
Identification and Measurement of Individual Roots
in Minirhizotron Images of Dense Root Systems

Alexander Gillert1 Bo Peters2 Uwe Freiherr von Lukas1,3 Jürgen Kreyling2

1Fraunhofer Institute for Computer Graphics Research IGD, Rostock
2Institute of Botany and Landscape Ecology, Greifswald University
3Institute for Visual & Analytic Computing, University of Rostock
{alexander.gillert, uwe.freiherr.von.lukas}@igd-r.fraunhofer.de

{bo.peters, juergen.kreyling}@uni-greifswald.de

Abstract

Semantic segmentation networks are prone to overseg-
mentation in areas where objects are tightly clustered. In
minirhizotron images with densely packed plant root sys-
tems this can lead to a failure to separate individual roots,
thereby skewing the root length and width measurements.

We propose to deal with this problem by adding addi-
tional output heads to the segmentation model, one of which
is used with a ridge detection algorithm as an intermediate
step and a second one that directly estimates root width.
With this method we are able to improve detection and
width measurements in densely packed roots systems with-
out negative effects on sparse root systems.

1. Introduction

Plant roots play a critical role in plant growth and
many ecosystem processes and as such have become
of increasing interest for ecosystem and climate mod-
elling [1]. Despite their importance, research on be-
lowground growth dynamics remains sparse due to
inaccessibility of root systems and the often costly
methods required for observation. With the develop-
ment of rhizotrons and subsequently minirhizotrons,
a nondestructive method for long-term monitoring of
roots became available [5]. Rhizotrons often consist
of two vertical glass panels separated by a thin layer
of soil. Root growth in the soil along the inside of
the transparent panels is then documented visually or
photographically. Likewise, Minirhizotrons, transpar-
ent (acrylic-)glass tubes inserted into the soil, allow for
in-situ monitoring of plant growth in natural condi-
tions as root growth alongside the tube walls is doc-

Figure 1: Top left: input image. Top right: output of
a U-Net segmentation network that was trained to de-
tect roots. Bottom left: the same output after apply-
ing the skeletonization postprocessing step. Many ar-
tifacts and loops are present due to the imperfection
of the segmentation map. Bottom right: our method.
(Skeleton images dilated for better visibility. Zoom in
for details.)

umented with specialized scanners or cameras from
within the tube.

The shape and size of plant root systems vary
greatly between species and environmental con-



ditions. Whereas previous works on automated
(mini)rhizotron imagery analysis [10, 7] mostly deal
with plant species with sparse root systems with few
or far apart growing roots (e.g. soy beans), in this
work we are more interested in those with densely
packed roots. Especially many graminoid (grass-like)
species have a fibrous root system where all roots orig-
inate at the point where the aboveground plant body
interfaces with the soil, resulting in densely packed
root systems with roots growing in parallel and with
little space in between.

Some of the most important metrics for plant
growth research are total root length and root width.
Estimating the root length in the images by simply
taking the sum of all segmented root pixels leads to
a bias towards large diameter roots. Therefore, most
of the previous works [10, 7] employ a skeletoniza-
tion postprocessing step to get a more accurate root
length estimation. This works sufficiently well in
images where individual roots are far apart, in sce-
narios with densely packed roots however, the seg-
mentation network usually has difficulties classifying
the boundaries between roots correctly and results in
oversegmentation in those areas. The skeletonization
method is then either unable to distinguish between
individual roots and merges them into one, or even
worse leads to loops which does not represent the true
root system topology and results in incorrect measure-
ments. This problem is illustrated in figure 1. One
might argue that increasing the segmentation thresh-
old would help to separate those roots, however this
in turn would also negatively affect the detection of
fine roots and width measurement.

We present a method to mitigate this problem by
adding an intermediate ridge detection step. Specifi-
cally, we convolve a learned distance transform map
with the second derivative of a gaussian kernel and
analyze its response for curvature. Experimental re-
sults show a significant improvement in skeleton met-
rics for images with dense root systems, without neg-
ative impact on those with sparse ones. Moreover, we
propose to estimate the width of the roots directly via
regression which we have found to outperform base-
lines.

