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Abstract: Grapevine leafroll disease (GLD) is considered one of the most widespread grapevine
virus diseases, causing severe economic losses worldwide. To date, six grapevine leafroll-associated
viruses (GLRaVs) are known as causal agents of the disease, of which GLRaV-1 and -3 induce the
strongest symptoms. Due to the lack of efficient curative treatments in the vineyard, identification of
infected plants and subsequent uprooting is crucial to reduce the spread of this disease. Ground-based
hyperspectral imaging (400–2500 nm) was used in this study in order to identify white and red
grapevine plants infected with GLRaV-1 or -3. Disease detection models have been successfully
developed for greenhouse plants discriminating symptomatic, asymptomatic, and healthy plants.
Furthermore, field tests conducted over three consecutive years showed high detection rates for
symptomatic white and red cultivars, respectively. The most important detection wavelengths
were used to simulate a multispectral system that achieved classification accuracies comparable to
the hyperspectral approach. Although differentiation of asymptomatic and healthy field-grown
grapevines showed promising results further investigations are needed to improve classification
accuracy. Symptoms caused by GLRaV-1 and -3 could be differentiated.

Keywords: grapevine leafroll disease; GLRaV; Vitis vinifera; disease detection; plant phenotyping;
spectral imaging; Phenoliner

1. Introduction

Grapevine is considered to be one of the most important hosts for plant viruses with around
70 different virus and virus-like agents documented [1]. Among these, viruses associated with grapevine
leafroll disease (GLD) are the most widespread and of high economic importance worldwide [2].
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Currently, six distinct grapevine leafroll associated viruses (GLRaVs)—numbered GLRaV-1, -2, -3,
-4, -7, and -13—are known. GLRaVs belong to the family Closteroviridae and are separated into three
genera: (i) Ampelovirus (GLRaV-1, -3, -4, -13), (ii) Closterovirus (GLRaV-2), and (iii) Velarivirus (GLRaV-7).
Within the genus Ampelovirus, two subgroups were formed with GLRaV- 1, -3 and -13 assigned to
subgroup I and GLRaV-4 assigned to subgroup II [3]. GLRaVs are mostly limited to phloem-associated
cells and are unevenly distributed in plants [4]. Since grapevines are vegetatively propagated to
maintain clonal integrity, these viruses are typically introduced into vineyards through contaminated
planting material [5] with subsequent local dispersal of some GLRaVs by insect vectors like mealybug
and soft scale species [6].

GLRaVs can occur as single or mixed infections of different combinations, and as a consequence
thereof, symptom manifestation and severity are highly variable [7]. In general, GLRaV-1, -3, and most
strains of GLRaV-2 induce strong GLD symptoms, whereas GLRaV-4 and -7 elicit only mild or no
symptoms [8]. So far, little is known about the newly assigned GLRaV-13 concerning pathogenicity and
symptomatology [9]. Symptom development typically begins around veraison in mature leaves at the
bottom sections of canes and then expands gradually upwards along the shoots as the growing season
progresses. In red cultivars, colored spots develop, which enlarge and coalesce over time, so that most
of the interveinal leaf surface exhibits a red or reddish-purple discoloration with a narrow strip of leaf
tissue around the primary and secondary veins remaining green. In late autumn, leaf margins begin to
roll downward giving the disease its common name [4]. Symptoms of white-berried cultivars, which
are expressed as mild yellowing or chlorotic mottling, are often subtle, thus hindering visual disease
assessment. Moreover, some white Vitis vinifera cultivars, most rootstocks and wild Vitis species may
be completely symptomless, making symptom-based disease diagnosis not sufficiently reliable [1].

To date, no curative in-field treatment for GLD is known. Consequently, only prophylactic
measures can be applied to reduce the spread of the disease. Besides planting certified virus-free vines,
identification of infected plants and subsequent uprooting is one of the most common approaches [10].
In this context, several diagnostic methods have been developed for robust and reliable disease
detection, with serological and molecular analyses being the most relevant [11,12]. Serological
techniques like enzyme-linked immunosorbent assay (ELISA) are used to detect viral proteins allowing
for high-throughput screening [11]. Alternatively, molecular methods based on reverse transcription
followed by polymerase chain reaction (RT-PCR) are applied for the detection of viral genomic material,
providing high sensitivity [12]. Irrespective of the technique used, unknown viruses or new strains of
known viruses can remain undetected leading to false-negative results [11,12].

In recent years, spectral sensors have proven to be a promising tool for disease diagnosis being
independent from genetic and phenotypic information about pathogens [13]. These sensors capture
reflectance characteristics of plants in a large part of the electromagnetic spectrum, typically in the
visible (VIS; 400–700 nm), near-infrared (NIR; 700–1000 nm), and short-wave infrared range (SWIR;
1000–2500 nm) [14]. For analysis either the whole spectral range (hyperspectral) or selected bands only
(multispectral) can be used [15]. Leaf spectral patterns vary in response to biochemical and biophysical
alterations caused by abiotic and biotic stresses such as virus infections [16]. Since spectral sensors
allow the objective and non-invasive assessment of plant traits, they are well suited to follow dynamic
processes like symptom development.

Sensor technology has already been implemented to differentiate spectral reflectance patterns
of virus-infected and non-infected plants. In field tests, multispectral and hyperspectral approaches
for the detection of tulip breaking virus (TBV) in tulips as well as potato virus Y (PVY) in potato
and tomato plants have successfully been performed [17–19]. Several studies have been conducted
using greenhouse plants for the detection of tomato spotted wilt virus (TSWV) [20], potato yellow
vein virus (PYVV) [21], cucumber green mottle mosaic virus (CGMMV) [22], or tomato yellow leaf
curl virus (TYLCV) [23]. In the work of Afonso et al. [24], two citrus cultivars infected with citrus
tristeza virus (CTV)—a closterovirus closely related to GLRaV-2—were examined prior to symptom
expression showing good classification rates. For the detection of GLD symptoms, Naidu et al. [25]
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used a portable spectroradiometer (350–2500 nm) to collect hyperspectral reflectance data of detached
healthy, asymptomatic, and symptomatic leaves, thereby reaching classification accuracies of up
to 81%. In a comparable work, Sinha et al. [26] investigated GLD symptoms during two years
under field conditions. Pagay et al. [27] also used a portable spectroradiometer to detect GLD in
asymptomatic leaves directly in the vineyard. Similar studies were performed by Hou et al. [28] and
MacDonald et al. [29], both following an airborne remote sensing approach to obtain multispectral
and hyperspectral images, respectively. All of these works have been examining red-berried cultivars
infected with GLRaV-3—except for Hou et al. [28] who did not further specify the GLRaV investigated.

This study focuses on the detection of GLRaV-1 and -3 in both white- and red-berried Vitis
cultivars using hyperspectral imaging in the range of 400–2500 nm. For this purpose, plants were
recorded under controlled laboratory conditions as well as directly in the field during three consecutive
years to (i) develop disease detection models for the discrimination of symptomatic, asymptomatic,
and healthy plants, (ii) identify relevant wavelengths for the simulation of a multispectral approach,
and (iii) differentiate GLRaV-1 and -3 symptoms.

