆t+ (gz − γv(tk))∆t
2. (3.3)

Here γvk describes a damping term and gz the gravitation term acting in negative
vertical z-direction. Thereafter, we check for a constraint violation by

δ = ri + rj − ‖x?i − x?j‖2 = −gij ≥ 0.

We further compute the constraint derivatives

Gij =
x?i − x?j
‖x?i − x?j‖2

=
1

δ − ri − rj
(x?i − x?j),

Gji =
x?j − x?i
‖x?j − x?i ‖2

=
1

δ − rj − ri
(x?j − x?i ).

With the compliance α = 1
∆t2E

, we compute the Lagrange multiplier ∆λ such that
g(x+ ∆λm−1

i Gij) = 0 by

∆λ =
−δ

GT
ijm

−1
i Gij +GT

jim
−1
j Gji + α

.
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3.2 Position Based Dynamics

Afterwards, we calculate the position update

∆xi = m−1
i Gij∆λ, ∆xj = m−1

j Gji∆λ.

We then update the positions x(tk+1) = x?(tk+1) + ∆xi and set the velocities

v(tk+1) = x(tk+1)−x(tk)

∆t
accordingly.

Algorithm 1 Position Based Dynamics

1: for all particles do
2: x∗k+1 = xk + ∆tvk + ∆t2(fext − γvk)
3: end for
4: for all constraints g` do
5: x∗k+1 ← constraintProjection(x∗k+1)
6: end for
7: for all particles do
8: xk+1 = x∗k+1

9: vk+1 = (xk+1 − xk)/∆t
10: end for

Friction To incorporate friction, we add an additional tangential constraint
[Mac+19, Section 4.4, p. 5]

g(xi,xj) = DT (xi − xj) = 0,

where D is a frictional matrix. After solving for the frictional Lagrange multiplier
λf , Coulomb friction can be incorporated by

λ′f = min(µ∆λ, λf ).

Smallsteps The idea is to subdivide each iteration into small substeps, which
yield much better results than increasing the number of iterations [Mac+19].

The NVIDIA FleX library implements PBD, which is part of the game engine Unity,
see Figure 3.1 and [Haa14]. A slight adaption of PBD has also been successfully
applied in the context of soil simulation, see [Hol14]. The question on suitable
function spaces for positions and velocities is difficult to answer. As we have seen
in Equation (3.3), the preliminary position is updated thus small jumps occur.
Whence, we may postulate that x(t) and ∈ BV 3N ([t0, T ],R) for i ∈ 1, 2, 3. Similarly
the velocities are set after each update to fit the jump in the position. That is, we
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3 Particle Models for Soil Simulation

Figure 3.1: Visualization of the plate in trench experiment modelled with Nvidia
FLEX in Unity

also have vi ∈ BV 3N([t0, T ],R). This is – from a mathematically point of view –
inconsistent.

That being said, we claim that Position Based Dynamics is an inconsistent particle
model. Positions are reset in order to avoid constraint violations, thus positions are
already nonsmooth. Velocities are then set accordingly so that the position jump is
feasible in one time step. They too, possess jumps. This behavior can be criticized
as being nonphysical. Similar to nonsmooth contact dynamics, accelerations may
be formulated as measures. A concise formulation of the dynamics is difficult. A
precise calculation of forces is, even more than for nonsmooth methods, unclear in
most cases.

3.3 Nonsmooth Contact Dynamics

Here, we resolve contact by computing reaction impulses and correct velocities.
Afterwards, we update the computed velocities in an Euler step by integrating
external forces. We then calculate the new positions.

Instead of solving Newton’s second law on the level of accelerations, it is also
possible to consider velocities and impulses. This is done in the nonsmooth theory
on granular media simulation [Kle15b; TA11]. The idea is to impose Coulomb
friction using conical constraints. The impulse γ must be in the local friction cone,
whereas the tangential velocity has to be orthogonal to it. The friction coefficient
µ defines the opening angle φ via the equation µ = arctan(φ).

Motivation A common approach for fast solution of linear equations Ax = r is
to apply iIterative schemes. Two examples for such schemes are the Gauss-Jacobi
and Gauss-Seidel methods, splitting the matrix A into a lower triagonal, a diagonal
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3.3 Nonsmooth Contact Dynamics

and an upper triagonal matrix, i.e. A = L+D + U . Given a starting point x0, we
obtain an iterative solution by

xk+1 = D−1(r + (L+ U)xk), (Gauss-Jacobi) (3.4)

xk+1 = −(D + L)−1Uxk + (D + L)−1r. (Gauss-Seidel) (3.5)

This motivates the popular algorithms in the nonsmooth contact dynamics context.
There, the contact problem is phrased as a conical constraint. A cone K is a
subset of a real vector space V, such that each x ∈ K can be multiplied with a
non-negative scalar α ≥ 0, and it holds that the product still is in K, i.e. αx ∈ K.
A convex cone is a cone that is invariant under non-negative linear combinations,
that is x,y ∈ K and α, β ≥ 0 then αx+ βy ∈ K. The dual cone is defined by all
y ∈ V ′ such that the scalar product with an element of the cone is greater or equal
zero, i.e.

K? = {x ∈ V ′ | for all y ∈ K, it holds 〈y,x〉V ≥ 0} .

The polar cone is then defined as the negative dual cone, i.e. K◦ = −K?. Coulomb
friction translates into a projection onto a convex cone Kµ, see [TA11]. A projection
in the sense of linear algebra satisfies Π2(x) = Π(Πx)) = Π(x). We project the
impulse λ = (λn, λt1, λt2)T = (λn,λ

T
t )T in the local contact frame as follows

ΠKµ(λ) =





λ if ‖λt‖ < µλn
0 if ‖λt‖ < − 1

µ
λn


1

sgn(λt1)µ
sgn(λt2)µ



√

1
2

(λ2t1+λ2t2)µ+λn

µ2+1
if − 1

µ
λn ≤ ‖λt‖ or if µλn ≤ ‖λt‖.

Impulses in the cone Kµ remain unscathed. If λ is inside the polar cone K◦, it
is mapped to zero. Otherwise, we project onto the nearest point on the cone Kµ.
Indeed ΠKµ(ΠKµ(λ)) = ΠKµ(λ). The formulations of the system of equations as a
Cone Complementarity Problem reads

K 3 Nγ + r ⊥ γ ∈ K?. (3.6)

Here N denotes the product of the constraint derivatives and the mass matrix
N = GM−1GT . The right-hand-side vector r collects the velocities induced by the
overlap, external forces, and previous velocities. We refer to [Kle15b, Chapter 4.3,
p. 87] for a more thorough and detailed discussion.
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3 Particle Models for Soil Simulation

3.3.1 Projected Gauss-Jacobi Method

Starting from Equation (3.6), we can formulate the following iterative scheme

γr+1 = ΠKµ(γr − wD−1(Nγr + r)), (3.7)

= ΠKµ((I − wD−1N)γr − ωD−1r)),

where D denotes a matrix with the diagonal entries of N and w is a relaxation
parameter, following [Kle15b, p. 91]. Apart from the projection ΠKµ , this resembles
Equation (3.4). The Projected Gauss-Jacobi (PGJ) algorithm is suitable for paral-
lelization, because the loop over non-penetration constraints allows parallelization.
Only the sum in the velocity update in line 11 needs sequential evaluation, see
Algorithm 2.

Algorithm 2 Projected Gauss-Jacobi

1: while iter < mI do
2: for all constraints gnp do
3: ξij = gnp

∆t
+ µ‖vt‖+Gijvi +Gjivj

4: δij = λij − wηξij
5: δij ← ΠKµ(δij)
6: δij ← δij − λij
7: λij ← λij + δij
8: end for
9: v = v0

10: for all particles do
11: vi ← vi +

∑Nc
j=0m

−1
redGijδij vj ← vj +m−1

redGjiδij
12: end for
13: end while
14: for all particles do
15: vk+1 ← vk + g∆t
16: xk+1 ← xk + vk+1∆t
17: end for
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pn

pt1

pt2

φ

Figure 3.2: Friction cone and projection

3.3.2 Projected Gauss-Seidel Method

The Projected Gauss-Seidel (PGS) solver is less suitable for parallelization but
converges faster. The algorithm is presented in Algortihm 3.

NSCD and Reaction Forces NSCD allows for definition of reaction force by
reaction impulse as

F = G(qj)
γj

σdt+ (1− σ)dtc

see [Kle15b, p. 69]. Here, γj is the reaction impulse, dtc is the typical critical time
step for a contact event, and σ is an additional meta parameter. Kleinert also
describes a concise formulation of the dynamics. We may assume, that the positions
x(t) are absolutely continuous. The velocities v(t) are of bounded variation, i.e.
v(t) ∈ BV N([t0, T ],R). The accelerations exist as a Lebesgue-Stieltjes measure
[Kle15b, Chapter 3.2, p. 46].

NSCD and Real-time Applications Renouf et al. applied nonsmooth methods
in real-time applications, see [RAD05], but succeeded only for about 160 spheres.
Servin et al. use nonsmooth methods in their mutli terrain server, but rely on
voxel-based methods for real-time simulation [SBN21].
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Algorithm 3 Projected Gauss-Seidel

1: while iter < mI do
2: for all constraints gnp do
3: ξij = gnp

∆t
+ µ‖vt‖+Gijvi +Gjivj

4: δij = λij − wηξij
5: δij ← Πcone(δij)
6: δij ← δij − λij
7: λij ← λij + δij
8: vi ← vi +m−1

redGijδij, vj ← vj +m−1
redGjiδij

9: end for
10: end while
11: for all particles do
12: vk+1 ← vk + g∆t
13: xk+1 ← xk + vk+1∆t
14: end for

3.4 Penalty-based Discrete Element Method

Penalty-based DEM is also known under the name soft-sphere approach [Gup15,
Chapter 2, p. 27]. Particles can slightly overlap, while this overlap leads to a normal
non-penetration force. This results in contrast to the previous models in a system
of stiff ODEs.

Formulation as an ODE of First Order First, we reformulate Newton’s equation
(3.1) in terms of

M q̈ = F ,

q̇ =
dq

dt
. (3.8)

Here, M denotes a block matrix consisting of Id ∗mi and of the moment of inertia
Ii, which for spheres with reference point in the center, can also be considered a
diagonal matrix. Thus M is a diagonal matrix and has size 6N × 6N or 3N × 3N.
Let us rewrite equation (3.8) as a first order system by setting u1 = q and u2 = q̇,
thus u = (u1,u2)T . Then

u̇ = (u̇1, u̇2)T = (u2,M
−1F (u1(t),u2(t), t)) =: F̃ (u(t), t).

Thus, we obtain
u̇ = F̃ (u(t), t).
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3.4 Penalty-based Discrete Element Method

If F̃ (u(t), t) is continuous in t and Lipschitz continuous in the first argument in
the sense that

‖F̃ (u(t), t)− F̃ (v(t), t)‖ ≤ L‖u(t)− v(t)‖ for all u,v and t,

we obtain existence and uniqueness of a solution u, at least locally, by the Picard-
Lindelöf theorem, see Section 2.2.

Time Stepping In penalty-based DEM usually use an explicit Euler scheme, see
Section 2.2. This has the advantage of being simple to program. The varying
number of contacts per particle is not an issue. However, if the material is stiff,
that is the Young’s modulus E is large, the time steps need to be small in order to
achieve convergence. For such a stiff ODE, one would usually choose an implicit
scheme, the simplest being the implicit Euler scheme, see Section 2.2. However,
the change in the number of contacts and the requirement of small time steps due
to nonlinearity show, that in DEM the disadvantages of the implicit Euler outweigh
its advantages, [OSu11, Chapter 2.5, p. 55].

Scale Invariance The terminology of scale-invariant contact laws is due to Feng,
see [Fen+09], and applies to all penalty-based interaction laws. The idea is to
change the size of the simulated particles, e.g. enlarging particles reduces the total
number of particles and larger time steps become stable. This is only plausible, if
the relation between stress σ and strain ε is invariant.

This leads to a mesoscopic model where one simulated particle does not correspond
to exactly one physical grain. Let us consider physical grains with radius rP and
larger model particles with radius rM .

Definition 3.4.1. We say that a model is scale-invariant, if and only if for radii
rP and rM it holds σP = σM for εP = εM .

That means, if we enlarge the particles, the strain stress response of the bulk
material does not change. This leads to the following theorem.

Theorem 3.4.2. An n-dimensional contact law of the form F = crαδβ is scale-
invariant if and only if α + β = n− 1.

Proof. This result is shown in [Fen+09].
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3 Particle Models for Soil Simulation

xixj

Figure 3.3: Initial contact setup: contact points and actuation point coincide

Initial Contact In the following, we describe a linear DEM model presented in
[Obe13]. Two particles with centers xi,xj, radii ri, rj and velocities vi,vj collide.
To detect a collision, we look at the overlap δij = ri + rj − ‖xi −xj‖2, and when it
is non-negative for the first time, we register a collision. The initial contact point
xCij = xi + rinij ideally coincides with its opposite xCji = xj + rjnji. Furthermore,
we set the actuation point as

xaij = xi +
ri

ri + rj
(xj − xi).

In the first time step when a collision is detected, these three points coincide, that
is xCij = xCji = xaij .

Contact Point in Global and Local Coordinates The initial contact point xCij
is given in a global coordinate frame. We additionally need to save it in local body
coordinates

xlocCij = xCij − xi
and

xlocCji = xCji − xj.
The global contact point is recomputed in each time step from its local form.

Contact Point in Successive Time Steps If the particle xi and xj are in contact,
we have to recompute the global contact points from the local contact point. This is
done by taking into account any rotations incorporated in the rotation matrix Rij,
that is xCij = RijxCij +xi. The actuation point is recomputed as the mid-point in
the contact area xaij = xi + ri

ri+rj
(xj − xi).
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3.4 Penalty-based Discrete Element Method

xixj xa

xcij
xcji ξij

Figure 3.4: By relative translation and rotation, the tangential displacement vector
and the rotational displacement vector arise

3.4.1 Hertz-Mindlin-Deresiewicz Model

A nonlinear contact model is based on Hertzian theory and the tangential model
by Mindlin and Deresiewicz, [DD04], [Her82], [DM53]. The following discussion is
based upon the master thesis [Gho19] and the monograph [OSu11].

Hertzian contact is a scale invariant model with constants α = 1
2

and β = 3
2
, see

Theorem 3.4.2. The normal force term reads

Fn =
4

3
E?
√
R?δ

3
2
n .

Here E? is the harmonic mean of Young modulus divided by one minus the Poisson
ratio ν of the materials in contact, i.e.

1

E?
=

1− ν1

E1

+
1− ν2

E2

.

Similarly, R? is the equivalent radius

1

R?
=

1

R1

+
1

R2

.

The tangential force is computed by integrating over the contact area with radius
a. The sticking area has a smaller radius b. We thus distinguish

ft(r) =
3µFn
2πa3

√
a2 − r2 for b ≤ r ≤ a,

ft(r) =
3µFn
2πa3

(√
a2 − r2 −

√
b2 − r2

)
for 0 ≤ r < b.
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3 Particle Models for Soil Simulation

The tangential force is then given by

Ft = 2π

∫ a

0

ft(r)rdt = µFn

(
1− b3

a3

)
.