2. Related Work

Basic minirhizotron imagery analysis systems have
been presented in [10, 7] and consist of a deep seg-
mentation neural network based on the U-Net [6] ar-
chitecture or similar. Research on improving the qual-
ity of results has focused on transfer learning [11] by
pretraining on different plant species, data augmenta-
tion [7] in form of grid deformations, weak supervi-

sion [13, 14] with multiple instance learning to reduce
the amount of required data annotations and inpaint-
ing [2, 3] to correct for undersegmentation, i.e. gaps in
the segmentation results. The goal of our method can
be seen as the opposite of the latter because we aim
to mitigate the effects of oversegmentation. So far, no
work has been published on this specific problem set-
ting.

Most of these works postprocess the segmentation
results with the topology preserving thinning algo-
rithm published by Zhang and Suen [16] and imple-
mented in the scikit-image library [9] as the skele-
tonize procedure. This algorithm works by iteratively
removing the contour pixels on object borders until
only the skeleton pixels are left. An issue with this
algorithm is that it assumes perfect topology in the
binary input image, which is not always the case in
the output returned by a segmentation network and
results in artifacts. Steger [8] proposed an algorithm
for the detection of curvilinear structures, which we
use in a simplified form as an intermediate step before
skeletonization to mitigate these problems.

Already Ronneberger et al. in the original U-net pa-
per [6] dealt with the problem of separating touching
objects (HeLa cells). They used a weightmap to put
additional emphasis on the border between the cells.
The authors of [15] approach the problem of counting
densely clustered objects by introducing an additional
artificial ”border” class and training a multi-class seg-
mentation network. Although their field of applica-
tion was counting grapevine berries, this approach is
also applicable to root detection and we compare it to
our method in our experiments.

A somewhat similar problem is instance segmenta-
tion where the goal is to separately segment different
(possibly overlapping) objects belonging to the same
class. However, standard architectures from this re-
search area (e.g. Mask-RCNN [4]) are not applicable
to minirhizotron images because roots with their elon-
gated shapes do not fit well into the boxes prior and
often cannot be seen as separate objects either, as they
may branch off.

3. Methods

We approach the described problem by adding
additional auxiliary output heads to a segmentation
network which learn the distance transform of the
ground truth. One of them is used to detect ridges, i.e.
continuous curves of local maxima and the second one
is used for width estimation. A schematic overview of
our method is provided in figure 2.
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Figure 2: Schematic overview of our method. Solid lines represent data flow, dashed lines represent losses.

3.1. Network Architecture and Training

We use the U-Net [6] architecture as the base for our
network and modify it to produce three output maps
which we denote with yseg, ydist and ywidth. Each out-
put is computed by an own separate decoder network,
connected to a shared encoder.

The main segmentation head is trained in a stan-
dard supervised manner with the binary crossentropy
(BCE) loss, whereas the auxiliary heads are trained on
the distance transform of the binary ground truth seg-
mentation map y∗. Specifically for ydist we use the
mean absolute error on pixels where y∗ is positive and
ignore pixels that are zero to avoid distraction:

Ldist =
y∗ · |ydist − D(y∗)|

∑i y∗i
(1)

where D is the distance transform. During inference
we zero out the predicted distance values where the
output of the main segmentation head yseg is below
a threshold (0.5 where not stated otherwise). In the
following we use ydist as a shorthand notation for
ydist · (yseg > 0.5).

Although ydist learns the distance transform and in
theory could be directly used for width prediction, in
practice this output head is biased towards small val-
ues because it also learns the pixels close to the root
border. Therefore, we train the ywidth head to directly
estimate the width of the roots by only learning the

distance transform of the center pixels:

Lwidth =
S(y∗) · |ywidth − D(y∗)|

∑i S(y∗)i
(2)

where S is the skeletonization method [16, 9]. For both
auxiliary heads no additional annotation except for
the standard binary segmentation map is required.

The overall loss function is given by:

L = LBCE + λ0Ldist + λ1Lwidth (3)

where λ0 and λ1 are balancing hyperparameters
which we both set to 0.01. We have found larger val-
ues to have a negative effect on the main segmentation
head.

We use the SGD optimizer for 15 epochs with a
learning rate of 0.1, momentum 0.9 and reduce the
learning rate twice by a factor of 0.1.

3.2. Ridge Detection

As discussed in more detail by Steger in [8], a
well established method to detect lines in a one-
dimensional function is to convolve it with the second
derivative of a gaussian kernel and use the zero cross-
ings of the result as the edges of the line. The second
derivative of the gaussian kernel is defined as:

g′′σ(x) =
x2 − σ2
√

2πσ5
e−

x2

2σ2 (4)



where σ is the standard deviation hyperparameter
which affects the width of the kernel. We use σ = 3
where not otherwise mentioned. This kernel converts
the signal into a scale-space description and smoothes
out noise in the data.

