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Abstract

This thesis deals with the topic of segregation in granular materials. The basis for
this work is a hydrodynamic model for granular material flows of Navier-Stokes
type, which is extended to capture segragation of systems with small and large
particles. The extended model is required to capture the dynamic process of
segregegation of such systems.

The granular flow equations consist of a set of Navier-Stokes-like equations as well
as an equation for the granular temperature. With the help of the granular tem-
perature equation, the model is able to cover dense and dilute regimes. Therefore,
the model and its dependencies are extensively described at the beginning of this
thesis.

To derive the segregation equation, the framework of mixture theory is used.
Special focus is lain on two topics. First, the segregation direction is thematised, in
particular this is done in three-dimensional space. This aspect is relevant in order to
make the segregation process invariant to the choice of the coordinate system. The
second topic is the packing of binary particle systems, which corrects the density
computations of the granular flow equations in the case of binary particle systems.

For solving the set of equations, a finite volume approach is chosen. The segregation
equation explicitly depends on the volume fraction of the granular system. Since
the granular flow model is compressible, the segregation equation requires special
numerical treatment. Therefore, a modified Godunov scheme is formulated based
on the solutions of the underlying Riemann problems. The method guarantees that
the system stays in a physically valid state. The model was implemented using the
granular flow solver GRAIN, which is included in the software platform CoRheoS,
developed at ITWM. The GRAIN solver was adapted to include the segregation
equation and the modified version of the granular flow equations. The implemen-
tations for solving the segregation equation and the modifications concerning the
granular flow equations derived in this work are made by the author. The used
programming language is C++.

In the last part of this thesis, the final model is extensively tested using different
frameworks in two- and three-dimensional space. Particularly, the influence of the
granular flow model on the segregation process is pointed out in detail.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Thema der Segregation in granularen Medien.
Als Grundlage zur Beschreibung granularer Materialien dient ein hydrodynamisches
Modell, ähnlich der Navier-Stokes Gleichungen. Das Ziel dieser Arbeit ist die Er-
weiterung dieses Modells. Für granulare Systeme, bestehend aus großen und kleinen
Teilchen, soll das erweiterte Modell den Prozess der Segregation berücksichtigen
und abbilden können.

Das Grundlagenmodell zur Beschreibung granularer Strömungen beinhaltet, zusätz-
lich zu den Navier-Stokes-Artigen Gleichungen, eine Gleichung zur Beschreibung
der granularen Temperatur. Mittels dieser zusätzlichen Gleichung ist es möglich
granulare Systeme sowohl in dichten, als auch dünnen Regimen zu beschreiben. Da-
her wird in einem ersten Abschnitt der Arbeit dieses Modell ausführlich beschrieben
und die wichtigsten Eigenschaften und Abhängigkeiten dargelegt.

Zur Herleitung der Segregationsgleichung wird das Konzept der sogenannten “Mix-
ture Theory” verwendet. Ein Hauptaugenmerk werden jeweils auf die Richtung
des Segregationsprozesses, speziell im dreidimensionalen Raum und auf das Thema
der Teilchenpackungen für Gemische zweier, unterschiedlich großer Teilchen gelegt.
Der erste Schwerpunkt dient dem Bestreben den Segregationsprozess unabhängig
vom gewählten Koordinatensystem zu machen. Der zweite Punkt korrigiert die
Dichteberechnungen des granularen Modells für vermischte binäre Teilchensysteme.

Zur Lösung der Gleichungssysteme wird ein finite Volumen Ansatz gewählt. Nu-
merisch bedarf das Lösen der Segregationsgleichung einer nicht standardisierten
Behandlung. Das liegt daran, dass die Gleichung explizit von dem granularen
Volumenanteil des Gesamtsystems abhängt, welches kompressibel ist. Daher wird,
basierend auf den Lösungen der zugrundeliegenden Riemann Probleme, eine
modifizierte Version der Godunov-Methode formuliert, mittels welcher die Segre-
gationsgleichung gelöst werden kann. Die Methode garantiert, dass das System
physikalisch zulässige Zustände nicht verlässt. Durch den am ITWM entwickelten
granularen Strömungslöser GRAIN, welcher Teil der Softwareplattform CoRheoS
ist, ist bereits ein Löser für das granulare System vorhanden. Die Implementierung
des Lösers für die Segregationsgleichung und alle in dieser Arbeit hergeleiteten
Änderungen am granularen Modell wurden durch den Autor vorgenommen. Die
genutzte Programmiersprache ist C++.

Im letzten Teil der Arbeit wird das finale Modell an verschiedenen Beispielen, sowohl
im zwei- als auch im dreidimensionalen Raum getestet und bewertet. Im Speziellen
wird der Einfluss des granularen Strömungsmodells auf die Segregation hervorgeho-
ben.
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Abbreviations

BCRE Bouchaud-Cates-Ravi Prakash-Edwards (model)

CoRheoS Complex Rheology Solvers - A software framework for implementing flow
solvers.

CFL Courant-Friedrichs-Lewy (condition)

DEM discrete element method

DPM discrete particle method

EC entropy condition

FVM finite volume method

LWR Lighthill-Witham-Richards (model)

MD molecular dynamics

MCM mechanical contraction model

NSE Navier-Stokes equations

ODE ordinary differential equation

PDE partial differential equation

QMOM quadrature-based method of moments

RCP random close packing

RLP random loose packing
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viii Notation

Symbols

Symbol Unit Explanation

d spacial space dimension
c [1] granular volume fraction
T [m

2

s2
] granular temperature

u [m
s

] macroscopic granular bulk velocity
p [m

2

s2
] granular pressure

σ [m
2

s2
] stress-strain tensor

κ [1
s
] strain rate tensor

q [m
3

s2
] granular heat flux

η [m
2

s
] scaled shear viscosity

λ [m
2

s
] scaled thermal conductivity

ε [1
s
] scaled energy dissipation

η0 [m] shear viscosity factor
λ0 [m] thermal conductivity factor
ε0 [ 1

m
] energy dissipation factor

ξk, ξy kinetic and yield part of a granular constitutive expression,
ξ = ξk + ξy

cmax, crcp(·) [1] granular maximum volume fraction, random close packing
crlp(·) [1] random loose packing
c0 [1] transition volume fraction between kinetic and yield regime

(close to random loose packing)
T0 [m

2

s2
] yield parameter

g(·) [1] compressibility factor
φν [1] volume fraction of particle phase ν ∈ [s, l]

φ̂ν [1] relative volume fraction of particle phase ν ∈ [s, l], φ̂ν = φ̂ν

c

Ssl [m
s

] segregation velocity
Ssl0 [ s

2

m
] segregation coefficient

γ̇ [1
s
] shear rate

B [1] non-dimensional magnitude in definition of proportionality factors
µ [1

s
] coefficient of inter-particle drag

g [m
s2

] gravity vector
ds [1] segregation direction vector
rν , R [m] grain radius of particle phase ν ∈ [s, l] and radius ratio R = rs

rl

F [m
3

s2
] force acting on particles

m [m
3

s2
] mass of a particle

v [m
3

s2
] microscopic particle velocity

Ci control volume of finite volume discretization
σk face of control volume
nσk outer normal vector of control volume’s face
F̄ n
σk

average flux through face σk at time step tn
ξL, ξR left and right Riemann state of some quantity ξ
ξ̌ correct Riemann solution at the interface of two control volumes
s [m

s
] shock speed given by Rankine-Hugoniot condition
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Operators
Throughout this thesis vectors and vector valued functions are typeset in bold font. As
the components of vectors are scalar, they are not bold like all other scalar quantities or
functions. Hence, the i-th component of the velocity vector u is given by ui.
Furthermore, the following operators appear in this work.

Gradient

Let ej be the j-th standard unit vector. For a scalar valued function S : Rd → R the
gradient is defined as

grad(S) := ∇S =
d∑
i=1

(∂xiS) · ei

Divergence

The divergence of a vector field F : Rd → Rd is defined as

div(F) := ∇ · F =
d∑
j=1

∂xjFj.

The extension of the divergence for a tensor field T : Rd → Rd×d is given by

div(T) := ∇ ·T =
d∑
j=1

d∑
j=1

(∂xjTji) · ei,

where ei denotes the i-th unit vector.

Dyadic product

Let u and v be two vectors, then the dyadic or outer vector product is denoted by

u⊗ v = uvT = (ui · vj)ij

Contraction

The tensor contraction for two tensors σ and κ is given by

σ : κ =
d∑
i=1

d∑
j=1

σijκij.

Although it is quite common to denote the gradient and the divergence operator by
grad(·) and div(·), respectively, the notation using the Nabla-Operator ∇ is preferred in
this work. If a functional expression depends solely on one variable the prime-notation is
used for derivatives in some cases. For example, the derivative of an integral curve with
respect to the variable ξ, is simply written by I ′(ξ).





Chapter 1

Introduction and state of the art

1.1 Granular material

Granular materials consist of macroscopic particles of different size and kind. Examples
range from avalanches and dunes in geophysics, grain filled silos in agriculture to powders
in the cosmetic and pharmaceutical industry. They are omnipresent in humans daily lives.
Many industrial and chemical processes have to deal with granular materials. The world-
wide annual production of grains and aggregates reaches 10 billion metric tons and their
processing consumes 10 % of all energy produced on earth. It is the most manufactured
material in industry after water [23]. For these reasons granular materials have been the
subject of intensive engineering research for many decades but fully understanding their
dynamic behaviour still poses a major challenge to engineering science and physics. The
natural and industrial processes described above can be quite complex, since granular
materials can behave similar to either fluids or solids. For the aforementioned processes,
the different regimes occur at the same time or consecutively. Due to the macroscopic size
of the discrete particles, Brownian motion has no relevance for the collective behaviour.
The dissipative forces acting on the particles, such as inelastic collisions and friction, lead
to different material properties than conventional fluids, solids or gases. For a granular
system to remain active, it needs to gain energy from external forces (gravity, electric or
magnetic fields), shear or vibration. Thermal fluctuations are insufficient to move grains
and therefore do not play a role for granular systems. Consequently, granular materials
exhibit metastable steady states far from equilibrium [1]. All these aspects contribute to
the difficulties one encounters in the modelling of granular flows.
The first true paper on granular matter appeared at the end of the eighteenth century
written by Charles de Coulomb. In the following century, other well-known authors like
Michael Faraday or Osborne Reynolds did first work in the field of granular flows. A good
review of the use, the physics, and the history of granular materials can be found in the
book of Duran [23].
Dealing with the aspect of simulation, there already exist several models to describe
and compute the behaviour of granular materials. Those models are summarised in the
upcoming subsections.

1



2 Chapter 1 Introduction and state of the art

1.1.1 Discrete models

Discrete models exploit that granular materials are composed of single particles. In the
discrete Element method (DEM) for example, the motion of each particle, associated with
index i, is resolved. This is typically done by integrating Newton’s equations of motion
for the translational and rotational degrees of freedom given by

mir̈i = Fi +mig,

Iiω̇i = ti.
(1.1)

In the set of equations (1.1), the position of particle i is ri, mi is the mass, Fi the total
force acting on this particle due to collisions, Ii the rotational inertia, ωi the angular
velocity and ti the total torque. The method has been proposed by Cundall in 1971 [16].
A precursor of the DEM is the Molecular Dynamics (MD) simulation, which was invented
in the late 1950’s. Today, the MD simulation is mainly used in the fields of chemical
physics and material science to compute the interactions of atoms and molecules. In the
MD simulation the rotational motion is ignored. Pretty often a simulation describing
particle systems using equations of type (1.1) is also called Discrete Particle Method
(DPM).

Each of these methods provides an accurate tool for the simulation of granular flows.
However, they are numerically rather costly, which, for the high number of particles
one encounters in industrial applications, would lead to excessive computational times
or technical requirements. Therefore, researchers develop other approaches to describe
granular flows. Despite the particles having macroscopic size, models like the Discrete
Element Method are called microscopic because they describe each single particle. Even
if these methods are costly, they are helpful, as they can partially substitute experiments.

1.1.2 Continuum models

Leaving the microscopic level, methods are derived via kinetic theory or by using phe-
nomenological arguments. Approaches that are based on kinetic theory are derived from
the Boltzmann equation. The Boltzmann equation is an equation of change of the particle
probability distributions function f(r,v, t). It is defined in such a way that

f(r,v, t)dvdr (1.2)

denotes the probable number of particles in the spatial volume element dr located at r
with a velocity in the range dv around v at time t. The Boltzmann equation assumes
the following form: (

∂t + v · ∇x +
1

m
F · ∇v

)
f = ∂tf |coll, (1.3)

where F is an external force and ∂tf |coll the collision term. The equation describes the
dynamics of a dilute granular gas and was devised by Ludwig Boltzmann in 1872. A
well-known modification for denser gases was devised by David Enskog. Both equations
differ just in the collision term. To derive equations like (1.3), the usual molecular-chaos
assumption is used, which neglects correlations between colliding particles. Due to this
fact, it can be a rather poor approximation for dense granular systems. More details
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about kinetic theory can be found in the book of Brilliantov and Pöschel [9].
First of all and independently from each other, Sydney Chapman and David Enskog found
a method to solve the Boltzmann equation using a perturbation expansion for f . The
so-called Chapman-Enskog theory is described in [12].
Another theory is the Quadrature-based method of moments (QMOM), where a system
of equations for the moments of the function f is solved. Information can be found in
the work of Fox [26].
From the Boltzmann equation (1.3), one generally derives equations for independent
hydrodynamic field variables by multiplying 1,v, and |v|2, respectively and integrating
equation (1.3) over the particle velocity v. Then, the field variables are the density ρ,
the velocity u, and the granular temperature T , which is the fluctuating kinetic energy.
They are defined by

ρ = m

∫
fdv,

ρu = m

∫
vfdv,

ρT =
1

2
m

∫
|v|2fdv.

(1.4)

Hence, one obtains a mass, momentum and an energy conservation equation, which gen-
erally take the form

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) = −∇ · σ + ρg,

∂t(ρT ) +∇ · (ρTu) = −σ : κ−∇ · q + ε,

(1.5)

where σ is the stress tensor, κ the strain-rate tensor, q the energy-flux vector and ε
the energy dissipation rate. This set of equations describes the behaviour of the whole
granular system and not all particles discretely. Therefore, this type of equations is called
hydrodynamic or macroscopic. In engineering sciences as well as for phenomenological
models it is common to call them continuum models. Summaries how to obtain hydro-
dynamic equations from kinetic theory can be found in the works of Dufty and Baskaran
[22] and Hrenya [44].

Another way to derive macroscopic equations from a microscopic or mesoscopic level
is presented in the work of Klar and Tiwari [49]. They start their derivations from
the so-called Liouville equation associated with a microscopic N-particle system for the
distribution function f (N), which is given by

∂tf
(N) +

N∑
i=1

(
∇xi · (ẋif (N)) +∇vi · (v̇if (N))

)
= 0. (1.6)

Using several assumptions like the assumption of chaos and the assumption that particles
are indistinguishable, one derives the mean field equation

∂tf + v · ∇f + Sf = 0, (1.7)
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in the limit case N →∞. It is a integro-differential equation for the particle distribution
function f as S is given in integral form defining the interaction information between the
particles. Macroscopic equations can be derived in the same way as previously shown for
the Boltzmann equation.
Furthermore, there are several phenomenological models where the continuum equations
are mainly postulated and fitted to one specific flow behaviour occurring in a particular
process. A popular model is the Bouchaud-Cates-Ravi Prakash-Edwards (BCRE) model,
which combines the behaviour of flowing and static grains to describe the thin avalanches
near the surface of sand piles [6, 7]. The model is a system of coupled differential equations
for the evolution of the thickness of the avalanche R and of the static part of the sand
pile h. Compactly, it can be written in the following form:

∂th = Γ(h,R)

∂tR = vd∂xR− Γ(h,R),
(1.8)

where Γ(h,R) is the exchange term between static and rolling grains and vd the downhill
velocity of the grains.

All introduced macroscopic methods can be used to describe the behaviour of liquids and
gases or granular systems in the dilute regime as previously mentioned. However, they
are not applicable to arbitrary industrial processes in general, in which the flow can come
to rest. Latz and Schmidt modified a system of hydrodynamic equations of type (1.5)
to cover the regime of fast dilute flows as well as slow dense flows, where the density
of the granular material is close to the maximum packing density [55]. A more detailed
description will be given in the upcoming chapter.

1.2 Segregation
As mentioned in the previous section, the modelling of granular flows is quite challenging.
Researchers developed different models to simulate the behaviour of granular materials,
but the field of granular physics is still a mixture of different modelling tools, concepts,
and phenomenological theories. After all, there is no general hydrodynamic theory as
the Navier-Stokes equations (NSE) for simple fluids, which can model a granular system
with the same accuracy. Quite good results can be acquired from discrete models like
DEM, but they are too costly to simulate entire industrial processes. With kinetic
theory there exists a unified description for dilute systems of rapid grains, but it is not
applicable for granular systems approaching close-packing density. For the latter, there
are some promising extensions of hydrodynamic systems and phenomenological models
as mentioned in the previous section.
Granular materials and simple fluids not only differ in their flow behaviour. There are
many other discrepencies, such as pattern formation or segregation. These phenomena
can differ when the interaction between particles exhibits additional features caused by
an interstitial fluid, magnetisation or electrical charge. An extensive review of granular
matter, pattern formation, and existing models is given in the work of Aranson and
Tsimring [1]. Most granular models use the assumption of equal-sized grains with equal
density. Consequently, they are not able to capture a phenomenon like segregation,
which is a very important phenomenon in nature and industrial processes. Segregation
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describes the demixing of poly-disperse granular matter. This effect is very helpful
in the mining industry but leads to problems in most other industrial areas. In the
pharmaceutical and the food industry, mixing processes using rotating tumblers are very
common. Here, segregation can degrade the quality of the products.
There are several requirements and aspects of influence for segregation to take place in a
granular system. Most important are the particle shape or differences in particle size or
density. The particles in the system need to be in motion and gravity or shear needs to be
present. Differences in particle size are the most perceived reason for segregation. Many
people already encounter this effect in the morning, while they prepare their morning
cereal - the larger grains always end up at the surface and the smaller ones on the ground.
The same happens with a bag of nuts. Therefore, segregation is also called the Brazil-Nut
effect. Today, the most accepted explanation for size segregation is the mechanism of
gravity-driven void-filling. It says that during motion, it is easier for small particles to
fall in void spaces in the granular system. Besides size segregation, density-segregation
plays an important role, which can be explained by buoyancy effects due to differences
in particle density. In general, small particles and particles with high material density
are likely to percolate through the granular system to the ground. Accordingly, large
particles can also segregate to the bottom of the system if they are heavy enough. This
is called reverse Brazil-Nut effect. A good review of segregation, containing theory and
experiments, is given by Kudrolli [51]. The review considers the intruder model (one big
particle between many small particles) in the convective and non-convective regime as
well as binary mixtures and also the influence of the direction of vibration.