An even more complex formulation involving a counter-slip region is presented in
[OSu11].

3.4.2 Linear DEM Model

A simplified version of the nonlinear Hertz-Mindlin model is a linear contact model.
In [DD04], different linear and nonlinear contact models are studied. Their findings
indicate, that for granular bulk materials, it suffices to consider linear interaction
laws. The model presented here, is based upon the work by [SSE10; Obe+11] and
[Fle09, Chapter 2.2.2, p. 11].

Normal Interaction We set δ̇ij = 〈vi − vj,nij〉, where 〈·, ·〉 corresponds to the
scalar product in Rd. This leads to the computation of a normal conservative
force

FN,cons
ij = kNij δij

and a normal dissipative force

FN,diss
ij = dNij δ̇ij.

Considering two particles as a stiff beam, with mean radius rij = 1
2
(ri+rj) and mean

area Aij = πr2
ij. The length of the beam corresponds to Lij = 2rij. Considering the

normal stress σ and strain ε

σ =
FN,cons
ij

Aij
=
kNij δij

πr2
ij

and ε =
δij
2rij

,

we obtain for the Young modulus

EN =
σ

ε
=
kNij 2rij

πr2
ij

thus kNij =
ENπrij

2

Hence, the presented model, neglecting the damping term, describing a 3-dimensional
contact law with n = 3 and α = β = 1, is scale-invariant. We set the inter-particle
damping

dNij = DN2
√
kNijmij, where mij =

mimj

mi +mj

.
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3.4 Penalty-based Discrete Element Method

The effective mass mij stems from the consideration of two particles as one damped
oscillator. The parameter DN controls the desired percentage of critical damping.
In summary, we obtain

FN
ij =

(
kNij δij + dNij δ̇ij

)
nij.

Tangential Force By translation or rotation of the two particles with respect to
each other, the contact point moves with the particles center of gravity. Thus, the
global contact points may not coincide, see Figure 2. The tangential displacement
is the projection of the vector connecting the contact points into the tangential
plane. By transformation of the local contact points, we obtain the global contact
points

xCij = IxlocCij + xi.

The identity matrix I has to be replaced by the respective rotation matrix, if
rotations are to be considered. Now, let us consider the contact point displacement

ξ′ij = xCji − xCij
and after projection into the tangential plane the tangential displacement

ξij = Πξ′ij = ξ′ij − 〈ξ′ij,nij〉nij.
The relative velocity vi−vj is projected into the tangential plane, more specifically
we set

ξ̇ij = 〈vi − vj, t〉t,
where t =

ξij
‖ξij‖ is the tangential unit vector. We consider a tangential conservative

force
F T,cons
ij = −kTijξij

and a tangential dissipative force

F T,diss
ij = −dTij ξ̇ij.

Together, we obtain F T
ij = −kTijξij − dTij ξ̇ij.

Coulomb friction If the tangential force is high, with respect to the normal force,
slipping occurs. This is accounted for, by reducing the tangential force, acting in
opposite direction to the particle velocity. More specifically, we enforce

F T,cons
ij ≤ µFN

ij . (3.9)

This is done, before calculating the dissipative part of the tangential force. If the
Coulomb friction condition (3.9) is violated, the tangential force is reset to

F T
ij = µFN

ij

ξij
‖ξij‖

.
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3 Particle Models for Soil Simulation

Rotation Rotation arises due to a torque induced by a tangential force acting at
the actuation point, that is

Ti = (xaij − xi)× FT .

The rotation needs to be taken into account when transforming the contact point
from local to global coordinates. We can further introduce rolling resistance to
model irregular shapes that inhibit excessive rolling and allow steep angles of repose,
see [Obe13, Chapter 4.2.3, p. 30].

The whole model is shortly summarized in Algorithm 4.

Symbol Name Range Unit
Linear normal model
ri radius 0.0001− 0.1 m
n porosity 0.3− 0.6 −
ρ density 1000− 3500 kg/m3

m̃ij reduced mass
mimj
mi+mj

kg

E Young modulus 105 − 108 N/m2

DN damping coefficient [0− 1] −
kNij normal stiffness π

2

ri+rj
2
E N/m

dNij normal damping DN2
√
m̃ijkNij Ns/m

Linear tangential model
kTij tangential stiffness 1

1.2
kNij N/m

DT damping coefficient [0− 1] −
dTij tangential damping DT2

√
m̃ijkNij Ns/m

Coulomb friction
µ friction coefficient [0− 1] −

Table 3.1: Parameters of the DEM model, with range of the parameters and physical
unit.

3.5 Comparison of Different Models

The three methods from this chapter all have their pros and cons. The classical
DEM resolves contact with a smoothing penalty term on the acceleration level. This
requires small time steps but is suitable for direct computation of particle-tool
forces. Classical ODE theory yields convergence of the method.
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Algorithm 4 DEM - Linear Contact Model

1: procedure ContactParticleParticle(Contact,xi, xj) . Particles i and j
are in Potential Contact

2: if δij = ri + rj − ‖xi − xj‖ > 0 then
3: if Contact (i, j) not Initialized then
4: Initialize Contact (i, j)
5: xCij = xCji = xaij = xi + ri

ri+rj
(xi − xj)

6: xlocCij = xCij − xi
7: xlocCji = xCji − xj
8: else
9: xaij = xi + ri

ri+rj
(xi − xj)

10: end if . Normal Contact
11: δ̇ij = 〈vi − vj,nij〉
12: FN

ij = kNij δij + dNij δ̇ij
. Tangential Contact

13: xCij = Rijx
loc
Cij

+ xi
14: xCji = Rjix

loc
Cji

+ xj
15: ξ′ij = xCji − xCij
16: ξij = ξ′ij − 〈ξ′ij,nij〉nij
17: F T,cons

ij = kNij ξij
18: if ( then F T,cons

ij > µFN
ij ) . Coulomb Friction

19: F T
ij = µFN

ij
ξij
‖ξij‖

20: ξ′ij = µ
FNij
kTij

ξij
‖ξij‖

21: x′Cij = xCij −
ξ′ij
2

22: x′Cji = xCji +
ξ′ij
2

23: else . Dissipation
24: ξ̇ij = 〈vi − vj, t〉t
25: F T,diss

ij = dTij ξ̇ij
26: end if
27: end if
28: end procedure
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In contrast, the nonsmooth algorithms focus on the velocity level. The jumps in
the velocities seem physically accurate for materials with infinite stiffness. The
algorithms allow much larger stable time steps. However, the computation of
reaction forces is not so straight forward. The typical contact duration has to be
taken into account to obtain forces from the computed impulses.

Position Based Dynamics form a relatively new class of algorithms, which in a
certain way tends to ignore Newtonian physics. Contact is resolved on the position
level, leading to visually pleasing results, but the effects in the velocities may
become nonphysical. Visually pleasing simulations can be achieved in realtime, but
force computation in a physically accurate way is difficult.

We implemented a prototypical version of the above algorithms for two dimensional
problems in MATLAB, see [Mat; Jah]. This served as a pre-study to deepen
the author’s understanding regarding physical particle models. The code is not
optimized but rather kept as general so that it can serve for the study of different
algorithms.

In all three scenarios the material stiffness in form of Young’s modulus E is impor-
tant, since it affects the compliance (PBD and NSCD) or the stiffness. Furthermore,
the damping parameters Dn (DEM), w (NSCD) and γ (PBD), have an influence on
the simulation which is difficult to compare. So although we developed a prototype
for disks for most of the presented models, a thorough comparison is still difficult.

Numerical Examples In order to show the differences of the three models, we
present two numerical examples. Out of each class of algorithms, we focused only
on one for this study, namely on standard PBD, Projected Gauss-Seidel (PGS) as a
representative nonsmooth method (on the velocity level) and the linear penalty-
based DEM model (on the acceleration level). The relevant parameters for the
simulation are shown in Table 3.2, the source code is publicly available at Github
[Jah].

First, we will look at the simulation of the bouncing ball example, a famous
academic one dimensional example which has been cited in numerous publications
in different scenarios [GST12, Example 2.12, p. 25], [SA14, Problem 4.2, p. 192]. A
ball with diameter d = 1 is positioned at a height of z = 2 m under the influence of
gravity, see Figure 3.5. This shows the main difference of PBD as being elastic and
PGS as a nonsmooth representative as completely rigid (NSCD), in contrast to the
bouncing effect of DEM. For this example, we took the linear DEM solution as a
reference. For PBD, we varied the damping parameter γ. If we choose γ = 0, than
no damping is in effect and the bouncing will continue indefinitely. For γ = 5, we
still get higher bouncing compared to the DEM. γ = 10 leads to a similar behavior
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Symbol Name Value unit
General parameters

ρ density 2700 kg/m3

E Young modulus 108 N/m2

µ friction coefficient 0.3 −
PBD and PGS
nsteps iterations 1 −

PGS
w relaxation factor 0.2 −

PBD
γ Damping 8 1/ms

Linear DEM
DN Damping coefficient 0.2 −
DT Damping coefficient 0.02 −

Table 3.2: Parameters for the numerical examples for different models. In Bouncing
Ball Example the number of steps nsteps and the damping γ has been
adapted accordingly.

as for DEM, considering the first arc at t = 1 second. The PGS solver - if full
convergence is desired and the maximum iteration number mI is set very high -
does not bounce at all. By reducing it to mI = 10, we see a small bouncing and
for mI = 1 the behavior is close but slightly lower compared to the DEM solution.
To be fair, PGS would converge to an inelastic collision with a wall of infinite mass.
This could be overcome by increasing the impulse after collision or by introducing
some coefficient of restitution, see [SA14, Problem 4.2, p. 192]. Notice that the
artificial parameter γ in the PBD solution already influences the trajectory before
the first contact has happened, as the green trajectories decay slower than the blue
or the red one.

A second example is about a 2 dimensional pile of particles collapsing and forming
an angle of repose, see Figure 3.6. In this example, we want to focus on the
maximal stable integration time step and the total execution time of our MATLAB
code. The code is not optimized for speed, however it gives us a rough idea of how
efficient the methods are, compared to each other. We consider a sample of N = 200
particles with a radius distribution between 2.5 and 5 cm. We compute 1 second
simulation time and measure the computation time, as indicated in Table 3.3. Note
that the parameter mI in PGS was chosen to be 1, so the solver does not fully
converge. The computation was performed on a Lenovo T490s with an Intel i7-8665
4 core processor and 16 GB DDR4 Ram. In this example, PBD has a real-time
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Figure 3.5: Bouncing ball example:Position (Left), Velocity (Right). We compare
the linear DEM model (red), with the PBD for γ ∈ {5, 10} and PGS for
the maximum iteration mI ∈ {1, 10}

factor of 8, while for the linear DEM model, we only achieve a factor of 58. To put
this into perspective, GRAPE achieves real-time factors of about 100 for industrial
size problems of about 150 thousand three dimensional non-rotational particles run
in parallel on a CPU cluster [Bur+17]. And indeed, there exist real-time capable
PBD implementations, see Figure 3.1, but which do not allow good force predictions.
For larger time steps than 0.0025 seconds, all three methods showed nonphysical
behavior. The DEM solver, did not converge for time steps larger than 0.001 second.

Model \∆t/ s 5 · 10−4 1 · 10−3 2.5 · 10−3

PBD 42.0 21.0 8.32
NSCD 56.7 26.7 11.3
DEM 123.5 58.5 -

Table 3.3: Efficiency of different modeling approaches. Runtimes for 1 second
simulation of collapsing 200 particle pile.

In a third example, we want to study the scaling with the particle size of the
different algorithms. Similarly to the second example, we chose three problems, a
small one with 100, a medium size with 200 and a large problem with 400 particles.
We measure the time to simulate 1 second simulation time of the collapsing pile. In
Figure 3.7, we see the total simulation time as a function of the number of particles
for linear DEM, the PBD and the PGS algorithm. As a reference, we plot a dashed
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Figure 3.6: Collapsing particle pile consisting of 200 polydisperse particles
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Figure 3.7: All three algorithms scale superlinearly with the number of particles
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Model Force Prediction Quality Efficiency Real-time capability
PBD - + +

NSCD 0 0 -
DEM + - -

Table 3.4: Comparison of the different particle methods.

linear reference given by f(x) = 0.2x. The total simulation time is shown linearly
(left) and as a log–log plot (right), where the linearity is clearly visible.

Discussion At the start of this Chapter, we defined two goals for our comparison.
First, the three models are evaluated with respect to their suitability for direct
application in real-time, which is covered in detail in Table 3.4. Here, PBD is most
efficient and we know, that it can be used in realtime. NSCD is less efficient, but in
the future, simple nonsmooth algorithms covering only the main aspects might run
in realtime if hardware development continues. Penalty-based DEM has a limitation
regarding the stiff nature of the underlying ODE. Thus, the time steps need to be
small enough in order to achieve convergence. The second goal is the suitability of
the methods for the generation of offline training data. Here, non-rotational DEM

results in accurate force predictions, see also Chapter 5. Force prediction for NSCD

is possible, but not straight forward, see [Kle15b]. While being very efficient, the
PBD formulation does not allow a simple way of tool force computations. Thus for
our second goal, we prefer penalty-based DEM, see also Table 3.5.

While forces and torques are at the focus of our studies, we will restrict our self to
the linear DEM model, see Section 3.4.2, from now on. Rotations will be neglected
as it is known that the effect on tool forces is negligible, see [Obe13]. This model
suffices for accurate force prediction, as we also demonstrate in 5.3. PBD has
the capability of running in realtime, but lacks the possibility of accurate force
predictions. For high numbers of particles, DEM and NSCD are not real-time capable.

3.6 Parametrization of Soil

What we have omitted in this chapter so far, is the correct parametrization of
any of the mention models. In academia, the choice and the study of suitable
model is often the main focus. Equally important is the ability to calibrate all free
parameters of a model in order to have good agreement with a physical system. The
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3.6 Parametrization of Soil

Goal 1: Goal 2:
Model Real-time Application Offline training data
PBD + -

NSCD 0 0
DEM - +

Table 3.5: Comparison of the different particle methods regarding direct application
in realtime (Goal 1) or for the computation of offline data (Goal 2)

parametrization requires measurement data of a standardized test. Afterwards, a
second measured experiment can be simulated leading to the validation of the model.
Some parameters, such as masses, length and time scales can be incorporated into
the models directly. However, there often remain free parameters in a model
which allow the calibration. Often, it is helpful to run a sensitivity analysis of
a model with respect to the free parameters. In this section, we will first talk
about parametrization in general, referring to all particle models of this chapter.
Thereafter, we will present a short digression into soil mechanics and focus on the
parametrization of the linear penalty-based DEM model, see Section 3.4.2. This
will serve as a foundation for upcoming parametrizations and offline simulations of
the data-based models, see Section 5.2 and 4.3.

Each of the three presented particle models in this chapter contains several param-
eters, which have to be set accordingly in order to obtain results which correspond
to physical phenomena. We distinguish three different parameter sets. First, there
are obvious correspondences in certain parameters. These comprise parameters as
mass m or particle density ρ. Second, there are parameters related to the particle
pile, such as the radius distribution ri or the porosity n of a sample. Third, there
are free parameters related to the contact model. These comprise Young’s Modulus
E related to stiffness, but also damping and friction coefficient µ. In PBD, the
damping coefficient γ has to be calibrated. In the presented NSCD algorithms the
parameter w and the number of iterations nsteps have an impact on the result
[KOB13]. In the linear DEM, the damping coefficients DN and DT have to be set
accordingly.