Since it holds that (g′′ ∗ f )(x) = (g ∗ f )′′(x), the
response of this convolution can be regarded as the
smoothed second derivative of the function f , i.e. it
represents its curvature. By looking at negative values
of the response, one can find right-handed turns in the
function, i.e. local maxima.

For two-dimensional data, Steger [8] recommends
applying the 1D convolution in the direction perpen-
dicular to the line or ridge. This brings the draw-
backs of firstly the need to estimate the angle at each
line location and secondly many separate convolu-
tions at different angles. In large images and with
many ridges, as can be the case in minirhizotron data,
this gets very costly. Therefore we opt for a simpler
method of convolving in only two directions, namely
row-wise and column-wise to get the response maps
rrow and rcol :

rrow
ij = (g′′σ ∗ ydist

rowi
)j

rcol
ij = (g′′σ ∗ ydist

colj
)i

(5)

where ydist
rowi

and ydist
colj

represent the i-th row and the

j-th column of ydist respectively.
The magnitude of the response in rrow is the largest

for ridges running in vertical direction with still rea-
sonable results diagonally but reduces to noise in the
horizontal direction. The opposite applies to rcol . To
get an acceptable response in all directions we com-
bine both response maps with weight maps wrow and
wcol which are constructed as:

wrow =
δρ(−rrow)

δρ(−rrow) + δρ(−rcol) + ϵ
(6)

where ϵ = 10−6 a small constant to guard against
zero division and δρ the dilation operation with a ρ
pixels sized structuring element. In practice we use
the max-pooling operation with a kernel of size ρ.
Where not otherwise mention we set ρ = 11. wcol

is defined analogously. These weight maps are then
used to combine the two response maps into r̂:

r̂ = wrow rrow + wcol rcol (7)

Next, we define ridges as pixels where r̂ is negative
and since the convolution operation might spill over,

also check for yseg:

q =

{
1, r̂ < 0.0 and yseg > 0.5
0, otherwise

(8)

Lastly, we apply the skeletonization method [16, 9]
on q to estimate the centers of the roots which we de-
note with S(q).

3.3. Width Estimation

A disadvantage of convolving only in two direc-
tions instead of perpendicular to the ridge direction is
that the width of the detected ridges cannot be directly
determined. Instead, we simply take the regressed
values of ywidth where the center of the ridges was de-
tected:

W =

{
ywidth, where S(q) = 1
undefined, otherwise

(9)

We have considered other choices, for example us-
ing the distance transform D(yseg) instead. We evalu-
ate this choice in the experimental section.

4. Experimental Setup

4.1. Dataset

Our training dataset consists of 64 minirhizotron
images acquired from mesocosm and field experi-
ments and an additional of 32 images is used for eval-
uation. The images mostly contain roots of Carex ros-
trata, Mentha aquatica and Equisetum fluviatile plant
species and were acquired with a CI-600 In-Situ Root
Imager (CID Bio-Science Inc.). All images stem from
a facility that was established in fall 2018 at the Insti-
tute of Botany and Landscape Ecology in Greifswald,
Mecklenburg Western Pomerania.

The dataset was carefully annotated by ecologists.
Annotators were explicitly asked to leave a minimum
one-pixel wide boundary inbetween the roots to make
sure that the distance transform and skeletonization
methods perform without issues on the ground truth.

For training and inference, the images are sliced
into overlapping 512x512px patches with 32px over-
lap. Ridge detection and evaluations were performed
on the stitched full-sized pictures.

For a more fine-grained evaluation we manually
classify images as containing dense or sparse root sys-
tems. We count 22 sparse and 10 dense images in our
test set. The seemingly low number of evaluation im-
ages is due to the very high cost of manual annotation
which can be as high as 15 man-hours for a single im-
age.