2. Materials and Methods

2.1. Plant Material

2.1.1. Greenhouse

Cuttings of healthy and GLRaV-infected field grown grapevines were collected in the dormant
seasons of 2016/2017 and 2017/2018, respectively. The plants that were obtained from these cuttings
were then grown from February to October in a greenhouse in plastic pots (1 L volume) filled with
80% substrate (Fruhstorfer Erde Typ Tray Substrat + Perlite, Hawita Gruppe GmbH, Vechta, Germany)
and 20% sand. They were watered twice a week and fertilized once a week (Hakaphos® soft, Compo
Expert GmbH, Münster, Germany). Greenhouse conditions were adjusted to 26/22 ◦C (day/night) and
a photoperiod of 16 h per day. Plants were regularly cut to a maximum length of 50 cm.

In 2017, 32 plants of Vitis vinifera cv. ‘Aligote’ were considered for hyperspectral measurements
and in 2018, 30 plants of the cultivars ‘Gewürztraminer’, ‘Silvaner’, and ‘Pinot noir’, respectively.
Detailed information on plant number, results of visual assessment, as well as molecular diagnosis,
can be found in Appendix A Table A1. Hyperspectral imaging was performed every two weeks during
the growing season after full symptom development. Symptoms appeared already in May on leaves of
Silvaner plants and in August on leaves of Aligote, Gewürztraminer, and Pinot noir.

2.1.2. Experimental Sites

Field tests were conducted at several time points after veraison in the years 2016, 2017, and
2018. Selected rows of five genebank plots (Table 1) at the JKI Geilweilerhof located in Siebeldingen,
Germany (49◦21.7470 N, 8◦04.6780 E) were analyzed. The vineyards consisted of Vitis vinifera and
interspecifc crossings—mostly three vines per genotype—planted between 1998 and 2011. In total,
data of 497 plants of 164 different red and white cultivars were acquired. For further information as
well as results of visual assessment and molecular diagnosis see Appendix A Table A2.

Table 1. Information about experimental plots.

Planted in Species Rootstocks Number of
Selected Plants

Number of
Cultivars

Plot 1 2010 Interspecific crossings SO4 129 36
Plot 2 2006 Vitis vinifera SO4 48 17
Plot 3 2011 Vitis vinifera SO4 131 46
Plot 4 2006 Vitis vinifera SO4 131 41
Plot 5 1998 Vitis vinifera Kober 5BB 58 24
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Rows were oriented in an east–west direction with interrow and grapevine distance of approx.
2 m and 1 m, respectively. Grapevines were trained in a vertical shoot positioning (VSP)-system
and pruned as single guyot. During the growing season vines were treated with fungicides against
powdery and downy mildew, respectively. In recent years, there was no evidence of potential vectors
in these vineyards, hence, insecticides were not applied.A portable GPS (SPS585, Trimble®, Sunnyvale,
CA, USA) providing highly accurate positioning (resolution: 0.02 m) was used to acquire the precise
location of every plant. Precise GPS positions were required for data calibration and labeling to ensure
correct mapping of vines and image data.

Since symptom development in the vineyard usually starts after veraison, hyperspectral imaging
was performed around 30 and 55 days thereafter (before harvesting). However, the time point of
veraison varied in the three experimental years. In 2016, the different grapevine cultivars investigated
reached this phenological stage on average on day 229 of the year, in 2017 on day 216, and in 2018
on day 206. This could be due to different environmental conditions in the three years that are also
known to influence GLD symptom development. Table 2 shows the monthly average temperature and
precipitation for the experimental years.

Table 2. Monthly average temperature (◦C) and precipitation (mm) for the years 2016, 2017, and 2018.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2016
◦C 3.44 4.63 5.11 9.16 14.51 17.56 20.06 19.65 18.03 9.57 5.43 2.27

mm 60.06 77.94 53.60 58.78 50.11 99.35 47.94 21.24 13.82 47.92 37.73 4.57

2017
◦C −1.39 4.90 9.01 9.71 15.75 19.77 20.29 19.34 13.59 11.62 5.90 3.53

mm 23.64 40.51 54.78 3.78 44.05 70.15 54.39 57.16 90.46 36.72 97.92 104.06

2018
◦C 5.87 −0.05 4.68 13.83 16.83 19.62 22.12 20.93 16.35 11.92 6.60 4.54

mm 131.91 28.44 68.74 52.39 91.84 38.48 21.16 48.80 36.67 13.34 23.71 141.52

Weather data are available at Agrarmeteorologie Rheinland-Pfalz [30].

2.2. Visual Assessment of GLRaV-Symptoms

Disease symptoms of greenhouse and field plants were assessed every two weeks during the
growing season—always in parallel to hyperspectral imaging.

2.3. Molecular Methods

Samples from each studied vine were collected during the dormant seasons of 2016/2017 and
2017/2018, respectively, and consisted of 15–20 cm sections of basal canes. Samples were assayed
for the five most common virus species in the Palatinate region, Germany: GLRaV-1, GLRaV-3,
Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV), and Raspberry ringspot virus (RpRSV).
All plants (greenhouse and field) were tested by RT-PCR. Field plants were additionally analyzed
by DAS-ELISA.

2.3.1. RT-PCR

Total RNA extraction, reverse transcription, and multiplex PCR were performed following
the protocol of Steinmetz et al. [31]. The primers used in this study are listed in Table 3. Primer
concentrations for reverse transcription were adopted from Steinmetz et al. [31]. Different concentrations
for multiplex PCR were used leading to final concentrations of 0.03 µM for Vitis 18S, 0.3 for µM
GLRaV-1, 0.5 for µM GLRaV-3, 0.54 for µM ArMV, 0.2 µM for GFLV, and 0.3 µM for RpRSV. Due to the
similar product sizes of GLRaV-1 and RpRSV, the latter was not included in the multiplex PCR but
analyzed separately.

2.3.2. DAS-ELISA

In order to detect virus infection, DAS-ELISA (double antibody sandwich-enzyme-linked
immunosorbent assay) was carried out according to the optimized protocols of Bioreba AG. Lignified
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canes of samples were scraped and analyzed using commercial antibodies (Bioreba AG, Reinach,
Switzerland) for GLRaV-1, GLRaV-3, ArMV, GFLV, and RpRSV-ch.

Table 3. Primer sequence and product size.

Target Primer Sequence 5′-3′ Product Size Reference

Vitis 18S
Forward CGCATCATTCAAATTTCTGC 844 bp [32]
Reverse TTCAGCCTTGCGACCATACT

GLRaV-1
Forward GTTGGTGAATTCTCCGTTCGT 382 bp [33]
Reverse ACTTCGCTTGAACGAGTTATAC

GLRaV-3
Forward TACGTTAAGGACGGGACACAGG 336 bp [32]
Reverse TGCGGCATTAATCTTCATTG

ArMV
Forward TGACAACATGGTATGAAGCACA 402 bp [32]
Reverse TATAGGGCCTTTCATCACGAAT

GFLV
Forward ATGCTGGATATCGTGACCCTGT 118 bp [32]
Reverse GAAGGTATGCCTGCTTCAGTGG

RpRSV Forward TGTGTCTGGCTTTTGATGCT 385 bp [34]
Reverse GAGTGCGATAGGGGCTGTT

2.4. Hyperspectral Imaging

2.4.1. Hyperspectral Camera System

Spectral reflectance was measured in the range from 400 to 2500 nm using commercially available
line scanning cameras from Norsk Elektro Optikk A/S (Skedsmokorset, Norway). During the course of
this study, two camera sets were used. In 2016, spectra in the visible and near-infrared range (VNIR;
400 to 1000 nm) were recorded by a HySpex VNIR 1600, while in 2017 and 2018 a HySpex VNIR
1800 was used. Spectra in the short-wave infrared (SWIR; 1000 to 2500 nm) were acquired with a
HySpex SWIR 320 m-e in 2016 and with a HySpex SWIR 384 in 2017 as well as 2018. Each camera
system was calibrated by the manufacturer in wavelength sampling and radiance response to minimize
differences in measurements. Due to availability, only one system was used for measurements in each
year. In Table 4 key specifications of the camera systems are given.