The starting point for the derivation of most segregation models is to look at a simple
process. Typically, granular avalanches of small and large particles flowing down an
inclined plane serve as a common example. The equations are formulated such that x, y
and z denote the down-slope, the cross-slope, and the depth direction, respectively. A
first model to describe segregation was proposed in 1985 by Bridgwater et al. [8]. It is a
simple one-dimensional advection-diffusion equation for the solid volume fraction of the
small particle phase φ ∈ [0, 1]. The equation,

∂tφ+ ∂z
(
qφ(1− φ)2

)
= ∂z (D∂zφ) , (1.9)

acts only in the depth direction of a flowing granular system. The segregation flux in this
equation shuts off when only one particle phase is present. The parameter q defines the
segregation velocity and D the diffusion rate.
In 1988, Savage and Lun [71] used statistical mechanics and an information entropy
approach to derive a segregation model for a system of small and large flowing particles.
They assumed that due to shear between the different particle layers of an avalanche
small voids appear randomly. Particles of the above adjacent layer fall into these gaps,
where the smaller particles are statistically more likely to fill these void spaces than
the large particles. This gravity-driven mechanism is called “random fluctuating sieve”.
Additionally, particles can be squeezed out of their layer due to imbalances in contact
forces. This mechanism is size-independent and is called “squeeze expulsion”. Savage and
Lun combined these two mechanisms and derived a model for the small particle phase
with a net flux to the base of the flow. The main drawback of their model was, that
segregation happens even in the absence of gravity.
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A postulated model based on observations is given by Dolgunin and Ukolov [21] in 1995.
It is a two-dimensional time dependent model given by

∂tφ+ ∂x(φu) + ∂z(qφ(1− φ)) = ∂z(D∂zφ). (1.10)

Similar to the model of Bridgwater, the segregation stops when the concentration reaches
the values zero or one. They expressed q and D by further free parameters, which have
to be fitted to experimental data.
While the above-mentioned models mainly focused on size segregation in inclined chute
flows of granular solids, in 1997 Khakhar et al. [48] analysed density segregation in the
flowing layer of a granular system in rotating cylinders. After performing experiments,
they formulated a balance law for the segregation process. For their density segregation
model, the work by Dolgunin and Ukolov served as orientation. The presented advection-
diffusion models, especially the segregation flux, has a similar structure as given by equa-
tion (1.10).
In the last ten to fifteen years, mixture theory has been used extensively to develop mod-
els describing size segregation. In 2005 Gray and Thornton [37] proposed such a theory of
particle-size segregation in shallow granular free surface flows. The model is formulated in
terms of mass and momentum balance for the small and the large particle phase, respec-
tively. Also, the theory of Gray and Thornton is closely related to those of Bridgwater,
Savage & Lun, and Dolgunin & Ukolov, but the derivation is much more detailed and
extensive. The key assumption of their theory is a pressure allocation. They assume that
in an avalanche the big particles carry more of the load than the small particles.
Gray and Chugunov [36] modified the theory in 2006 and included a diffusion term that
accounts for the remixing of particles. With this first extension for the model of 2005
the structure of the segregation equation is identical to the one given by Dolgunin and
Ukolov (1.10), where a framework for the derivation of such an equation was still missing.
In 2011, Gray and Ancey [34] generalized the theory to a system of n phases. In the
recent past, Tunuguntla et al. [79] modified the Gray & Thornton model [37] to derive a
conservation law for particle-size and particle-density segregation. To achieve this, they
used an approach by Marks et al. [59] in 2012. Gray and Ancey [35] performed a similar
extension in 2015 and analysed the model in detail analytically. Therefore, they espe-
cially focused on the fact that in the case of density segregation the bulk flow is no longer
incompressible. Most of the mentioned models focus on gravity-driven segregation.
As opposed to this, Fan and Hill [24] derived a model for size segregation, which is not
based on the classical gravity-driven mechanism but induced by shear rates. Their model
segregates small particles to regions of low shear and the large particles in opposite di-
rection. Later on, their work was extended to include the gravity-driven mechanism [42].
A different formulation of the already mentioned theories to describe segregation is given
in the works by Larcher and Jenkins [53, 54]. They considered the evolution of segrega-
tion in dense granular flows of two particle types A and B differing slightly in size and
mass. They derived a segregation equation, which is given by

ρ∂tX + ρu∇X +∇ ·
[mAn

4
(1− 4X2)(ūA − ūB)

]
= 0. (1.11)

The equation is solved for the quantity X ≡ (nA − nB)/(2n), which is the difference in
the species number densities. They use an extension of kinetic theory to predict the
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mixture density ρ, mixture velocity u and granular temperature of the mixture, which
appears in the expressions for the relative velocities ūA and ūB, respectively.

The theory of Gray and his colleagues has a nice structure. In the non-diffusive case,
analytical solutions can be found using the method of characteristics. Hence, one provides
good insight in the process of segregation and the behaviour of the equations. Details
about the construction of this exact time-dependent solution and its stability can be
found in the works of Gray et al. [39] and Shearer et al. [74]. The shock formation and
wave breaking are discussed in Shearer and Giffen [73]. A short review of shock formation
and stability for equations of this type can be found in Shearer et al. [75]. Furthermore,
mixing zones and their evolution are analysed in McIntyre et al. [62]. For all these reasons
this type of model is used extensively in this work. Hence, a detailed description is given
in the next chapter.





Chapter 2

Mathematical models

In this chapter, all equations are derived to compute the flow behaviour of a granular
system and to describe the effect of segregation. In the first section, the granular flow
equations of Latz and Schmidt [55] are presented and explained. These equations serve as
the basis for the final model. In section 2.2, the theory of mixtures is introduced, which
is used to derive the segregation equation afterwards. Particular attention is paid to the
direction of the segregation process and its determination. To modify the granular flow
equations regarding the segregation effect, section 2.3 is addressed to the topic of random
packings of particle systems. Finally, all modifications to the granular flow equations are
pointed out and the final system of equations is summarised (section 2.4 and 2.5).

2.1 The granular flow model

The model of choice to describe the behaviour of flowing granular materials in this thesis
is a version of the Latz-Schmidt model similar to that which has been derived in [55].
The derivation starts from kinetic theory descriptions of the granular system and uses
Chapman-Enskog theory to obtain a hydrodynamic system of equations. There are mainly
two regimes that need to be taken into account when dealing with granular materials.
First, the fast dilute flow regime which is dominated by binary particle collisions. In this
case, the mentioned kinetic gas theory can be applied.
For arresting granular flows, the assumption of binary particle collisions is not valid any
more. This second regime is often called the static regime, where kinetic theory is no
longer applicable. To include the static regime, Savage [70] developed an extension to
the former model which is based on the theory of soil mechanics. This model has been
simplified by Latz and Schmidt [55]. The granular properties required for a simulation
with such a hydrodynamic model can be obtained from experiments. The simplifications
of the model reduce the number of parameters that needs to be fitted. That makes the
calibration of a system easier. Further improvements have been done by Zémerli [87].
The final hydrodynamic model is a hybrid model of kinetic theory and a soil mechanical
approach to capture the dilute flow regime of granular materials as well as the static
regime of arresting flows. The detailed derivations are far beyond the scope of this thesis.
The necessary information can be found in Brilliantov and Pöschel [9], Savage [70], and
Latz and Schmidt [55]. Details about the numerical treatment of the equations is given
in the work of Schmidt [72]. Nevertheless, the equations and constitutive relations are

9
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explained in this section. Another extensive summary of the granular model can be found
in the work of Neusius [65].

2.1.1 The compressible isothermal viscous Navier-Stokes
equations

The general framework of the hydrodynamic model consists of three equations. The first
equation (2.1) and the second equation (2.2) are the isothermal compressible viscous
Navier-Stokes equations (NSE). They are solved for the granular volume fraction c and
the momentum cu, where u defines the bulk velocity of the granular material.

∂tc+∇ · (cu) = 0, (2.1)
∂t(cu) +∇ · (cu⊗ u) = ∇ · σ −∇p+ F. (2.2)

The force term in the momentum balance (2.2) is assumed to be solely the gravitational
force F = cg. Further, p defines the pressure and σ the deviatoric stress tensor. In this
model an asymmetric stress-strain relation is used, i.e.,

σ = ηκ, (2.3)
κ = ∇u, (2.4)

where η defines a viscosity. The usage of the asymmetric stress-strain relation is a sim-
plification compared to the standard NSE. Typically, the symmetric version of the stress
is used. In an d-dimensional space, it is given by

σS = 2ηκS +

(
(ζ − 2

d
η)∇ · u

)
id, (2.5)

κS =
1

2
(∇u + (∇u)T ). (2.6)

The choice of the less complex asymmetric stress-strain relation is not arbitrary. It is
not exact, but it leads to a decoupling of the velocities in the numerical method which
is a benefit in the implicit handled parts [55]. The advantage of the symmetric stress-
strain relation in the NSE is that it ensures the conservation of angular momentum. This
advantage is not given for granular flows as the conservation cannot be physically observed
[65]. It is common that the equations are formulated and solved for the macroscopic
density ρ of the granular material. The granular volume fraction c := ρ

ρ∗ , which is used
here, is the scaled version of the granular density ρ by the constant material density of
the particles ρ∗. Hence, the volume fraction is a dimensionless quantity and it holds

c ∈ [0, cmax) and cmax ≤ 1. (2.7)

Further information about the granular volume fraction and its bounds are explained in
section 2.3.

2.1.2 The granular temperature equation

The third and last equation of the hydrodynamic system is the granular temperature
equation (2.10). The concept of a granular temperature is essential for continuum models
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of granular materials, because it considers the energy transport due to particle move-
ments and collisions. It is a measure of the random particle motion in the granular system.

There exists an analogy between the thermal motion of molecules in a gas and the
random motion of particles in a granular system. Hence, the definition of the granular
temperature T (2.9) is similar to the one of the thermodynamic temperature T. Based
on this similarity the granular temperature T can be defined in the following way:

The velocity v of each particle can be decomposed into a mean velocity with the bulk
material u and a fluctuating velocity

vf := v − u (2.8)

relative to the mean. Then, the granular temperature is defined by the mean square of
the fluctuating velocity of the particles

T :=
1

3
< v2

f > . (2.9)

Ogawa et al. [67] already postulated in 1980 that the mechanical energy in a granular
system is first transformed into random particle motion before it dissipates into internal
energy. More precisely, the energy transport in granular flows can be understood in the
following way. Energy can enter the system only due to work that is performed on the
system. Sources are body forces or the motion of system boundaries. Due to shear
work, some of the kinetic energy of the mean motion converts into granular temperature
which is the kinetic energy associated with the random particle velocities [46]. Finally,
the granular temperature dissipates into internal energy like thermodynamic heat. This
happens due to inelastic particle collisions. These dynamics can be described by a balance
law derived from the Boltzmann equation, as done in the work of Brilliantov and Pöschel
[9]. The final granular temperature equation is given by

∂t(cT ) +∇ · (cTu) =
3

2
(ηκ : κ−∇ · q)− εcT. (2.10)

It has the structure of a heat equation. More precisely, it is a convection diffusion equa-
tion. The diffusive part is given by the granular heat flux

q = −λ∇T, (2.11)

where λ denotes the temperature viscosity. Equation (2.10) has a source in the viscous
heating term 3

2
ηκ : κ and a sink in the last term, where ε is the energy dissipation rate.

2.1.3 Constitutive relations for a hybrid model

The granular system consists of three equations (2.1), (2.2) and (2.10). It is solved for
the unknowns c, u, and T . At this state of modelling, the expressions for the stress
tensor σ and the granular heat flux q are specified already, but the pressure p and the
transport coefficients η, λ, ε are still unknowns. To obtain a closed system, constitutive
relations for these variables need to be provided.
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The compressibility factor

Essential for the closures is the concept of a compressibility factor for granular materials.
It is an analogy to the compressibility factor for gases. In the field of thermodynamics,
the ideal gas law

pV = nRT (2.12)

gives a relation between the pressure, the density of the gas, and the temperature of
ideal gases. The compressibility factor is a correction factor to make the ideal gas law
applicable for real gases. For an ideal gas, it is equal to one.

To give a relation between the pressure, the volume fraction, and the temperature for
granular materials, which holds for a wide range of volume fractions, a compressibility
factor for granular materials is defined. In contrast to the thermodynamic version, the
compressibility factor for granular materials depends on the volume fraction of the gran-
ular system [5, 11, 55, 70].
If the local volume fraction of the granular system is in a physically valid state c < cmax,
the compressibility factor for granular materials is also essential to ensure that the solu-
tion of the granular system stays valid. It is the only position, where the bound cmax is
used in the set of equations. The factor is defined by g(c) : [0, cmax)→ [0,∞),

g(c) :=

(
1− c

cmax

)−1

. (2.13)

Although it is called compressibility factor, it is a non-constant function similar to the
Carnahan-Starling formula [11] which is an equation of state for the three-dimensional
hard sphere model [65].

In the dilute regime, the compressibility factor g is a measure for the frequency of binary
particle collisions. The number of particle collisions in a certain time interval influences
the most terms in the granular equations, as for instance, the transport coefficients. For
this reason, the compressibility factor is not solely used in the constitutive relation for
the pressure, as it is typically done for regular gases.
In the dense regime the kinetic assumption of solely binary particle collisions is not valid
any more. To model the granular flow behaviour in the dense regime, equation (2.13)
diverges for c → cmax which is the main difference to the Carnahan-Starling formula.
Bocquet et al. [5] showed that, with a strongly increasing compressibility factor g, the
numerical results in a dense regime are close to the experimental data as long as the
granular temperature does not fall under a certain value. In the dense regime one has
to add additional terms in the case of vanishing temperature, which will be shown later on.



2.1 The granular flow model 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

granular volume fraction c

co
m

pr
es

si
bi

lit
y

fa
ct

or
g
(c
)

Figure 2.1: Plot of the compressibility factor g(c) for cmax = 0.64. The compressibility
factor diverges as c→ cmax.

The kinetic closures

As previously mentioned, one has to distinguish two regimes where the model should be
applicable. Therefore, it is assumed that the closures for the pressure (2.14), the velocity
viscosity (2.15), the temperature viscosity (2.16), and the dissipation factor (2.17)

p = pk + py, (2.14)
η = ηk + ηy, (2.15)
λ = λk + λy, (2.16)
ε = εk + εy (2.17)

can be split in a purely kinetic and a so-called yield part. These parts are subscribed by
k and y, respectively.

Starting from kinetic theory, Garzó and Dufty [29] derived expressions for pk, ηk, λk, and
εk. The expression for the kinetic pressure is formulated as

pk := cg(c)T. (2.18)

Note that for low volume fractions, where g(c) is almost constant, equation (2.18) is
similar to the ideal gas law. For the kinetic parts of the transport coefficients, Bocquet
et al. [5] showed that there are simpler expressions than those derived by Garzó and Dufty
[29] which produce quantitatively correct results in shearing experiments. Furthermore,
Schmidt [72] showed that the simpler form together with the upcoming extensions is
applicable to various regimes of granular flow. The simplified kinetic parts for velocity
diffusion, temperature diffusion, and temperature dissipation are given by

ηk := η0c
√
Tg(c), (2.19)

λk := λ0c
√
Tg(c), (2.20)

εk := ε0

√
Tg(c). (2.21)
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All three relations are proportional to the compressibility factor g(c), so they diverge
in the same way for c → cmax. This is necessary and leads to quantitatively correct
simulation results which has been shown by Latz and Schmidt [55]. All parameters
subscribed by 0 are material dependent constants that normally have to be validated
by experiments. Some parameters can also be approximated via further relations. For
instance, the temperature dissipation constant ε0 can be computed with the help of the
grain radius r and the particle coefficient of restitution e

ε0 =
4√
πr

(1− e2)

(
1 +

3(1− e)(1− 2e2)

81− 17e+ 30e2(1− e)

)
(2.22)

as used in the work of Schmidt [72]. Further, Latz and Schmidt [55] used the relation

tan(ϕ) =
√
ε0η0 (2.23)

to determine η0 with the help of the internal friction coefficient ϕ.

With the kinetic relations presented so far, the system can be closed and it leads to good
results as long as the kinetic approximation of binary particle collisions is valid. For even
denser flows, like shear flows or gravity-driven flows, good results can be obtained [5]. In
these types of flows, enough energy enters the system that the granular temperature does
not decrease to zero. In those cases the kinetic pressure is able to stabilise the granular
system. As the kinetic pressure is proportional to the compressibility factor, this works
also for increasing volume fractions.

The extensions for the yield regime

If a granular system comes to rest, the granular temperature decreases. As it holds for
all materials, it contracts and the volume fraction increases. Strongly repulsive forces
appear as the particles in the system are permanently touching multiple neighbours. The
kinetic model does not account for these repulsive forces between the particles, except for
the compressibility factor g(c). However, if the granular temperature reaches zero faster
than the volume fraction reaches its maximal value cmax, the pressure term vanishes and
the system collapses. This collapse can be identified in the momentum balance (2.2) of
the system.

In a static system, where T = 0 and u = 0, the kinetic pressure term (2.18) and all
kinetic transport coefficients (2.19), (2.20), and (2.21) vanish. Hence, the gravitational
force cannot be compensated and the system will not stop contracting. This means that
an additional expression independent of the temperature T is required.

Furthermore, particle shape and friction are responsible for the fact that granular ma-
terials reach a stable state already for c = c0 < cmax (see section 2.3). Without further
forces acting on the granular system, the contraction must already stop for some tran-
sition volume c0. To overcome the collapse of the system the so-called yield pressure is
defined by

py := Θ(c− c0)T0(c− c0)g(c), (2.24)

where Θ(·) is the Heaviside step function and T0 the yield parameter. The yield pressure
has the same structure as the kinetic one for a constant temperature value T0 but



2.1 The granular flow model 15

only comes into play for volume fractions c ≥ c0. In this regime, the yield pressure
compensates the vanishing kinetic pressure for temperatures tending to zero.

As already mentioned, the yield pressure can compensate the gravitational force. Cer-
tainly, the pressure gradient also works orthogonally to the direction of the earth acceler-
ation. This force generated by the pressure gradient orthogonal to the earth acceleration
would flatten each heap of granular materials. This has to be compensated by the trans-
port coefficients. Schmidt [72] stated that this can be done under the following three
requirements:

1. The transport coefficients must not vanish with vanishing temperature.

2. The viscosity η has to diverge with vanishing temperature.

3. The crossover from the kinetic regime to the yield regime must not modify the
internal friction angle.

The derived yield expressions of the velocity diffusion, temperature diffusion, and tem-
perature dissipation are given by

ηy := ηk
py
pk
, (2.25)

λy := λk
py
pk
, (2.26)

εy := εk
py
pk
. (2.27)

Analogous to the kinetic expressions, the yield expressions are all of the same order. An
evidence that the given expressions fulfil the stated requirements can be found in [72].

Originally, the concept of yield expressions comes from the field of soil mechanics where
above a so-called yield surface only static deformations occur. In the field of soil me-
chanics, this regime is called plastic regime. First attempts to find a model combining
the kinetic and the plastic regime were done by Savage [70]. The yield expressions used
here were already used in the work of Schmidt [72]. They are simplified versions of those
defined by Savage [70].

2.1.4 Overview on the granular flow equations

This subsection shortly summarises the granular flow model. In the presented form,
the model serves as basis for further modelling steps throughout this thesis. The set of
equations consists of the continuity equation, the momentum balance, and the granular
temperature equation.
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The granular flow equations

∂tc+∇ · (cu) = 0, (2.28a)
∂t(cu) +∇ · (cu⊗ u) = ∇ · σ −∇p+ cg, (2.28b)

∂t(cT ) +∇ · (cTu) =
3

2
(ηκ : κ−∇ · q)− εcT. (2.28c)

To close the system, several relations hold:

The closure relations

The stress and the granular heat flux are given by

σ = ηκ, κ = ∇u, (2.29)
q = −λ∇T. (2.30)

The granular pressure fulfils

p = pk + py, (2.31a)
pk = cTg(c), (2.31b)
py = Θ(c− c0)T0(c− c0)g(c), (2.31c)

where the compressibility factor is given by

g(c) =

(
1− c

cmax

)−1

. (2.32)

The transport coefficients for velocity diffusion, temperature diffusion and tempera-
ture dissipation are given by

η = ηk(1 +
py
pk

), ηk = η0

√
Tcg(c), (2.33a)

λ = λk(1 +
py
pk

), λk = λ0

√
Tcg(c), (2.33b)

ε = εk(1 +
py
pk

), εk = ε0

√
Tg(c). (2.33c)

All coefficients are of the same order with respect to the granular temperature.