4.2. Metrics

Standard metrics that are often used in semantic
segmentation like precision, recall or the Dice coeffi-
cient are not well suited to be directly used with skele-
tons due to their sparseness: a shift by a single pixel
can have a large impact on the result. Therefore, our
main metrics for the identification of roots are skeleton
completeness Cp and correctness Cr, which are discussed
in more detail in [12] and defined as:

Cr =
TPρ

TPρ + FPρ
Cp =

TPρ

TPρ + FNρ
(10)

where TPρ, FPρ and FNρ are the buffered versions of
the number of true positives, false positives and false
negatives. They are defined with dilated skeletonized
predictions δρ(S(y)) and dilated skeletonized ground
truth images δρ(S(y∗)) as:

TPρ = S(y) ∩ δρ(S(y∗))

FPρ = S(y) ∩ δρ(S(y∗))

FNρ = δρ(S(y)) ∩ S(y∗)

(11)

Intuitively speaking, a predicted skeletonized pixel
is considered a true positive if it is within ρ pixels dis-
tance of a skeletonized ground truth pixel. We use
ρ = 1 for all our evaluation experiments.

Moreover, we evaluate the harmonic mean of both
metrics calculated as H =

2CrCp
Cr+Cp

(also known as the F1
score when using precision and recall) and the overall
root length in an image, which we estimate with the
sum of all skeletonized pixels.

We compare the width measurements via a his-
togram and a direct comparison metric. For the his-
togram metric we count the skeletonized root pixels
into three categories based on the measured width:
fine (<3px), medium (3-7px) and coarse (>7px). Then
we compare the absolute and relative error of those
bins. For the relative error we use the mean absolute
percentage error (MAPE):

MAPE =
1
N ∑

|xtrue − xpredicted|
max(ϵ, xtrue)

(12)

where ϵ guards against small values in the denomina-
tor. Since our ground truth values are not well scaled,
i.e. can vary in a large range from zero to tens of thou-
sands counted pixels within the same bin, we set it to
the average value in the histogram bin: ϵ = 1

N ∑ xtrue.
This is also the metric that the end user would be

most interested in, however it is dependent on the
quality of the upstream root detection system: if a root

is not detected it cannot be sorted into a bin. There-
fore we also directly compare the widths at the TPρ

locations to isolate the width measurement evaluation
from the detection.

The width ground truth is computed via the dis-
tance transform of the ground truth segmentation
map.

4.3. Compared Methods

For skeleton metrics, we compare the following ap-
proaches:

• Baseline: Segmentation network trained only with
binary cross-entropy loss. Skeletonization ap-
plied directly on the thresholded yseg.

• Weightmap: Same as baseline, but trained with a
weightmap as in [6] that puts additional empha-
sis on the pixels inbetween roots.

• Multi-class segmentation similar to that of [15]. For
this method we train a segmentation network
to classify each pixel into three classes, namely
”root”, ”border” and ”background”. The annota-
tion for the ”border” class was automatically gen-
erated by applying the dilation operation onto the
segmentation map with a 2px sized structuring
element. For the evaluation we use only the pix-
els that were classified as ”root”.

• Ridge detection applied on the segmentation head
output yseg. This method can be used with a nor-
mal segmentation network without adjustments
to the architecture.

• Ridge detection applied on the auxiliary head out-
put ydist. This is our main method as described in
section 3

For a fair comparison, neural networks for methods
which do not require ydist were trained without the
auxiliary heads.

For the width measurement we compare the regres-
sion based approach as in subsection 3.3 to measuring
the width via distance transform on either the base-
line skeleton or the skeleton as computed in subsec-
tion 3.2.

5. Results

Our main results for the skeleton metrics are pre-
sented in table 1. The multi-class segmentation
method provides better skeleton correctness perfor-
mance but at the cost of a worse skeleton complete-
ness, thus no clear improvement is made with this



Dense Sparse
Method Cp↑ Cr↑ H↑ Cp↑ Cr↑ H↑
Baseline 0.571 0.639 0.599 0.525 0.613 0.583
Weightmap 0.591 0.658 0.618 0.518 0.653 0.581
Multi-class Segmentation 0.509 0.649 0.568 0.460 0.665 0.543
Ridge Detection on yseg 0.606 0.676 0.634 0.525 0.612 0.583
Ridge Detection on ydist 0.596 0.733 0.653 0.533 0.676 0.603

Table 1: Mean skeleton metrics of of the compared methods. Bold font indicates best values.