Table 4. Overview of the camera specifications.

Specification HySpex
VNIR 1600

HySpex
VNIR 1800

HySpex SWIR
320 m-e

HySpex
SWIR 384

Spectral Bands 160 256 256 288
Spatial Pixels 1600 1800 320 384

Spectral Resolution (nm) 3.70 3.26 6.00 5.45
Max. Framerate (Hz) 100 100 160 400
Dynamic Range (bit) 12 16 14 16

Pixel Edge Length at 1 m (mm/px) 0.19 0.17 0.78 0.65

Definitions: SWIR: short-wave infrared; VNIR: visible and near infrared.

All cameras used in this study were line scanning cameras. Due to the setup, scan lines were
about 15 (field) to 30 cm (greenhouse) apart with a scanning overlap of around 85%. Both cameras were
mounted with an effective distance of 1 m to the recorded objects. Effective pixel size in measurement
plane is given in Table 4.

2.4.2. Greenhouse Data Acquisition

Hyperspectral imaging was performed in a dark chamber in order to achieve optimal and reproducible
measuring conditions. The two hyperspectral sensors (HySpex VNIR 1800 and HySpex SWIR 384) were
mounted on a horizontal translation stage in 1 m distance to the recorded objects. Between them a 1000 W
short-wave spotlight (Hedler C12, Hedler Systemlicht, Runkel/Lahn, Germany) with broad power
spectral density was installed. Greenhouse plants were placed on a low reflective background along
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with a PTFE (polytetrafluoroethylene) spectralon (Sphere Optics GmbH, Herrsching, Germany) used
for calibration. The PTFE spectralon was included in every image. Image acquisition and radiometric
calibration was performed using the camera vendor’s acquisition software HySpex Ground.

2.4.3. Field Data Acquisition

Hyperspectral measurements were performed using the Phenoliner, a field phenotyping platform
based on a grape harvesting machine [35]. Following the concept of a movable tunnel, the Phenoliner
is independent of external light conditions and provides an artificial background, therefore enabling
the acquisition of standardized sensor data. During this study, minor modifications have been made
compared to the original design: (a) for better illumination, two additional 300 W short-wave spotlights
(Hedler C12, Hedler Systemlicht, Runkel, Germany) with broad power spectral density were installed
and (b) the PTFE spectralon used as calibration standard was replaced by a smaller one (54.5 × 35 cm)
(Sphere Optics GmbH) covered with borosilicate glass for protection. The combination of the spectralon
and glass cover was reflectance certified by Sphere Optics GmbH. The PTFE spectralon was constantly
used as background and was therefore included in every image.

The imaging software developed by Fraunhofer IFF integrates the two hyperspectral cameras
and the Phenoliner RTK GPS receiver and offers a control interface as well as data visualization for
image acquisition. The GPS protocol allows a matching of image position and geo position for a correct
mapping of the vine positions in the hyperspectral imaging data.

2.4.4. Data Calibration and Labeling

Data calibration for indoor and outdoor imaging was performed by calculating the reflectance
value from a recorded dark current (while camera shutter is closed) and a recording when the spectralon
(white target) is covering the camera viewport. Calibration measurements are performed before and
after each imaging process. Reflectance Rλ per pixel is calculated as

Rλ =
Iλ − IDC

λ

IW
λ
− IDC
λ

(1)

where Iλ is the image pixel intensity at wavelength λ, IW
λ

the intensity while recording the spectralon
device, and IDC

λ
the intensity when measured with closed shutter. For segmentation, a model based

on the reflectance image was trained to classify each spectral pixel into leaves, grapes, stems, and
general background. The model training was performed using the AutoML platform HawkSpex® Flow
developed by the Fraunhofer IFF. The best model for segmentation was a multi-layer perceptron [36]
with standard normal variate (SNV) normalization [37], which was then used for all segmentation
purposes. Separate models for VNIR and SWIR image processing were created.

In order to match vegetation hyperspectral signatures for outdoor measurement with the vine ID
from the expert scoring of virus symptoms, a log with the GPS positions was created while imaging.
The GPS positions were corrected for the relative position of the GPS antenna and camera position on
the vehicle. From a list of manually measured vine locations, a vine ID was associated with an image
window centered on the scanning line with the closest distance to the vine GPS position. The window
was set to 50 cm in order to avoid a mix between vine plants (Figure 1). The window was further
adjusted by considering the vines arc direction (for the years 2017 and 2018). For indoor imaging,
the vine ID was logged manually in the imaging process and stored in the imaging data.

2.4.5. Model Development and Application

A machine learning model is a generic mathematical formula that calculates an output from an
input using a number of free parameters. The best-known methods are artificial neural networks, which
mimic the information processing of the human brain, or more mathematically motivated models
like support vector machines (SVM) or Bayesian models, that learn data distributions. In this study,
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a number of spectral pre-processing methods in combination with machine learning models were
tested (see Tables 5 and 6). These models were generated separately on datasets of the measurement
years 2016, 2017, and 2018 describing certain disease detection tasks. Due to computational demand,
only 10,000 spectra per label class were used in the modeling. Since an alignment of camera images
was not successful, VNIR and SWIR reflectance data were modeled separately. For greenhouse data
this procedure was identical just without the yearly repetition as they were recorded in only one year.
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Figure 1. Overview of the workflow for field data of control (left) and grapevine leafroll-associated
viruses (GLRaV-1) infected (right) vines. Depicted are a calibrated reflectance image at 800 nm coded as
grey scale (a,b) and an RGB reconstruction (red-green-blue color space) (c,d), which is for visualization
only. The hyperspectral image was segmented into leaves, grapes, stem material, and background (e,f)
and detection models were applied on leaf pixels only (g,h). Vines were labeled with their GPS position
and a 50 cm wide window was placed around each of them to avoid overlaps between plants. Based
on a majority vote of pixel results per window the whole vine was classified as infected or healthy (i,j).

Table 5. Pre-processing methods.

Method Formula

Vector L2 Normalization RN
λ
= Rλ√∑

λ Rλ2

Vector SNV Normalization [36] RN
λ
=

Rλ− 1
N
∑
λ Rλ√

1
N−1
∑
λ(Rλ− 1

N
∑
λ Rλ)

2

For each approach, optimal model parameters were found by a defined algorithm that calculates
the error between model output and input. In this case, the input is a coded representation of the
scoring class associated with the data point and is defined as −1 for control and +1 for virus infection.
In order to minimize prediction errors, optimization algorithms were applied to find suitable model
parameters either by iteratively applying an optimization strategy like gradient descend (artificial
neural networks) or by a closed form mathematical calculation (partially least squares).

Models were validated by performing n-fold cross validation, where the dataset is randomly
divided into n parts. While n-1 folds were used for model optimization, the nth-fold was used to
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test the resulting model. This process was performed in all possible combinations without repetition.
As evaluation of model performance, the average accuracy and standard deviation of the performance
value was calculated across modeling runs.

Table 6. Model hyper-parameters.

Method Hyper-Parameter Reference

Linear Discriminance Model
(LDA) No hyper-parameters [38]

Partially Least Square
(PLS) Number of components: 20 [39]

Multi-Layer Perceptron
(MLP)

Number of hidden layers: 3
Optimization method: scaled

conjugate gradient backpropagation
Neurons per hidden layer: 50, 25, 10

[36,40]

Radial-Basis Function Network
with Relevance (rRBF)

Number of radial basis functions: 30
Optimization method: scaled
non-linear conjugate gradient

[41–43]

All models were assessed using the following performance criteria (with sample being defined as
one spectrum labeled with its respective class):

• Classification accuracy (CA): the percentage of correctly classified samples among all
possible samples.