Uncertainty The generation of a model sample with a certain porosity involves
a large portion of randomness. Either we let particles fall into a box under the
influence of gravity until they form a stable pile. Or we place particles on a regular
grid and shrink this box until a certain porosity is obtained. In both approaches, the
formation of patterns in the reference sample is subject to randomized positioning
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Figure 3.8: Visualization of the different soil mechanical calibration tests. From
left to right: Triaxial Test, Penetrometer Test and Direct Shear Test

or collisions between the particles. Indeed, the packing of granular materials is
random and one can draw similarities to chaotic systems, see [Gib17, Section 9.3,
p. 105].

Soil Mechanical Foundation Throughout this thesis, we distinguish physical
grains, i.e. complex shaped physical soil and simulated particles. We are interested
in the bulk behavior of many physical grains or simulated particles. The total grain
volume Vg as the sum of all soil grain volumes and the void volume Vv form the
total bulk volume Vt. The porosity n is then defined as

n =
Vv
Vt

=
Vt − Vg
Vt

= 1− Vg
Vt

= 1− ρg
ρb
.

Here, the grain density ρ = ρg describes the mass of particles per volume. In con-
trast, ρb describes the bulk density of the material. The bulk material corresponds
to a continuous description of particles and surrounding void. A soil sample is
characterized by sieving its constituents and results in a grain size distribution
curve. The mechanical properties of soil are measured in form of a cohesion c
and an angle of friction φ with different tests. The most common approach is the
Triaxial Compression Test (TT), described in more detail in Section 5.2, but we
also studied Small Scale Cone Penetration Tests in [Jah+19] and Direct Shear Test
in [Ste+21], see Figure 3.8.

Laboratory Measurements In a soil laboratory the triaxial test is performed
using different sidewall pressure levels in order to obtain the axial-strain-stress
curves. The triaxial test is described in more detail in [Kol07, Chapter 8.5, p. 131].
A cylindrical sample is put into a triaxial cell, we assume dry material, so drainage
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Figure 3.9: Mohr Coulomb Circles

is not required. The sidewall pressure is kept constant, while the axial pressure
from vertical z-direction increases. The piston is quasi statically depressed with
constant vertical velocity. Loosely packed soil samples are just compacted, the
volumetric strain decreases (contraction), compare to the strain-stress curves in
the Post Processing tile of Figure 3.10. Densely packed samples initially have a
contraction phase, then enter into dilatancy, thus the volume increases. The change
from contraction to dilatancy corresponds to the soils failure. This can also be
observed in the strain-stress diagram. Here, the axial strain increases until we
reach a maximum, the peak stress. When the soil fails, i.e. when a failure zone
arises, the stress starts to converge to a residual stress. For loosely packed samples,
we do not attain the peak stress, the stress curve converges from below towards
the residual stress. For densely packed samples, the soil failure coincides with a
stress decrease from peak stress in direction to the residual stress. The relation
between axial stress σ1 and sidewall pressure σ2 of either peak or residual stress for
different sidewall pressures express the shearing behavior. We obtain the friction
angle φ and the cohesion c by drawing a tangential interpolation on two or more
circles, as illustrated in Figure 3.9.

This procedure is usually usually reserved for small grained soil, like sand or silt.
However, using larger non-standard triaxial cells, the triaxial test can also be
performed for gravel. The volumetric-strain-strain curves is difficult to measure
correctly for coarse grained material, like gravel. Moreover, in the simulated
samples, the strain-stress relation is more relevant compared to the volumetric
behavior. Furthermore, the grain size distribution is measured in the soil laboratory,
using different coarse sieves. Large grains like stones or gravel are selected manually.
Fine material, like silt has to be wet sifted. We determine the weight of the
sieved material and obtain the mass percentage of different intervals of the particle
diameters.
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3 Particle Models for Soil Simulation

The Parametrization Procedure within GRAPE Within GRAPE, we rely upon
two steps for the generation of a suitable calibrated particle sample. First, we
generate the particle pile, relying upon the measured grain size distribution and
the porosity. This step is referred to as sample generation. Second, we focus on
the shearing behavior based on the TT calibrating the remaining parameters. The
parametrization is mainly based on the following parameters:

• the grain size distribution corresponding to the particle radii ri

• the material density ρ of the particles

• the porosity n of the soil

• the Young modulus E of the particles

• the normal damping DN of the particles

• the friction coefficient µ

• the cohesion c

We she the particle density ρ exactly as for the measured material to ensure mass
conservation. The particle size distribution, i.e. the radii ri and the porosity n is
defined in the sample generation step. Normal damping is typically set to DN = 0.1
and when considering dry material, the cohesion is set to c = 0 Pascal. The
remaining free parameters are the Young’s modulus E and the friction coefficient
µ. Calibrating these two with different TT simulations is the main task of the
parametrization process. Both parameters significantly affect the shearing behavior,
see [Obe13, Section 5.2, p. 60ff] for a sensitivity study.

Sample Generation The sample generation for a reference volume can be per-
formed as follows. The grain size distribution curve is often upscaled, so that we
obtain a mesoscopic particle sample with larger radii. This is possible, due to the
property of scale invariance of the contact law, see Paragraph 3.4. That is, the
particle size distribution is thus shifted to the right. Particles are then placed on a
rectangular grid which is larger than the desired volume and are slightly perturbed
in an arbitrary direction. Thereafter, the the particles are compressed, until the
desired volume and the desired porosity n is obtained.
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Figure 3.10: Overview of the parametrization procedure with measurements (left),
simulation (right) and post processing (below). In the post processing
step we compare strain-stress and volumetric strain-strain curves.

Simulation of true Triaxial Tests The triaxial test is simulated with the gener-
ated particle sample. Hereby, we make use of a slight simplification. Instead of
using a cylinder filled with soil, as described in the DIN18137-1:2010-07, we use a
cube with servo-controlled side-walls. This procedure has been used in triaxial tests
depending on temperature, see [HA90], and is known under the name true triaxial
test. The TT measurements as described above reduce the stress in two dimensions,
namely the radial stress corresponding to the side wall pressure and the axial stress.
The first three parameters have to be chosen in the sample generation process. The
latter parameters can be adjusted while performing a parameter study simulating
the TT. The cohesion is only relevant for sticky, wet or very fine materials and can
normally be neglected. Thus, as mentioned previously, the relevant parameters in
the calibration are Young’s Modulus E, friction coefficient µ.
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4 Surrogate Models for Online
Approximation

In this Chapter, we will focus upon models suitable for online approximation. In the
preceding chapter, we presented three different particle models and compared them
with respect to efficiency, parameters, force prediction accuracy, and practicability.
Regarding force predictions, the classical penalty-based DEM is best suited, but
the small integration steps impede the pursuit of real-time capability. That is why
in this chapter, we focus on alternative surrogate models, which are more efficient,
but less physically intuitive. First, we consider the oldest earthmoving model
based on Coulombs work [Cou76]. Thereafter, we consider different prototypical
ideas regarding hybrid particle models. Finally, we present the machine learning
solutions implemented at the driving simulator, namely a DEM LUT and a DEM

RNN approach.

4.1 Fundamental Earthmoving Equation

The Fundamental Earthmoving Formula (FEE) was first derived in [Ree64]. Here,
the authors takes up the ideas of Coulomb of studying a two dimensional earth
wedge to compute the resisting forces. The following derivations are based upon the
book on soil mechanics [McK85], the article by [Sin97] and the master thesis [Can99].
[PPG11] et al. extend the study and prescribe explicit values for the parameters
of the model. Bennett et al. applied the FEE in the context of excavation, see
[Ben+16].

We start by looking at a soil wedge as depicted in Figure 4.1, and compute the
static force equilibrium. We look at a tool depicted in green moving a wedge of soil.
The tool angle with respect to the soil surface is denoted by α, the tool length by
Lt. We want to compute the static tool force F by looking at it componentwise,
that is we consider FX and FZ independently. We protrude the wedge model
by a tool width w, in order to define a soil volume V . The soil with density γ
and volume V experiences an acceleration due to gravity denoted by g. The soil
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4 Surrogate Models for Online Approximation

will break at a failure surface Lf forming a wedge. The critical failure angle β is
given by minimizing the force equilibrium. The soil’s friction angle φ specifies the
direction of the underlying soil-soil reaction force.

Let us first look at the force equilibrium in longitudinal x- and vertical z-direction,
compare to Figure 4.1. We decompose F into its components F sin(α) and
F cos(α).

For the soil resistance force R, we first look at the components R sin(φ) parallel
and R cos(φ) orthogonal to the plane Lf . Using the soil failure angle β, we obtain
that the longitudinal components comprise

− sin(β) cos(φ)R− cos(β) sin(φ)R = − sin(β + φ)R.

Similarly, by collecting all terms in vertical z-direction we obtain

cos(β) cos(φ)R− sin(β) sin(φ)R = cos(β + φ)R.

The wedge volume V can be decomposed into two protruded triangles of width
w. The weight of the wedge is Therefore, we express the left triangle volume
as 1

2
cot(α)d × d and the right one as 1

2
cot(β)d × d. In total, we obtain V =

1
2
d2w(cot(α) + cot(β)). The static force equilibrium yields:

∑
Fx = sin(α)F − sin(β + φ)R = 0, (4.1)

∑
Fz = cos(α)F − γgdw

(
1

2
d (cot(α) + cot(β))

)
+ cos(β + φ)R = 0. (4.2)

Thereafter, we may resolve the first equation (4.1) to obtain

R =
sin(α)F

sin(β + φ)
.

Plugging this into the second component equation (4.2), we obtain the simplified
earthmoving formula

F = γgd2w
cot(α) + cot(β)

2(cos(α) + cot(β + φ) sin(α))
= γgd2wNγ, (4.3)

where Nγ collects all trigonometrical terms.

Additionally, cohesion forces Fc depending on the coefficient c along the failure
surface and adhesion forces Fca depending on the coefficient ca along the tool length
may be incorporated. The failure surface can be expressed by the cutting depth
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Figure 4.1: Soil wedge for the derivation of the Fundamental Earthmoving Formula
including cohesion and adhesion

d by Lf = d/ sin(β). The We skip the full derivation here and just mention the
formula including the additional terms

F = wγgd2 1

2

(cot(α) + cot(β))

(cos(α) + cot(β + φ) sin(α))
(4.4)

+ cawd
(1− cot(α) cot(β + φ))

(cos(α) + cot(β + φ) sin(α))
− cwd (1 + cot(β) cot(β + φ))

(cos(α) + cot(β + φ) sin(α))

=
(
γgd2Nγ + cadNca − cdNc

)
w.

Here, again the N -factors Nca and Nc collect the trigonometric terms in Equation
(4.4). The surcharge material forming in front of the tool, amounts to the additional
term Q = qd(cot(α) + cot(β)).

Considering dynamic effects, resulting in the consideration of the velocity of the
tool, the total force reads

F = (γgd2Nγ + cadNca − cdNc + γgv2dNv + qdNq)w, (4.5)

with Nq = 2Nγ and

Nv =
tan(β) + cot(β + φ)

(cos(α) + sin(α) cot(β + φ)) (1 + tan(β) cot(α))

Equation (4.5) can be found in [McK85, Equation (3.68), p. 72]. The cohesion c
and adhesion ca can be neglected.
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Computing the Critical Failure Angle β Apart from the soil mechanical parame-
ters of density γ, and friction angle φ, the geometric configuration of the tool yields
Lt, α and d. What remains undetermined so far is the failure angle β and, directly
related to it, the failure surface Lf . Therefore, we need to solve the optimization
problem

βcrit = min
β
F (β).

This can be understood as finding the angle where the soil failure surface arises
under a minimal force input.

Drawbacks of the FEE The main problem with the use of the FEE as presented
in Equation (4.3) is its instability. Apart from being a huge simplification of a
soil wedge, the denominator may cause problems if it gets close to infinity. This
numerical problem happens, when (cos(α) + cot(β + φ) sin(α))→ 0.

4.2 Physical Hybrid Particle Models

The FEE is real-time capable, but as just discussed, unstable and too simple for
accurate force prediction. Therefore, we will consider hybrid models which are
closely related to the physical particle model and are potentially real-time capable.
We have only implemented prototypes of some of the following models.

4.2.1 Adaptive Particle Merging

This approach aims at model order reduction of the DEM in form of a solid mechanics
approach. Particles are glued together and treated as one multibody in order to
reduce the integration and computation times. The idea was first developed by
Servin et all [SW16] in the nonsmooth case. We adapt their algorithm for the
penalty-based DEM. The goal is to derive a parallelized adaptive algorithm of
particle dynamics which ideally has only small errors and is real-time capable.

Rigid Body Description As in Chapter 3, we consider a particle system with N
particles. The set of particles N is split into pairwise disjoint subsets NA,B, . . . .
A rigid aggregate A consisting of NA particles has a total mass

mA =
∑

a∈NA

ma.
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Figure 4.2: Visualization of the Adaptive Particle Merging approach, with kind
permission taken from [SW16, Figure 3, p. 112]

The center of gravity xA is given by xA = m−1
A

∑
a∈NAmaxa and the aggregate

velocity vA may be written as vA = m−1
A

∑
a∈NAmava. Then for each particle we

may introduce a relative coordinate system

KaA =
{
eax, e

a
y, e

a
z

}

with the origin relative to the aggregates position raA = xa − xA.

Affine Linear Embedding Given a model reduced system, consisting of n < N
possibly aggregated particles, we can define the mapping

P : Rn −→ RN

qn = (xA,xB, . . . ) 7−→ qN = (xa,xb, . . . ),

where P = A+ b with

A =




I3×3 0 . . .
I3×3 0 . . .

...
0 I3×3 . . .
... . . . I3×3




and b =




raA
rbA

...
rcB




Merge Particles Particles being at rest or having similar velocities are merged.
That means we form a new rigid body called an aggregate particle of the shape of
the combined particles, similar to a multisphere approach. Thereafter, the contact
forces between particles of the same aggregate do not need to be evaluated, which
reduces computation time.
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Split Particles In their paper, they suggest three splitting strategies, see [SW16].
Contact splitting considers normal, tangential and rotational velocities. If the
forces on particles forming part of a rigid aggregate exceed a certain threshold, the
velocities increase and a split is performed. Trial solve split is a more academic
splitting technique where the full particle system is solved simultaneously. Where
the difference to the reduced merged system becomes apparent, a split is performed.
From our point of view the most practical splitting technique is the sensor split.
Around a certain sensor, e.g. the excavation bucket, we always refine and compute
the full system without rigid aggregates, while in regions further away of the sensor,
merging is performed.

4.2.2 Frozen Particles

This idea is based on the dissertation, see [Obe13]. Instead of always integrating
all particles, we just focus on a region of interest, where particles interact with
a tool. We divide the set N of N particles into two sets NA and NB. All other
particles in NB remain frozen, that is we neither need to compute contact forces
nor integrate their dynamics. This may save time, since the bottle neck of a typical
DEM simulation is contact detection and time integration. The difficult point is
the administration of suitable index sets.