As already mentioned, the first two equations are similar to the compressible isother-
mal viscous NSE. In contrast to the density ρ of the granular material, the system is
solved for the volume fraction c. An asymmetric stress-strain relation is used. This is
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a simplification compared to the symmetric one which is normally used in the NSE.
However, there are several points that make this system a much more challenging
problem. For instance, there are the additional granular temperature equation and the
particular closures which have a kinetic and a yield part to make this system applicable
in the different regimes. In the dilute regime, the model is purely kinetic as the yield
pressure term py is equal to zero and hence, all yield parameters are equal to zero,
too. For volume fractions c ≥ c0, the yield parameters are non-zero which stabilises
the granular system for increasing volume fractions and decreasing granular temperatures.

In a flowing system, each quantity of system (2.28) has to be transported with the
material. Hence, each equation has a convection term on the left-hand side to transport
each quantity with the bulk velocity u computed in the momentum balance (2.28b).
Additionally, the pressure term ∇p in (2.28b) generates a velocity pointing from regions
of high pressure to regions of lower pressure. This prevents the system from compressing
above the maximal allowed value cmax.

A moving granular system stays in motion only if forces are present that perform work
on the system. Otherwise, the granular material will come to rest. Due to particle
collisions, the energy in the system diffuses. In the momentum balance (2.28b) and the
granular temperature equation (2.28c), the diffusion terms ∇ · σ and 3

2
(∇ · q) reproduce

this behaviour. In the dilute regime, the collisions are instantaneous and less frequent.
For increasing volume fractions and increasing granular temperatures, the number of
collisions increases and so the energy diffusion becomes larger. Hence, the diffusion
parameters η and λ are proportional to cg(c) and

√
T .

In the regime from dense to static granular materials, it is slightly different. Particle
interactions are dominated by multi-contacts and contacts over long time durations. In
this regime, it is not possible to accelerate one particle without accelerating a whole
layer of particles as well. Therefore, large forces are necessary which has to increase
even more for increasing volume fractions. This static friction of the adjacent particles
is modelled by a large diffusion which is given in the yield terms of the model since
they are proportional to (c − c0)g(c). The main difference to the dilute regime lies
in the the granular temperature relation. If in a dense or static system the random
motion of particles increases, the static friction decreases. Therefore, the yield terms are
proportional to 1√

T
.

The magnitude of the granular temperature in equation (2.28c) depends on the ratio of
generated temperature by shear work and its dissipation by inelastic particle collisions.
Thus, the source and the sink term are essential for the granular temperature equation.
The source is defined by the viscous heating term ηκ : κ which converts some of the
kinetic energy of the bulk flow into kinetic energy of random particle motion. In (2.29),
one can see that the viscous heating term states that any gradient in the granular velocity
quadratically increases the granular temperature. If there are no forces acting on a moving
granular system, it will rapidly come to rest due to the inelastic particle collisions. To
model the constant loss of energy from the system, the sink εcT is necessary.
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2.1.5 Boundary conditions for the granular flow equations

In this subsection, the mainly used boundary conditions for the granular model are
sketched. The use of partial slip conditions, which are necessary for real applications,
are explained in more detail. The given information and the notations used are mainly
adopted from [65].

The boundary conditions for the granular volume fraction c at in- or outflow boundaries
clearly depend on the application. However, for solid walls, a zero Neumann condition
is used. An advective transport through the solid walls is omitted by the choice of the
boundary conditions for the velocity field u.

The same holds for the granular temperature T . Again, the advective flux is controlled
by the velocity field. Hence, the boundary condition is almost always Neumann zero.
This also ensures that there is no unwanted diffusive flux through the boundaries. It
is important to note that temperature dissipates through the particle collisions with
the solid walls, but this is already included in the terms of the granular temperature
equation. If there are velocity differences between wall and granular material, shear
forces increase the granular temperature which itself increases the dissipation factor ε.

Since there are Neumann zero conditions used for the granular volume fraction and also
for the granular temperature, there are no pressure gradients at the solid walls. This
is directly given due to the constitutive relation for the granular pressure (2.31). Nev-
ertheless, strong pressure gradients can occur slightly inside the domain if the granular
material compresses.

The boundary conditions for the granular velocity u are more particular. To handle the
boundary conditions for the velocity, the velocity is split into a normal and a tangential
component. The normal component usually is relevant for inflow boundaries, defined
by a Dirichlet condition, and outflow boundaries, mostly the Neumann zero condition.
For solid walls, a Dirichlet condition can be set at the tangential part to model friction
between granular material and walls. A Dirichlet zero condition leads to the well-known
no-slip condition which corresponds to infinite friction between granular material and
walls. The other extreme is the slip condition which refers to walls that have no friction
at all. For real applications both, slip and no-slip, are not useful as they are not physical.
Therefore, a partial-slip condition is used which is defined as follows:

Let 0 ≤ ϕwall ≤ π
2
be the wall friction angle, where ϕwall = 0 corresponds to the slip case

and ϕwall = π
2
to the no-slip case. Based on the wall friction angle, a tangential boundary

velocity utB of the granular material is defined, which is used in the computations for
the velocity diffusion term. According to a given wall point with tangential wall velocity
utW , there is also an interior point with interior velocity utI . The infinitesimal distance
between those two points is denoted by h. Assuming that the boundary velocity depends
linearly on the wall velocity and the interior velocity, the partial-slip condition can be
defined by

utB = ϑutI + (1− ϑ)utW for some ϑ ∈ [0, 1]. (2.34)
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Figure 2.2: Sketch of the no-slip (left), partial-slip (middle) and slip condition (right) to
approximate the velocity profile of the granular material. The velocity profile is depicted in
green and the different approximations for the velocity profile are depicted in red.

The slip and no-slip conditions are realised by

utB =

{
utI for ϑ = 1 (Slip)
utW for ϑ = 0 (No-slip).

(2.35)

The boundary velocity cannot attain one fixed value. It depends on the relation of the
normal wall stress

Wn := nT · pI · n = p (2.36)

and the tangential wall stress

(W t)i := η

∣∣∣∣∂ui∂n

∣∣∣∣ = η
(utI)i − (utW )i

h
. (2.37)

From these stress terms, an expression for utB can be found. In general it holds, if the
tangential wall stress is locally less than the normal wall stress, i.e.,

(W t)i ≤ Wn tan(ϕwall), (2.38)

the material still sticks to the wall and one has no-slip. For a tangential wall stress
greater than the normal stress, the material slides. Fulfilling equation (2.38) with equality
defines the point of transition.

One can define the modified tangential wall stressW t
B on basis of the tangential boundary

velocity by

(W t
B)i := η

(utI)i − (utB)i
h

. (2.39)

In the no-slip case, the boundary velocity needs to be chosen in such a way that condi-
tion (2.38) holds for (W t

B)i as long as it holds for (W t)i. Furthermore, it should hold

(W t
B)i =Wn tan(ϕwall) (2.40)
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for (W t)i >Wn tan(ϕwall) to approximate the correct material wall friction that is defined
by the value of ϕwall.
Exactly this can be fulfilled defining the tangential boundary velocity by

(utB)i := (utI)i +
h

η
min{Wn tan(ϕwall),W t

i}sgn((utW )i − (utI)i). (2.41)

2.1.6 The connection between temperature and shear rate

Shear work, performed on the granular system, generates granular temperature. The
shear work is a product of the shear stress and the strain rate, which is simply the
velocity gradient of the granular velocity. In certain cases, it is helpful to introduce the
shear rate

γ̇ :=
√
κ : κ. (2.42)

With definition (2.42), the viscous heating term in the granular temperature equa-
tion (2.10) is simply given by 3

2
ηγ̇2. The shear rate in the granular system can be ap-

proximated by the granular temperature. In a stationary uniform state, the equation for
the granular temperature (2.10) can be written as

3

2
ηγ̇2 = εcT. (2.43)

The temperature equation is in the equilibrium between viscous heating and dissipation
[87]. With the expressions (2.33a) and (2.33c), the shear rate is proportional to the square
root of the granular temperature

γ̇ =

√
2

3

ε0

η0

T . (2.44)

The expression (2.44) will be used for the derivation of the segregation equation in the
upcoming subsection 2.2.2.

2.2 The segregation equation
In this section, the theory of mixtures is introduced. Afterwards, the segregation equation
is modelled to extend the system of granular flow equations presented in the previous
section. The framework of mixture theory serves as a tool for the derivation of the
segregation equation. Especially, the direction of the segregation process is examined in
some detail.

2.2.1 Mixture theory

Most commonly, mixture theory is used to model mixtures of different fluids, like oil
and water. Each fluid defines one constituent or phase. In the case of dry granular
materials, the phases are represented by the different particle types. Consider a mixture
M of n different constituents Mν . One assumes that concerning the motion of each
constituent, the balance laws hold for each constituent Mν and the whole mixture M.
Further, one assumes that all constituents are simultaneously occupied at every point in
the mixture. All quantities are expressed in terms of partial variables, defined per unit
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mixture volume. Denoting the velocity of constituentMν by uν = (uν1, u
ν
2, u

ν
3)T and the

partial mass density by ρν , the mass balance is given by

∂tρ
ν +∇ · (ρνuν) = mν , (2.45)

where mν defines the mass transfer between the constituents. This mass transfer can
happen due to chemical reactions or especially in the framework of particles due to amal-
gamation and breakage. As the total mass of the mixture should be conserved, the mass
balance for the whole mixtureM is given by

∂tρ+∇ · (ρu) = 0, (2.46)

where ρ is the bulk density and u = (u1, u2, u3) the bulk velocity of the whole mixture.
Summing over all constituent equations,

∂t

n∑
ν=1

ρν +∇ ·
n∑
ν=1

(ρνuν) =
n∑
ν=1

mν , (2.47)

and comparing the sum to the whole mixture mass balance (2.46), one obtains relations
between the constituent and the bulk variables. Hence, the bulk density and the bulk
velocity are given by

ρ =
n∑
ν=1

ρν and ρu =
n∑
ν=1

(ρνuν). (2.48)

Additionally, it holds
n∑
ν=1

mν = 0, (2.49)

which implies that the whole system neither loses nor gains mass. The momentum balance
of the constituents and the whole mixture are given by

∂t(ρ
νuν) +∇ · (ρνuν ⊗ uν) = ∇ · σν + ρνbν + βν , (2.50)
∂t(ρu) +∇ · (ρu⊗ u) = ∇ · σ + ρb, (2.51)

where σ, σν are the respective stress tensors, b, bν the body forces per unit mixture mass
and βν is the interaction force on phase ν by the other constituents. Summing over all
constituent equations (2.50), and comparing the sum with the whole mixture momentum
balance (2.51), gives the following relations for the body force, the stress tensor and the
interaction forces:

n∑
ν=1

ρνbν = ρb, (2.52)

n∑
ν=1

σν = σ, (2.53)

n∑
ν=1

βν = 0, (2.54)

where equation (2.54) ensures Newton’s third law. An analogous procedure can be done
for the energy balance and the entropy inequality. Depending on the constitutive rela-
tions one can gain a system of equations describing the behaviour of the mixture. An
introduction to mixture theory can be found in Romano and Marasco [69]. More details
of the general modelling approach can be found there.
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2.2.2 Deriving the segregation equation

In this section, a model extension for the granular flow system from section 2.1 is derived.
Therefore, it is assumed that the granular system consists of small and large particles.
The extension describes the segregation process in such a bi-disperse system. The focus
lies on avalanche-like flows of dry granular materials. In such a framework the segregation
is a gravity-driven process that depends also on the shear rate [8]. Further, the effect
of air on the granular material is negligibly small. Hence, the air phase just plays a
passive role. It fills the void spaces but does not influence the granular material. Mind
that with this restriction, it cannot generally be expected to obtain correct behaviour
for frameworks like fluidised beds, where the process is driven by air. For the derivation
process of the segregation equation, the framework of mixture theory is used.

Using the classic definitions of mixture theory, the whole mixture M consists of three
constituents, the small particlesMs, the large particlesMl, and the air phaseMa which
surrounds the granular material and fills the void spaces between the particles. The
volume occupied by constituent ν is denoted by φν and it holds

φs + φl + φa = 1. (2.55)

Consequently, the volume occupied by granular material is given by

φs + φl = c. (2.56)

In literature, it is often assumed that in a granular avalanche the volume of air φa is
constant. With the additional assumption of a passive air phase, it is argued that the air
phase can be incorporated into the particle phases [37, 36, 34, 76, 81]. The mixture can
be approximated by the particle phases which yields

φs + φl = 1. (2.57)

Nevertheless, in this work, it is assumed that the volume fraction of the air phase can
vary locally. This is consistent with the granular flow model which is compressible. For
fulfilling (2.55), the air volume φa must change according to the granular volume c.
Certainly, the volume fraction of a particle phase relative to the granular material can be
defined analogously to φν by

φ̂ν :=
φν

c
. (2.58)

Throughout this thesis, φ̂ν is simply called relative volume fraction of phase ν without
further mentioning that it is relative to the granular volume. With definition (2.58), the
saturation condition (2.56) rewrites

φ̂s + φ̂l = 1. (2.59)

As previously mentioned, the quantities in mixture theory are expressed in terms of partial
variables. These are linked to intrinsic variables, defining the quantity per unit volume
of the pure phase. In general, the partial density ρν of constituent ν is linked by a volume
fraction scaling to the intrinsic density ρν∗, whereas the partial and intrinsic velocities
are the same,

ρν = φνρν∗, uν = uν∗. (2.60)
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These are permissible relations as shown in the work of Morland [64]. Using this scaling,
equations can easily be expressed by volume fractions instead of densities. Based on
the assumptions of the mixture theory framework, a mass balance of type (2.45) and a
momentum balance of type (2.50) for each phase is given. The exact form of the several
terms in (2.45) and (2.50) depends on the following assumptions the model is restricted
to:

1. The particles in the granular system do not amalgamate or break. Clearly, neither
particles can become air nor vice versa. This implies that the mass transfer variable
is equal to zero, mν = 0 ∀ν ∈ [s, l, a].

2. Just as stated for the granular flow model, the body force on each phase is solely
the gravitational force, bν = g ∀ν ∈ [s, l, a].

3. The stress tensors for the particle phases in the segregation process are pressure
dominated. They are approximated by lithostatic pressure fields, i.e. σν = −pνI
[38].

4. The amount of stress in the mixture coming from air is negligibly small, i.e. σa = 0.

5. There is no interaction force between the particle phases and the air phase, i.e.
βa = 0.

With the assumptions made so far, the balance laws (2.45) and (2.50) for a particle phase
ν are given by

∂tρ
ν +∇ · (ρνuν) = 0, (2.61a)

∂t(ρ
νuν) +∇ · (ρνuν ⊗ uν) = −∇pν + ρνg + βν . (2.61b)

Especially, assumptions four and five state that one can focus on the particle phases and
the combined granular system as mixture, as it is usually done in literature. With the
fourth assumption, σa = 0, the pressure of the whole mixture is equal to the granular
pressure as equation (2.53) reduces to

p = ps + pl. (2.62)

Furthermore, assumption five states that the relation of the interaction forces (2.54)
reduces to

βs + βl = 0. (2.63)

This means, there is no influence from air on the particle phases, besides its occupied
volume. For this reason, the expression ’mixture’ is used for the combination of the small
and the large particle phase.

Starting from the balance law (2.61a) for one of the particle phases ν, one can derive
an equation describing the change of this constituent. Introducing the relative velocity
between phase ν and the bulk

ūν := uν − u, (2.64)
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the mass balance can be rewritten in the form

∂tρ
ν +∇ · (ρνu) = −∇ · (ρνūν). (2.65)

In this form, the left-hand side of equation (2.65) describes the transport of particle phase
ν with the bulk velocity u. The right-hand side represents the segregation. It is a motion
relative to the bulk with velocity ūν . Segregation is a result of the interaction between
the small and the large particles. This interaction is given in the momentum balance,
especially due to the interaction force βν . Hence, an expression for the relative velocity
can be obtained from the momentum balance (2.61b). With the assumption that the
partial densities and momenta become quasi-steady even before the segregation starts
[81], the momentum balance (2.61b) reduces to

0 = −∇pν + ρνg + βν . (2.66)

Summing (2.66) over all constituents ν implies that the pressure field is lithostatic,

∇p = ρg, (2.67)

as stated earlier. The key idea to derive an expression for the relative velocity is to
introduce a pressure scaling that differs from the standard volume fraction scaling as it
is used for the densities. The scaling, where the partial pressure depends linearly on the
bulk pressure

pν = f νp ν ∈ {s, l}, (2.68)

was formulated by Gray and Thornton [37]. The idea arises from the assumption that
small particles carry less of the overburden pressure than the large particles while they
percolate to the ground of the mixture. The factor f ν determines the proportion of the
load carried by phase ν. Equation (2.68) automatically implies that∑

ν

f ν = 1. (2.69)

Further, the proportionality factor f ν must fulfil the condition if solely one of the phases
is present, it has to carry all of the load,

f ν = 1 if φν = 1 ∀ν. (2.70)

Similar to [37] the expressions for each proportionality factor are chosen in such a way
that they satisfy the conditions (2.69) and (2.70), i.e.,

f l = φ̂l +Bφ̂sφ̂l, (2.71a)

f s = φ̂s −Bφ̂sφ̂l. (2.71b)

The expressions in (2.71) are not unique. The chosen ones are the simplest but non-
trivial expressions, where B is a non-dimensional magnitude. Gajjar and Gray [27] used
different expressions in their work to model asymmetric flux functions.
Furthermore, an expression for the interaction force βν is required. This expression is
modelled by

βν = p∇f ν − ρνµ

γ̇
(uν − u)︸ ︷︷ ︸

ūν

ν ∈ {s, l}, (2.72)
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which satisfies the summation condition (2.63). The last term of expression (2.72) is
a Darcy term, where µ is the coefficient of inter-particle drag. Its nature is poorly
understood, thus it is basically chosen to be constant in literature. The Darcy term was
already introduced by Morland [64] after observations that the segregation process of
particles shows an analogy to the percolation of fluids through porous solids. The first
term ensures that the percolation is driven by intrinsic than partial pressure gradients as
in Darcy’s law [37]. The segregation depends on the shear rate γ̇. It is inversely propor-
tional to the drag term as an increase in the shear rate decreases the friction between the
particle layers. The first time, it appeared in a gravity-driven segregation model in the
work of Marks et al. [59] but often, it is chosen to be constant in literature. It is allowed
to vary in this work depending on the flow field. The expression for the interaction
term (2.72) is the established form in the literature when dealing with gravity-driven
segregation models [37, 27, 34, 79].

It is possible to extend the interaction term (2.72) on the right-hand side by

− ρd∇φ̂ν , (2.73)

such that it accounts for diffusive remixing. This extension of the interaction term was
first given in 2006 by Gray and Chugunov [36]. It drives particles of phase ν from areas
of high to areas of low concentration. The diffusion coefficient d determines the strength
of the remixing force which generally is assumed to be constant. Note that the remixing
term must depend on the relative volume fraction φ̂ν instead of φν like in the work of
Gray and Chugunov [36], because the granular material is compressible. Otherwise a
gradient would appear in a perfectly mixed granular system at every point where the
ratio of granular material and air changes, i.e., ∇c 6= 0. In this work, the remixing term
is of low interest.