• True positive rate (TPR): the percentage of samples correctly detected as infected among all
infected samples. Determines the precision of the detector.

• False positive rate (FPR): the percentage of samples incorrectly detected as infected among all
control samples. Determines the false alarm rate or 1-specificity.

After optimization for the detection task, the best performing model in terms of classification
accuracy (see Supplementary Tables S1–S3) was then applied back to the hyperspectral image (field or
greenhouse), labeling each vegetation pixel independently. In order to assess the detection performance,
statistics were calculated over all considered vegetation pixels and the label with the highest occurrence
was regarded as the representing label for the entire vine or greenhouse plant (majority vote) (Figures 1
and 2).

2.4.6. Spectral Relevance and Multispectral Simulation

During minimization of the classification error, the training algorithm of the radial basis function
network (RBF) adjusts a wavelength specific vector of numerical weights. This so called relevance
profile [42] indicates the importance of wavelengths for the differentiation tasks. Based on these
relevance profiles local maxima can be selected in order to simulate a multispectral imaging
system. Multispectral cameras are not measuring certain wavelengths at the same precision as
hyperspectral cameras, therefore, a spectral band was approximated by using a Gaussian function
with 30 nm full-width-half maximum (FWHM), which is a typical specification for optical filters used
in multispectral imaging systems.

In order to optimally place the spectral band, an automatic algorithm was applied that generated
100,000 random wavelength values by using the relevance function as probability density function (pdf).
As a consequence, the generated values are denser in areas of high relevance and less dense in areas of low
relevance. A neural gas vector quantization algorithm was then trained on this data set [44], which placed
a set number of wavelength values in a way to minimize the quantization error measured by the mean
squared error between placed wavelengths and best machine generated wavelengths. Consequently,
the neural gas algorithm covered denser areas with more wavelength candidates (or “prototypes”)
than less dense areas. For the multispectral simulation, ten wavelength prototypes were considered
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since more were not seen as realistic for commercial multispectral cameras. After placing the spectral
bands, the multispectral simulation was performed by elementwise multiplication of spectrum and
gauss function followed by a summation of the resulting products. Spectral bands were ordered with a
descending relevance value at mid-wavelength position. An example of the band selection process is
given in Figure 3.Remote Sens. 2020, 12, 1693 9 of 27 
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Figure 2. Overview of the workflow for greenhouse data of control (left) and GLRaV-1 infected (right)
vines. Depicted are a calibrated reflectance image at 800 nm coded as grey scale (a,b) and an RGB
reconstruction (c,d), which is for visualization only. The hyperspectral image was segmented into its
main components and the binary classifier detecting GLRaV-1 was applied to leaf pixels calculating the
ratio of symptomatic pixels to all available pixels, thereby, classifying the whole plant as infected or
healthy (e,f).

Thereby, new datasets were generated with identical ground truth, in which 2–10 input spectral
features were selected according to the relevance value ordering. In order to assess the change in
precision compared to using the full spectral range, these new datasets were modeled with the same
set of machine learning methods as described above.
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Figure 3. Example of the band selection process in the VNIR range for GLRaV-1 symptom detection
of white cultivars in 2016. According to the relevance profile (a), multispectral bands can be selected
starting with the two most informative. (b) Single bands can be added until a maximum of ten is
reached (c).

3. Results

3.1. Greenhouse Plants

3.1.1. Symptomatic Disease Detection

Table 7 shows the results for the detection of GLD leaf symptoms of greenhouse plants. In the
modeling approach, TPRs between 74% and 87% could be obtained depending on the cultivar and
camera used, indicating that an acceptable number of pixels were correctly identified. In general,
the SWIR wavelength range seemed to perform slightly better. However, no such trend could be
observed when the models were applied on plant-level. During model development all pixels were
evaluated not considering spatial scales (i.e., individual plants). In the next step, these models were
therefore applied per plant, performing a majority voting of pixel results that can be used to derive
a prediction of the symptom status per plant. Here, the number of false positives can be manually
adjusted, thereby affecting TPRs. In this study, FPRs were generally chosen in order to identify most
infected plants resulting in TPRs of 82–100% for GLD symptom detection in greenhouse plants.
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Table 7. Results for the detection of GLRaV-symptomatic greenhouse plants. For modeling, all pixels
were evaluated not considering spatial scales. Developed models were then applied per plant using all
leaves for majority voting.

VNIR SWIR

Modeling

Aligote (GLRaV-3)
CA (%) 85 ± 1 91 ± 2
TPR (%) 82 ± 2 87 ± 1
FPR (%) 12 ± 3 4 ± 1

Gewürztraminer
(GLRaV-1)

CA (%) 78 ± 1 86 ± 1
TPR (%) 77 ± 2 91 ± 3
FPR (%) 21 ± 1 19 ± 4

Silvaner (GLRaV-1)
CA (%) 73 ± 1 83 ± 1
TPR (%) 74 ± 1 83 ± 1
FPR (%) 29 ± 2 16 ± 1

Pinot noir
(GLRaV-1

CA (%) 80 ± 1 84 ± 1
TPR (%) 75 ± 2 83 ± 1
FPR (%) 16 ± 1 14 ± 1

Application per
Plant

Aligote (GLRaV-3)
CA (%) 100 97
TPR (%) 100 92
FPR (%) 0 0

Gewürztraminer
(GLRaV-1)

CA (%) 97 97
TPR (%) 100 93
FPR (%) 7 0

Silvaner (GLRaV-1)
CA (%) 93 97
TPR (%) 100 100
FPR (%) 13 7

Pinot noir
(GLRaV-1)

CA (%) 83 96
TPR (%) 82 94
FPR (%) 14 0

CA = classification accuracy, TPR = true-positive rate, FPR = false-positive rate.

3.1.2. Asymptomatic Disease Detection

The detection of GLRaV-infected but symptomless vines was only possible for a limited number
of Aligote (n = 4) and Pinot noir (n = 6) plants. Table 8 shows CAs, TPRs, and FPRs for the modeling
and per plant application. Identification of asymptomatic plants seemed to be easier for the cultivar
Aligote reaching detection rates of 100% without misclassifications. For Pinot noir, TPRs of 100%
could be achieved but 29% of the vines were falsely identified as positives, resulting in classification
accuracies of 85% for VNIR and SWIR, respectively.

Table 8. Results for the detection of GLRaV-infected but symptomless greenhouse plants. For modeling,
all pixels were evaluated not considering spatial scales. Developed models were then applied per plant
using all leaves for majority voting.

VNIR SWIR

Modeling

Aligote (GLRaV-3)
CA (%) 91 ± 1 93 ± 1
TPR (%) 92 ± 1 94 ± 3
FPR (%) 9 ± 1 8 ± 3

Pinot noir
(GLRaV-1)

CA (%) 73 ± 3 75 ± 1
TPR (%) 72 ± 1 78 ± 10
FPR (%) 26 ± 2 28 ± 7

Application per
Plant

Aligote (GLRaV-3)
CA (%) 100 100
TPR (%) 100 100
FPR (%) 0 0

Pinot noir
(GLRaV-1)

CA (%) 85 85
TPR (%) 100 100
FPR (%) 29 29

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate.
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3.2. Field Tests

3.2.1. Symptomatic Disease Detection

In 2018, red-berried grapevines infected with GLRaV-3 did not show typical leaf symptoms,
thus model development was not possible.