4.2.3 PBD-DEM Coupling

A slight extension of the Frozen Particles approach, is the coupling of DEM with
PBD. In each contact time step perform a PBD step for all particles distant from
the tool of interest. During finer time steps resolve the particle-tool interaction
using classical Discrete Element Contact resolution. The difficulty is the stability
in the contact zone, where particles NB interact with particles NA, and the efficient
handling of the dynamic index sets.

4.3 Data-based Hybrid Models

In this section, we enter the field of data-based algorithms. Here, we tend to apply
models that rely upon measured or previously computed data. The advantage
is, that the equations in play are much simpler and thus realtime computation is
feasible. Major drawback is the lack of physical interpretation and that the models
do not yield good results if similar data has not been previously generated and
incorporated in the models. From now on, all DEM computations are based on
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Algorithm 5 Merge and split algorithm as explained by Servin et al. [SW16]

1: initialize q0, q̇0

2: for dt < tend do
3: if dtC |dt then
4: contacts =detectContact(q)
5: for c in contacts do
6: if MergeCondition(c) then
7: Merge particles
8: end if
9: end for

10: end if
11: for c in contacts do
12: force = resolveContact(c)
13: end for
14: for p in free particles do
15: Integrate force
16: updatePosition(p)
17: end for
18: for A in rigid aggregates do
19: Integrate force
20: updatePosition(A)
21: for p in particles of A do
22: updatePosition(p)
23: end for
24: end for
25: if dtc|dt then
26: for A in rigid aggregates do
27: if SplitCondition then
28: Split rigid aggregate A
29: end if
30: end for
31: end if
32: end for
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Algorithm 6 Hybrid PBD-DEM time step

1: for all timestep ∆tC do
2: NA, NB = Tool-Distance-search
3: Search for contact constraints
4: PBD-step for all particles NB

5: end for
6: for timestep ∆tDEM do
7: for all constraints gk for particles NA do
8: Compute DEM-PP-Forces for particles NA

9: Compute DEM-PT-Forces
10: end for
11: Integrate particles NA

12: end for
13:

the linear penalty-based DEM model presented in the previous chapter in Section
3.4.2. The generation of input data is performed using the software GRAPE with
non-rotational particles. The model parametrization from the previous chapter
in Section 3.6 is underlaid with specific examples in Section 5.2. For now, we
focus on the general description of data-based hybrid models. First, we present the
LUT, based upon Section 2.4.1. We present different ideas on TPWL and stochastic
processes. Second, we present RNNs as a means to assess excavation forces in
realtime. Both models rely on previous offline simulation of basis maneuvers.
Thereafter, we build the online model, which can be used in realtime, see also
Figure 4.3.

Output

S-Function

LUT/RNN

Input

GRAPE

MATLAB/Simulink

offline

online

Figure 4.3: Program structure of the hybrid data-based approach: in the lower half,
the classical DEM framework used in the offline phase; in the upper
half, the online phase using the DEM LUT or the DEM RNN approach .
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4.3.1 DEM LUT Approach

The main idea is to define a set of parameters P , that describes the state of a
soil-tool interaction. In a first offline phase, full DEM simulations are performed
to obtain data for a discrete set of parameters pi ∈ P . The data is collected in a
LUT, see Subsection 2.4.1. In a second online phase, we access the collected data
by finding the closest neighbor p̃ to the current parameter setup p. Similarly, we
can calculate some kind of weighted mean or even generate a stochastic process.
Parts of the following results have been published in the conference proceedings
[JSB19; Jah+20] and are for the sake of completeness summarized and reproduced
in the following.

Soil-tool interaction forces arising at an earthmoving tool are highly nonlinear. In
fact, when we consider measurements of soil-tool interaction of the same maneuver
with similar input, the output may change drastically due to different drivers and
slightly differing trajectories [Bal+16, Fig. 11, p. 9]. Whence, it is reasonable
to approximate this highly nonlinear behavior using LUTs, at best with similar
frequency and magnitude characteristics.

To achieve real-time capable simulation speed, we use a two-phase computation
method. In an offline phase, time-consuming DEM simulations are executed, thereby
varying a set of tool-parameters. Thereupon, forces and moments are extracted
and saved in a LUT. The subsequent online phase consists in finding a meaningful
approximation for a given soil-tool state, using the LUT data. More specifically, we
perform a set of DEM simulations varying some relevant tool parameters, e.g. the
tool position, velocity and rotation. The particle properties representing the
parametrization of a specific soil remain unchanged. The DEM simulations are exe-
cuted in parallel on a high-performance computing cluster. The parameter variation
is performed in a loop such that the table data is systematically generated.

The current soil model, is based upon the DEM LUT approach incorporating many
Discrete Element simulations performed in an offline phase. Each LUT entry
corresponds to a certain digging maneuver which is characterized by the material,
and the geometry of the particle pile. A single simulation in one LUT corresponds
to a certain tool configuration, that is a tool parameter set. Currently, we consider
the speed in longitudinal direction, the angle of incidence and most importantly
the cutting depth. Each LUT entry corresponds to the postprocessed output of
a full DEM simulation, extracting the force and moment time series. We usually
forget the initial and final phase, as artifacts may arise here. This is due to the fact,
that initially the tool may not be in contact with the particles. Towards the end
of the simulation, the digging tool crushes particles into the boundary resulting
in an overestimation of digging forces and torques. In between, we compute the
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Figure 4.4: Visualization of numerical example of plate in gravel trench

expectation value and the variance of the time series. This information suffices to
generate a signal with similar overall behavior and the amplitude of the oscillations
may be preserved.

Within a single basis simulation, i.e. when filling one LUT entry, the respective tool
parameters remain constant. The results, i.e. the force and moment time series are
gathered and reduced to expectation value and standard deviation per component,
containing the main information for a specific tool state. We cut off the initial
part of the time series, where the tool enters into the soil and also the final part of
the time series where the surcharge, i.e. the accumulated soil in front of the tool
is increasing. Due to the fact that we require at least ten particles between tool
and boundary to obtain a meaningful force output, we make sure, that within the
final simulation state, the tool is fully surrounded by particles and far enough from
reaching the boundary. The resulting data structure resembles a multi-dimensional
table, where one entry, consisting of mean forces, moments, belongs to a specific
set of tool parameters. We generate a second table with the respective standard
deviations of the time series, in order to capture the oscillations.

In the online phase, the tool is moved and the relevant parameters, namely position,
longitudinal velocity and rotation are gathered to find a good approximation using
the data from the LUT. We achieve this, performing a k-nearest neighbor search
and using weighted means [Bar12, Chapter 14, p. 317] and also Subsection 2.4.1.

Numerical Example: Plate in Trench As a first example, we present a rectan-
gular plate moving through gravel, which has been presented in previous work
[Obe+11; KOB13], see Figure 4.4. Experiments have been performed in cooperation
with the soil laboratory at Technical University Kaiserslautern, thus the accuracy
of our simulation results can be assured by comparison to the measurement data,
see Section 5.3. In this example, the parameter space is of dimension three. More
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specifically, we modify the cutting depth d in vertical z-direction. Furthermore, the
angle θ around the global lateral y-axis, as well as the plate’s speed v in longitudi-
nal x-direction are varied, compare also Figure 4.5. This choice is motivated by
earthmoving equations, where the velocity and the cutting depth d have a quadratic
influence on the force, see Section 4.1 and the references [Obe+11; McK85; Ree64;
WD07]. The findings in 5.3 revealed, that the influence of the cutting depth indeed
might be quadratic, but that the quadratic velocity term presented in the FEE
overestimates the forces for our specific application. We experienced, that the
influence of the angle of incidence is nonlinear. Let us recall the force equation
with the terms of interest from Equation (4.5), which reads

F = (γgd2Nγ + γgv2dNv + qdNq)w,

depending on the the bulk density γ, the gravity g, cohesion c, surcharge q and
cutting width w. The coefficients Nγ for the passive earth pressure, Nv for the
velocity and Nq for the surcharge depend on different angles via trigonometric
identities, see Section 4.1. This motivates the parameter choice of the LUT. Both
the cutting depth d and the velocity v have a quadratic influence. The angle of
incidence θ = 90−α influences all N -factors. Hence, the LUT parameters are chosen
accordingly. The initial study of the FEE, leads to the choice of three Lookup
parameters, namely the cutting depth d, the x-velocity vx, and the angle around
the y-axis θ. An assessment of whether to incorporate the velocity vz in z-direction
was made at a later point. The LUT can be written as a nonlinear mapping

LLUT : P −→ F ,
(d, θ, v) 7−→ (F ,T ) (4.6)

with parameter space P ⊂ R × [0, 2π] × R+ and F ⊂ R6. F denotes the force
vector, while T stands for the torque vector. Furthermore, we generate a second
table regarding the oscillations of the basis simulations in terms of the standard
deviation of the time series, namely

LLUTσ : P −→ Fσ,
(d, θ, v) 7−→ (Fσ,Tσ),

where Fσ corresponds to the standard deviation of the measured force vector time
signal. Analogously, Tσ stands for the standard deviation of the measured torque
vector time signal.
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d θ

v

Figure 4.5: Visualization of the variation of different tool parameters cutting depth
d, angle of inclination θ and longitudinal velocity v

Parameter Cutting depth Angle Velocity
Symbol d θ v
Unit m ◦ m/s
Interval [−0.25,−0.05] [−45, 75] [0.5, 2.0]
Discretization step 0.1 30 0.5

Table 4.1: Computing requirements for offline phase

Offline Phase During a time-consuming offline phase, we perform full DEM

simulations for different tool-parameter configurations within a MATLAB/Simulink
environment, see [Mat] and also Figure 4.3. The parameter range for our example
LUT can be observed in Table 4.1. The simulation time for one table entry
corresponds to two seconds, in total we perform 60 DEM simulations. The number
of basis simulations is problem specific and depends on the chosen parameters and
on the desired accuracy. The force sampling rate corresponds to 1 kilohertz. The
acquired time series are then processed and the expectation value and the standard
deviation are computed. Therefore, we cut off an initial starting phase and a final
phase of about one second simulation time, in order to avoid boundary artifacts.
In Figure 4.6, the sensitivity of the mean force in longitudinal x-direction with
respect to rake angle θ and cutting depth d can be observed.

Online Phase In the online phase, see Figure 4.3, we load the LUT into the
MATLAB workspace. We describe four different variants for the online phase.
In each time step, within our example the tool parameter vector p = (d, θ, v), is
used to search for a close approximation from the LUT. The parameter vector p is
obtained from the current tool position x, the tool velocity v, the current orientation
represented by a quaternion q. Let us write F = [F ,T ] for the generalized force
covering both force and torque vector.
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Variant 0 (Lookup 0): As described in Section 2.4.1, we compute

p̃ = arg min
pi∈P

‖p− pi‖2.

Then we compute the expected force and torques by using the LUT F = LLUT (p̃) .

Variant 1 (Lookup 1): Again, we compute the nearest neighbor

p̃ = arg min
pi∈P

‖p− pi‖2.

The Jacobian of our LUT LLUT , compare Equation (4.6) by

JLLUT :=
dLLUT

dp
=




∂Fx
∂d

∂Fx
∂θ

∂Fx
∂v

∂Fy
∂d

∂Fy
∂θ

∂Fy
∂v

∂Fz
∂d

∂Fz
∂θ

∂Fz
∂v

∂Tx
∂d

∂Tx
∂θ

∂Tx
∂v

∂Ty
∂d

∂Ty
∂θ

∂Ty
∂v

∂Tz
∂d

∂Tz
∂θ

∂Tz
∂v




can be approximated as follows. Let the index of the nearest neighbor

s1 = arg min
i∈{1,...,N}

‖p− pi‖2

and second nearest neighbor

s2 = arg min
i∈{1,...,N}\{s1}

‖p− pi‖2.

Then a finite difference approximation of JLLUT can be computed and we may
write

F (p) ≈ LLUT (p̃) + JLLUT |p̃(p− p̃).

Variant 2 (SDE): As in the previous variants, we compute the nearest neighbor

p̃ = arg min
pi∈P

‖p− pi‖2.

We compute the force expectation value µF := LLUT (p̃) and the standard deviation
σF := LLUTσ(p̃) using the LUT componentwise. For the torques, the procedure is
analogous. Then we compute for each time step the normally distributed random
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4 Surrogate Models for Online Approximation

variable Ft ∼ N (µF , σF ). This can be interpreted as a stochastic process described
by a Stochastic Differential Equation (SDE) of the form

dFt = (µF (t)− Ft)dt+ σF (t)dWt, F0 = 0, (4.7)

see Section 2.3 for the definition of Brownian Motion Wt. The first term on the
right hand side of equation (4.7) covers the transition probability from the previous
mean µ′F := (LLUT (p̃′) of a Lookup query to a current mean µF := LLUT (p̃). The
second term generates noise resulting in an oscillatory behavior, see Figure 4.7.
The stochastic differential equation (4.7) bears similarity to an Ornstein-Uhlenbeck
process given by

dXt = η(µ−Xt)dt+ σdWt, X0 = a.

Solution theory on SDEs can be found in [KS05, Section 5.2, p. 284, Section 5.6,
p. 354], but a further analysis is beyond the scope of this thesis. The idea came to
me as the Lookup 0 approach, on the one hand, yields piece-wise constant output.
The DEM, on the other hand leads to oscillations in the tool forces which depend
on several aspects. First, the tool mesh has an effect, very sharp triangles lead to
artifacts in the collisions. Second, the damping parameters, but also the time steps
have an influence on the oscillations. Third, the order of the particle indexation has
an influence when parallelized codes are used. Fourth, the nature of considering the
bulk behavior of particles ignore the fact, that each particle trajectory may slightly
differ and have a chaotic impact on the bulk behavior. More specifically, a slight
change in the initial conditions may, after several time steps, lead to a collision
between particles which otherwise may not have occurred. All these reasons, give
rise to a model inherent property of possibly stochastic oscillations in the tool
forces. On the other hand, when coupling the soil force prediction model with a
multibody system, oscillations lead to unstable behavior. This is why, we stopped
looking into further details of this variant incorporating SDEs as this is not relevant
for our application.

Variant 3 (TPWL): The TPWL approach has been introduced in Section 2.4.
Instead of computing only the nearest neighbor, we might compute several neighbors
and interpolate using weights, which depend on the distance of the respective
neighbor. For p ∈ R3, we may compute up to eight neighbors until we have selected
all surrounding neighbors. Or in general for p ∈ Rn, we may compute up to 2n

directly surrounding neighbors. Thus we obtain p1, . . .pk with k ≤ 2n Then we
compute the generalized force by

F (p) ≈
k∑

j=1

wjLLUT (p̃j) ,
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4.3 Data-based Hybrid Models

Figure 4.6: Expectation value and standard deviation of force magnitude in x-
direction for different depth d and angle θ for fixed velocity v = 0.5 m/s
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Figure 4.7: Force time series for parameters d = −0.05 m, θ = −15 degrees, and
v = 1.5 m/s with GRAPE (left) and random DEM LUT approach (right)

where wj describes the distance dependent standardized weights, i.e.
∑k

i=1wj = 1.
TPWL can also be combined with the Lookup 1 or the SDE variant.