With the definition of the interaction term (2.72) and the pressure scaling (2.68), equation
(2.66) is given by

0 = −f ν∇p+ ρνg − ρνµ

γ̇
ūν . (2.74)

In the most works (e.g. [8, 21, 24, 34, 36, 37, 53]) a segregation equation is derived for
avalanches flowing down inclined planes with a constant angle. Further, it is assumed
that the avalanche is incompressible with a constant height. In these gravity-driven shear
flows, shear bands appear that are parallel to the inclined plane. In such a framework, the
coordinate system can be rotated such that the avalanche flows in the positive x-direction
and the segregation solely takes place in the z-direction. Especially, this means that the
segregation direction will not change, neither over time nor locally in the spatial domain.
To model the segregation process in such a case, one can focus solely on the z-direction
as it has been done in the already mentioned literature.
In this work, the segregation equation should be coupled to the granular flow model where
arbitrary flow directions are possible. Therefore, the modelling done here should be more
general. Assume that the segregation direction at a point in space is given by the vector
ds. This vector spans a one-dimensional subspace of Rd, denoted by D. To focus on this
subspace one can define the projection P : Rd → D by

Px :=< x,ds > ds. (2.75)
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To be more precise, the direction of the segregation is perpendicular to the shear layer
which depends on the velocity field.
Applying the projection on equation (2.74) gives

0 = −f νP∇p+ ρνPg − ρνµ

γ̇
Pūν , (2.76)

due to the linearity of P. As the pressure field is lithostatic (2.67) and due to the volume
fraction scaling of the densities each term in (2.76) is linear in ρ∗. Dividing by the intrinsic
density leads to

µ

γ̇
φνūν = (φν − cf ν)Pg. (2.77)

Note that the relative velocity ūν is the segregation velocity. It lies in the image of the
projection function P and therefore per definition it holds

Pūν = ūν . (2.78)

Finally, using the expressions for the load functions (2.71) the relative velocities for the
small and large particle phases are given by

ūs =

(
Bγ̇

µc
Pg

)
φl, (2.79a)

ūl = −
(
Bγ̇

µc
Pg

)
φs. (2.79b)

With the expressions for the relative velocities (2.79), the balance law (2.65) modifies to

∂tφ
s +∇ · (φsu) = ∇ ·

(
Sslφs

φl

c

)
, (2.80a)

∂tφ
l +∇ · (φlu) = ∇ ·

(
Slsφl

φs

c

)
, (2.80b)

respectively. The segregation velocity is defined by

Ssl := −Bγ̇
µ

Pg, (2.81)

and it holds Sls = −Ssl.
As previously mentioned, the shear rate is assumed to be non-constant in this work.
It should depend on the state of the granular flow model. This can be done using the
granular temperature. In section 2.1.6 the relation between the shear rate γ̇ and the gran-
ular temperature T has been shown. With the derived expression (2.44) the segregation
velocity can be rewritten as

Ssl = − B
µ

√
2

3

ε0

η0︸ ︷︷ ︸
Ssl0

√
TPg = −Ssl0

√
TPg, (2.82)

where the segregation rate Ssl0 is constant. In general, the segregation rate depends on the
properties of the respective granular material. Therefore, the segregation rate needs to
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be fitted to the real granular system. Furthermore, Ssl0 is expected to be positive. In the
upcoming chapter, simplified versions of the segregation equation are analysed. In these
cases, there is no need to distinguish between segregation rate and segregation velocity.
To gain a positive segregation velocity from a positive segregation rate, the negative sign
convention in the definition of the segregation velocity (2.81) has been chosen.
To compute the behaviour of a granular system of small and large particles, it is not
necessary to solve the respective balance law for both particle phases. Since the granular
volume fraction c is known from the granular flow equations, it is enough to solve only
one phase balance. In this work, the small particle phase is chosen. With the help of
the saturation condition (2.56) the volume fraction of the large particle phase can be
eliminated from the balance law, i.e.,

∂tφ
s +∇ · (φsu) = ∇ ·

(
Sslφs

(c− φs)
c

)
. (2.83)

The structure of the derived segregation equation (2.83) is similar to the presented models
in section 1.2. The main differences are the non-constant granular volume fraction c and
the dependence on the granular temperature T , which is non-constant as well. Not least,
this will change the way the equation has to be handled numerically as it will be shown
in the upcoming chapters. If one assumes constant granular temperature and constant
granular volume fraction in the granular system the model reduces to the original model
of Gray and Thornton [37].

Due to the restriction to the small particle phase, the superscript s is dropped for the
upcoming chapters to simplify the notation. The superscripts are only used in specific
sections where it helps to avoid confusion. From now on, the segregation equation for the
bi-disperse particle system is given by

The segregation equation

∂tφ+∇ · (φu) = ∇ ·
(
Sslφ

(c− φ)

c

)
, (2.84)

with
Ssl = −Ssl0

√
TPg. (2.85)

2.2.3 The segregation direction

For the modelling of the segregation equation, it has been assumed that a vector ds
is given that spans a subspace of Rd in which the segregation takes place. To solve
the segregation equation such a vector needs to be found. It is well known that for
gravity-driven shear flows, the segregation happens in the direction perpendicular to the
local shear layer [8, 37, 54]. The shear depends on the velocity field of the granular
system u or more precisely on the gradient of the velocity ∇u, such that ds = ds(∇u).
The question is: How to find the segregation direction?



28 Chapter 2 Mathematical models

σ1

σ2

σ3

σ1

σ2

σ3

σ1

σ2

σ3

Figure 2.3: Orientation of the sectional planes of the principal shear stresses τ12 (left), τ23

(middle), and τ13 (right). The normal vector to the sectional plane of the shear stress τij is
the angle bisector of the eigenvectors σi and σj .

To solve this problem a concept from the field of mechanics is adapted. Assume a me-
chanical body under some stress. The Cauchy stress tensor σ describes the stress state of
this mechanical body. From this stress tensor, it is possible to compute the shear stress
acting in a sectional plane of the body. Therefore, an eigenvalue-eigenvector problem
needs to be solved. In the following, the procedure is presented for d = 3. The 2d case is
an even simpler analogue. Details of the presented concept can be found, for example, in
the work of Wu [86].
Assume that the stress tensor σ is a symmetric 3×3 matrix. Then, the principal stresses
are the real eigenvalues

σ̄1 ≥ σ̄2 ≥ σ̄3. (2.86)

The corresponding normalised eigenvectors, given by σ1, σ2, and σ3, are mutually or-
thogonal. From the eigenvalues of the stress tensor, the principal shear stresses τ12, τ23,
and τ13 are given by

τ12 =
|σ̄1 − σ̄2|

2
, τ23 =

|σ̄2 − σ̄3|
2

, τ13 =
|σ̄1 − σ̄3|

2
. (2.87)

These principal shear stresses act in sectional planes, where the normal vector to the
plane of the shear stress τij is the angle bisector of the eigenvectors σi and σj. The ori-
entation of the sectional planes are depicted in Figure 2.3. Under assumption (2.86) the
maximal shear stress τmax = τ13 acts in the sectional plane depicted right in Figure 2.3.
The same procedure can be done with Cauchy’s strain tensor which is given by the
gradient of deformation. The principal strains can be computed and from this, the
principal shear strains to find the planes where material failure happens. If the planes
of the principal shear stress and the principal shear strain coincide, depends on the
stress-strain relation.

Adapting this procedure to the framework of granular flows, the segregation direction
can be computed by using the symmetric versions of the stress and the strain as given in
(2.5) and (2.6). From the stress-strain relation, it can be deduced that the eigenvectors
of stress and strain are equal. The corresponding eigenvalues might be different but have
the same order in size. Hence, the planes of principal shear stress and principal shear
strain coincide. As solely the orientation of the shear planes is of interest, it is enough
to look at the symmetrised velocity gradient of the bulk flow which appears in the strain
tensor (2.6) and is given by

κ̃ := ∇u + (∇u)T .
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The orientation of the principal shear planes is known from the computed eigenvectors
κ̃i of κ̃. Searching the maximal shear stress τmax by comparing combinations of the
eigenvalues κ̄i, as formulated in (2.87), yields the respective shear plane. As the segrega-
tion direction is perpendicular to the shear layer, it is assumed that the normal vector
to the shear plane, belonging to the largest principal shear, spans the space where the
segregation happens. This vector is defined to be ds.

σ2

−σ2

−σ1

σ1

Figure 2.4: For solid mechanical bodies, the principal stress forces acting in the depicted
planes are equal.

Unfortunately, normalised eigenvectors are not unique with respect to the algebraic sign.
Hence, the planes depicted in Figure 2.3 are not unique. For mechanical bodies, the
forces acting in the defined planes between, for example, all combinations of ±σ1 and
±σ2 are equal (see Figure 2.4). This is not the case for the granular system as it is not one
solid body. Hence, it is assumed that the shear plane is the one which is mostly parallel
to the velocity field. Summarising, Algorithm 2.1 states the procedure to compute the
segregation direction.

Algorithm 2.1
1. Compute the largest eigenvalue κ̄max and the smallest eigenvalue κ̄min of κ̃ =

(∇u + (∇u)T ).

2. Compute the corresponding eigenvectors κ̃max and κ̃min.

3. Define ds = κ̃max ± κ̃min depending which is mostly orthogonal to u.

Results of the presented computation scheme are illustrated in the simulation chapter in
section 5.1. Several plots of different applications and flow fields are shown, depicting the
computed segregation direction for each finite volume.

2.3 Maximum volume fraction

This section focuses on the maximum volume fraction for particle systems. The packing
of particle systems is analysed and the so-called random close packing and the random
loose packing are introduced. As already mentioned in section 1.1, the granular volume
fraction c in the granular model is bounded by the value cmax ≤ 1 which gives the
maximum space the granular material can occupy. For the most particle systems, the
value of cmax is really less than one. A value of one can, for example, only be reached
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for ordered cubic particles but even cubes will not reach this value when they are placed
randomly in a given volume. Therefore, for real applications, the correct value for the
stated maximum volume fraction is exactly the mentioned random close packing as one
will see in this section.

2.3.1 Packing of particles

The dense packing of particles, or objects in general, is a relevant topic for several hun-
dreds of years. A system of spherical particles is not able to fill the whole allocated
space of a given volume. There are always void spaces left due to the particles’ structure.
Already 1611, Johannes Kepler claimed that the maximum volume fraction of spherical
objects of the same size is π

3
√

3
≈ 0.7405. For such a system of equal spheres Carl Friedrich

Gauß proofed in 1831 that this is the best value that can be reached for any regular lattice
(see Figure 2.5). It is also independent of the spheres’ radius.
The 2d equivalent for discs with equal size reaches a maximal value of π

2
√

3
≈ 0.9069.

Joseph Louis Lagrange proved this in 1773 for the regular case (see Figure 2.5). Many

Figure 2.5: Sketch of the optimal packing of equal discs in 2d (left) and an optimal packing
of spheres in 3d (right). Approximately, the occupied volume for discs reaches a value of
90 %, whereas spheres reach a value of 74 %.

years later, general proofs were given by Hales et al. for the 3d case and by Tóth for the
2d variant [65].
In nature or industrial processes, the above-given value can never be achieved. Today, it
is experimentally proven that any mono-disperse granular system of randomly distributed
spherical particles can reach a packing value of approximately 64 %. This state is called
random close packing (RCP). In general, additional forces like pressure or vibration are
necessary to reach this value, due to the inter particle friction. Mechanically, a system
becomes stable already for lower volume fractions. This loosest stable packing is called
random loose packing (RLP). In the case of ideal, spherical, frictionless particles the RLP
coincides with the onset of the RCP [52]. The packing fractions for the RCP and RLP are
denoted by φrcp and φrlp, respectively. Note that both, the RCP and the RLP, depend on
the shape of the particles but as long the system is mono-disperse, they have a constant
value.
The random close packing of bi-disperse granular mixtures differs from a mono-disperse
one. In a system of small and large particles, the smaller particles can fill the void spaces
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Figure 2.6: Sketch of dense packed large particles and loosely packed small particles (left)
and vice versa (right).

between the larger particles. As a consequence, a bi-disperse system can be packed denser
than a mono-disperse system.

2.3.2 Random close packing for binary mixtures

The maximum packing value crcp of a bi-disperse particle system depends on both the
radius ratio R = rs

rl
and the proportion of small and large particles. Furthermore, the

packing of such a binary mixture cannot be given in general, but it is possible to give an
analytic expression for an upper bound.

Binary mixture for size ratios approaching zero (R→ 0)

The maximum value for the upper bound can be expressed by the volume fraction of a
phase ν relative to the granular material c denoted by φ̂ν . To find the upper bound, one
assumes that the particle types are that much different in size that each sub-system does
not "influence" the packing of the other one. Then, there are two cases to look at.

First, one assumes that the large particles are jammed with φl = φrcp and the small
particles are packed in between (see Figure 2.6, left). Then, it holds

c = φs + φrcp. (2.88)

This can be rewritten in terms of the particles’ relative volume fraction (2.58)

c = cφ̂s + φrcp (2.89)

⇔ c =
φrcp

1− φ̂s
. (2.90)

In the second case, one assumes that the small particles are packed densely, i.e., φs = φrcp
and the large particles are packed loosely (see Figure 2.6, right). Then,

c = φl + (1− φl)φrcp. (2.91)

Again with (2.58), one gains

c = cφ̂l + (1− cφ̂l)φrcp (2.92)

⇔ c =
φrcp

(1− φ̂l(1− φrcp)
. (2.93)
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With the saturation condition for the relative volume fractions

φ̂s + φ̂l = 1 (2.94)

equation (2.93) can be written in terms of φ̂s instead of φ̂l. Hence, the maximum packing
for the bi-disperse system is given by

crcp = min

(
φrcp

1− φ̂s
,

φrcp

(φ̂s + (1− φ̂s)φrcp

)
. (2.95)

In principle, the derived expression (2.95) suits for particles of arbitrary shape or surface
roughness as long as one component of the mixture is much larger than the other one. It
is quite intuitive that the argument of smaller particles packing in the void spaces of the
larger particles, which increases the granular volume fraction, is not only applicable for
closest packings but is also valid for looser ones. As already mentioned, particle shape and
friction are responsible for the fact that granular materials reach a stable state already
for crlp ≤ crcp. Therefore, it is assumed that the random loose packing for bi-disperse
systems fulfils an expression similar to (2.95) given by

crlp = min

(
φrlp

1− φ̂s
,

φrlp

(φ̂s + (1− φ̂s)φrlp

)
. (2.96)

In their paper, Kyrylyuk et al. [52] derive the same expressions for the upper bound of
the random close packing but with respect to the relative volume fraction of the large
particle phase φ̂l. Figure 2.7 shows the random close packing values for mixtures of
spherical particles, where φrcp ≈ 0.633.

Random close packing for R ∈ (0,1)

For real applications it would be desirable to have an expression like (2.95) for an
arbitrary mixture with radius ratio R = rs

rl
. Unfortunately, “progress in this direction

has not been rapid”1. There are simulation tools to compute the packing of bi-disperse
particle mixtures.
Kyrylyuk et al. [52] used a mechanical contraction model (MCM) [85] to compute the
maximum packing of binary mixtures of small and large particles. Their computations
fit very well to experimental measurements.
Farr and Groot [25] constructed a greedy-algorithm that yields an accurate approxima-
tion for the random close packing density of hard spheres of any size distribution which
is based upon a mapping onto a one-dimensional problem. Additionally, their model
correctly reproduces the exact solution for particles with infinite size difference (2.95).
Besides the analytical packing expression derived above for systems differing that much
in size that each sub-system does not influence the other one, Figure 2.7 shows results of
the MCM simulations performed by Kyrylyuk et al. [52]. The random close packing for
different mixtures of systems with particle size ratios R = 1

2
, R = 1

3
, R = 1

5
, and R = 1

10

are depicted.

1Farr and Groot [25] p. 1f
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It is not the aim of this work to compute a perfect packing density for granular mixtures.
For the purpose of this work, it is enough to have acceptable values for crcp and it is
preferable to have an analytic expression that can be used in the computations. As
already mentioned, there exists no analytical expression for computing the random close
packing value from the particle size ratio R and the volume fraction φ̂s, until today. This
work restricts to a particle system with small and large particles of size ratio R = 1

2
.

Therefore, a simple polynomial data fit is used to compute the random close packing
crcp. The least square fit is forced to pass exactly through the packing values for solely
small and solely large particles, respectively. This guarantees an exact packing value in
mono-disperse regions. Figure 2.8 shows the polynomial fits of degrees 2-5. One can see
that the polynomials of degree 3 and degree 4 are mainly identical. The fit of choice is
the degree 5 polynomial, as it approximates the maximum best. Hence, the random close
packing value can be written as

crcp(φ̂
s) = p(φ̂s, φrcp), (2.97)

where p(ψ, ζ) is a polynomial of degree 5 which exactly passes through (0, ζ) and (1, ζ).
It is given by

p(ψ, ζ) = −0.4903ψ5 + 1.2388ψ4 − 0.9450ψ3 + 0.0434ψ2 + 0.1531ψ + ζ. (2.98)

Due to the structure of the chosen expression the value for the random loose packing can
be written in a similar way,

crlp(φ̂
s) = p(φ̂s, φrlp). (2.99)
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2.4 Modification of the granular flow model

The granular flow model has been explained in detail in section 2.1. Now, the interplay
between granular flow model and the derived segregation equation is stated. In a second
step, some modifications for the granular flow model are presented. The modifications
account for the changing particle distribution in the granular system due to segregation.
As explained in section 2.2, the behaviour of a bi-disperse granular system can be
described by equations for the granular mixture and an equation for only one of the
particle phases. Information for the other particle phase can be gained directly from the
saturation condition (2.56). In the simplest model extension, one solves the granular
flow equations for c,u, and T and uses the gained information to solve the segregation
equation. With the velocity field u, the transport of the small particle phase with the
granular bulk can be computed. With the volume fraction c and the granular temper-
ature T , the segregation process is controlled. In this case, the granular flow and the
segregation model are only coupled one way as solely information from the granular flow
equations are used for the computation of the segregation process but not vice versa. The
segregation process does not influence the state of the granular mixture. This one-way
coupled model is an adequate approximation to simulate the effect of segregation in a
process of flowing granular material as it will be shown in chapter 5.

In the last section, it has been shown that the maximum packing value for an arbitrary
granular system is the random close packing. This value is not constant any more for a
bi-disperse system of small and large particles. Differently mixed regions in the granular
system have different packing values. In the above described one-way coupling the dif-
ferently packed regions in a granular system, which appear due to segregation, cannot be
captured. Therefore, the information of the local particle distribution must be included
in the granular flow model. This can be done by exchanging the constant value cmax by
the function crcp(φ̂), which depends on the state of segregation.
Furthermore, the transition volume c0 is important in the granular flow model. Normally,
it is approximately given by the random loose packing of the granular system. In the
previous section 2.3, it has been argued that the random loose packing cannot be a con-
stant for bi-disperse mixtures as well. Therefore, the constant value c0 is exchanged by
the function crlp(φ̂).
Following, the compressibility factor g(c) is now given by

g(c, crcp) =

(
1− c

crcp(φ̂)

)−1

. (2.100)

This modification appears in the pressure definitions and the varying random loose pack-
ing has influence on the activation of the yield model due to the yield pressure

pk = cTg(c, crcp), (2.101)
py = Θ(c− crlp)T0(c− crlp)g(c, crcp). (2.102)
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The variation of the random close packing also changes the behaviour of the flow param-
eters, since

ηk = η0

√
Tcg(c, crcp), (2.103)

λk = λ0

√
Tcg(c, crcp), (2.104)

εk = ε0

√
Tg(c, crcp). (2.105)

This is a permissible modification that does not change the interplay of the different
parameters and the stability of the granular flow model. As mentioned in section 2.1,
the granular flow parameters need to diverge in the same way for c → crcp. Due to
the modification in the compressibility factor, this is still valid. In the original model,
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Figure 2.9: Comparison of the compressibility factor for crcp = 0.64 and crcp = 0.7. Even
for the same value of c the difference in the compressibility factors g1 and g2 increases for
increasing granular volume fractions.

the compressibility factor is already quite sensitive since it diverges for c approaching
the random close packing. In the model using the back-coupling via the random close
packing, the compressibility factor depends also on crcp. Hence, the value of g(c, crcp) can
vary strongly even for the same value of c. Figure 2.9 shows the compressibility factor
for two different values of crcp.