During modeling, a slight trend was noticeable towards better symptom detection in red cultivars
(Table 9), being expressed by higher TPRs and corresponding lower FPRs. This tendency could
partially be verified after applying the detection models on plant scale. Regarding red-berried cultivars,
CAs between 83% and 98% could be achieved. Whereas CAs for white cultivars were slightly lower,
reaching 76–97%. In 2017, symptom detection seemed to be difficult in the VNIR, range with a TPR
of 54%.

Table 9. Results for the in-field detection of GLRaV-symptomatic white and red cultivars. For modeling,
all pixels were evaluated not considering spatial scales. Developed models were then applied per plant
using all leaves for majority voting.

VNIR SWIR

2016 2017 2018 2016 2017 2018

Modeling

GLRaV-1

White
CA (%) 77 ± 1 65 ± 1 80 ± 1 76 ± 10 72 ± 2 78 ± 10
TPR (%) 78 ± 1 60 ± 2 80 ± 1 86 ± 5 72 ± 2 73 ± 26
FPR (%) 24 ± 2 31 ± 2 20 ± 1 35 ± 23 28 ± 3 18 ± 7

Red
CA (%) 90 ± 1 87 ± 1 96 ± 1 81 ± 2 94 ± 1 87 ± 1
TPR (%) 92 ± 1 89 ± 2 97 ± 1 85 ± 4 95 ± 1 90 ± 2
FPR (%) 11 ± 1 15 ± 3 6 ± 3 23 ± 5 8 ± 2 16 ± 1

GLRaV-3

White
CA (%) 92 ± 1 69 ± 1 67 ± 9 92 ± 1 88 ± 1 74 ± 9
TPR (%) 94 ± 1 68 ± 1 71 ± 27 94 ± 1 90 ± 2 75 ± 11
FPR (%) 10 ± 1 31 ± 1 36 ± 26 10 ± 2 15 ± 2 27 ± 26

Red
CA (%) 94 ± 1 82 ± 1 - 94 ± 1 95 ± 1 -
TPR (%) 96 ± 1 82 ± 1 - 95 ± 1 95 ± 2 -
FPR (%) 7 ± 1 18 ± 2 - 8 ± 1 6 ± 1 -

Application
per Plant

GLRaV-1

White
CA (%) 76 80 93 89 82 88
TPR (%) 90 54 93 90 84 100
FPR (%) 25 16 7 11 18 13

Red
CA (%) 83 96 98 86 98 96
TPR (%) 100 83 100 92 100 100
FPR (%) 18 4 2 14 3 4

GLRaV-3

White
CA (%) 88 84 83 97 95 86
TPR (%) 100 83 88 100 100 82
FPR (%) 13 16 18 3 6 13

Red
CA (%) 84 94 - 90 96 -
TPR (%) 80 100 - 75 100 -
FPR (%) 16 6 - 10 4 -

CA: classification accuracy; TPR: true-positive rate; FPR = false-positive rate.

In general, no differences could be seen on symptomatic plants between the VNIR and SWIR
range, neither for symptoms in white and red cultivars nor for virus infection, so both wavelength
ranges seem to be suitable for disease detection.

3.2.2. Asymptomatic Disease Detection

Identification of asymptomatic grapevines (white and red cultivars were pooled) seemed to be
more challenging for field-grown than for greenhouse plants, which is expressed by smaller TPRs
and CAs (Table 10). Furthermore, model performance was significantly lower in comparison to
symptomatic disease detection. Regarding GLRaV-1, the highest amounts of classification could
be reached in 2018 for model application per plant. For GLRaV-3, the best results during model
development were obtained in 2016, but when applied on plant scale no obvious differences could be
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seen between the three years. Both viruses seem to be equally detectable in symptomless grapevines
with TPRs of 62–95% and corresponding FPRs in the range of 18–41%.

Table 10. Results for the in-field detection of GLRaV-infected but symptomless grapevines.
For modeling, all pixels were evaluated not considering spatial scales. Developed models were
then applied per plant using all leaves for majority voting.

VNIR SWIR

2016 2017 2018 2016 2017 2018

Modeling

GLRaV-1
CA (%) 63 ± 1 62 ± 1 65 ± 9 67 ± 6 74 ± 1 72 ± 8
TPR (%) 64 ± 2 66 ± 1 73 ± 27 72 ± 11 80 ± 3 84 ± 7
FPR (%) 37 ± 2 41 ± 2 43 ± 24 38 ± 22 31 ± 4 39 ± 22

GLRaV-3
CA (%) 81 ± 1 65 ± 1 65 ± 1 80 ± 1 76 ± 4 52 ± 6
TPR (%) 84 ± 1 65 ± 2 62 ± 2 83 ± 3 79 ± 5 60 ± 46
FPR (%) 23 ± 1 36 ± 1 32 ± 2 24 ± 3 26 ± 4 55 ± 48

Application
per Plant

GLRaV-1
CA (%) 64 64 79 77 65 80
TPR (%) 82 85 95 75 78 95
FPR (%) 41 10 25 22 37 23

GLRaV-3
CA (%) 75 69 68 72 82 68
TPR (%) 94 79 77 63 91 62
FPR (%) 27 32 37 27 18 29

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate.

3.2.3. Comparison of Symptomatic White and Red Cultivars

So far, models have been developed independently for red and white cultivars. By comparison of
white and red discolorations caused by GLRaV-1 and -3, respectively, the need for separate detection
models for white and red cultivars should be investigated. Good symptom differentiation could be
obtained for both viruses during model development reaching TPRs of 80–100% with FPRs of 1–21%
for VNIR and SWIR, respectively (Table 11). When applied on plants infected with GLRaV-1, models
also allowed high accuracy of discrimination.

Table 11. Results for virus-wise (GLRaV-1, -3) differentiation of white and red symptoms of field-grown
grapevines. For modeling, all pixels were evaluated not considering spatial scales. Developed models
were then applied per plant using all leaves for majority voting.

VNIR SWIR

2016 2017 2018 2016 2017 2018

Modeling

GLRaV-1
CA (%) 91 ± 0 89 ± 1 95 ± 1 82 ± 1 88 ± 1 86 ± 13
TPR (%) 92 ± 1 87 ± 1 95 ± 2 80 ± 3 91 ± 3 94 ± 3
FPR (%) 10 ± 1 9 ± 1 5 ± 2 17 ± 2 14 ± 2 21 ± 28

GLRaV-3
CA (%) 99 ± 0 81 ± 1 - 99 ± 0 99 ± 0 -
TPR (%) 99 ± 0 81 ± 2 - 100 ± 0 99 ± 1 -
FPR (%) 4 ± 1 5 ± 1 - 2 ± 0 1 ± 0 -

Application
per Plant

GLRaV-1
CA (%) 97 100 94 81 89 100
TPR (%) 92 100 100 92 100 100
FPR (%) 0 0 7 26 12 0

GLRaV-3
CA (%) 91 100 - 80 100 -
TPR (%) 80 100 - 50 100 -
FPR (%) 0 0 - 0 0 -

CA = classification accuracy, TPR = true-positive rate, FPR = false-positive rate.

As previously described, red cultivars did not show GLRaV-3 leaf symptoms in 2018,
so differentiation of red and white discolorations was impossible in this vegetation period. The GLRaV-3
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model applied per plant led to divergent results in 2016 and 2017. In 2017, all vines could be correctly
identified resulting in CAs of 100%, but in 2016 classification was not entirely satisfactory for SWIR.