In summary, the online phase of the DEM LUT approach consists in performing
a nearest neighbor search. Consequently, we compute force and torque vectors,
according to one of the presented variants, see Figure 4.7 for a trial simulation based
on stochastic processes. Our numerical experiments show that loading the Lookup
data-structure takes up most of the time. Once, the offline data is collected and
the simulation scenario is set up, we are capable of accessing the data in realtime.
In the remainder of this thesis, we will often abbreviate DEM LUT approach by
LUT, especially in legends of plots where brevity is essential.
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4 Surrogate Models for Online Approximation

4.3.2 DEM RNN Approach

The DEM LUT approach yields convincing results for academic test cycles of drag-
ging a plate or a bucket through a soil trench. However, when looking at MBS

models of a full excavator, the excavation cycles become much more complex. The
approximation by our DEM LUT approach often does not cover all aspects of a
maneuver. We had to make the choice of either enlarging the parameter space, by
varying also the vertical velocity vz, the angular velocity ωy, etc. or implementing
a different model. In the former approach, due to the curse of dimensionality,
we would have to add hundreds of offline basis simulations, if further parameters
were added. So we went for the latter and studied the approximation behavior of
RNNs. At first, one might think that a simple FNN suffices, but RNNss have several
advantages. Due to the hidden states and the recurrent structure, previous time
steps influence the current output. This bares similarities to a dynamical system.
RNNs are known to yield good results in time-dependent processes, e.g. in text
recognition or with time series and biological data, see [Agg18, Chapter 7, p. 271].
As FNN, they possess the Universal Approximation property, see Subsection 2.4.3,
and are known to be Turing complete.

Input Selection The application of RNNs in the context of DEM is described in
the following, similar to the DEM LUT approach we coin it DEM RNN approach.
The main difficulty poses the selection of suitable training data and the definition
of the net architecture. At hand was the simulated data used for the LUT. As
input, we chose the full generalized position vector and its derivative, comprised
of q = (x,p) consisting of position vector x and quaternion p and its derivative
˙̃q = (v,ω), compare Table 2.1. This results in a total of 13 inputs. However, most
of these inputs are zero, as we change only the cutting depth, the longitudinal
velocity and the angle of incidence in the Lookup maneuvers. The trajectories
are thus situated in the x − z plane. Consequently, two translational degrees of
freedom and one rotational degree of freedom suffice for the motion description.
Consequently, we consider xx, and xz, two non-zero entries in the quaternion p,
the velocities vx and vz and the angular velocity ωy, that is a total number of 7
inputs.

When the total number of inputs is chosen as 13, we often run into problems using
the scaling variant 1, see Paragraph 2.4.3.

Instead of using the Lookup data, full digging trajectories of different excavator
models were used. First, we tried to generate realistic maneuvers with a simplified
model of an excavator. However, these trajectories did not contain oscillations
and were still far from the trajectories expected at the driving simulator. That is
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4.3 Data-based Hybrid Models

u ∈ R13 y ∈ R6
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Figure 4.8: Visualization of a RNN with 13 input nodes, ten hidden nodes (Wh ∈
R10×13), one hidden layer, k = 5 recurrent layers and six output nodes

why we recorded excavation trajectories and used these for offline simulations, see
Section 5.4.

Output The most relevant forces are the longitudinal force Fx and the vertical
force Fz in global coordinates. The torque Ty is the third relevant output value.
The force term Fy and the two additional torques, are expected to have only small
impact. However, we aim at the construction of a prediction algorithm for all six
force torque outputs.

Structure of the RNNs With the previous thoughts in mind, different network
structures are reasonable. First, one could train six separate RNNs with one
dimensional output variables y. Or one network with six dimensional output y.
Second, the number of neurons per hidden layer Nn can be adapted. Third, the
number of recurrent layers Nr, containing previous states, i.e. information on
previous time steps has to be chosen. If we set Nr to zero, we obtain a FNN.
The number of hidden layers Nh rapidly increases the degrees of freedom. During
training, backpropagation will first change the weights in the layers close to the
output. If Nh > 1, this leads to longer training times. The proofs on Universal
Approximation also indicate that one large hidden layer often suffices for small
applications.
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4 Surrogate Models for Online Approximation

MATLABs Layrecnet Implementation After the training is completed, the
relation between input u and output y is known as a nonlinear function of the
form

Algorithm 7 RNN loop, compare to Figure 4.8

1: for all timesteps do
2: st = fa(

∑ks
i=1 W

ist−i +Whut + bh)
3: for i = 1 : ks do
4: si = si−1

5: end for
6: yt = f 2

a (Wost + bo)
7: end for

Discussion In total, this leads to good approximations of forces and moments,
while the visualization is lost in the post-processing step. The idea is to couple Unity
with the multibody excavator model and the LUT or the RNN for real-time force
prediction. For an initial test-setup, we implement the coupling of the excavator
with GRAPE.
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5 Industrial Applications and
Experiments

In the previous chapter, we presented different approaches for realtime force
prediction. The most promising approaches discussed, are the data-based models,
that is a LUT and RNN of Section 4.3. The aim of this chapter is to apply these
methods on an excavator simulator. But first, we will describe the general procedure
for online soil tool interaction in Section 5.1. Thereafter, we will look at the proper
parametrization of particle samples in Section 5.2. In addition, we will present a
validation of the DEM code, based upon measurements performed at a test pit at
TUK soil laboratory in Section 5.3, which is closely related to the study of the LUT

from Section 4.3.1. Finally, we describe the development process of the methods at
the RODOS and present several numerical examples, see Section 5.4.

5.1 Soil-Tool Interaction in Realtime

In the view of industrial application, we want to describe our method in a more
general context. That means, that we want to illustrate the procedure of setting
up realtime soil-tool interaction for a general earthmoving application.

Given a soil sample and an agricultural or construction application concerning
soil-machinery interaction, we first need to be able to carry out a DEM simulation
of the given application. Therefore, we perform a model parametrization of a
reference soil sample, as described in Section 3.6, specific examples are presented
in Section 5.2.

We require a realistic multibody model for the trajectory generation of the earth-
moving machinery. On the one hand, we need the model to specify the working
range of the earthmoving tool. On the other hand, this allows for the computation
of realistic trajectories and operator dependent variations within them. If we can
classify the trajectories by few meaningful parameters, the LUT is applicable. If
the parameter space is large, because of the curse of dimensionality, the generation
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Soil
Parametrization

Offline
Simulation
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RNN/LUT

Hybrid
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Realtime
Application

Figure 5.1: Sketch on the general procedure for realtime soil-tool interaction as
described in this thesis

of enough basis simulations becomes too expensive. In that case, RNNs are less
restrictive, since fewer relevant training trajectories suffice for the model setup.

Either way, we need to perform offline simulations to collect data for the generation
of a realtime capable hybrid model. With the MBS model of the construction
machinery, the generation of comprehensive trajectories discretizing the working
range of the tool is simplified. The generated tool trajectories form the foundation
for basis simulations or training data and can be computed in parallel on a
CPU-Cluster. Depending on the total simulation, the particle size, the available
computation resources, and the number of particles, the generation of one DEM

basis simulation typically lasts between one hour up to several days.

When the offline data is precomputed, we generate a hybrid model for realtime force
prediction as described in the previous chapter in Section 4.3. If we can classify the
variation of the machine maneuvers while interacting with soil by several specific
parameters, we can apply the DEM LUT approach. Otherwise, it might be more
suitable to work with the more general DEM RNN approach. Here, we require a
high number of realistic maneuvers with all probable trajectory variations. The
procedure is visualized in Figure 5.1.
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5.2 Parametrization of Specific Soil Samples

Symbol Name Range P rg
TT P cs

TT P sg
TT Unit

Sample parameters
ri radius 0.1− 100 8− 16 10− 20 25− 60 mm
n porosity 0.3− 0.6 0.37 0.33 0.44 −
ρ density 1000− 3500 2700 2680 2650 kg/m3

Normal interaction

E Young modulus 105 − 108 3e7 1.2e8 4e7 N/m2

DN damping coefficient [0− 1] 0.1 0.1 0.1 −
kNij normal stiffness π

2

ri+rj
2
E N/m

dNij normal damping DN2
√
m̃ijkNij Ns/m

Tangential interaction
ET tangential modulus 7e6 1e8 4.8e7 N/m

kTij tangential stiffness π
2

ri+rj
2
ET N/m

DT damping coefficient [0− 1] 0.1 0.08 0.08 −
dTij tangential damping DT2

√
m̃ijkNij Ns/m

Coulomb friction
µ friction coefficient [0− 1] 0.28 0.23 0.25 −

Table 5.1: Parameters of the three cohesionless materials within GRAPE

5.2 Parametrization of Specific Soil Samples

In this section, we want to describe the specific parametrization procedure for
GRAPE. This parametrization procedure was developed in the PhD-thesis [Obe13]
and the references therein. In the context of this thesis, there are three relevant
cohesionless materials, for which we briefly present the parametrization results. We
performed TTs with different sidewall pressures, as discussed in Section 3.6. We
apply a fifth order Butterworth filter with cutoff frequency of 20 Hz. The simulated
strain stress curves are all filtered in the graphs presented on the left of Figures
5.2, 5.3 and 5.4.

Parametrizations of Round Gravel This material was used in the first experi-
ments presented in the following Section 5.3. Round gravel with a diameter between
1.6 and 3.2 cm, was measured in a small triaxial cell. The sidewall pressure was
in the range of 64 and 87 kPa. The grain size distribution was not measured
specifically, but ranges within the minimum and maximum diameter. The particle
size distribution was chosen to correspond to the grains, that is we did not scale the
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(a) Strain-stress characteristic: Measurement and simulation results for a round gravel
specimen (left) with particle interaction parameters P rg

TT for sidewall pressures of
64 kPa (left-bottom curve) and 87 kPa (left-top curve). The measurement of the
volumetric strain was not succesful (right), we just present the results from the
simulations.
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(b) Grain size distribution: polydisperse distribution for round gravel chosen in the
simulation (green). The grain size diameter lies between 16 and 32 millimeters.

Figure 5.2: Parametrization of Round Gravel Sample

particle size. The dents in the measured curve on the left of Figure 5.2 arise due to
unloading phases in the large triaxial cell. No data on the measured volumetric
strain characteristic is available. On the right of Figure 5.2, we just present the
simulated volumetric strain. We present the parameters P rg

TT in Table 5.1.

Parametrizations of Coarse Sand The second material for the testbed was coarse
sand with grain diameter of 1 to 4 mm. The sidewall pressure was in the range
of 54 and 204 kPa. The material was already presented in [Ste+21]. Here, we
scale up the particle size by a factor of two, see Figure 5.3 on the right. The
volumetric strain characteristic was similar for all three pressure levels. We present
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specimen (left) with particle interaction parameters P cs

TT for sidewall pressures of
53 kPa (left-bottom curve), 103 kPa (left-middle curve), 203 kPa (left-top curve).
The measurement and simulation of the volumetric strain (right)
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(b) Grain size distribution: polydisperse distribution for coarse sand – measured in the
soil laboratory (blue), chosen in the simulation (green)

Figure 5.3: Parametrization of Coarse Sand Sample

the parameters P cs
TT in Table 5.1.

Parametrizations of Sand-Gravel Mixture We use broken gravel parametriza-
tion in the study of excavation in real time, that is mainly in Section 5.4. The
results in Figure 5.4 illustrate that we upscaled the particle diameter. The grain
diameter reached from fine material to gravel of maximum 5.6 cm. The rather
coarse radii in the simulation allow larger time steps, which increases the overall
performance in the generation of offline simulations. We present the parameters
P sg

TT in Table 5.1.
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(a) Strain-stress characteristic: Measurement and simulation results for a Sand-gravel
mixture specimen with particle interaction parameters P sg

TT for sidewall pressures of
35 kPa (left-bottom curve), 60 kPa (left-middle curve), and 85 kPa (left-top curve).
The measurement of the volumetric strain was not successful (right), we just present
the results from the simulations.
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in the soil laboratory (blue), chosen in the simulation (green)

Figure 5.4: Parametrization of Sand Gravel mixture Sample
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5.3 Bucket Trench Experiment

5.3 Bucket Trench Experiment

We use the bucket trench experiment as a benchmark to deepen the understanding
regarding relevant soil tool parameters. We also assessed the usage of experimental
data as training data for our models. The experimental studies performed in
[Obe+11; Obe13] and simulated in the context of [Obe+11; Obe13; KOB13;
Kle15b] serve as a point of departure, see also Figure 4.4. First, we analyzed
the data from [Obe13] using a plate dragged at different cutting depth, velocities,
and inclination. We performed offline simulations for a first LUT design that we
published in [Jah+19]. Thereafter, we procured a small excavation bucket, with
a cutting depth of 30 centimeters, three mountable teeth and a total weight of
31.6 kg and set up a new measurement campaign at the trench site. In a first
attempt, we used round gravel, which resulted in high oscillations and pushed the
experimental machinery to its limits. In a second, more systematic and slightly more
sophisticated measurement study, we used coarse grained sand. The most relevant
results are presented in this section and we compare them to our DEM simulations
as a further validation step for GRAPE. The goals of the measurement was the
study of the FEE Equation and its parameters, the experimental investigation of
the Lookup parameters, and the further validation of the DEM software GRAPE.

Experimental setup We perform the measurements in a soil laboratory with a
trench filled with soil. The test site includes a power controlled motor to move the
earth moving tool in longitudinal direction. We mount the acquired bucket as an
earthmoving tool. Therefore, we used four metal sheets, two at each side of the
excavation bucket, in order to fix the bucket below the force measurement box,
see Figure 5.6. The force measurement box is equipped with five high-precision
force sensors, two in horizontal direction and three in vertical direction. The power
controlled motor moves the equipment with a linear guide on an H-beam with

Figure 5.5: Visualization of measurement and simulation for d = −0.15 m after
dragging the excavator bucket about 2 m through a gravel testbed.
From left to right: measurement and full DEM simulation
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Figure 5.6: Setup of force measurement of small excavation bucket in trench exper-
iment

Figure 5.7: Setup for the bucket trench experiment

constant velocity. The metal sheets allow to continuously adapt the cutting depth
of the bucket, and also the angle of incidence in discrete steps.

Comment on error estimation of measurements When repeatedly measuring
quantities, there are two error sources. The statistical error εstat arises because each
measuring device only has a finite accuracy and slight fluctuations or randomness in
the measured quantity are to be expected. The statistical error term can be reduced
by means of statistical analysis and by repeating the measurement a number of
times. When measuring a time series, these random fluctuations are prominent and
lead to oscillations. These oscillations can be analyzed in modal space by Fourier
transformation looking at the Power Spectral Density (PSD), see [SM05]. Or, if the
time series has a constant level, the computation of mean value µ and standard
deviation σ is justified. The standard deviation σ is a second statistical error term,
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5.3 Bucket Trench Experiment

Parameter Cutting depth Angle Velocity
Symbol d θ v
Unit m ◦ m/s
Values [−0.15,−0.1,−0.05] [−25, 0] [0.04, 0.12, 0.2]

Table 5.2: Measurement parameters for coarse sand trench experiment

which is incorporated into the statistical error term. The systematical error εsys
is more difficult to estimate, and can occur repeatedly in each measurement. If a
systematical error term is known, we correct it by adding an offset to the measured
quantity. However, there always remains an error term. To summarize, if we have
a quantity y which is measured, we obtain

y ± εstat(y)± εsys(y).