The computation procedure for the final model is done in an explicit way. First, the
granular flow equations are solved to gain the granular velocity u and the scalar fields for
granular volume fraction c and granular temperature T . With these data the segregation
equation is solved, where u is needed for the transport with the granular bulk and c and
T for the segregation strength. With the computed φ-field giving the volume fraction of
the small particle phase, the local values for the random close packing crcp(φ̂) and the
random loose packing crlp(φ̂) can be updated. Now this process can be repeated for each
time step starting again with solving the granular flow system including the updated
values for crcp(φ̂) and crlp(φ̂).
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2.5 Summary of the final model

This chapter summarises all equations derived in the previous sections to give an overview
of the final model. Again, the several terms are briefly explained.
The final model describes the behaviour of a granular mixture of small and large particles
including the effect of segregation. It is a hybrid model to capture fast flowing regimes
as well as arresting systems but does not include amalgamation or breakage of particles.
The model equations are the scalar continuity equation (2.106a) for the granular mixture,
the vectorial momentum balance (2.106b), the granular temperature equation (2.106c),
and the segregation equation (2.106d) for the small particle phase.

The final model

∂tc+∇ · (cu) = 0, (2.106a)
∂t(cu) +∇ · (cu⊗ u) = ∇ · σ −∇p+ cg, (2.106b)

∂t(cT ) +∇ · (cTu) =
3

2
(ηκ : κ−∇ · q)− εcT, (2.106c)

∂tφ+∇ · (φu) = ∇ ·
(
Sslφ

(c− φ)

c

)
. (2.106d)

In the four equations (2.106), the following relations hold:

The closure relations

σ = ηκ, (2.107)
κ = ∇u, (2.108)
q = −λ∇T, (2.109)

Ssl = −Ssl0
√
TPg, (2.110)

p = pk + py, (2.111a)
pk = cTg(c, crcp), (2.111b)
py = Θ(c− crlp)T0(c− crlp)g(c, crcp), (2.111c)

g(c, crcp) =

(
1− c

crcp

)−1

, (2.112)

I
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The closure relations (cont)

η = ηk(1 +
py
pk

), ηk = η0

√
Tcg(c, crcp), (2.113a)

λ = λk(1 +
py
pk

), λk = λ0

√
Tcg(c, crcp), (2.113b)

ε = εk(1 +
py
pk

), εk = ε0

√
Tg(c, crcp). (2.113c)

The continuity equation models the advective transport of the granular mixture expressed
by the granular volume fraction c. As our model is compressible, the volume fraction can
vary, i.e., c ∈ [0, crcp]. In contrast to the original model, the upper bound crcp is not
constant. It depends on the distribution of small and large particles. Therefore, it is a
function of the small particles’ relative volume fraction φ̂.
Similar to the continuity equation, the other equations also have an advective term,

∇ · (cu⊗ u),

∇ · (cTu),

∇ · (φu),

which transports the respective quantity with the velocity computed from the momentum
balance. Additionally, the momentum balance has a diffusive transport ∇ · σ which
diffuses energy in form of velocity. The pressure gradient ∇p generates a velocity from
regions of high to lower pressure to prevent the system from collapsing. A source term is
given by the gravity term.
The granular temperature equation diffuses also energy in form of granular temperature,
∇ · q. The viscous heating term ηκ : κ generates granular temperature. It transforms
shear work to microscopic random particle motion. Due to inelastic particle collisions,
the granular temperature dissipates into internal energy given by the sink term εcT .
In contrast to the granular flow equations, the segregation equation has a second trans-
port term ∇ ·

(
Sslφ (c−φ)

c

)
which accounts for the segregation. This transport term

depends on the distribution of the particles. The segregation stops if solely one particle
phase is present. Additionally, it depends on the granular temperature (2.110) which
guarantees that the segregation stops in a static system or in shear free regions. The
transport happens in a direction perpendicular to the shear layers.
The constitutive relations for the pressure (2.111) close the granular system. They
stabilise the system for c→ crcp, modelled using the compressibility factor (2.112) which,
in the final set of equations, depends additionally on a non-constant value for the random
close packing crcp. It also influences the granular parameters (2.113). Due to those, the
most terms in the granular flow equations also behave differently depending on whether
the system is in the kinetic or the yield regime.
To simulate the granular flow behaviour and the segregation effect in a natural or
industrial process, several granular properties are required. Despite that there are some
relations like (2.22) and (2.23), in general these properties cannot be gained from the
particle properties. Therefore, experiments or simulations with the DEM are necessary
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to calibrate the model. Besides the random close packing for the granular particles and
the transition volume, all parameters subscribed by 0 are material dependent constants
that need to be validated. This holds not only for flow parameters like η0, λ0, and ε0 but
also for the segregation rate Ssl0 in the segregation equation.

In general, it is known that the segregation rate depends on the size ratio R and also
on the density ratio of the particles [51], where further effects come into play like the
reverse Brazil nut problem [43]. Hence, models of combined size and density segregation
are already topic of current research [35, 79]. Since there is no widely excepted expression
for the segregation rate which explicitly depends on the size and the density ratio, in this
work a constant value is used which needs to be fitted to the granular system. Throughout
this work a size ratio of R = 1

2
is assumed.



Chapter 3

Analysis

In this chapter, the focus lies on the analysis of the segregation equation. First, an extract
of the theory of conservation laws is given to provide basic knowledge and to introduce
several definitions in the scalar and the system case. Later on, analytic solutions for
simplified versions of the segregation equation are derived and presented. For the simpler
forms of the segregation equation, analytic solutions were already presented in several
other works. Their results are also sketched. If the granular volume fraction c is not
assumed to be constant, one is confronted with spatially varying flux functions. This
topic is treated in a later part of this chapter. Proceeding from the results given in the
upcoming sections, numerical methods for solving the segregation equation are derived
in chapter 4.

3.1 Theory of hyperbolic conservation laws
To clarify the terminology for the upcoming sections, some general information about
conservation laws are given starting with the scalar case. All definitions and results
presented in this section can be found in the works of LeVeque [57] and Toro [77].

For completeness, the general definition of a conservation law is given, as well as the
definition of hyperbolic conservation laws.

Definition 3.1 Let q(x, t) : Rd ×R+ → Rn be a function and Fi = Fi(q) : Rn → Rn

for i = 1, . . . , d. Then

∂tq +
d∑
i=1

∂xi
(
Fi(q)

)
= 0

is called a system of n conservation laws in Rd with flux functions Fi.

Definition 3.2 The system

∂tq +
d∑
i=1

∂xi
(
Fi(q)

)
= 0

39
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is called hyperbolic if the following is fulfilled: Let DFi(q) be the Jacobian of Fi

given by

(DFi(q))1≤j,k≤n =

(
∂(Fi)j(q)

∂qk

)
.

If for any q ∈ Rn and all w ∈ Rd, w 6= 0 the matrix

DF(q,w) =
d∑
i=1

wiDFi(q)

has n real eigenvalues λ1(q,w) ≤ · · · ≤ λn(q,w) and n linear independent corre-
sponding eigenvectors v1, . . . ,vn, then the system is called hyperbolic. If all eigen-
values are different, it is called strictly hyperbolic.

The segregation equation, as derived in chapter 2, is a scalar hyperbolic conservation law.
For this reason, the following definitions are given for scalar conservation laws.

The scalar case

If a solution for a scalar hyperbolic conservation law exists, it cannot be unique without
defining initial conditions.

Definition 3.3 The Cauchy-Problem (Initial value problem) for scalar conserva-
tion laws is given by

∂tq + ∂xf(q) = 0, q : R× R+ → R, f : R→ R,
q(x, 0) = q0(x), x ∈ R.

Solving these kind of equations, one cannot expect to find a classical solution. For a
simple linear transport equation, the solution is a travelling discontinuous shock if the
hyperbolic equation together with the initial condition form a Riemann problem.

Definition 3.4 The Riemann problem is a Cauchy-Problem with piecewise constant
initial data with a single jump discontinuity. Assume the discontinuity is located at
x = 0, the initial data are given by

q(x, 0) =

{
ql if x < 0,

qr if x > 0.
(3.1)

Even for smooth initial data, the solution can be non-smooth if the conservation law is
non-linear. For scalar conservation laws the information travel on characteristic curves
in the state space. If the characteristics intersect, a shock forms, giving a discontinuous
solution. Therefore, it is necessary to generalise the solution term.
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Definition 3.5 A function q = q(x, t) is called a weak solution of the Cauchy-
Problem

∂tq + ∂xf(q) = 0,

q(x, 0) = q0(x)

if ∫
R

∫ ∞
0

[q∂tϑ+ f(q)∂xϑ]dtdx+

∫
R
q0(x)ϑ(x, 0)dx = 0 ∀ϑ ∈ C1

0(R× R+).

Note that each smooth solution is also a weak solution. It is helpful to have a more general
solution term for conservation laws but solely stating initial conditions is not enough to
guarantee a unique solution. As there can be several weak solutions, one wants to find
the physically correct solution. These physical solutions are given by the viscose solution
of the conservation law.

Definition 3.6 The viscose solution of a conservation law is the weak solution,
which is the limit ε→ 0 of the viscose regularisation

∂tq + ∂xf(q) = ε∂xxq.

Finding a viscose solution is quite inconvenient. An alternative solution concept can be
introduced by using the notion of entropy. Therefore, the definition of an entropy-entropy
flux pair is needed.

Definition 3.7 Let q be a smooth solution of a conservation law

∂tq + ∂xf(q) = 0 ⇔ ∂tq + f ′(q)∂xq = 0

and let η and ψ be two convex functions, such that

∂tη(q) + ∂xψ(q) = 0 ⇔ η(q)′∂tq + ψ′(q)∂xq = 0.

Then (η, ψ) is called entropy-entropy flux pair and it holds

η(q)′f ′(q) = ψ′(q).

With the help of the entropy-entropy flux pair, the concept of viscose solutions can be
connected to the concept of entropy solutions (Definition 3.8). If q is a viscose solution
of a conservation law, then it holds in the weak sense

∂tη(q) + ∂xψ(q) ≤ 0.

This means that∫
R

∫ ∞
0

[η(q)∂tϑ+ ψ(q)∂xϑ]dtdx+

∫
R
η(q)(x, 0)ϑ(x, 0)dx = 0 ∀ϑ ∈ C1

0(R× R). (3.2)
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Definition 3.8 Let q be a weak solution of a conservation law that additionally ful-
fils (3.2) for any entropy-entropy flux pair (η, ψ), then q is called an entropy solu-
tion.

For an entropy solution, one can show uniqueness as stated in Kružhkov’s theorem 3.2 at
the end of this section. Checking definition 3.8 of an entropy solution, one realises that
it is not applicable. It is impossible to check all infinitely many entropies that exist for
scalar conservation laws. Fortunately, it can be shown that it is enough to find solely one
convex entropy η, such that condition (3.2) holds for all entropies. Details are given in
the cited literature [57, 77].
Finding and checking only one entropy is still quite inconvenient. This problem can be
solved by introducing admissibility or more often called entropy conditions (EC) that
can be checked more easily. A weak solution of a conservation law is the correct entropy
solution if all discontinuities are admissible. For a discontinuity being admissible, con-
ditions were stated by Lax and Oleinik. In the scalar case, a discontinuity can behave
in different ways. First, it can travel as a shock, where the shock speed is given by the
Rankine-Hugoniot condition.

Theorem 3.1 (Rankine-Hugoniot) Let ql be the left and qr the right state of a
Riemann problem (3.1) forming a shock propagating with speed s. Then

s =
f(ql)− f(qr)

ql − qr
=:

[f ]

[q]
. (3.3)

Second, the discontinuity can smear out propagating as a rarefaction wave. As mentioned
earlier, the information of the conservation law travels along characteristic curves. As
time advances, a stable shock should have characteristics going into the shock. If the
characteristics are coming out of a propagating discontinuity, then it is unstable. Hence,
this discontinuity should propagate as a rarefaction wave and not as a shock wave. Based
on these arguments, the following entropy conditions were formulated.

Entropy Condition 1 (Lax) For a scalar conservation law with convex flux func-
tion f , a shock propagating with speed s, given by the Rankine-Hugoniot condi-
tion (3.3), is admissible if

f ′(ql) > s > f ′(qr). (3.4)

A more general condition for not uniformly convex fluxes f , concerning admissible shocks,
has been formulated by Oleinik.

Entropy Condition 2 (Oleinik) For a non-uniformly convex scalar conservation
law, a shock propagating with speed s is admissible if

f(q)− f(ql)

q − ql
≥ s ≥ f(q)− f(qr)

q − qr
∀q between ql and qr. (3.5)

Note that for convex flux functions f , EC 2 reduces to EC 1. Oleinik also stated a
condition that is based on the spreading of characteristics in a rarefaction fan.
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Figure 3.1: Entropy fulfilling shock (left) and rarefaction wave (right) for the simple
conservation law ∂tq + 1

2∂x(q2) = 0. The respective initial states (bottom row) and the final
states after 10s (top row) are depicted. The characteristic curves are plotted in the x-t-space
(middle row).

Entropy Condition 3 (Oleinik) Let f be the flux function of a scalar conservation
law with f ′′(q) > 0. Then it holds, q(x, t) is an entropy solution if there is a constant
E > 0 such that ∀h > 0, t > 0 and x ∈ R,

q(x+ h, t)− q(x, t)
h

<
E

t
. (3.6)

The presented conditions can not only be used to verify whether a solution behaves
physically correct, they can directly be used to construct numerical schemes fulfilling the
entropy conditions.
Finally, the Kružhkov-theorem is presented. Kružhkov’s proof for the existence and
uniqueness of entropy solutions for conservation laws was published in 1970 in [50].

Theorem 3.2 (Kružhkov) The scalar conservation law

∂tq + ∂xf(q) = 0, f ∈ C1(R)

q(x, 0) = q0(x), q0 ∈ L∞(R)

has a unique entropy solution q ∈ L∞(R× R+), having the following properties:
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1. ||q(·, t)||L∞ ≤ ||q0(·, t)||L∞ , t ∈ R+

2. q0 ≥ p0 ⇒ q(·, t) ≥ p(·, t), t ∈ R+

3. q0 ∈ BV (R)⇒ q(·, t) ∈ BV (R) and TV (q(·, t)) ≤ TV (q0)

4. q0 ∈ L1(R)⇒
∫
R q(x, t)dx =

∫
R q0(x)dx, t ∈ R+.

The properties are called L∞-stability, monotonicity, TV -stability and conservation
property.

The appropriate function spaces for the proof given by Kružhkov were already defined in
the work of Vol’pert [83]. For the sake of completeness, the function space of bounded
variation is given in the following definition.

Definition 3.9 Let q ∈ L∞(Ω), Ω ⊂ Rn be open. Then, the total variation of q is
defined by

TV (q) = lim sup
ε→0

1

ε

∫
Ω

|q(x+ ε)− q(x)|dx.

The space of bounded variation is

BV (q) := {q ∈ L∞(Ω) : TV (q) <∞}.

It should be noted, that the theorem is extendable to several space dimensions x ∈ Rd.
As opposed to this, it cannot generally be extended to the system case (n > 1). In such
a case it is mostly necessary to use a weaker solution concept, called measure valued
solutions.

The system case

In section 3.3, the segregation equation will be augmented into a system of equations.
The following information is mainly an extension of those previously given for the scalar
case. Let

∂tq + ∂xF(q) = 0 (3.7)
be a non-linear strictly hyperbolic system of conservation laws. Writing the system in
the linearised form, it is given by

∂tq + DF(q)∂xq = 0, (3.8)

where DF is the Jacobian. Further, let

λ1(q) < λ2(q) < · · · < λn(q) (3.9)

denote the eigenvalues of the Jacobian with linear independent corresponding eigenvec-
tors r1(q), . . . , rn(q), which decompose the system into n characteristic fields. Following,
the solution of the system consists of n waves, where the eigenvalues (3.9) are the charac-
teristic speeds. In the system case, each state represents a point in the state space. Waves
connecting different states travel along curves that can be depicted in the state space,
where different wave solutions are possible. Like in the scalar case, a wave can travel as
shock or as rarefaction wave, where the curves for shocks and rarefaction waves generally
do not coincide. Furthermore, states can be connected by a contact discontinuity.
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Definition 3.10 The set of states q that can be connected by a shock to a state q̄ is
called Hugoniot-locus. This set traces out a curve in the state space and fulfils the
Rankine-Hugoniot condition (3.3).

In contrast to the shocks, the rarefaction waves travel along integral curves. In the p-
th characteristic field a rarefaction wave travels with the characteristic speed λp. The
eigenvectors rp of the system define the integral curves.

Definition 3.11 A smooth curve through the state space is an integral curve of the
vector field defined by rp if at each point the curve’s tangent vector coincides with the
eigenvector rp of the system.

Additionally to shocks and rarefactions like in the scalar case, contact discontinuities can
appear for linearly degenerate fields. Generally, the n characteristic fields of the system
can be distinct in the following way.

Definition 3.12 The p-th characteristic field is called genuinely non-linear if

∇λp(q) · rp(q) 6= 0 ∀q ∈ Ω ⊂ Rd. (3.10)

The field is called linearly degenerate if

∇λp(q) · rp(q) ≡ 0 ∀q ∈ Ω ⊂ Rd. (3.11)

For genuinely non-linear fields, the characteristic speed λp varies along the integral curves
of rp. For linearly degenerate fields, λp stays constant along each integral curve. If the
initial data is given by a jump discontinuity, the solution stays the same travelling with
constant speed along the integral curve. Hence, it cannot be a rarefaction wave. Even if
the solution propagates like a shock, it is none, as the characteristics in the x-t plane are
parallel and do not merge. Therefore, these waves are called contact discontinuities. In
the case of a linearly degenerate field, the integral curves and the Hugoniot-loci always
coincide.
It still has to be clarified when a solution is admissible. For the system case, there exists
a version of Lax’s entropy condition.

Entropy Condition 4 (Lax) For genuinely non-linear fields, a shock wave with
speed s, given by the Rankine-Hugoniot condition (3.3), is admissible if

λp(ql) > s > λp(qr). (3.12)

As contact discontinuities behave like shocks, it is possible to include them in the formu-
lation of the Lax entropy condition by stating

λp(ql) ≥ s ≥ λp(qr). (3.13)
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3.2 Analysis of the segregation equation
To analyse and understand the behaviour of the segregation equation, a simple setting
in a rectangular domain is used. The model is reduced to two space dimensions x and z.
The granular bulk flows from left to right in the positive x-direction with velocity u. The
segregation acts only in the z-direction. Hence, the segregation equation can be written
as

∂tφ+ ∂x(φu)− ∂z(Sφ(c− φ)) = 0, (3.14)
with

S := −S0

√
T

c
g. (3.15)

Furthermore, it is assumed that the volume fraction of the granular material c and the
granular temperature T are constant and hence, the segregation velocity S is positive,
since the gravitational acceleration g is typically negative. In this case, the segregation
equation (3.14) is a scalar conservation law in two space dimension. As the flux terms
fulfil the conditions stated in Kružhkov’s theorem 3.2, there exists a unique solution to
the problem under appropriate initial conditions. In this simplified form, the equation
can be solved and analysed with the help of the method of characteristics.