Symptom differentiation was successful in both wavelength ranges, although VNIR performed
slightly better. Therefore, this study clearly reveals the necessity for separate disease detection models
for red and white cultivars.

3.2.4. Comparison of GLRaV-1 and GLRaV-3 Infected Symptomatic Grapevines

Symptom intensity may be highly variable depending on GLRaV infection. GLRaV-1 and -3
are both known to induce strong GLD symptoms which cannot be distinguished visually, therefore,
hyperspectral data were analyzed. Due to reasons described earlier, no model could be developed
for red cultivars in 2018. In Table 12 results are provided for the symptom-based differentiation of
GLRaV-1 and -3. During model development as well as per plant application, the two viruses could be
clearly discriminated. For white varieties, this resulted in 77–100% correctly classified plants with FPRs
of 9–29%, leading to CAs between 76% and 92%. Similar outcomes were achieved for red cultivars
with TPRs of 75–100%, FPRs of 0–15%, and CAs of 83–100%, depending on year and camera.

Table 12. Results for symptom-based (white and red) differentiation of GLRaV-1 and GLRaV-3
infected field-grown grapevines. For modeling, all pixels were evaluated not considering spatial scales.
Developed models were then applied per plant using all leaves for majority voting.

VNIR SWIR

2016 2017 2018 2016 2017 2018

Modeling

White
CA (%) 92 ± 0 71 ± 1 82 ± 1 90 ± 1 85 ± 1 78 ± 10
TPR (%) 93 ± 1 70 ±2 82 ± 2 92 ± 2 87 ± 3 84 ± 9
FPR (%) 9 ± 1 29 ± 2 18 ± 2 13 ± 3 18 ± 3 29 ± 26

Red
CA (%) 96 ± 1 95 ± 1 - 98 ± 0 99 ± 0 -
TPR (%) 96 ± 1 96 ± 0 - 98 ± 1 100 ± 0 -
FPR (%) 2 ± 1 18 ± 1 - 1 ± 0 1 ± 0 -

Application
per Plant

White
CA (%) 88 76 84 88 92 84
TPR (%) 100 77 82 100 100 94
FPR (%) 15 24 13 16 9 29

Red
CA (%) 83 100 - 88 100 -
TPR (%) 80 100 - 75 100 -
FPR (%) 15 0 - 8 0 -

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate.

3.3. Spectral Relevance and Multispectral Simulation

The machine learning approach provides information about the most significant wavelengths
for the detection tasks by calculating relevance profiles. For example, relevance profiles for the
identification of GLRaV-1 symptoms are depicted in Figure 4 (for GLRaV-3 see Figure A1). Regarding
red cultivars in the VNIR range (Figure 4b), similar patterns can be observed over the years with
wavelengths around 550 and 710 nm being the most important. In contrast, relevance profiles are not
concordant for red cultivars in SWIR (Figure 4d) and white cultivars in VNIR (Figure 4a), respectively.
Several wavelengths seem to be of high significance in one of the three years but only a few overlap,
thus impeding the development of one uniform disease detection model. For white cultivars in SWIR
(Figure 4c), spectral relevance is neither unspecific nor completely defined as can be seen by many
overlaps in the range of 1100 to 1650 nm over the three years. These spectral regions seem to be highly
relevant for disease detection but so far could not be narrowed down to single wavelengths.
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Figure 4. Spectral relevance profiles for VNIR (a,b) and SWIR (c,d) in three consecutive years regarding
white (a,c) and red (b,d) cultivars infected with GLRaV-1.

Based on the relevance profiles local maxima can be selected in order to simulate a multispectral
system. Thereby, data dimensionality will be reduced, which subsequently shortens computation
time and enables the transfer of disease detection approaches to a more practical application. Table 13
shows the CAs, TPRs, and FPRs of the multispectral simulation and the entire spectrum, respectively,
for GLRaV-1 symptom detection. In general, the CAs and TPRs increased as more wavelengths were
considered, while the FPRs decreased. Compared to the entire spectrum, similar results could be
obtained using approximately 8–10 wavelength bands. Analogous outcomes could be achieved for
GLRaV-3 symptom detection (Table A3).
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Table 13. Results of the multispectral simulation for GLRaV-1 symptom detection.

VNIR SWIR
HSI Multispectral Simulation HSI Multispectral Simulation
186 2 3 4 5 6 7 8 9 10 288 2 3 4 5 6 7 8 9 10

2016

White
CA (%) 77 59 63 71 72 72 74 75 76 77 76 56 60 68 72 73 74 75 76 76
TPR (%) 78 52 60 69 71 72 75 76 77 79 86 48 45 67 72 75 77 76 77 77
FPR (%) 24 33 34 28 28 28 27 27 26 25 35 37 25 31 28 28 28 26 25 25

Red
CA (%) 90 64 66 70 75 81 87 90 91 91 81 69 71 72 75 74 77 78 79 79
TPR (%) 92 70 72 72 77 84 89 92 93 92 85 69 71 72 78 76 79 79 81 81
FPR (%) 11 43 39 32 27 21 15 12 11 11 23 30 30 29 28 27 25 23 22 22

2017

White
CA (%) 65 55 60 61 61 63 63 64 64 64 72 58 63 64 68 69 68 69 70 71
TPR (%) 60 49 54 55 55 56 57 58 58 59 72 72 64 71 78 75 74 76 77 77
FPR (%) 31 40 33 32 32 31 31 31 31 31 28 56 37 43 42 37 39 37 37 36

Red
CA (%) 87 69 76 79 86 87 88 88 89 89 94 50 79 82 86 87 89 91 91 91
TPR (%) 89 53 69 74 84 86 81 88 89 83 95 0 90 90 93 92 92 94 94 95
FPR (%) 15 15 17 15 12 12 11 11 11 11 8 0 32 27 21 18 15 12 12 12

2018

White
CA (%) 80 62 64 68 72 74 79 80 80 80 78 59 62 67 70 72 73 75 75 76
TPR (%) 80 56 65 70 72 74 80 80 81 81 73 52 58 63 67 70 72 74 75 75
FPR (%) 20 32 37 35 29 26 22 21 20 21 18 33 35 29 28 25 25 24 25 24

Red
CA (%) 96 70 91 93 94 95 95 96 97 96 87 65 69 73 78 81 82 86 86 86
TPR (%) 97 66 92 93 94 95 96 97 97 97 90 69 71 75 79 81 83 87 87 87
FPR (%) 6 26 10 8 7 6 6 4 4 4 16 40 33 29 22 20 18 16 16 15

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate; HIS: hyperspectral imaging; 186/288:wavelength bands of the hyperspectral sensors; 2–10:number of selected
spectral bands.
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4. Discussion