Measurements We used the test rig to evaluate the influence of the cutting depth
d, the velocity v in longitudinal direction and also the tool angle θ. For this study,
we filled the trench with coarse sand. In order to capture also the soil cutting
behavior of the bucket, we inclined the beginning and the end of the trench by
the angle of repose in the experiment and the simulation, see Figure 5.7. Each
measurement was performed three times so we estimate the standard deviation of
the statistical error term σstat.

Simulation For the simulation, we used the parametrized sample, see Section 5.2.
The simulated test rig has the same dimensions as in the experiment, see Figure
5.7.

Summary of the Experiments The conducted experiments demonstrate, that
the cutting depth has clearly the biggest influence on the draft forces of an excavator
bucket. The velocity is much less relevant than expected by the FEE, see Section
4.1. Two measurements were performed regarding different angles of incidence.
The DEM simulations overall showed good agreement with the measurements, see
Figure 5.8b. For small cutting depths, we overestimate the absolute value of the
force in longitudinal x-direction. This could be due to a systematic error in the
computation of the initial cutting depth.

Performing the experiment was clearly more cumbersome than doing a DEM anal-
ysis. Also, while in the measurement campaign we could measure only forces in
longitudinal and vertical direction, in the DEM we obtain all 6 forces and torques.
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(a) Measurement (red) and Simulation (blue) of excavator bucket in test rig for a coarse
sand specimen. Left: The cutting depth is set to 0.15 m, the longitudinal dragging
velocity to 0.12 m/s and the angle of incidence to 0◦. Right: The cutting depth is set
to 0.1 m, the longitudinal dragging velocity to 0.12 m/s and the angle of incidence
to 25◦. In gray are the unfiltered simulation results, the coloured graphs represent
the fifth order butterworth filtered signal with cutoff frequency of 1 Hz
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(b) Measurement of mean excavator bucket forces in bucket trench test rig. From left to
right: Mean forces as a function of the cutting depth d and of the dragging velocity
v

Figure 5.8: Measurement and simulation of coarse sand in bucket trench
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5.4 Interactive Soil Simulation on the Example of an Excavator

Numerical Example: Excavator Bucket in Gravel testbed For a more realistic
example, we consider the same testbed with an excavation tool. We investigate
this scenario in an experiment at the soil laboratory of Technische Universität
Kaiserslautern, see Figure 5.5 and Section 5.3. That is, we replace the plate by
the model of a commercial excavator bucket with a cutting width of 0.305 m. The
bucket has a total weight of 31.6 kg. This kind of excavator bucket is typically
used during small-scale excavations with compact excavators. We chose the tool’s
cutting depth d between 0.05 and 0.25 m , while the velocity v in longitudinal
x-direction lies between 0 and 1 m/s. Additionally, we change the angle θ around
the cutting edge in the range of −30 to 30◦. In this example, we choose a finer
meshing of our parameter space, resulting in a total of 125 basis simulations. For
simulation results, we refer to Section 5.3, where we compare the Lookup approach
to the measurement and the full DEM simulation.

5.4 Interactive Soil Simulation on the Example of
an Excavator

In this section, we describe the coupling of the soil-model, the visualization and
the multibody framework of the excavator. We will therefore follow the steps
described in Section 5.1. We discussed the soil parametrization and its validation
in the preceeding two sections. For the application at the driving simulator, we
choose the sand gravel mixture, see Section 5.2. Next, we need a useful model of an
excavator. We describe a basic model and a more complex model in the succeeding
subsection and give some insight into the classification of excavation trajectories. It
is essential, to define coordinate systems in the MBS model and in the soil model,
which have to coincide. Suitable offline simulations have to be specified, covering
the most relevant trajectories of the working range of the excavator. Thereafter,
we generate an online model using the acquired offline simulation data. Finally,
the online model can run on the driving simulator.

5.4.1 Multibody Model of an Excavator

An excavator can be modeled as an MBS in chain structure. For the sake of
completeness, we shortly describe the following parts, without going into too much
details. The main constituents of the excavator are presented in Table 5.3. Instead
of distinguishing boom and adjustable boom, there exist excavators with a one-piece
boom.
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Car Boom
4 Wheels Boom

Front Axle Adjustable Boom
Rear Axle Stick

Undercarriage Quick Fit
Superstructrure Yoke

Blade Connecting Rod

Table 5.3: Excavator Parts modelled by the Multibody System.

Classification of Excavation Trajectories In the paper [Ben+16, Figure 3, p. 2],
the authors describe the generalized trajectory of an excavator bucket as a com-
bination of the following basic maneuvers. The start phase describes the bucket
position above the soil, with a positive inclination angle. It moves transversely
downward to cut into the soil with its teeth or cutting edge. The second constant
velocity phase describes the movement in lateral direction with constant velocity
and constant cutting depth. The third lifting phase is a rotating maneuver from a
positive inclination angle to a negative inclination angle in order to accumulate the
material inside the bucket. The fourth transport phase, moves the bucket without
changing the angle of incidence, so that as little material as possible is lost. This
might also comprise a change in the swing angle and the driving wit the excavator.
The fifth unloading phase describes a rotation of the bucket from a negative to a
positive angle of inclination emptying the accumulated material from the bucket.
The sixth and final travel to start phase closes the circle to beginn with the next
maneuver in the start phase.

The force prediction of the DEM RNN approach covers phase one to three. Here,
the major forces arise, because the soil is broken and possible cohesive forces need
to be overcome. The DEM LUT approach covers only phase two. Phases four to
five can be simulated by adding a mass to the multibody modell of the excavator,
thus the time consuming offline DEM simulation is not required. In phase six, the
bucket is empty and no additional forces arise.

Multibody Excavator Model For the trajectory generation, we designed a re-
duced Simscape Multibody model of an excavator. A second more complex Sim-
Mechanics model with hydraulics is currently in use at RODOS. However, the
latter model is slower due to its complexity and the manual trajectory generation
is cumbersome.

We modeled the excavator, consisting of a seven bodies in Simscape Multibody.
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Figure 5.9: Overview on the relevant coordinate frames of the multibody model of
an excavator for the coupling with soil models

The undercarriage is connected to the superstructure by a revolute joint, rotating
around the global z-axis. Superstructure and boom, boom and stick, and stick
and bucket are all connected by revolute joints all axis aligned. Thus, we have a
swing angle rotating the car around the undercarriage and may move in a local
x-z-plane in a coordinate frame of the bucket relative to the superstructure. We
implemented two versions of this model. First, we can prescribe the four angles
(swing, superstructure-boom, boom-stick, stick-bucket) and compute the resulting
bucket trajectory. Second, we connect the bucket tip with the superstructure using
a planar joint. A planar joint constrains the motion in a two dimensional way,
leaving two translational and one rotational degree of freedom. Then, we can
prescribe the position in the x-z-plane of the excavator bucket and obtain the
resulting angles in the revolute joints. Therefore, we specify certain x-z-positions
and the angle of incidence θ and interpolate the trajectory. This guarantees that
we never leave the working space of the excavator.

Coordinate Systems In order to couple GRAPE or later on the hybrid models
from Section 4.3.1 and 4.3.2 with the multibody model of the excavator, we need to
make sure the coordinate systems coincide. Let us first look at the multibody model
of the excavator and specify the coordinate frames as introduced in Section 2.5,
see Figure 5.9. The transformations between the coordinate systems correspond to
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Figure 5.10: Overview on the relevant coordinate frames of the soil simulation for
the coupling with the multibody model of an excavator

afine linear mappings. Here, we focus only on the rotation matrix. We consider
a global coordinate frame IMBS. We choose a body fixed coordinate frame K0

MBS

at the super structure, with rotation matrix RK0
MBSI . We consider this rotation

matrix as a passive transformation from global coordinates IMBS to K0
MBS. This

rotation matrix mainly captures the swing angle around the global z-axis between
undercarriage and superstructure. We define a second coordinate system just below
K0
MBS with global height z = 0 and name it K1

MBS. The rotation matrix

RK0
MBSK

1
MBS

= RK0
MBSIMBS

RT
K1
MBSIMBS

= RK0
MBSIMBS

RIMBSK1
MBS

is constant in time. As a second rigid body within the MBS of the excavator, we
consider the bucket with bucket tip frame K2

MBS and the center of gravity frame
K3
MBS. Again, the relative rotation RK2

MBSK
3
MBS

is constant in time. The rotation
matrix between superstructure and bucket tip RK1

MBSK
2
MBS

corresponds to the
bucket angle with respect to the local y-axis. We measure the time-dependent
rotation matrix RK1

MBSK
2
MBS

in order to compute the angle θ around the y-axis.

The matrix RK1
MBSK

2
MBS

can be interpreted as an active rotation K1
MBS → K2

MBS.

Second, let us specify the relevant coordinate systems within the soil model. For
the soil modeled in GRAPE, we look at a global coordinate frame IS = K0

S and a
body-fixed frame at the bucket tip K1

S or K2
S, compare Figure 5.10. We need to

ensure that this corresponds to K2
MBS. The rotation matrix RK2

SIS describes the
rotation between local body fixed coordinate system and world. Difficulties arise
when we collect data with a bucket orientation different from the one of the real
time simulation K2

S. Then, we need to rotate with respect to the systems K1
S and

K2
S. This active transformation corresponds to a rotation Rz(π)ISIS around the
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global z-axis. Then, we obtain

RISK1
S

= Rz(π)ISISRISK2
S

= Rz(π)ISISRK1
MBSK

2
MBS

. (5.1)

Force-Displacement Coupling The MBS simulation prescribes a motion of boom,
arm, quick fit and finally the bucket. As described in the previous paragraph, we
couple the systems at the bucket tip point. The reason is, that the generation
of Lookup Tables was issued with respect to the bucket tip coordinate system in
order to capture soil contact more accurately. We capture the motion of the bucket
in K2

MBS with respect to K1
MBS and translate it into GRAPE’s coordinate system

K2
S with respect to IS. Forces and torques are computed in the global coordinate

frame IS acting at the bucket tip coordinate frame K2
S. If we have precomputed

forces, e.g. using the DEM LUT approach, with respect to K1
S we need to transform

them analogously to Equation (5.1). With a slight abuse of notation, we write
FK1

S
as the force in global coordinates acting at the origin of K1

S. That is, we take

the forces FK1
S

and multiply with the transpose of Rz(π)TISIS = Rz(π)ISIS , as it is
symmetric, i.e.

FK2
S

= Rz(π)ISISFK1
S

and TK2
S

= Rz(π)ISISTK1
S
.

We apply the forces and torques in the MBS at the point K2
MBS and need to make

sure, that we apply the forces locally. Although the force torque vector has been
computed in global coordinates IS at the point K2

S, in the MBS world, we operate
in a local world between K1

MBS and K2
MBS.

5.4.2 Selection of Appropriate Training Data

For the application of the online methods described in the previous chapter in
Section 4.3, we need to perform offline simulations and acquire the necessary data.

Lookup Basis Simulations The basis simulations for the Lookup Table, are
computed similar to the previous examples in Section 4.3.1 and Section 5.3. The
third example of the generation of a Lookup Table aims at the application of the
DEM LUT approach at the driving simulator RODOS. We use a bucket geometry of
cutting width of 1.20 m. The bucket has a total weight of 570 kg and is typically
used in medium scale excavators. We choose the buckets cutting depth d between
0.05 and 0.8 m. The minimal depth submerges the bucket fully in the particle bed.
We subdivide the interval [0.05, 0.8] in steps of 0.15 m, resulting in six different
depth values. The velocity lies between 0.05 and 0.85 m/s. Again, the angle of
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incidence θ is in between −30◦ and 30◦ in the bucket coordinate system K1
S. In

total we perform 6× 5× 5 = 150 offline basis simulations. Due to our experience
with the previous two examples, we chose lower longitudinal velocities and focus
on the variation of the cutting depth d.

The basis simulations has coorcinates in K1
S, but the maneuvers in and the online

phase use coordinates in K2
S. This means that the trained net does not recognize the

data from basis simulations as fitting for the online simulation. Thus, we oriented
the data from the basis simulations as follows.

Oriented Basis Simulations As discussed in Paragraph 5.4.1, it makes sense,
to rotate the data obtained in K1

S, to fit into K2
S. That is, we have the rotation

matrix RK1
SIS , which we multiply with Rz(π)ISIS in order to orient it with respect

to K2
S.

RISK2
S

= Rz(π)ISISRISK1
S
. (5.2)

We use this data in the application of Lookup Tables as describes in 4.3.1. For
artificial simulations close to the basis simulations, when the bucket was dragged
through soil with little variation of the Lookup parameters, the results looked
promising, see Figure 5.11. However, when the method is used with real excavation
maneuvers, the DEM LUT approach underestimates forces and torques, above all
the vertical forces in z-direction.

MBS Excavation Trajectories To achieve better accuracy, we use data generated
with the MBS model of the excavator. Defining trajectories by interpolating
predefined points lead to smooth curves and it is possible to set desired cutting
depths and angles of incidences. However, the collected data do not result in RNNs

with satisfying approximation quality, because the characteristic of the input of
the driving simulator differs. Therefore, we tried to get as close to the online
trajectories as possible, see the succeeding paragraph.

RODOS Excavation Trajectories In addition to the artificially defined trajec-
tories as described in the last paragraph, we also collected data by operating in
the cabin of an excavator and perform realistic digging maneuvers, see Figure 5.15.
Here, we modelled the soil impact by an elastic damper, forbidding low cutting
depths. We operated the cabin inputs for the trajectory generation slowly to obtain
only subtle oscillations. During the excavation, we recorded the angles between
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Figure 5.11: Trajectory and force torque output of LUT compared to full DEM

simulation of a maneuver similar to the LUT basis simulations

the multibodies of the excavator model. Subsequently, in a postprocessing step,
we translated the measured angles between the bodies of the excavator MBS into a
bucket tip trajectory. We extracted the relevant parts of the trajectories, covering
phase 1 (start), phase 2 (constant velocity) and phase 3 (lift), compare Paragraph
5.4.1. These parts served as input for DEM offline simulations. When the cutting
depth seemed too deep, to obtain a realistic dig, we added an offset, in order to
obtain forces below 500 kilonewtons. Otherwise, especially the forces in vertical
z-direction become unrealistically large, which would result in instable machine
response. Thereafter, the trajectories serve as input for offline DEM simulations.
We associate the acquired forces to the mapping

f : u 7−→ f(u) := y, with u = (xT ,vT , qT ,ωT )T and y = (F T ,T T )T .

The training data for the RNNs in the upcoming examples comprises 96 simulations
of five to fifteen seconds. In total, we generated almost two hours of simulated
excavation cycles. The data has the form (u,y), where u describes the input
trajectory and y the forces and torques. Prior to training, we downsampled the
data to 10 Hz. Afterwards, we append the trajectories to obtain one large sequence
of input vectors u1, . . . ,uN and their respective outputs y1, . . . ,yN .

5.4.3 Coordinate Calibration

In order to validate the calibration of the coordinate transforms, we perform a
simulation similar to the basis simulations for the DEM LUT approach, but oriented
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Figure 5.12: Trajectory (left) and force torque output of LUT compared to full DEM

simulation of a maneuver similar to the LUT basis simulations

in the opposite direction. That is, we are in the coordinate frame K2
S, but in

the basis simulations for the DEM LUT approach, we use data recorded in K1
S.