As first example, assume a plug flow setting where the bulk velocity is constant, i.e.,
u ≡ u0. Then, the Cauchy-Problem can be given in the quasi-linear form

∂tφ+ u0∂xφ− S(c− 2φ)∂zφ = 0,

φ(x, z, t = 0) = φ0(x, z).
(3.16)

Defining a coordinate transformation t′ = t, x′ = x− u0t, and z′ = z, the spatial variable
in flow direction can be eliminated. With the chain rule, the derivative with respect to
ξ ∈ {t, x , z} is given by

∂ξ(·) = ∂ξt
′∂t′(·) + ∂ξx

′∂x′(·) + ∂ξz
′∂z′(·). (3.17)

Therefore, the differential operators are given by

∂t(·) = ∂t′(·)− u0∂x′(·),
∂x(·) = ∂x′(·),
∂z(·) = ∂z′(·).

(3.18)

To hold the notation simple, the prime is dropped for the transformed equations. As
already mentioned, the Cauchy-Problem (3.16) simplifies to

∂tφ− S(c− 2φ)∂zφ = 0,

φ(z, 0) = φ0(z).
(3.19)

Parametrising the characteristic curves by s and the initial data by r, one ends with a
system of ordinary differential equations (ODE), given by

dt

ds
(r, s) = 1, (3.20)

dz

ds
(r, s) = S(2ψ − c), (3.21)

dψ

ds
(r, s) = 0. (3.22)
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Solving (3.20) and (3.22) gives

t(r, s) = s+ ζ1(r), (3.23)
ψ(r, s) = ζ3(r). (3.24)

From (3.24) it follows that ψ depends solely on r. Hence, the solution is constant along
the characteristic curves and equation (3.21) can easily be integrated. One obtains

z(r, s) = S(2ζ3(r)− c)s+ ζ2(r). (3.25)

With the initial conditions

t(r, 0) = 0, (3.26)
z(r, 0) = r, (3.27)
ψ(r, 0) = φ0(r), (3.28)

the ζi, for all i ∈ {1, 2, 3}, can be found. The solutions of the ODEs (3.20), (3.21) and
(3.22) are given by

t(r, s) = s, (3.29)
z(r, s) = S(2φ0(r)− c)s+ r, (3.30)
ψ(r, s) = φ0(r). (3.31)

For the backward transformation, r and s are written in terms of t and z, i.e.,

s(z, t) = t, (3.32)
r(z, t) = z − S(2ψ − c)s. (3.33)

Let φ(z, t) = ψ(r, s), then, the solution of the segregation equation is implicitly given by

φ(z, t) = φ0(z − S(2φ− c)t). (3.34)

A sketch of the domain and a plot of the characteristics in the t-z-plane are illustrated
in Figure 3.2. Initially, the domain of height h is filled with a mixed granular material
φ = 0.6c and has a constant inflow of φin = 0.6c. For the top and the bottom boundaries
φ = 0 and φ = c are chosen, respectively. Since a plug flow setting with u ≡ u0 is assumed,
each column of the granular flow field is independent of each other. A column of the flow
field means the full depth of the granular flow (z-direction) at one specific position in
x. The characteristics depicted in Figure 3.2 show the behaviour of the solution over
time. The solution is identical for each column of the spatial x-axis under the given
initial conditions. The information travel along the characteristics, which are straight
lines. They merge in two shocks emanating from the left corners, one with positive and
one with negative speed. Those also intersect after tm time units. From this time on, the
system is totally segregated, separated by a stable shock of speed zero. In the plug flow
example, one can compute that for a given segregation rate S the time for total separation
is given by tm = h

Sc
. The depicted solution is similar to the steady state solution in the

spatial x-z-plane of the segregation equation

u0∂xφ− S(c− 2φ)∂zφ = 0,

φ(x, 0) = φ0(z).
(3.35)
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Figure 3.2: Sketch of the plug flow example. A rectangular domain of height h, initially
filled with equally mixed granular material with φ = 0.6c and u ≡ u0. The inflow at the
left boundary has the same value φin = 0.6c. The top and bottom boundaries are given
by φ = 0 and φ = c, respectively (left). Characteristics in the t-z-plane are straight lines.
Two shocks emanate from the left corners, one with positive and one with negative speed.
Both merge after tm = h

Sc time units. From this time on, the system is totally segregated,
separated by a stable shock of speed zero (right).

Figure 3.3: Solution of the plug flow example in the x-z-plane at t = 1.5 (left) and after
the steady state has been reached t ≥ tm (right). The colour represents the volume fraction
of the small particle phase. Yellow corresponds to solely small particles, whereas dark blue
corresponds to solely large particles. The granular material has a volume fraction of c = 0.6
and flows from left to right with u ≡ 1. The segregation rate has been chosen to be S = 1

3c .
Initially, the domain is filled with a perfectly mixed material with value φ = 0.6c. The inflow
concentration φin at the left boundary is 0.6c as well.

It is even identical for u0 ≡ 1. Due to the coordinate transformation, effectively, the
steady state solution of the segregation equation has been solved as well. Solution plots
are given in Figure 3.3 depicting the plug flow example in the x-z-plane at t = 1.5 and
after the steady state has been reached. Mind that, due to the constant velocity, the
final separating shock has to be located at a height of z = 0.6h, since the concentration
of the small particle phase is chosen by φ = 0.6c.

As already explained in chapter 2, segregation is also driven by shear. Since in a plug flow
is no shear, there is rarely segregation happening. Therefore, the last example is not very
realistic, but it serves quite good for getting a feeling of the behaviour of the equation
and the characteristic curves. To look at a more realistic example, the bulk velocity is
assumed to depend on z but still does not vary over time. A simple but general form for
u is chosen depending on a parameter α,

uα(z) = α + 2(1− α)z, 0 ≤ α ≤ 1. (3.36)
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With this definition, uα defines a plug flow for α = 1 and a simple shear flow with no-slip
at the bottom for α = 0. For all values in between, a shear flow is defined with different
slip values at the bottom of the flow. The general form (3.36) has already been used by
Shearer et al. [74] and McIntyre et al. [62] to investigate the classical Gray-Thornton
model.

Assume now, the segregation equation is given with the bulk velocity defined by uα (3.36).
The velocity field depends solely on the z-variable, hence, the quasi-linear form of the
segregation equation can again directly be written as

∂tφ+ uα(z)∂xφ− S(c− 2φ)∂zφ = 0,

φ(x, z, 0) = φ0(x, z)
(3.37)

This time the transport with the bulk cannot be eliminated that easy. The system of
ODEs has four equations. They are given with the corresponding initial conditions by

dt

dτ
= 1 t(r, s, 0) = 0, (3.38)

dx

dτ
= uα(z) x(r, s, 0) = r, (3.39)

dz

dτ
= S(2φ− c) z(r, s, 0) = s, (3.40)

dφ

dτ
= 0 φ(r, s, 0) = φ0(r, s). (3.41)

From (3.38) one gains
t = τ (3.42)

and from (3.41) it follows, identically to the plug flow example, that the solution along
the characteristics is constant. Then, the solution to (3.40) is given by

z(t) = S(2φ− c)t+ s. (3.43)

With the expression for the velocity field and the solution (3.43), the x-characteristic is
given by

x(t) = (1− α)S(2φ− c)t2 + (2s− 2αs+ α)t+ r. (3.44)

A general solution depends on the representation of the initial condition and can be
implicitly written as

φ(x, z, t) = φ0(r(x, z, t), s(x, z, t)), (3.45)

where

r(x, z, t) = x− (1− α)S(2φ− c)t2 + (2s(z, t)− 2αs(z, t) + α)t, (3.46)
s(z, t) = z − S(2φ− c)t. (3.47)

One can see that due to the shear flow the columns in the flow field are not independent
any more. It is easy to proof that this dependence cancels out for a plug flow, which is
given for α = 1. By eliminating the time, the characteristics can be given in the x-y-phase
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Figure 3.4: Sketch of the simple shear flow example. A rectangular domain of height h
with u(z) = 2z. Initially, the domain is filled with equally mixed granular material with
φ = 0.6c. The inflow at the left boundary has the same value. The top and bottom
boundaries are given by φ = 0 and φ = c, respectively (left). Characteristics in the x-z-
plane are curved lines, as the bulk velocity decreases with the depth of the granular bed.
The characteristics intersect in two shocks emanating from the left corners, one with positive
and one with negative speed. Both merge at xm = h2

Sc . From this point on the system is
totally segregated, separated by a stable shock of speed zero (right).

Figure 3.5: Solution of the simple shear flow example in the x-z-plane at t = 1.5 (left) and
after the steady state has been reached (right). The colour represents the volume fraction
of the small particle phase. Yellow corresponds to solely small particles, whereas dark blue
corresponds to solely large particles. The granular material has a volume fraction of c = 0.6
and flows from left to right with u = 2z. The segregation rate has been chosen to be S = 1

3c .
Initially, the domain is filled with a perfectly mixed material with value φ = 0.6c. The inflow
concentration φin at the left boundary is 0.6c as well.

space, which makes it easier to depict the segregation process (Figure 3.4). For a starting
point (x0, z0) a characteristic curve is given by a parabola

x(z) = x0 +
(z − z0)(α + (1− α)(z + z0))

S(2φ− c) . (3.48)

Along the characteristic curves the solution is constant again. The initial, boundary, and
inflow conditions in the example, depicted in Figure 3.4, are identical to those chosen in
the previous plug flow example (Figure 3.2). However, due to the z-dependent velocity
field the information travels on non straight characteristics. Again the characteristics
merge in two shocks emanating from the left corners, one with positive and one with
negative speed. They also intersect and form a stable shock of speed zero. In contrast to
the plug flow example, the final shock separating small and large particles is not located
at a height of z = 0.6h, although the inflow volume fraction is φin = 0.6c. Since the
upper layers of the flow field are faster, the large particles in the top layers move faster
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Figure 3.6: Steady state solution of a plug flow u ≡ 1 (left) and a simple shear flow example
u = 2z (right) in the x-z-plane with height h = 1. The colour represents the volume fraction
of the small particle phase. Yellow corresponds to solely small particles, whereas dark blue
corresponds to solely large particles. The granular material has a volume fraction of c = 0.6.
The segregation rate has been chosen to be S = 1

3c . The inflowing material is unmixed with
small particles above the large ones separated by a jump at zr = 0.4h (top) and zr = 0.6h
(bottom), respectively. The jump smears out in a rarefaction fan, before again a stable shock
forms with inversely graded particles.

than the small particles in the lower parts of the domain. Actually, the separating shock
is located at z =

√
0.6h. Solution plots are given in Figure 3.5 depicting the simple

shear flow example in the x-z-plane at t = 1.5 and after the steady state has been reached.

Similar examples of a simplified segregation equation based on the derived model of Gray
and Thornton can be found in [37, 39, 62, 74]. Several authors analysed the behaviour of
these types of segregation equations in more detail. The shock formation and stability is
discussed in Shearer et al. [75]. Further, wave breaking under certain conditions and the
evolution of the mixing zones is analysed in McIntyre et al. [62]. In Shearer and Giffen
[73] the authors analysed shock formation and wave breaking for a generalised equation
given by

∂tφ+ u(z)∂xφ+ ∂zf(φ) = 0, (3.49)

where the flux function f : [0, 1]→ R is smooth, strictly convex and satisfies

f(0) = 0 = f(1). (3.50)

Even for the generalised case, it can be shown that a shock is stable if the large particles
are located above the small particles. In Figure 3.6, solution plots as in Figure 3.3 and
Figure 3.5 show the segregation process in the steady state for plug and shear flow.
The only difference to the previous examples lies in the inflow condition. The inflowing
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material is perfectly separated. It has a unstable jump at z = zr with small particles
above the large particles. One can see that this jump smears out in a rarefaction fan
before a stable shock forms again with inversely graded particles. Figure 3.6 shows this
situation for zr = 0.4h and zr = 0.6h.

For less simplified versions of the segregation equation, it becomes even harder to solve the
equation. If the granular bulk velocity u depends not only on z but also on the variable
x, the information along the characteristics vary by φux and will not stay constant any
longer. However, if the segregation flux becomes less simple, even with ignoring the bulk
flow, the solution cannot be found explicitly. Mostly, solely the structure of the solution
can be characterized. In the work of May et al. [61], the authors assume a one-dimensional
segregation equation in the general form

∂tφ+ ∂z(sa(z)f(φ)) = 0, 0 < z < 1, t > 0, (3.51)

where a(z) defines a spatial dependent shear rate and f(φ) is defined similar as in equa-
tion (3.49). Again, φ is not constant along the characteristics. The same can be expected
for the segregation equation that has been derived in chapter 2 if the granular tempera-
ture is not constant. May et al. [61] have also examined that only for specific expressions
of a(z) the existence theory of Kružhkov is applicable. If an additional spatial dependence
of the segregation flux cannot be separated from the φ-terms, even more theory breaks
down. This is the case for the equation derived in chapter 2, due to the dependence on
the granular volume fraction c. Therefore, the next section is addressed to the topic of
spatially varying flux functions.

3.3 Spatial dependent flux functions
This section deals with hyperbolic conservation laws with discontinuous flux functions.
One has to distinguish two different cases. The flux function can be discontinuous with
respect to the quantity q or the discontinuity can occur from a spatial dependence of the
flux function. The latter case pertains to the segregation equation as mentioned at the
end of the last section. However, the first case is also summarised in this section.

3.3.1 Introduction to discontinuous flux functions

For conservation laws with discontinuous flux functions the existence and uniqueness of
a solution cannot directly be deduced from Kružhkov’s theorem 3.2. In its proof, the
continuity of the flux function is essential [50]. Assume the Cauchy-Problem

qt +∇ · F(q) = 0, q : Rd × R+ → R, F : R→ Rd,

q(x, 0) = q0(x), x ∈ Rd,

where F contains a jump discontinuity with respect to q. For this case Bulíček et al. [10]
introduced a concept of entropy solutions that is different but equivalent to the usual one.
With this concept they extended the definition of an entropy solution to fluxes with jump
discontinuities. Their strategy is inspired by implicit constitutive theory. In their work,
they identified a given discontinuous flux function F with a continuous curve G that is
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given by a graph of F and abscissae that fill the jumps. Consequently, they dealt with
the implicit relation

G(F, q) = 0.

They showed existence and uniqueness of entropy weak solutions for conservation laws
with fluxes that are α-Hölder continuous at the jump.
Further results for discontinuous flux functions were already given by Gimse [31] and
Dias et al. [18]. The derived results are only given for the one-dimensional case, d = 1.
Gimse [31] has not formulated any entropy condition, whereas Dias et al. [18] derived a
generalised entropy solution concept. For a discontinuity at q = 0 and fluxes given by

F := g(q) + (f(q)− g(q))H(q), (3.52)

where f(q) and g(q) are smooth and H(q) denotes the Heaviside function, the authors
established the existence and uniqueness of a weak solution fulfilling the generalised
entropy concept.

Pretty much work has already been done in the framework of conservation laws with
spatially dependent flux functions (also called spatially varying flux functions). In this
case the flux function F (q(x, t), x) is continuous in the quantity q but not in the spatial
variable x. The problem can generally be formulated by

∂tq + ∂xF (q, x) = 0, (3.53)
q(x, 0) = q0(x), (3.54)

where the flux F is discontinuous in a finite number of points x. Authors, who analysed
this problem, typically restrict to one discontinuity in x = 0, such that

F := g(q) + (f(q)− g(q))H(x). (3.55)

Again, Kružhkov’s theorem is not applicable, due to the missing Lipschitz continuity
of the flux function in x, which is needed in the proof. In this discontinuous case, an
entropy solution is not unique under the classical entropy conditions [13]. Furthermore,
an additional jump wave may occur besides the classical ones as solution of a Riemann
problem. Authors, who dealt with the uniqueness of a solution for conservation laws with
discontinuous flux functions generalised or added an entropy condition to guarantee the
uniqueness.
A first paper on discontinuous flux functions for hyperbolic conservation laws is the one
by Gimse and Risebro [32]. They considered a model for two phase flows through a porous
medium and used a front tracking method to prove the existence of a weak solution.
In his publications [19, 20], Diehl considered different conservation laws modelling sedi-
mentation processes in a clarifier-thickener unit. He formulated the viscous profile condi-
tion, which is based on the entropy condition stated by Oleinik (EC 2) and an equivalent,
called condition Γ. With the formulated condition Γ, a suitable flux over the jump can be
found. This corresponds to a choice a Riemann solver has to make at the discontinuity.
Later on, existence and uniqueness for small time have been proven, assuming regularity
and monotonicity along the discontinuity x = 0.
Chen et al. [13] compared different entropy conditions suggested in the literature. They
focused on a family of discontinuous flux functions that can be written as

F (q, x) = η(x)h(q), (3.56)
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where η(x) is continuous except on a set of measure zero and h(q) is Lipschitz continuous.
They showed existence and combined it with the uniqueness proof given by Audusse and
Perthame [4]. Garavello et al. [28] summarised concepts given by different authors and
concluded that depending on the physics of the underlying application, various models
need different solution concepts, although they are based on the same equation (3.53).
Furthermore, they also provided a formulation in terms of Riemann solvers for an equation
of type (3.53) motivated by a traffic flow model, where f and g are strictly concave
functions. They determined the class of Riemann solvers which provide existence by a
front tracking method and uniqueness of the corresponding weak entropy solution.