Dense Sparse
Method Fine↓ Medium↓ Coarse↓ Direct↓ Fine↓ Medium↓ Coarse↓ Direct↓
Baseline 10837.6 / 0.299 7822.4 / 0.118 5228.9 / 0.755 0.997 2741.7 / 0.203 2280.7 / 0.410 38.0 / 0.375 0.654
Weightmap 9610.2 / 0.282 7015.0 / 0.123 3390.3 / 0.295 0.965 2720.6 / 0.203 2564.5 / 0.474 41.5 / 0.271 0.648
Ridge Detection 10860.5 / 0.303 6246.8 / 0.087 3201.1 / 0.285 0.905 2493.8 / 0.193 2333.8 / 0.427 29.0 / 0.237 0.645
ywidth Regression 9877.2 / 0.273 6357.1 / 0.089 1841.2 / 0.192 0.810 1972.8 / 0.180 1745.9 / 0.275 30.7 / 0.238 0.578

Table 2: Mean width measurement errors for the compared methods. The vales for the fine, medium and coarse
histogram bins are average count errors/MAPE. Direct stands for directly compared width values at TPρ coordi-
nates in pixel units. Bold font indicates best values.
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Figure 3: Influence of the segmentation threshold
on the skeleton metrics and total root length. Ad-
vanced methods like ridge detection benefit more
from a lower threshold than the baseline. (Evaluated
on dense root systems.)

method. The weightmap method is overall more ben-
eficial however with a slight degradation for sparse
root systems.

For dense root systems, ridge detection applied to
yseg improves both skeleton completeness (i.e. less
false negatives) and correctness (less false positives).
At the same time no significant deterioration in per-
formance is observed for sparse root systems. It per-
forms even better if applied on ydist where both dense
and sparse metrics are improved. We explain this with
the smoother surface of ydist compared to yseg which
benefits ridge detection.

We note that higher performance is achievable by
reducing the segmentation threshold as is shown in
figure 3. In the baseline method, increasing or de-
creasing the threshold is mostly a tradeoff between
false positives or false negatives. This is also illus-
trated in the example in figure 5 where either four
roots get detected as two, or a fine root won’t get rec-
ognized. Ridge detection on the other hand overall
benefits from lower thresholds. This is because the full
information of the raw decimal values is used directly,
instead of just binary thresholded values.

The threshold should also be adjusted to achieve
a better total root length estimate. With the default
threshold of 0.5 the baseline seemingly performs bet-
ter on this metric, however, this is due to a higher
number of false positives which balance out the gen-
eral underestimaton of the overall root length. With a
lower threshold of around 0.2, our method gives the
best length estimate of the compared methods.
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Figure 4: Influence of hyperparameters on the perfor-
mance. Top: The width of the gaussian kernel σ has
an optimium in the range 3 to 4. Bottom: The dilation
parameter ρ for the width map computation should
have minimum value of 9. Larger values do not lead
to much improvement but only increase computation
times. (Evaluated on dense root systems.)

For the width measurements in table 2 we ob-
serve that regression gives the best performance in al-
most all measured metrics, especially for sparse root
systems. We attribute this to oversegmentation in
the segmentation-based approaches. With fine roots,
oversegmentation is due to the difficulty to reliably
segment thin objects whereas with coarse roots this is
rather due to their proximity to each other. Regression
is immune to this.

Some qualitative results are shown in figure 6.
More hyperparameter tests can be seen in figure 4.

6. Conclusion

We have presented a method for improving the
topology reconstruction of dense root systems in
minirhizotron images as well as width estimation of
individual roots. This is done by performing an
intermediate ridge detection step on a learned dis-
tance map before the commonly used skeletonization
method. This helps to mitigate the oversegmentation
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Figure 5: A particularly challenging example.
(A) patch of an input image; (B) Output of the seg-
mentation head yseg; (C) r̂ as computed in equation
7; (D) plot of yseg extracted at the white dashed line.
Not all roots can be detected or separated via simple
thresholding, no matter where the threshold is set, as
indicated by the black dashed line; (E) plot of ydist at
the white dashed line; (F) plot of r̂ at the white dashed
line, the shaded areas represent values below zero and
thus detected ridges as in equation 8. All five roots can
be detected.

of close or overlapping roots. Images with predomi-
nantly sparse root systems are not negatively affected.

As a slight drawback of our width estimation
method can be regarded that it is based on regression,
thus it functions as a black box and lacks interpretabil-
ity. However, in our experiments it clearly outper-
forms baselines.
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Figure 6: Some qualitative example results. From left to right: input image, baseline skeletonization, our method.
In the top row green pixels represent TPρ, red pixels FPρ, blue pixels FNρ. Note the blurriness due to high
humidity in this image. The bottom row shows an example with a sparse root system, almost no differences
between the two methods in this case. (Skeleton images dilated for better visibility.)
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