Within the simulation, we consider a bucket moving in negative x-direction with
moderate speed between vx = −0.25 m/s and vx = −0.6 m/s. We chose the angle
around the y-axis to be zero and change the cutting depth d from d0 = −0.35 m to
d1 = −0.65 m. The trajectory and the force results are presented in Figure 5.11.
The forces agree, although the linearly increasing trend in the second half of the
DEM simulation longitudinal forces FX cannot be captured by the LUT.

We choose a second maneuver where the bucket changes from an open orientation
angle of −30◦ to a closing angle of 30◦, see Figure 5.12. The parameter change in
the DEM simulation is nonsmooth which leads to abrupt acceleration forces. In the
first half of the simulation, the LUT first overestimates and then underestimates the
DEM forces. Again the linear increase in the longitudinal force FX is not captured.
All in all, the LUT force prediction captures the main trend of the DEM simulation
forces.

Online Model Generation We chose the Lookup 1 approach, see Variant 1 in
Section 4.3.1. This method yields almost smooth force trajectories. We load the
data in the MATLAB workspace and access it via a MATLAB/Simulink block.
For the architecture of the RNN, we choose a net with one hidden layer and five
recurrent layers. A network with two or more hidden layers drastically increases
the degrees of freedom and thus the training time. Initially, the results with more
than one hidden layer demonstrated no advantageous approximation behavior, so
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Figure 5.13: RODOS excavation trajectories: Training Data and test data for RNN

compared to DEM simulation.

we tried to keep the model as simple as possible. We compare to RNNs with the
following structure.

On the one hand, we compare the RNN with 7 relevant inputs, containing xx, and
xz, two non-zero entries in the quaternion p, the velocities vx and vz and the
angular velocity ωy in the upcoming numerical study. We applied the Scaling
Variant 1 subtracting the temporal mean value of one input signal calculated over
all training data and dividing by the standard deviation, see Subsection 2.4.3.

On the other hand, we use the full trajectory incorporating also close to zero entries
in the net, resulting in 13 inputs. Therefore, we applied the Scaling Variant 2,
subtracting in each time step the mean over all input signals and dividing by the
standard deviation of this time step.

Both nets have 5 recurrent layers. We incorporate the trained nets into a MAT-
LAB/Simulink block and name the first RNN7 and the second RNN13.

Deployment at RODOS We deployed the designed online applications discussed
in the preceding sections, at the driving simulator RODOS. Here, we will briefly
describe the design of the simulator and point out the commercial software used for
the deployment of the interactive soil applications. A KUKA robot arm forms the
basis of the driving simulator and its development is described in [Kle15a], see also
[KUK]. Currently, three types of vehicles are operational, namely a passenger car,
an agricultural tractor and an excavator. A full size passenger cabin of each of the
three vehicles is mounted on top of the robot arm. A vehicle model can be developed
and run on a realtime capable computer. Currently, a SCALEXIO by the electronic
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Model
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Figure 5.14: Sketch of the dSPACE environment for the realtime model.

control unit developer dSPACE is in use as realtime system, see [dSPb; dSPa]. The
preparation and runtime control of the application running on the realtime platform
uses two software frameworks supplied by dSPACE. These software components
run on a separate host computer. These are ConfigurationDesk and ControlDesk.
ConfigurationDesk acts as a comfortable wrapper for the vehicle model which also
serves as a compiler. The compiled application starts the vehicle model on the
SCALEXIO. The memory designation on the realtime system is also part of the
building process and is static during runtime. ControlDesk on the other hand
interacts with the realtime application at runtime, reads and writes the RAM of
the SCALEXIO, thereby making possible the adaption of model parameters. The
general structure is illustrated in Figure 5.14. The online models described in
Section 4.3.1 and 4.3.2 are modeled as Simulink blocks in MATLAB Simulink and
appended to the excavator model. Then, the application is compiled and imported
via ConfigurationDesk.

We extend the vehicle model of the excavator (currently a VOLVO EW160E)
with the soil-tool interaction block. The vehicle model communicates the bucket
tip dynamics to the online soil model and this block calculates and returns the
approximated forces and torques to the vehicle model.
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Figure 5.15: From left to right: Unity visualization, simulator setup for trajectory
generation, and mounted excavator cabin in RODOS

5.5 Applications of LUT and RNN - Numerical
Results

In Figure 5.16, we demonstrate the trajectory of a real excavation maneuver, and the
force response of LUT and DEM simulation. The oscillations in the velocities arise
due to the vibrating multibody model of the excavator and due to the operator. A
skilled excavation operator might reduce the amount of oscillations in the velocities
and reduce the vertical forces. The forces magnitude coincides initially, however,
only parts of the maneuver are predicted correctly by the LUT approach. When
the bucket vertical position is positive, we obtain zero forces using the DEM LUT

approach.
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Figure 5.16: Trajectory and force torque output of LUT compared to full DEM

simulation of a real excavation performed using a driving simulator.

Discussion of Lookup Table approximation The Lookup Table is sufficiently
accurate to predict forces FX in global longitudinal direction, as long as the
absolute value of the cutting depth is large enough, see Figure 5.18c. However,
using our Lookup method with just three parameters d, θ, vx is not sufficient to
capture every aspect of a complex excavation maneuver. When the cutting depth
is very low, the LUT does not respond with sufficiently large forces, see Figure
5.20c. The vertical forces are often underestimated, see Figure 5.22c. Furthermore,
LUT does not predict local minima and maxima correctly, see Figure 5.20c. If the
cutting depth is greater than zero, i.e. the bucket tip is above the soil surface, the
forces calculated by LUT are zero, too. Thus, for maneuvers with accumulated
surcharge material in front of the bucket and small absolute value of the cutting
depth, the LUT does not correctly predict the lifting phase, compare to Section
5.4.
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Figure 5.17: Magnitude of the particle velocity for Excavation Maneuver 1 for times
t = 548, 550, 552, and 554 seconds, red color indicates high velocities
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Figure 5.18: Excavation Maneuver 1
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Figure 5.19: Complete error Analysis of Excavation Maneuver 1
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Discussion of Maneuver 1 We illustrate the first maneuver in Figure 5.17. Here,
the colors indicate the particle velocity, yellow corresponds to zero velocities, while
red indicates particle velocities above 1 meter per second. We evaluate the error
measures defined in Section 2.6 and illustrate the results in Figure 5.19. The errors
indicates a relative L1 error of up to 200 percent. All three methods correctly
predict the non-zero forces at the start of the simulation, where the bucket tip,
slightly penetrates the soil. Except for the vertical forces FZ, where the LUT

outperforms RNN, the error of LUT and RNN are comparable. RNN7 has lower
absolute errors in the component FX, but larger L1 and L2 errors regarding FZ
and TY . In Figure 5.18b, RNN7 overestimated forces FZ and torques TY . Except
for FZ, LUT outperforms the RNNs. The analysis of the frequency spectrum with
a PSD plot indicates, that all methods reproduce the DEM frequencies accurately,
see Figure 5.18c.
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Figure 5.20: Excavation Maneuver 2
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Figure 5.21: Complete error Analysis of Excavation Maneuver 2
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Discussion of Maneuver 2 The second maneuver reveals the deficiencies of
the DEM LUT approach. The cutting depth remains below 0.2 m, thus the basis
maneuvers accessed by the LUT yield only small reaction forces. The training data of
RNNs comprise similar time series with low cutting depths and high forces, thus the
approximation behavior is superior. The missing forces in the LUT approximation
also influence the PSD, see Figure 5.20c.

The RNN7 reproduces the main behavior of the DEM solution. However, local
minima and maxima are not approximated with all detail. RNN13 is superior here,
especially regarding forces FZ. If we look at the absolute errors in Figure 5.21, we
observe that RNN13 has lower errors compared to RNN7 and LUT. Also L1 and
L2 errors of RNN13 are smaller, compared to RNN7 and LUT. The relative error
of RNN13 is small, compared to RNN7 and LUT and is in the range of 10 to 30
percent. The LUT error is in the range of 100 percent, which we explain as follows.
The LUT force prediction ỹ is small (close to zero), the relative error in all three
norms reduces to

εak(y, ỹ)

εak(y, 0)
≈ εak(y, 0)

εak(y, 0)
= 1,

where k refers to one of the defined error measures (∞,L1,L2), compare Section
2.6. Consequently, all relative LUT error measures for maneuver 2 are close to 100
percent.

Discussion of Maneuver 3 This maneuver contains highly oscillating forces FZ.
Similar to the previous maneuver, the LUT does not cover local maxima and minima.
The network RNN7 with reduced input does cover the main behavior regarding
oscillations, but avoids fully attaining minima and maxima, e.g. in FZ, compare to
Figure 5.22b. The RNN13 with full input and different scaling approximates the
oscillating behavior with better accuracy. This can be observed in the error plots,
see Figure 5.23a and Figure 5.23c. However, the maximum error with respect to
force FZ and torque TY is smaller for RNN7 compared to LUT and RNN13. The
relative errors lie in the range of 30 to 100 percent.
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(b) Force torque output on an excavation maneuver of RNN with 7 inputs (left) and
with 13 inputs (right), each compared to full DEM simulation of a maneuver
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Figure 5.22: Excavation Maneuver 3
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Figure 5.23: Complete error Analysis of Excavation Maneuver 3
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Figure 5.24: RNN with two hidden layers

Summary of the Discussion All three methods succeed in approximating parts
of the presented maneuvers. Only LUT fails for maneuver 2, where the absolute
value of the cutting depth is small. For maneuver 2, RNN13 outperforms RNN7.
In maneuver 1 and maneuver 3, we have no clear favorite method. RNN7 covers
the main drift, while RNN13 catches local minima and maxima. To conclude, we
prefer RNN13 and continue our study with it.

RNN with Two Hidden Layers In a second study, we used an RNN with 2
hidden layers and only 3 recurrent layers per hidden layer, instead of 5 for RNN13
and RNN7. We refer to the newly defined net by RNN13-2L. We simulate the same
excavation maneuvers with the both RNNs, see Figure 5.25, Figure 5.26 and Figure
5.27.

Discussion of the RNN with two Hidden Layers In Figure 5.27c on the right,
RNN13 and RNN13-2L both approximate the frequencies satisfactorily. RNN13 is
close to DEM between 0 and 2 Hz, the two-layered net RNN13-2L between 2 and 3
Hz. In Figure 5.25b on the left, RNN13 overestimates the longitudinal forces FX.
Similarly, in Figure 5.27b on the right, RNN13 overshoots the local maxima in FZ.
In Figure 5.26b, it is difficult to make out a difference of RNN13 and RNN13-2L.

106



5.5 Applications of LUT and RNN - Numerical Results

548 549 550 551 552 553 554

-100

0

100

200

300

fo
rc

e
 /
 k

N

Forces 

FX-RNN13

FY-RNN13

FZ-RNN13

FX-DEM

FY-DEM

FZ-DEM

548 549 550 551 552 553 554

time / s

-150

-100

-50

0

50

to
rq

u
e
 /
 k

N
m

Torques

TX-RNN13

TY-RNN13

TZ-RNN13

TX-DEM

TY-DEM

TZ-DEM

548 549 550 551 552 553 554

-100

0

100

200

300

fo
rc

e
 /
 k

N

Forces 

FX-RNN13-2L

FY-RNN13-2L

FZ-RNN13-2L

FX-DEM

FY-DEM

FZ-DEM

548 549 550 551 552 553 554

time / s

-150

-100

-50

0

50

to
rq

u
e
 /
 k

N
m

Torques

TX-RNN13-2L

TY-RNN13-2L

TZ-RNN13-2L

TX-DEM

TY-DEM

TZ-DEM

(a) Force torque output on an excavation maneuver of RNN with 13 inputs and one
hidden layer (left) and with 13 inputs and two hidden layers (right), each compared
to full DEM simulation of a maneuver
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Figure 5.25: Maneuver 1 - comparison: RNN with two hidden layers

107



5 Industrial Applications and Experiments

22 24 26 28 30 32

0

100

200

fo
rc

e
 /

 k
N

Forces 

FX-RNN13

FY-RNN13

FZ-RNN13

FX-DEM

FY-DEM

FZ-DEM

22 24 26 28 30 32

time / s

-150

-100

-50

0

to
rq

u
e

 /
 k

N
m

Torques

TX-RNN13

TY-RNN13

TZ-RNN13

TX-DEM

TY-DEM

TZ-DEM

22 24 26 28 30 32

0

100

200

fo
rc

e
 /

 k
N

Forces 

FX-RNN13-2L

FY-RNN13-2L

FZ-RNN13-2L

FX-DEM

FY-DEM

FZ-DEM

22 24 26 28 30 32

time / s

-150

-100

-50

0

to
rq

u
e

 /
 k

N
m

Torques

TX-RNN13-2L

TY-RNN13-2L

TZ-RNN13-2L

TX-DEM

TY-DEM

TZ-DEM

(a) Force torque output on an excavation maneuver of RNN with 13 inputs and one
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to full DEM simulation of a maneuver
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Figure 5.26: Maneuver 2 - comparison: RNN with two hidden layers
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(a) Force torque output on an excavation maneuver of RNN with 13 inputs and one
hidden layer (left) and with 13 inputs and two hidden layers (right), each compared
to full DEM simulation of a maneuver
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Figure 5.27: Maneuver 3 - comparison: RNN with two hidden layers
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Data Structure, Model Complexity and Computational Efficiency The LUT

is generated using 150 basis simulations of 10 seconds simulation time each. We
store them in form of a mean force and mean torque value for each coordinate
axis. This results in a total of 900 doubles, we need to store for the model. The
RNNs presented here, are based on training data consisting of 96 maneuvers of
different length and almost 1200 seconds simulation time, see Figure 5.13. The
RNN13 contains one hidden layer with 10 neurons and 5 recurrent layers. With
13 inputs, this results in a total of 630 hidden weights, 60 output weights and 16
bias values. To sum up, the model has 706 degrees of freedom. The two-layered
RNN13-2L contains two hidden layers with 10 neurons and 3 recurrent layers. With
13 inputs, this results in a total of 830 hidden weights, 60 output weights and 26
bias values. Consequently, the size of the two-layered net is slightly larger than
RNN13 with 5 recurrent layers per hidden layer. To sum up, the model has 916
degrees of freedom. Although LUT and RNN are quite different data-based models,
the size seems comparable and within the same order of magnitude.

When running three models, i.e. LUT, RNN13 and RNN13-2L, with a frequency of
1000 Hz on a commercial Laptop (Lenovo T490s; Intel i7-8665 4 core processor;
16 GB DDR4 Ram), we obtain realtime factors between 7 and 30 percent. That
is, we are at least three times faster than realtime. The tests result from the
maneuvers of Figures 5.25 to 5.25 have a length between 6 and 12 seconds. In
practice, intertwining the soil prediction models with the excavator model and
deploying it on the realtime computer SCALEXIO, we experience realtime capable
behavior simulating with 500 Hz.