In the present study, hyperspectral imaging is used for the detection of GLRaV-1 and -3 in different
white and red grapevine cultivars. Since symptom development is highly dependent on environmental
factors, scion-rootstock combination, and the cultivar itself [4], as a first step, ungrafted greenhouse
plants were used to evaluate the potential of hyperspectral imaging for GLD detection. Thereby,
symptomatic vines could be successfully distinguished from healthy vines with TPRs of 82–100% and
corresponding low FPRs of 0–14%. Although growing vines under greenhouse conditions allows
environmental factors to be closely controlled, phenotypes rarely agree with those in the field as
grapevines are typically large perennial plants. Therefore, hyperspectral sensors were also applied in
the field over three consecutive years. In order to reduce disruptive factors the Phenoliner phenotyping
platform was used for standardized data acquisition [35] and vineyards in close proximity to each other
were selected to minimize environmental effects. While disease detection models for greenhouse plants
were developed separately per cultivar due to the small set of plant-virus combinations, in models
for field-grown grapevines more than 150 Vitis vinifera cultivars and interspecific crossings were
combined. Since spectral reflectance is known to differ by cultivar as recently demonstrated by
Gutiérrez et al. [45], we wanted to develop robust detection models that should not be influenced
by varietal effects. In red cultivars, GLRaV-3 symptomatic vines can be differentiated from healthy
vines, reaching CAs of 84–96%; similar results were obtained for GLRaV-1. Symptom detection is also
successful for white cultivars, which had not been investigated in previous studies, with CAs between
83% and 98% for GLRaV-3 and 76–93% for GLRaV-1. Hence, in-field disease detection is possible,
although in most cases slightly better for red than white cultivars. This is not surprising as the contrast
between reddish discoloration of symptomatic leaves and green healthy leaves in red-berried cultivars
is more pronounced than that of yellowish discolorations in white cultivars. These effects were also
observed by Albetis et al. [46] using airborne multispectral imaging for the detection of Flavescence
dorée—a grapevine disease exhibiting similar symptoms as GLD. They obtained better results for red
than white cultivars which was due to higher confusion between symptomatic and healthy pixels in
white cultivars.

The different symptom expression of GLD can be explained by an increase of anthocyanin concentration
in infected red cultivars [47], which does not occur in white-berried grapevines due to several
mutations in the flavonoid biosynthetic pathway genes [48]. Therefore, detection models were
developed separately for red and white cultivars. As expected, symptoms induced by GLRaV-1 and
-3 in red and white cultivars, respectively, can be clearly distinguished in VNIR but also in SWIR.
Interestingly, Al-Saddik et al. [49] combined leaves of different white and red cultivars that showed
typical Flavescence dorée symptoms in a binary classification approach (healthy vs. symptomatic).
Thereby, joined symptomatic leaves reached only slightly lower classification accuracies than single
cultivars. Additional studies are required to determine whether this concept could also be successful
for GLD detection.

In this context, model robustness should also be evaluated in further studies by applying them
to unknown plant material that was not considered in model development. Thereby, effects of
different locations (e.g., environment, soil) can be analyzed and disease detection could be tested under
commercial conditions with only one cultivar per vineyard. Furthermore, it would be interesting to
compare the models developed in this study with more than 150 cultivars with models developed
specifically for one vineyard or one cultivar in order to further evaluate the potential of one universal
GLD detection model.

Although GLD symptoms can be clearly distinguished between white and red cultivars, visual
differentiation between the divergent GLRaVs is impossible [2]. However, Berdugo et al. [50] showed
the potential of spectral imaging for the discrimination of viral diseases in cucumber plants. They were
able to differentiate cucumber mosaic virus (CMV) and cucumber green mottle mosaic virus (CGMMV)
up to accuracies of 100% using VNIR. Therefore, we first developed detection models separately for
GLRaV-1 and -3 symptoms and, in a next step, developed models to discriminate plants infected with
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the two viruses. In both white and red cultivars, differentiation is possible with CAs of 76–100%. Since
GLRaV-1 and -3 are closely related and can be distinguished using hyperspectral imaging, spectral
data of infections caused by their different genetic variant groups [51,52] should also be evaluated in
order to analyze the disease in more detail. Furthermore, spectral data of additional GLRaVs, e.g.,
GLRaV-2 with most of its strains producing strong GLD symptoms [53], or mixed infections, which are
common for GLRaVs [7], could be included in future work in order to follow a broader approach.

In this study, relevance profiles were calculated for the in-field disease detection, providing
information about the importance of wavelengths for the differentiation tasks. In most cases, relevance
profiles of the three years examined are not consistent, since many wavelengths seem to be of
significance in only one or two years. Apparently, year-dependent environmental conditions interfere
with the effects caused by GLD infection, thus hindering the development of one uniform disease
detection model. The only exception in this work is the identification of GLRaV-1 in red cultivars
using the VNIR wavelength range. Here, similar graphs can be observed for the three years, with
wavelengths around 550 and 710 nm being the most important. Naidu et al. [25] also observed changes
in these spectral regions for GLRaV-3 symptomatic Cabernet Sauvignon and Merlot plants. In our work,
the relevance of 550 and 710 nm could also be seen for GLRaV-3 infected red cultivars in 2016, but not
in 2017. Therefore, further experimental years would be helpful in determining important spectral
regions of GLRaV-3 infection. Gitelson et al. [54] found that reflectance in these two spectral bands
(550 ± 15 and 700 ± 7.5 nm) is well suited to estimate leaves’ anthocyanin content non-destructively
and, subsequently, introduced the anthocyanin reflectance index (ARI). Thus, our findings can be
clearly correlated to the increase of anthocyanin concentration in red cultivars upon GLD symptom
development [47].

Through the identification of application specific wavelengths data dimensionality can be
reduced and, as a consequence thereof, computational analysis and processing becomes more efficient.
Using optimal spectral bands is a common approach that has successfully been implemented for the
detection of three sugar beet diseases [55], anthracnose on strawberries [56], yellow rust on winter
wheat [57], and powdery mildew as well as Flavescence dorée on grapevines [58,59]. Moshou et al. [57]
and Yeh et al. [56] demonstrated that the number of selected spectral bands significantly influences
classification, which is in accordance with our results—classification improves as more wavelengths
are considered and is comparable to using the whole spectral range. This was also reported by
Wang et al. [20] who identified eight wavelengths that achieved the same plant-level accuracies as
the entire spectrum for the detection of tomato spotted wilt virus. Although most relevance profiles
in our study vary between the three years, classification within one year is always successful when
using the identified spectral bands. Al-Saddik et al. [60] developed spectral disease indices (SDIs) for
the detection of Flavescence dorée, but their best wavelengths selected were different from one case to
another and, therefore, no universal SDI was found to be applicable. Moreover, Sinha et al. [26] tried
to transfer relevant wavelengths from one year to another for identification of GLRaV-3 in Cabernet
Sauvignon vines, but results were very divergent and transfer was only partially satisfying.

However, symptom detection is only the first step in disease management. There appears to be
a delay of at least one growing season between virus inoculation and symptom manifestation [61],
and given the fact that some cultivars, rootstocks and most wild Vitis species do not exhibit symptoms
at all [4], identification of symptomless carriers is crucial to reduce pathogen reservoirs in vineyards.
GLRaVs are known to affect primary and secondary metabolism in asymptomatic plants leading to
alterations in the composition of leaf biochemicals and subsequently causing changes in reflectance
spectra [62,63]. The detection of asymptomatic plants was successful under greenhouse conditions even
though only few plants could be used for modeling. However, in-field identification was challenging
in both VNIR and SWIR for GLRaV-1 and -3, respectively. Naidu et al. [25] also used leaves from
field-grown vines to detect GLRaV-3 before developing symptoms and gained significantly lower
classification results (max. 75%) in comparison to symptomatic leaves. A possible explanation is
that GLRaVs are unevenly distributed within grapevines and virus titer differs in the course of a
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growing season [64–66]. In contrast to field-grown grapevines, greenhouse plants consisted of only one
shoot, which could lead to higher virus concentrations and better distribution, resulting in satisfying
CAs. In general, detection of asymptomatic vines would not only be helpful for winegrowers in
commercial vineyards but could also be a useful tool for nurseries as it might improve their ability to
provide virus-free plant material to growers. Although the presented system is applicable to mother
vineyards, further efforts are required to optimize classification accuracies for better in-field detection
of infected, but symptomless, mother plants. Moreover, field nurseries could be screened, but here too,
further improvements and a different experimental setup would be necessary as the plants are rather
small and densely planted. However, young grafted plants could be analyzed after removing them
from callusing boxes since most of them developed several leaves or even shoots by then [67]. Spectra
of these plants could be assessed in a similar approach as was presented in this study for greenhouse
plants that showed promising results with regard to asymptomatic disease detection.