3.3.2 The segregation equation as non-linear resonant system

In the upcoming subsection, the focus lies on the segregation flux term. The bulk flow
is ignored, such that the segregation equation reduces to a one-dimensional model acting
only in the spatial z-direction. Assume that the granular temperature T is constant
as in the last sections, but the granular volume fraction c varies in the spatial variable
z defining a c-profile in the depth (z-direction) of the granular system. Starting from
a classical Riemann problem, the structure of an entropy fulfilling solution is going to
be characterised. For the following procedure, the equation is written in a system of
equations as it already has been done by Jin and Zhang [47] for a concave traffic flow
model of similar structure.
Start with the one-dimensional segregation equation with constant granular temperature

∂tφ− ∂z
(
S

(c− φ)

c
φ

)
︸ ︷︷ ︸

f(φ,c)

= 0. (3.57)

As c solely depends on the spatial variable, one can introduce an additional conservation
law ∂tc = 0. Then, equation (3.57) can be augmented into a system of conservation laws

∂tU + ∂zF(U) = 0, (3.58)

where U = (φ, c)T and the flux F(U) = (f(φ, c), 0)T . The system can be written in the
linearised form and can be analysed by looking at the eigenvalues and the corresponding
eigenvectors of the Jacobian. Writing the system in the linearised form

∂tU + DF(U)∂zU = 0, (3.59)

it is given by

∂t

(
φ
c

)
+

(
S(2φ

c
− 1) −S φ2

c2

0 0

)
∂z

(
φ
c

)
= 0. (3.60)

The eigenvalues of the Jacobian DF are

λ0 = 0, λ1 = S

(
2
φ

c
− 1

)
(3.61)

and the corresponding right eigenvectors are

r0 =

(
φ2

c2

2φ
c
− 1

)
, r1 =

(
1
0

)
. (3.62)
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The system has two characteristic fields, where the 0-field is linearly degenerate, as

∇λ0(U) · r0(U) ≡ 0 ∀U. (3.63)

The 1-field is genuinely non-linear, as

∇λ1(U) · r1(U) = S
2

c
6= 0 ∀U. (3.64)

Mind that c > 0. From the eigenvalues, it follows that the system is non-strictly hyper-
bolic, since for several states in the system, it holds

λ0 = λ1. (3.65)

A state U∗ = (φ∗, c∗)T is called critical if

λ1(U∗) = 0 = λ0. (3.66)

In the U-space, all critical points form a smooth curve. This curve is called transition
curve and is defined by

Γ = {U|λ1(U) = 0} (3.67)
= {(φ, c)T |c = 2φ}. (3.68)

The Jordan normal form of the linearised system (3.60) in a critical state is(
φ̃
c̃

)
t

+

(
0 1
0 0

)(
φ̃
c̃

)
z

= 0. (3.69)

The solution of this system, given by

φ̃(z, t) = c̃′(z)t+ k, (3.70)

blows up for t→∞. It is said, resonant behaviour occurs. These systems are called non-
linear resonant systems and were characterised in the work of Isaacson and Temple
[45]. At any point on the curve Γ, given by the critical states, the wave speed of the
0-family and the 1-family are the same and it follows that the system (3.58) is singular.
This makes wave interactions significantly more complicated than in a strictly hyperbolic
system, since “the wave speeds are not distinct, and so the number of times a pair of
waves can interact in a given solution cannot be bounded a priori”1. Or in other words,
no distinct eigenvectors are given in such points to show the correct direction to connect
two states in the U-space.
In their work, Isaacson and Temple [45] proved that under several conditions, the Riemann
problem of a non-linear resonant system of type (3.58) has a unique solution. Based on
this work, Lin et al. [58] discussed numerical methods for such resonant systems. The
original theorem, stating unique solutions in the work of Isaacson and Temple [45], is
formulated as follows:

1 Isaacson and Temple [45] p. 1261
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Theorem 3.3 Assume that in a neighbourhood of a state U∗ = (q∗, a∗) the n × n
system

∂tq + ∂xF(q, a) = 0

is strictly hyperbolic for each fixed value of a, and is either genuinely non-linear or
linearly degenerate in each characteristic field. Let

λ1(q, a) < λ2(q, a) < · · · < λn(q, a)

denote the eigenvalues of this system with corresponding right eigenvectors r1, . . . , rn
and left eigenvectors l1, ..., ln. Assume that the function F satisfies the following con-
ditions at the state U∗:

1. λk(q∗, a∗) = 0,

2. ∇λk · rk|U∗ 6= 0,

3. lk · ∂aF|U∗ 6= 0,

where k ∈ {1, . . . , n}. Then, there exists a unique solution of the Riemann problem in
a neighbourhood of U∗, and this solution depends continuously in physical space on the
left and right states. Moreover, for every F in this class, the solution exhibit the same
qualitative behaviour.

Based on their results, the authors were able to formulate an additional entropy condition
which ensures a unique solution.

Entropy Condition 5 A 0-wave, which connects two states on the same integral
curve by a contact discontinuity of speed zero, is admissible if it does not cross the
transition curve Γ.

Applying theorem 3.3 on the segregation problem, the mentioned n× n system is simply
the one dimensional equation (3.57). For a fixed c, the equation is strictly hyperbolic. It is
easily checked that all other conditions, stated in theorem 3.3, for the system augmented
from the segregation equation (3.57) are fulfilled. Following, the Riemann problem can
be uniquely solved if one regards the additional entropy condition (EC 5).

3.3.3 Solving the Riemann problem for the segregation equation
as non-linear resonant system

In this subsection the integral curves and Hugoniot-loci for the system (3.58), given by

∂tφ+ ∂z

(
S

(
φ

c
− 1

)
φ

)
= 0, (3.71a)

∂tc = 0, (3.71b)
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are constructed and the admissible waves, fulfilling the classical Lax entropy condition
(EC 4) and additionally EC 5, are worked out. The starting point is the Riemann problem
given by the equations (3.71) and the initial condition

U(z, t = 0) =

{
UL if z < 0,

UR if z > 0,
(3.72)

with constant states UL and UR. A state in the state space is defined by U = (φ, c)T .

Shock solution

For the shock solution, the Hugoniot-locus to a state in U-space needs to be found. A
shock that can be connected to an arbitrary fixed state Ū = (φ̄, c̄)T with speed s must
fulfil the Rankine-Hugoniot condition 3.1. Hence,

S

(
φ

c
− 1

)
φ− S

(
φ̄

c̄
− 1

)
φ̄ = s(φ− φ̄), (3.73)

0 = s(c− c̄). (3.74)

To fulfil equation (3.74) one has to distinguish two cases. First, with the assumption
s = 0, equation (3.73) modifies to

S

(
φ

c
− 1

)
φ− S

(
φ̄

c̄
− 1

)
φ̄ = 0. (3.75)

Solving equation (3.75) for c yields

c =
φ2(

φ̄
c̄
− 1
)
φ̄+ φ

. (3.76)

This can be parametrised by φ, such that the Hugoniot-locus in the U-space is given by

H0(ξ) =

(
ξ
ξ2(

φ̄
c̄
−1

)
φ̄+ξ

)
. (3.77)

As the shock speed s is zero, the curve H0(ξ) belongs to the linear degenerate field
with λ0 = 0. The only admissible wave along H0 is a contact discontinuity. Contact
discontinuities with speed zero are often called standing waves. Note that for an admis-
sible solution, the standing wave along H0 is not allowed to cross the transition curve Γ
(Entropoy Condition 5).

For the second case assume s 6= 0. From equation (3.74), it directly follows that c = c̄.
The Hugoniot-locus needs to be a straight line in U-space defined by the set

H1 = {U|c = c̄ and φ ∈ R+
0 }. (3.78)

The Hugoniot-locus can be given as a parametrised curve

H1(ξ) =

(
ξ
c̄

)
(3.79)
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and the shock speed is given by

s(φ) = S

(
φ2

c̄
− φ
)
−
(
φ̄2

c̄
− φ̄
)

φ− φ̄

= S
(φ−φ̄)(φ+φ̄)

c̄
− (φ− φ̄)

φ− φ̄

= S

(
φ+ φ̄

c̄
− 1

)
(3.80)

From Lax’s entropy condition (EC 4), it follows that a state U can only be connected to
the state Ū on the same curve H1 by an admissible shock if

λ1(U) > s > λ1(Ū) (3.81)

Hence, it must hold

λ1(U) = S

(
2
φ

c̄
− 1

)
> S

(
φ+ φ̄

c̄
− 1

)
︸ ︷︷ ︸

s

> S

(
2
φ̄

c̄
− 1

)
= λ1(Ū). (3.82)

This is fulfilled if
φ > φ̄, (3.83)

which geometrically means that, for the chosen coordinate system, U must be located
right of Ū in the state space.

Rarefaction waves

Each eigenvector rk of the given system defines a vector field in state space. The rarefac-
tion waves travel along the integral curves of these vector fields. As the tangent vector
in an arbitrary point of the integral curve is given by the eigenvector defining the vector
space, a parametrisation for the respective integral curve can be found. At every point
in the state space, the eigenvector of the 1-family is given by r1 = (1, 0)T . Since the
eigenvector r1 needs to be a tangent vector at every point of the integral curve, it holds
that the derivative of the integral curve takes the form

I ′1(ξ) = α(ξ) · r1(ξ). (3.84)

Set α(ξ) ≡ 1, assuming the integral curve is parametrised by φ and is passing through a
point Ū = (φ̄, c̄)T , the integral curve is given by

I1(ξ) =

(
ξ
c̄

)
. (3.85)

It can be seen that for the 1-family, the curve defining the Hugoniot-locus H1 (3.79)
coincides with the integral curve I1 (3.85).
In the previous subsection, it has been shown that the 0-field is linearly degenerate
with constant eigenvalue λ0 = 0. The integral curve and the Hugoniot-locus in a linear
degenerate field always coincide. This can easily be verified in this case. Starting with
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Figure 3.7: Plot of the integral curves passing through a critical point U∗ = (φ∗, c∗)T and
the transition line Γ in state space.

the same approach as for the 1-field, the parametrisation of the integral curve of the
0-field with eigenvector r0 leads to a curve that is identical to the one defining the
Hugoniot-locus H0(ξ) (3.77). As the speed along a curve H0 does not vary, it has been
deduced that the only admissible solution is a standing wave and cannot be a rarefaction
wave.

The Hugoniot-loci coincide with the integral curves for both fields. Therefore, they will
not be distinguished and will be called in the following 0-curve and 1-curve. A plot of
the state space with these two curves, passing through a critical state together with the
transition curve Γ is shown in Figure 3.7. One can see, that the 0-curve is convex and the
1-curve is a straight line. Both curves intersect the transition line only ones. Following,
there is only one critical point on each 0-curve and each 1-curve. At a critical state, the
1-curve is a tangent to a 0-curve passing through the same critical state. For an arbitrary
state U, there is only one curve of both kinds passing it.

Similar to (3.78), the 0-curve can be given by the set

H0 = {U|f(U) = const.} (3.86)

This can directly be seen, since

r0 =

(
φ2

c2
, 2
φ

c
− 1

)T
= (∂cf,−∂φf)T (3.87)

which is the tangent vector to a level line of the scalar field defined by the segregation
flux f . Hence, the integral curve is given by a level line of the flux function defined by
(3.86). With the found expressions for the integral curves and the entropy conditions,
the Riemann problem can be uniquely solved. Summarising the results, the following
procedure shows how an admissible combination of waves can be constructed.

Scheme 3.1
A unique solution to the Riemann problem (3.72)-(3.71) can be found by fulfilling the
following conditions:
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1. A contact discontinuity with speed zero (standing wave) travels along the 0 -
curve but is not allowed to cross the transition curve Γ.

2. A shock connecting two states UL and UR travels along the 1-curve and is only
admissible if UL is located right of UR (φL > φR).

3. A rarefaction wave connecting two states UL and UR travels along the 1-curve
and is only physical if UL is located left of UR (φL < φR).

To guarantee that a solution does not become double valued, the speeds of a combination
of waves must increase. Mind that the chosen name of the integral curves has no bear
on the order waves must travel the curves. Despite the waves along the 0-curve always
have speed zero, the wave speed along the 1-curve can be both, positive and negative.
This depends on the location of the states, as the transition line Γ separates the state
space in a region where λ1 > 0 and a region where λ1 < 0.
Depending on the location of the left Riemann state UL in relation to the transition
line, one can find ten different combinations of waves to connect to a state UR. Hence,
there are ten different regions in the state space for the position of UR that lead to one
of the ten wave combinations. In Figure 3.8, these regions are plotted. Six regions if UL

is located left of the transition line Γ and four if UL is located right of Γ. Each area is
numbered and coloured to distinguish from the others. The regions are mainly separated
by curves passing through the points U∗ and Ũ, where U∗ is the intersection of the
1-curve through UL and the transition line Γ. The state Ũ is the intersection point of
the 0-curve through UL and the transition line. The volume fraction of a particle phase
must not be larger than the granular volume fraction c. Therefore, all states in the state
space where φ > c are forbidden.

Following the previously stated procedure, one can find the admissible wave solutions
for each of the 10 configurations. A solution of a strictly hyperbolic system consists
of a combination of two, not necessarily different, waves. As the system is not strictly
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Figure 3.8: Different regions for UR depending on UL which yield different Riemann
solutions for a convex segregation flux. Six regions if UL is located left of the transition line
Γ (left Picture) and four regions if UL is located right of Γ (right Picture). The lower right
part defines an unphysical area, as φ > c.
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Figure 3.9: (1) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region I shown in Figure 3.8, where φR < cR

2 and
f(UR) > f(UL). The solution consists of two basic waves, a shock (UL, ǓL) with negative
speed s = (f(ǓL)−f(UL))/(φ̌L−φL) < 0 and a contact discontinuity (ǓL,UR) with speed
zero (standing wave). Furthermore, the flux function for a left and a right state is plotted
(right). The wave solution is highlighted. The flux curves are connected by the contact
discontinuity. The resulting average boundary flux is given by F̄ = f(UR).
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Figure 3.10: (2) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region II shown in Figure 3.8, where φR < cR

2 and
f(U∗) ≤ f(UR) < f(UL). The solution consists of two basic waves, a rarefaction (UL, ǓL)
with characteristic speed λ1(φ, cL) < 0 and a contact discontinuity (U1,UR) with speed
zero (standing wave). Furthermore, the flux function for a left and a right state is plotted
(right). The wave solution is highlighted. The flux curves are connected by the contact
discontinuity. The resulting average boundary flux is given by F̄ = f(UR).

hyperbolic, the solution of the Riemann problem can consist of up to three different waves
as one will see soon. The solution to each of the 10 cases is plotted in the Figures 3.9-3.18,
where shock waves are denoted by S, rarefaction waves by R, and contact discontinuities
by C.
With the constructed solutions for the Riemann problem (3.72), it is possible to construct
a finite volume method for computing the admissible solutions, which will be done in the
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upcoming chapter. Therefore, the average flux at the cell boundary at z = 0 over some
time interval ∆t is of interest. It is defined by

F̄0 =
1

∆t

∫ ∆t

0

f(U(0, t))dt. (3.88)

An admissible approximation for this boundary flux can be deduced from the solutions of
the Riemann problem. As already mentioned, the Figures 3.9-3.18 present the solutions
and give the boundary flux F̄ . Additionally, for each case, the fluxes of the left and
right states are plotted. For physical left and right states, the fluxes are convex curves
with f(φ, c) ≤ 0. The connected states and wave solutions are highlighted in these
plots.

Example 3.1 (Two-Wave-Solution)
Assume the case, where UL is located left of the transition line, i.e.,

φL <
cL
2
.

Further, assume UR is in region I shown in Figure 3.8. It holds

φR <
cR
2

and
f(UR) ≥ f(UL).

Then, the solution depicted in Figure 3.9 consists of two basic waves with the inter-
mediate state ǓL = (φ̌L, cL), where f(ǓL) = f(UR).

1. The wave (UL, ǓL) is a shock with negative speed s = f(ǓL)−f(UL)

φ̌L−φL < 0.

2. The wave (ǓL,UR) is a contact discontinuity with speed zero (standing wave).

The resulting average boundary flux for Example 3.1 is given by F̄ = f(ǓL) = f(UR).
A solution consisting of three different waves is depicted in Figure 3.11.

Example 3.2 (Three-Wave-Solution)
Let UL be located left of the transition line, i.e.,

φL <
cL
2
.

The right state UR is located in region III shown in Figure 3.8. It holds

f(UR) < f(U∗) < f(UL).

1. The wave (UL,U
∗) is a rarefaction with characteristic speed λ1(φ, cL) < 0.

2. (U∗, ǓR) is a standing wave.
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3. The wave (ǓR,UR) is a shock with positive speed. The shock speed is given by
s = f(UR)−f(ǓR)

φR−φ̌R > 0.

In the case given in example 3.2, an admissible average boundary flux is different to the
fluxes gained from the left or right state. The boundary flux is given by F̄ = f(U1) =
f(U∗). The state U∗ = ( cL

2
, cL) is known, as it lies on the transition line. It defines the

minimum of the flux function, i.e.,

U∗ = argmin
U=(φ,cL)

f(U). (3.89)

In the following, the minimum of the flux function with fixed state cL is denoted by fminL .
Hence, F̄ = fminL .

Assume that the states UL and UR are physically admissible states of the system, i.e.,
c > 0 and 0 ≤ φ ≤ c. Then, it can be shown that for all found solutions, each state on one
of the connecting integral curves and therefore, all intermediate states are also physically
admissible states. Checking the given solutions in Figure 3.9-3.18, it can be seen that
an unphysical state can theoretically only be reached for the regions I (Figure 3.9), V I
(Figure 3.14), V II (Figure 3.15), V III (Figure 3.16) and X (Figure 3.18) if the 0-curve
leaves the domain into the area where φ < 0 or φ > c. Let f(U) be the segregation flux
function and define

h(U) :=
f(U)

S
, (3.90)

then the 0-curve through a state Ū can be given as graph of the function

gŪ(φ) =
φ2

h(Ū) + φ
. (3.91)
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Figure 3.11: (3) Example showing the wave solution in state space (left). UL is lo-
cated left of the transition line Γ and UR in region III shown in Figure 3.8, where
f(UR) < f(U∗) < f(UL). The solution consists of three basic waves, a rarefaction
wave (UL,U

∗) with characteristic speed λ1(φ, cL) < 0, a standing wave (U∗, ǓR), and a
shock wave (ǓR,UR) with positive speed, given by s = (f(UR) − f(ǓR)/(φR − φ̌R) > 0.
Furthermore, the flux function for a left and a right state is plotted (right). The wave
solution is highlighted. The flux curves are connected by the contact discontinuity. The
resulting average boundary flux is given by F̄ = fminL .
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Figure 3.12: (4) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region IV shown in Figure 3.8, where φR > cR

2 ,
cR > c∗ = cL, and f(UR) > f(U∗). The solution consists of three basic waves, a rarefaction
wave (UL,U

∗) with characteristic speed λ1(φ, cL) < 0, a standing wave (U∗, ǓR), and a
second rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = fminL .

As the segregation flux for the small particle phase is less or equal to zero for all admissible
states, f(U) ≤ 0, it holds h(U) ≤ 0, as S > 0. Therefore, it can be seen that gŪ has
a pole at φ = −h(Ū). Hence, the graph tends to infinity inside the admissible domain
without reaching the area where φ < 0.
Furthermore, the graph of gŪ approaches an asymptote given by

AŪ(φ) = φ− h(Ū), (3.92)

as φ → ∞. The asymptote is a line inside the physical domain, which is parallel to the
boundary of the physical space defined by φ = c. The 0-curve also does not cross the
asymptote AŪ, since it is convex between the pole and the asymptote. Hence, a physical
state cannot leave the physical domain along the 0-curve.
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Figure 3.13: (5) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region V shown in Figure 3.8, where φR > cR

2 , c̃ <
cR < c∗ = cL, and f(UR) > f(U∗). The solution consists of three basic waves, a rarefaction
wave (UL, ǓL) with characteristic speed λ1(φ, cL) < 0, a standing wave (ǓL, ǓR), and a
second rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = fminR .
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Figure 3.14: (6) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region VI shown in Figure 3.8, where φR > cR

2 ,
cR < c̃, and f(UR) > f(UL). The solution consists of three basic waves, a negative shock
(UL, ǓL) with speed s = (f(ǓL)− f(UL)/(φ̌L − φL) < 0, a standing wave (ǓL, ǓR), and
a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the flux
function for a left and a right state is plotted (right). The wave solution is highlighted. The
flux curves are connected by the contact discontinuity. The resulting average boundary flux
is given by F̄ = fminR .
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Figure 3.15: (7) Example showing wave solution in state space (left). UL is located right
of the transition line Γ and UR in region VII shown in Figure 3.8, where φR < cR

2 and
f(UR) > f(UL). The solution consists of two basic waves, a negative shock (UL, ǓL) with
speed s = (f(ǓL)−f(UL)/(φ̌L−φL) < 0 and a standing wave (ǓL,UR). Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = f(UR).
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Figure 3.16: (8) Example showing the wave solution in state space (left). UL is lo-
cated right of the transition line Γ and UR in region VIII shown in Figure 3.8, where
f(UR) < f(UL). The solution consists of two basic waves, a standing wave (UL, ǓR) and
a positive shock (ǓR,UR) with speed s = (f(UR) − f(ǓR)/(φR − φ̌R) > 0. Furthermore,
the flux function for a left and a right state is plotted (right). The wave solution is high-
lighted. The flux curves are connected by the contact discontinuity. The resulting average
boundary flux is given by F̄ = f(UL).
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Figure 3.17: (9) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ andUR in region IX shown in Figure 3.8, where φR > cR

2 , cR > c̃,
and f(UR) > f(UL). The solution consists of two basic waves, a standing wave (UL, ǓR)
and a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = f(UL).
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Figure 3.18: (10) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region X shown in Figure 3.8, where φR > cR

2 ,
cR < c̃, and f(UR) > f(UL). The solution consists of three basic waves, a negative shock
(UL, ǓL) with speed s = (f(ǓL)− f(UL)/(φ̌L − φL) < 0, a standing wave (ǓL, ǓR), and
a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the flux
function for a left and a right state is plotted (right). The wave solution is highlighted. The
flux curves are connected by the contact discontinuity. The resulting average boundary flux
is given by F̄ = fminR .
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3.3.4 Solution to the Riemann problem for the segregation
equation with non-constant temperature

Now assume that the temperature depends also on the spatial variable. For simplicity,
γ :=

√
T is used instead of the granular temperature to overcome the square root term.