Summary of the Discussion of the Numerical Examples We present three
exemplary excavation cycles, consisting of a start phase a constant velocity phase
and a lifting phase, compare Paragraph 5.4.1. The Lookup method fails at parts of
these meneuvers. The RNNs cover the main aspects of the trajectories. In Figure
5.18 and the succeeding error plots, we observe, the absolute maximum error for
longitudinal force FX, horizontal force FZ and torque TY . These contain all
relevant aspects of the output data. While RNN13 has a higher absolute maximum
error in the component FX, it has a lower error for FZ and TY , compared to
RNN7. The LUT error is always higher as we expect it to be. The second study
revealed that a two layered RNN with only three recurrent layers per hidden layer
yield slightly better results. Especially for maxima and minima of forces FZ the
approximation of the two hidden layer RNN yields better approximations, see Figure
5.27.
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We successfully implemented two classes of realtime capable, data-based algorithms
and deployed them at a driving simulator. In this thesis, we analyzed the prediction
quality based on test excavation cycles, recorded with operator signals from the
excavator cabin. We successfully tested the online force prediction at the driving
simulator. Operators feel a resistance force when the bucket enters the soil. This
lays the foundation for more realistic simulator studies. Applications include
operator training, and quantitatively accurate load predictions, enhancing the
physics of the simulation.

6.1 Results of this Thesis

Within this thesis we studied three different classes of particle simulation algorithms,
namely DEM on an acceleration level, NSCD on a velocity level and PBD on a position
level. We presented a comparison of three representative algorithms of these classes
and analyzed them with respect to efficiency, robustness, and applicability. The
motivation behind this comparison was twofold. First, the application of particle
based soil simulation in realtime with one of the particle simulation classes. PBD is
a possible candidate, but fails in the accurate prediction of draft forces. Second,
the application of one of these algorithms for offline simulations to train a data-
based model. Penalty-based DEM, as implemented in GRAPE, is suitable for this
purpose.

We covered a well-known approach for static forces, namely FEEs, and discussed
extensions to a dynamic setup. In practice, the FEE extension to a dynamic
setup was instable and not promising. We mentioned different alternative physical
hybrid models which increase the performance of particle based methods. We
decided to focus on data-based prediction algorithms and set up a DEM LUT

approach. We examined different variants including TPWL and stochastic processes
and implemented them prototypically for online prediction. The latter variant
enables the reproduction of similar oscillation amplitudes and bares similarities
to a SDE. We pointed out the connection and similarity to Ornstein-Uhlenbeck
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processes. Additionally, we considered Neural Networks in the context of supervised
learning. We examined and compared FNNs and the advantages of RNNs and
formulated a second data-based algorithm. Both networks possess a Universal
Approximation Property, so that in theory, given enough meaningful training data,
we achieve arbitrary approximation quality. We successfully implemented the DEM

LUT approach and the DEM RNN approach at an in-house driving simulator.

6.2 Outlook and Future Work

The assessment of draft forces in realtime, brings a variety of benefits and possible
applications. The development of autonomous excavators with optimized trajec-
tories can be studied. We can test new features within excavation prototypes in
dangerous situations with differently skilled operators and replay and reproduce
these tests. In a field experiment, reproducibility is difficult as external conditions
change and the setup involving heavy machinery is expensive and cumbersome.

We plan to implement a terrain server, keeping track of the current terrain heights.
We aim to visualize the digging process and decrease the terrain height accord-
ingly.

We noticed that the reaction forces are at times to high for the hydraulic multibody
model of the excavator. This causes undesired effects at the driving simulator and
may cause the model to fail. We want to resolve this issue by either stiffening
the hydraulic excavator model or by introducing filters to avoid high force peaks.
A proper damping of the reaction forces might be necessary, also a limitation
of the cutting depth. Furthermore, a convincing visualization is missing so far.
Such a feature will enable a visual feedback of the digging process, with terrain
height adaption and bucket filling. This will be a further step to enhance the
operator experience during excavation. Prototypical studies have revealed that
a terrain server with variable terrain height in Unity and the excavator model
leads to promising results. We also aim to include the filling of the bucket in the
visualization. We further want to incorporate the forces acting upon the bucket,
when we have filled it and move it above the soil. One possibility is a variable mass
placed in the center of gravity of the bucket, depending on the previous excavation
cycle and the current trajectory.

We propose the extension o the DEM LUT approach with the vertical velocity vz
as fourth Lookup parameter. This might improve the approximation of the high
vertical forces that arise when the soil cutting is not performed as it should be. The
training data of the Recurrent Neural Network, although yielding good prediction
quality, does not contain all necessary maneuvers. Collecting more trajectories and
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excavation cycles of different operators and including further training data will
increase model fidelity and accuracy.

The time-dependent nature of RNNs resembles the structure of the physical system.
However, the recurrence also has an undesired effect. If the error in the current
time step is high, this will influence also the succeeding time steps. A FNN has the
advantage, that the error of the current time step has no influence on the output in
the next time step. A thorough analysis on the propagation of errors in the RNN
context is most welcome.

So far, we considered one specific soil, a mixture of sand and gravel. A study
involving different material using the same excavation trajectories might result in
a function

f : R6 −→ R6, (FA,TA)T 7−→ (FB,TB)T ,

mapping the computed forces and torques of the interaction with the first soil A to
the second B. Furthermore, we think of a similar procedure for different excavation
buckets. Thus, we avoid the expensive offline simulation for a new material and
allow the force prediction for new soil by concatenation of one of the existing online
models with the unknown function f.

Ultimately, a realtime capable reduced particle model, possibly running on GPUs
would be most welcome.
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A.1 Rotations in Multibody Dynamics

The following paragraph is based upon [Kle15b], [SE17] and [Woe16]. We first
recall some general facts on quaternions before turning to unit quaternions for the
description of rotations.

a) A quaternion q = (q1, q2, q3, q4) is a vector in R4. The constituents qi are the
scalar components of q.

b) A quaternion can be expressed as

q = q1 + q2i+ q3j + q4k = q1 + qi
T
i

with real scalar part q1 and an imaginary part qi = (q2, q3, q4)T with imaginary
units i = (i, j, k)T . The imaginary units satisfy the relation i2 = j2 = k2 =
ijk = −1.

c) The sum of two quaternions q = (q1, q2, q3, q4) and p = (p1, p2, p3, p4) is
defined componentwise as

q + p = (q1, q2, q3, q4) + (p1, p2, p3, p4) = (q1 + p1, q2 + p2, q3 + p3, q4 + p4).

d) The product of two quaternions q = (q1, q2, q3, q4) and p = (p1, p2, p3, p4) is
defined as

qp =(r1, r2, r3, r4) with

r1 =q1q
′
1 − q2q

′
2 − q3q

′
3 − q4q

′
4

r2 =q2p1 + q1p2 + q3p4 − q4p3

r3 =q1p3 + q2p4 + q3p1 − q4p2

r4 =q1p4 + q2p3 − q3p2 + q4p1
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f) Quaternions form a 4-dimensional R-algebra H.

e) The conjugate of a quaternion q = q1 + q2i + q3j + q4k is the quaternion
q? = q1 − q2i − q3j − q4k. The norm is defined as ‖q‖ =

√
qq? =

√
q?q =√

q2
1 + q2

2 + q2
3 + q2

4

g) The inverse quaternion is given by q−1 = 1
‖q‖q

?.

h) The derivative of a time dependent quaternion function q(t) can be written
as follows

q̇ =
1

2
q · (0,ω)T

i) Unit quaternions: For rotations in 3-dimensional euclidean space, unit quater-
nions

S = {q ∈ H | ‖q‖ = 1}
are relevant. The constraint guarantees that we have 3 degrees of freedom,
but unlike rotation matrices, quaternions have no singularities.
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A.2 Universal Approximation of FNNs and RNNs

In the following, we will recapitulate the proof of Theorem 2.4.11.

Theorem (Universal Approximation of FNN). Let f be a non-constant, continuous
function f : R 7→ Rn. Then ΣI,n(f) is uniformly dense on compacta in C(RI ;Rn).

The proof is based on [HSW89] and [SZ06].

Proof. Let K ⊂ RI be any compact set. For any f : R→ Rn we consider functions

NN(x) =
J∑

j=1

Vjf(Aj(x)) ∈ ΣI,n(f),

where Aj : RI → R is an affine linear mapping and Vj ∈ R1×n. The product
between Vj and f is the Hadamard product.

0) ΣI,n(f) is an algebra on K.
Let therefore NN1, NN2 ∈ ΣI,n(f) be arbitrary and α ∈ R. Then

αNN1 = α
J∑

j=1

Vjf(Aj(x))

=
J∑

j=1

αVjf(Aj(x))

=
J∑

j=1

V̄jf(Aj(x)) ∈ ΣI,n(f).

That is, ΣI,n(f) is closed under scalar multiplication. Consider

NN1 =
J∑

j=1

Vjf(Aj(x))

and

NN2 =
J̃∑

j=1

Ṽjf(Ãj(x)),
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and without loss of generality J < J̃.

NN1 +NN2 =
J∑

j=1

Vjf(Aj(x)) +
J̃∑

k=1

Ṽkf(Ãj(x))

=
J+J̃∑

i=1

Wif(Bi(x))

Here, Wi =

{
Vj if i < J

Ṽi−J if i > J
, Bi =

{
Aj if i < J

Ãi if i > J
.

Thus NN1 +NN2 ∈ ΣI,n(f).

1) ΣI,n(f) is separating on K.
If x,y ∈ K,x 6= y, then there exists an A ∈ AI such that f(A(x)) 6= f(A(y)).
Let a, b ∈ R, a 6= b and f(a) 6= f(b). Pick A(·) with A(x) = a and A(y) = b,
that is set ω1 = b−a

y1−x1 , ω2 = 0, . . . , ωn = 0, and θ = a− ω1x1. Then

A(x) = 〈ω,x〉 − θ =
b− a
y1 − x1

x1 + a− b− a
y1 − x1

x1 = a

A(y) = 〈ω,y〉 − θ =
b− a
y1 − x1

y1 + a− b− a
y1 − x1

x1 = b− a+ a = b

Then f(A(x)) 6= f(A(y)) and ΣI(f) is seperating on K.

2) ΣI,n(f) vanishes on no point on K.
There are functions f(A(·)) that vanish at no point on K. Choose b ∈ R with
f(b) 6= 0. Set A(x) = 〈0,x〉+ b Then it holds that f(A(x)) = f(b) for all x
in the compact set K. This implies that for every x ∈ K, the constructed
Σ(f) does not vanish at x. Thus Σ(f) vanishes at no point on K.

With Stone-Weierstrass, it follows that ΣI,n(f) is ρK-dense in C(RI ;R).
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Let us continue with Theorem 2.4.13.

Theorem (Universal Approximation of RNN). Let us consider a dynamical system

st+1 = g(st,ut),

yt = h(st),

where g : RJ ×RJ 7→ RJ is Borel measurable and h : RJ 7→ Rn is continuous. Then
there exists an element of RNN(f), which approximates the dynamical system
2.13.

The proof is due to [SZ06].

Proof. 1) Approximate st+1 = g(st,ut) by st+1 = f(Ast +But − θ)
Let ε > 0 and f : RJ̄ → RJ̄ a continuous sigmoid. Let further K ⊂ RJ̄ × RJ̄

compact and st, s̄t,ut ∈ K for all time steps t = 1, . . . , T . We use Theorem 2.4.11
so that for any measurable function g : RJ × RI → RJ , (st,ut) and for any δ > 0,
we find a feedforward neural net

NN(st,ut) = V f(Wst +But − θ̄),
sup

st,ut∈K
|g(st,ut)−NN(st,ut)| < δ for all t = 1, . . . , T.

Here, V ∈ RJ×J̄ ,W ∈ RJ×J̄ and B ∈ V ∈ RJ̄×I , describe weight matrices and
θ̄ ∈ RJ̄ describes a bias. As f is continuous and T is finite, there exists a ε > 0
such that s̄t+1 = V f(Ws̄t +But− θ̄), holds with |st− s̄t| < ε for all t = 1, . . . , T.

If we set s′t+1 = f(W s̄t+But− θ̄), this translates into s̄t = V s′t and with A = WV ,
we get

s′t+1 = f(As̄t +But − θ̄). (A.1)

2) Approximate yt = h(st) by yt = Cst

Let ε > 0, then there exists an δ > 0 such that for |st − s̄t| < δ it holds that
|h(st) − h(s̄t)| < ε by continuity of h. Hence, it is sufficient to approximate
ŷt = h(s̄t) by a linear function of the form ȳt = Cs̄t with arbitrary accuracy. The
approximation theorem for feedforward neural networks, see Theorem 2.4.11, yields
that we find ȳt = Nf(M s̄t − θ̄). Here N ∈ Rn×J ,M ∈ RĴ×J and f : RĴ → RĴ is a

sigmoid and θ̂ ∈ RĴ . Similar to equation (A.1), we may write

s̄t = V s′t and s′t+1 = f(As′t +But − θ̄)
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We write

ȳt =Nf(M s̄t − θ̂)
=Nf(MV s′t − θ̂)
=Nf(MV f(As′t−1 +But−1 − θ̂)).

Thus, by applying once again Theorem 2.4.11, we obtain

ỹt = Df(Es′t−1 + Fut − ¯̄θ)

where D ∈ Rn× ¯̄J , E ∈ R ¯̄J×J̄ , F ∈ R ¯̄J×I and bias ¯̄θ ∈ R ¯̄J . The function

f : R
¯̄J → R

¯̄J

is continuous. Let us then write in matrix form with

rt+1 = f(Es′t + Fut − ¯̄θ) ∈ R
¯̄J .

Then we get

(
s′t+1

rt+1

)
=f(

(
A 0
E 0

)(
s′t
rt

)
+

(
B
F

)
ut −

(
θ̄
¯̄θ

)
),

ỹt =
(
0 D

)(s′t
rt.

)

Whence, we may summarize

J̃ = J̄ + ¯̄J, s̃t =

(
s′t
rt

)
∈ RJ̃ ,

Ã =

(
A 0
E 0

)
∈ RJ̃×J̃ , B̃ =

(
B
F

)
∈ RJ̃×I ,

C̃ =
(
0 D

)
∈ Rn×J̃ , θ̃ =

(
θ̄
¯̄θ

)
∈ RJ̃ .

Finally, we may write

s̃t+1 = f(Ãs̃t + B̃ut − θ̃)
ỹt = C̃s̃t.
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De l’Imprimerie Royale, Paris 7 (1776), pp. 343–382 (cit. on p. 57).

125

https://doi.org/10.1177/1464419315592081
https://doi.org/10.1177/1464419315592081


Bibliography

[CS79] P. A. Cundall and O. Strack. “A Discrete Numerical Model For Granular
Assemblies”. In: Geotechnique 29 (1979), pp. 47–65. doi: 10.1680/
geot.1979.29.1.47 (cit. on pp. 3, 30).

[Del34] B. Delauney. “Sur la sphère vide. A la memoire de Georges Voronoi”. In:
Bulletin de l’Académiedes des Sciences de l’URSS. Classe des sciences
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The simulation of soil-tool interaction forces using the Discrete Element Method (DEM) is 

of granular material on high performance clusters with modern parallelization strategies 
for the industrial applications is indispensable. Although, for relevant problem sizes such 
simulations are so far not real-time capable. Further on, the inclusion of the human-ma-
chine interaction at a driving simulator combined with soil-tool simulation poses many 
interesting research questions. 

and algorithms to achieve real-time capability. First, different types of particle models 

out and the suitability for real-time applications is evaluated. Second, we present two 
machine learning algorithms which allow force predictions in real-time. The application at 
the in-house excavator simulator is discussed and the capability is shown using relevant 
numerical examples.
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