5. Conclusions

Grapevine leafroll disease is considered to be the most important grapevine virus disease as it
is of great economic importance for winegrowers worldwide. Currently, identification and removal
of infected vines are the only in-field treatments to reduce the spread of this disease. In this context,
we evaluated ground-based hyperspectral imaging (400–2500 nm) in both greenhouse and field
applications for automatic disease detection. In addition to the identification of GLRaV-3, which
has already been investigated in other works, this is the first study focusing also on GLRaV-1
detection. Another novelty of our study is the consideration of not only red but also white grapevine
cultivars. Symptom detection was successful in the greenhouse as well as directly in the field, reaching
classification accuracies of up to 100%. However, models should also be transferred to unknown plant
material at different locations in order to evaluate their robustness. Although relevant wavelengths for
symptom detection were not consistent over the three-year field trial, the potential of a multispectral
approach is clearly shown. Further studies could use the identified bands for development of GLD
specific SDIs and compare them to common reflectance indices (e.g., normalized difference vegetation
index (NDVI), normalized difference red edge index (NDRE), ARI) and the whole spectral region.
In general, disease detection models were developed separately for white and red cultivars as well as
separately for GLRaV-1 and -3. In a comparative approach it could be shown that symptoms in white
and red cultivars can be clearly distinguished. Here, further investigations are needed to evaluate
if one joint detection model would be possible. Moreover, differentiation of the two viruses was
successful for both white and red cultivars. Additional GLRaVs could be included in future studies
to extend the detection models. Furthermore, GLD should be discriminated from other diseases or
deficiencies causing similar symptoms. Besides symptom detection, identification of asymptomatic
grapevines would help to reduce pathogen reservoirs in vineyards and could be a useful tool for
nurseries to provide virus-free planting material. While high classification accuracies could be reached
for greenhouse plants, reliable in-field detection requires further investigations. In summary, our results
show the potential of hyperspectral imaging for the detection of symptomatic and asymptomatic
grapevines infected with different GLRaVs and, therefore, can serve as a good basis for future studies.
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Appendix A

Since the virus status of mother plants was known, greenhouse cuttings were tested by RT-PCR
only. There is an almost even distribution of virus-infected and non-infected plants except for Pinot noir
showing a class unbalance. In Table A1, results of the molecular analysis as well as visual assessment
are given.

Table A1. Number of greenhouse plants tested either positive or negative by RT-PCR. Positive plants
were visually assessed as symptomatic (S) or, asymptomatic (AS).

Cultivar Virus RT-PCR
Number of Plants

PCR Positive PCR Negative
S AS

Aligote GLRaV-3 11 4 17
Gewürztraminer GLRaV-1 15 0 15

Silvaner GLRaV-1 15 0 15
Pinot noir GLRaV-1 17 6 7

For hyperspectral analysis of field data, only plants were considered that (i) were tested positive or
negative by both ELISA and RT-PCR; (ii) were not infected by multiple viruses; and (iii) showed no other
signs of discoloration caused by nutritional disorders, mechanical damage, insects, or other diseases.
In Table A2, the number of plants is given that could potentially be considered for spectral evaluation
according to their ELISA and RT-PCR results as well as the number of plants that were actually
considered after visual inspection. Due to the limited amount of ArMV-, GFLV-, and RpRSV-infected
grapevines, this study focused on the detection of GLRaV-1 and -3 only.

Table A2. Number of field plants tested positive or negative by RT-PCR as well as double antibody
sandwich (DAS)-ELISA and visually assessed as symptomatic (S) or asymptomatic (AS).

Virus
RT-PCR
+ DAS-
ELISA

Visual Disease Assessment
2016 2017 2018

S AS S AS S AS

GLRaV-1 95 27 61 49 37 21 2
GLRaV-3 78 15 54 34 44 17 56

ArMV 2 0 2 0 2 0 0
GFLV 9 3 4 3 6 3 4

RpRSV 5 2 3 2 3 0 2
negative 243 188 242 124



Remote Sens. 2020, 12, 1693 21 of 26

Appendix B
Remote Sens. 2020, 12, 1693 22 of 27 

Appendix B 

 

Figure A1. Spectral relevance profiles for VNIR (a,b) and SWIR (c,d) in three consecutive years 

regarding white (a,c) and red (b,d) cultivars infected with GLRaV-3. 

 

Figure A1. Spectral relevance profiles for VNIR (a,b) and SWIR (c,d) in three consecutive years
regarding white (a,c) and red (b,d) cultivars infected with GLRaV-3.



Remote Sens. 2020, 12, 1693 22 of 26

Table A3. Results of the multispectral simulation for GLRaV-3 symptom detection.

VNIR SWIR
HSI Multispectral Simulation HSI Multispectral Simulation
186 2 3 4 5 6 7 8 9 10 288 2 3 4 5 6 7 8 9 10

2016

White
CA (%) 92 61 68 82 84 85 88 90 91 91 92 63 80 82 84 88 89 90 91 91
TPR (%) 94 61 74 84 87 87 90 92 93 93 94 69 78 82 85 90 91 91 93 92
FPR (%) 10 39 37 20 18 18 14 12 11 11 10 43 18 18 17 13 13 11 10 10

Red
CA (%) 94 69 72 82 89 91 93 93 94 94 94 70 73 76 81 86 89 90 90 91
TPR (%) 96 77 80 87 92 94 94 95 96 96 95 74 78 78 85 89 92 92 92 93
FPR (%) 7 39 36 23 13 11 8 8 7 7 8 34 31 26 23 18 13 12 12 11

2017

White
CA (%) 69 58 58 64 64 67 67 67 68 70 88 57 69 77 83 84 88 88 88 89
TPR (%) 68 52 55 63 63 67 68 69 68 71 90 64 78 82 86 87 90 90 90 91
FPR (%) 31 37 39 36 34 34 34 34 32 31 15 49 40 29 20 19 15 14 13 13

Red
CA (%) 82 60 67 68 73 78 80 81 82 83 95 78 80 85 88 89 89 90 91 92
TPR (%) 82 64 68 68 74 81 81 82 84 84 95 90 93 93 93 94 94 94 94 96
FPR (%) 18 44 33 31 29 25 21 20 20 18 6 33 32 23 18 17 15 13 13 11

2018

White
CA (%) 67 61 67 67 69 71 76 74 74 76 74 56 61 62 64 71 72 73 73 75
TPR (%) 71 49 64 66 70 74 76 76 76 77 75 43 56 59 60 67 70 72 73 74
FPR (%) 36 28 31 32 31 31 29 27 27 26 27 31 35 36 32 26 26 26 26 25

Red
CA (%) - - - - - - - - - - - - - - - - - - - -
TPR (%) - - - - - - - - - - - - - - - - - - - -
FPR (%) - - - - - - - - - - - - - - - - - - - -

CA: classification accuracy; TPR: true-positive rate; FPR: false-positive rate; HIS: hyperspectral imaging; 186/288: wavelength bands of the hyperspectral sensors; 2–10: number of selected
spectral bands.
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