Analogous to the case where the temperature is constant, one can introduce another
additional equation for γ and augment the segregation equation into a system of equations.
In this case, the system is given by

∂tφ+ ∂z

(
Sγ

(
φ

c
− 1

)
φ

)
= 0, (3.93a)

∂tc = 0, (3.93b)
∂tγ = 0. (3.93c)

Initially, the Riemann problem is given by

U(z, t = 0) =

{
UL if z < 0,

UR if z > 0,
(3.94)

with constant states UL and UR, where the states in the state space are defined by
U = (φ, c, γ)T . Note that the state space is now three-dimensional. The linearised form
of the system is

∂t

φc
γ

+

Sγ (2φc − 1
)
−Sγ φ2

c2
S
(
φ
c
− 1
)
φ

0 0 0
0 0 0

 ∂z

φc
γ

 = 0. (3.95)

The eigenvalues of the system are

λ0 = 0, λ1 = 0, λ2 = Sγ

(
2
φ

c
− 1

)
(3.96)

and the corresponding right eigenvectors are

r0 =

 φ2

c2(
2φ
c
− 1
)

0

 , r1 =

 (1− φ
c

)
φ

0

γ
(
2φ
c
− 1
)
 , r2 =

1
0
0

 . (3.97)

The system has three characteristic fields, where the 0-field and the 1-field are linearly
degenerate. Since no segregation happens in a static system, where the granular temper-
ature is zero, one can restrict to the case that T > 0, and therefore γ > 0. Under these
assumptions the 2-field is genuinely non-linear, as

∇λ2(U) · r2(U) = Sγ
2

c
6= 0 ∀U. (3.98)

Similar to the analysed two-dimensional system, a critical state U∗ = (φ∗, c∗, γ∗)T is
defined by

λ2(U∗) = 0. (3.99)
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Figure 3.19: Plot of the integral curves, defined in (3.103), passing through a critical point
U∗ = (φ∗, c∗, γ∗)T and the transition line Γ. The curves are depicted in the state space,
where the 0-curve lies in the φ-c-plane (left) and the 1-curve lies in the φ-γ-plane (right).

In the three-dimensional system, the set of critical states forms a transition surface

Γ = {U|λ2(U) = 0} (3.100)
= {(φ, c, γ)T |c = 2φ, γ ∈ R+}. (3.101)

Let Ū be a state in the state space. As the Hugoniot-loci and the integral curves again
coincide for all three fields, a parametrisation can be found starting from the ansatz

I ′k(ξ) = α(ξ) · rk. (3.102)

Parametrising by φ and assuming that I(φ̄) = (φ̄, c̄, γ̄)T , the three curves can be written
by

I0(ξ) =

 ξ
ξ2(

φ̄
c̄
−1

)
φ̄+ξ

γ̄

 , I1(ξ) =

 ξ
c̄

γ̄φ̄(φ̄−c̄)
ξ(ξ−c̄)

 , I2(ξ) =

ξc̄
γ̄

 . (3.103)

The 0-wave and the 1-wave are contact discontinuities with speed zero, whereas along the
2-curve either shocks, or rarefaction waves can be the admissible solution. The respective
curves defined in (3.103) are plotted in Figure 3.19.

The derived 0-curve and the 1-curve lie in the φ-c-plane and the φ-γ- plane, respectively.
The representation of the 0-curve is identical to the one described in the last subsection
for the constant temperature case. Hence, the 0-curve does not leave the physically
admissible domain. The same holds true for the 1-curve, which can be given by a graph
in the φ-γ-plane. Defining

h(U) :=
cf(U)

S
, (3.104)

where f(U) is the segregation flux function, the graph representing the 1-curve through
a state Ū can be given by

gŪ(φ) =
h(Ū)

φ(φ− c̄) . (3.105)
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Figure 3.20: Structure of the Riemann solution with non-constant temperature. The
solution consists either of a left going wave and a contact discontinuity with speed zero
(left), a contact discontinuity and a right going wave (middle), or a left going wave, a contact
discontinuity and a right going wave (right). Each wave can be a shock or a rarefaction.
The algebraic sign of the characteristic speed, given by λ2, depends on the location of
the respective state. To distinguish the contact discontinuity and the t-axis, the contact
discontinuity is drawn by a dashed line.

To stay in the admissible domain the curve must not enter the region where φ < 0 or
φ > c̄. Since h(U) is bounded, it holds

gŪ(φ)→∞ (3.106)

for φ → 0 and also for φ → c̄. Hence, the 1-curve stays in the admissible domain and
therefore, a combination of the 0-curve and the 1-curve.
This is relevant, since the defined curves are not the unique wave paths. As λ0 = λ1,
each linear combination of the respective eigenvectors r0 and r1 is again an eigenvector
and would define a suitable direction for a wave in the state space. In general, such a
problem has no unique solution as the path in the state space is not clear.

However, it turns out that it is not necessary to know the exact path of the standing
waves to finally solve the problem. As it has been done for the smaller system in the
last section, applying entropy condition 5 solves the problem how to handle a solution
around the transition plane, where also λ2 = 0. Hence, one has to deal with the 0-curve
and 1-curve on the respective side of the transition plane. Fortunately, the given system
does not lead to problems, as both fields are linearly degenerate. This case coincides
with the system of Euler equations in multiple space dimensions, where for each space
dimension a contact discontinuity is given with equal characteristic speed (compare Toro
[77]). For the segregation equation, the solution can be depicted as shown in Figure 3.20.
The solution is similar to the solution derived for the system with constant temperature
in the last subsection. It consists either of a left going wave and a contact discontinuity
with speed zero or a contact discontinuity and a right going wave or a left going wave, a
contact discontinuity and a right going wave.
Each wave can be a shock or a rarefaction depending on the states. The shock speed
connecting an arbitrary state U to a state Ū can be computed by the Rankine-Hugoniot
condition 3.1 and yields similar to (3.80)

s = Sγ̄

(
φ+ φ̄

c̄
− 1

)
(3.107)
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The admissibility of a shock solution can be verified by Lax’s entropy condition (EC 4).
It follows that an entropy fulfilling shock wave is given if

φ > φ̄. (3.108)

Although the exact path of the contact discontinuity in state space is not known, it
will be shown in subsection 4.3.2 and section 5.2 that a natural extension of the derived
numerical method of the constant temperature system yields similar good results.





Chapter 4

Numerics

The software platform CoRheoS (Complex Rheology Solvers) is a development of the
department “Flow and Material Simulation” of Fraunhofer ITWM. It includes the gran-
ular finite volume solver GRAIN. The granular flow model, which has been explained in
section 2.1 is implemented in this solver. One goal of this thesis is to extend the GRAIN
solver by the segregation model derived in section 2.2. This chapter deals with numeri-
cally solving the segregation equation in an adequate way to combine it with the already
existing implementations in GRAIN.
Several tools to solve partial differential equations numerically are applicable today, like
finite differences, finite volumes or finite element methods. This work is restricted to
the method of finite volumes for several reasons. One is to fit into the framework of the
GRAIN solver. Another is concerned with the mathematical properties of the segregation
equation. As already experienced in the previous sections, the solution of non-linear hy-
perbolic equations, like the segregation equation, can contain discontinuities which lead
to computational difficulties. Methods like the finite difference method which approxi-
mate derivatives by finite differences may break down near those discontinuities. Further,
the number of particles of a specific type and therefore its volume fraction, which is of
interest, is a quantity that should be conserved. As finite volume methods are based on
the integral form of the differential equation, they conserve quantities per construction if
the underlying differential equation can be given in conservation form. After introducing
words about finite volumes and dealing with the discretisation of the segregation equa-
tion, a modified version of Godunov’s scheme is presented, based on the solution of the
Riemann problem analysed in section 3.3. The information stated in this chapter and
even more details can be found in [57] or [77].

4.1 Discretisation using finite volumes
The finite volume method (FVM) is based on the subdivision of a spatial domain into
non-overlapping “finite volumes”, also called control volumes or grid cells. Let

∂tq +∇ · f(q) = 0 (4.1)

be a scalar conservation law on the spatial domain Ω ⊂ Rd. Further, let Ci denote the
i-th control volume of the mesh subdividing the domain. Then it holds

Ω =
⋃
i∈I

Ci, (4.2)

73
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Figure 4.1: Top- and bottom-view of a control volume Ci of some equidistant grid in
three-dimensional space showing the notation of the different faces. The cell wall σE is
highlighted in red. In both views σS , which is located opposite of σN , is hidden.

where I defines some index set. In this work, a cell-centred finite volume scheme is used,
which means that discrete evaluations of the quantity of the conservation law (4.1) are
made in the centre point xi ∈ Rd of cell Ci.

The FVM works with the integral of q over each of the control volumes Ci and updates
them over time by evaluating the fluxes through the parts of the boundary of each control
volume. The approximated average value of q over the i-th control volume at some time
tn can be given by

Qn
i ≈

1

|Ci|

∫
Ci

q(x, tn) dx. (4.3)

For the discretisation with the finite volume method, one integrates the equation (4.1)
over the control volume Ci, which leads to∫

Ci

∂tq(x, t) dx +

∫
Ci

∇ · f(q(x, t)) dx = 0. (4.4)

For the second term, the Gauß theorem can be applied, giving∫
Ci

∂tq(x, t) dx +

∫
∂Ci

f(q(x, t)) · nCi ds = 0, (4.5)

where nCi defines the control volume’s outer normal vector. Furthermore, the boundary
of the control volume ∂Ci can be subdivided into parts. If the control volume Ci is a
polyhedron, one normally chooses each boundary part σk equal to one of the polyhedrons
faces. Hence, ∫

Ci

∂tq(x, t) dx +
∑
k

∫
σk

f(q(x, t)) · nσk ds = 0. (4.6)

In this work, it is assumed that the underlying grid for the discretisation is equidistant
and rectangular. Each control volume is given by a cube where the face outer normal
vectors are given by the canonical unit vectors. For a better understanding the faces are
denoted by σN (north), σE (east), σS (south), σW (west), σT (top), and σB (bottom), in
the three-dimensional case as depicted in Figure 4.1.
Defining

fσk(t) =

∫
σk

f(q(x, t)) · nσk ds, (4.7)
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Figure 4.2: Sketch of the finite volume method. Updating process of Qni by the fluxes
through the cell walls of a one-dimensional equation depicted in x-t-space.

equation (4.6) can shortly be written as∫
Ci

∂tq(x, t) dx +
∑
k

fσk(t) = 0. (4.8)

Integrating equation (4.8) over the time interval [tn, tn+1] and additionally dividing by
|Ci| yields

1

|Ci|

∫
Ci

q(x, tn+1) dx =
1

|Ci|

∫
Ci

q(x, tn) dx− 1

|Ci|
∑
k

∫ tn+1

tn

fσk(t) dt. (4.9)

Using (4.3), a numerical method to update the cell averages of q, which is explicit in time,
takes the form

Qn+1
i = Qn

i −
∆t

|Ci|
∑
k

F̄ n
σk
, (4.10)

where

F̄ n
σk
≈ 1

∆t

∫ tn+1

tn

fσk(t) dt (4.11)

defines an approximation of the average flux through the boundary part σk and
∆t = tn+1 − tn is the time step. Procedure (4.10) simply states that the cell aver-
age at the new time step tn+1 is given by the cell average at the old time step tn and the
flux through all parts of the control volume’s boundary in the given time interval ∆t.

This can be clarified, assuming only one space dimension Ω = (a, b), as depicted in
Figure 4.2, which sketches the FVM in the x-t-space. The equidistant grid is given by
a = x−1/2 < x0 < · · · < xN < xN+1/2 = b and the grid cells are defined by

Ci = (xi−1/2, xi+1/2), (4.12)

where xi defines the midpoint of cell i. The size of a cell is given by ∆x = xi+1/2−xi−1/2.
Then, equation (4.10) can be given more precisely by

Qn+1
i = Qn

i −
∆t

∆x
(F̄ n

i+1/2 − F̄ n
i−1/2), (4.13)

where F̄ n
i−1/2 is some approximation to the average flux along x = xi−1/2.

To get a fully discrete method, the average fluxes F̄ n need to be computed from the values
Qn. There are several methods on the market that obtain F̄ n

i−1/2 based on the values of
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Figure 4.3: Sketch of a control volume with centre point P in the x-y-space showing
the notation of the most important points for evaluations. All points xk are given in the
abbreviated form, written by k. Additionally, the outer normal vectors are drawn.

the neighbouring two cells Qn
i−1 and Qn

i . This can be written using the notation of a
numerical flux function

F̄ n
i−1/2 = F(Qn

i−1, Q
n
i ). (4.14)

The method (4.13) can be rewritten as

Qn+1
i = Qn

i −
∆t

∆x
(F(Qn

i , Q
n
i+1)−F(Qn

i−1, Q
n
i )), (4.15)

which results in an explicit method with a three-point stencil. To obtain higher order
methods, bigger stencils are necessary and thus, the values of more cells need to be taken
into account in the numerical flux functions.
Having a cartesian grid in d-dimensional space with d > 1, the flux can be assumed to
be one-dimensional in each coordinate direction. For example, the numerical flux of the
cell wall σN depends on the state values of the cell midpoints of the neighbouring cells,
depicted by P and N in Figure 4.3. For the different dimensions, only the size of the cell
walls and the volume of the cells differs.

As mentioned in the beginning of this section, the work focuses on cell-centred cubic
finite volumes. The only exception made, is in the simulation chapter 5 where the al-
ready implemented cut-cell method, as introduced in Neusius [65], is used to improve
the approximation of the domain boundary. In these cut and, in some circumstances,
merged cells, the cell information is not located in the geometric centre of the cell any
more. Therefore, interpolations have to be made. Detailed descriptions and explanations
are given in [65].

4.2 Numerical methods
After discussing the case of a general conservation law, the specific form of the segregation
equation is investigated. In accordance to the previous section, the following question can
be posed: How to find an appropriate boundary flux for the segregation equation which
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takes into account the given data of the neighbouring cells? The segregation equation
(2.106d), derived in chapter 2, can be given in the general form

∂tφ+∇ · f t(φ) +∇ · f s(φ) = 0, (4.16)

where f t is the transport flux with the bulk material and f s the segregation flux. For each
cell wall σk, a numerical flux approximation is needed for both defined fluxes, f t and f s.
To simplify the notation presenting the numerical schemes in accordance to Figure 4.3,
the evaluation of a function or quantity Υ at a specific position xk at time tn is denoted
by Υ (k).
The flux function defining the transport with the granular bulk is given by

f t(φ) = φu. (4.17)

The numerical scheme which is used for the transport of the small particle phase φ with
the granular bulk, should coincide with the scheme which is used for the transport of
the granular volume fraction c, computed by the mass balance (2.106a). This is done by
using the upwind method.
Given a cell wall, e.g. σW , the flux F̄ t

σW
is approximated with the data at time tn. It

holds
F̄ t
σW
≈
∫
σW

f t(φ(x, tn)) · nσW dsW . (4.18)

Using the midpoint rule to compute the integral over the cell wall yields

F̄ t
σW

= f t(w) · nσW |σW |, (4.19)

where
f t(w) = φ(w)u(w). (4.20)

The bulk velocity is known from the granular flow equations and is given in the cell
centres. The value at the wall u(w) is a linear interpolation of the values in P and W .
The value of φ(w) is unknown but can be approximated by the upwind scheme. The
upwind scheme chooses the value at a cell wall depending on the transport velocity, i.e.,

φ(w) =

{
φ(W ) if u(w) · nσW > 0,

φ(P ) if u(w) · nσW < 0.
(4.21)

For a transport process with given transport velocity, the upwind method leads to good
numerical results. For non-linear flux functions like the segregation flux other methods
are preferable, as it will be shown later on. The general idea to handle the segregation
flux numerically is based on the scheme of Godunov. The following Algorithm 4.1 is a
natural development to solve hyperbolic conservation laws numerically. It is called REA
algorithm, which stands for reconstruct-evolve-average. The original approach given by
Godunov uses this procedure with simple constant functions as reconstruction in each
control volume.

Algorithm 4.1 (REA)
1. Reconstruct a piecewise polynomial function q̃(x, tn), defined for all x, from the

cell averages Qn
i . In the simplest case, take a piecewise constant function given

by
q̃(x, tn) = Qn

i ∀x ∈ Ci.
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2. Evolve the hyperbolic equation exactly (or approximately) with this initial data
to obtain q̃(x, tn+1) one time step ∆t later.

3. Average this function over each control volume to obtain new cell averages

Qn+1
i =

1

|Ci|

∫
Ci

q̃(x, tn+1) dx.

4. Repeat the whole procedure for each time step.

Using Godunov’s approach with constant data in each cell, the “evolve”-step 2 coincides
with solving a Riemann problem at each cell wall. If the solution of the Riemann problem
at the cell wall σW is known, one can define the numerical flux and gains a numerical
scheme of the desirable form (4.10).
As the cell data are constant, the value q̃n(xw, t) defined in Algorithm 4.1 is constant over
the time interval tn < t < tn+1 under certain stability conditions (see section 4.4).
Let Q̌w be the solution of the Riemann problem at the cell wall σW , then Q̌w = q̃n(xw, t)
and the numerical flux is given by

F̄ n
σW

=
1

∆t

∫ tn+1

tn

f(Q̌w) · nσW |σW | dt

= f(Q̌w) · nσW |σW |.
(4.22)

Hence, Godunov’s method can generally be given by Algorithm 4.2.

Algorithm 4.2 (Godunov)
1. Solve the Riemann problem for each cell wall σk to obtain Q̌k.

2. Define the numerical flux F̄ n
σk

= f(Q̌k) · nσk |σk|.

3. Apply the flux differencing formula Qn+1
i = Qn

i − ∆t
|Ci|
∑

k F̄
n
σk
.

Depending on the conservation law, the solution to a Riemann problem can directly be
given, which simplifies the computation. In the next section, it will be shown that for the
spatially depending segregation flux this classical version of Godunov’s method leads to
undesired behaviour in the numerical solution. Therefore, a modified version is derived.

4.3 A Godunov method for the segregation flux

In the last section, the flux differencing formula has been derived. To compute the states
of the new time step, the evaluation of the boundary fluxes is essential. Doing this for
the segregation flux, the approach of Godunov (Algorithm 4.2) should be used, which
needs the solution of the Riemann problem at the cell wall. First, a compact form of the
numerical Godunov flux is presented. A modified version is derived afterwards.
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(i) (ii) (iii) (iv) (v)

Figure 4.4: Five possible Riemann solutions in the z-t-space between the states Qni−1 and
Qni : (i) a left going shock, Q̌i−1/2 = Qni ; (ii) a left going rarefaction wave, Q̌i−1/2 = Qni ;
(iii) a transonic rarefaction fan, Q̌i−1/2 = qs; (iv) a right going shock, Q̌i−1/2 = Qni−1; or
(v) a right going rarefaction wave, Q̌i−1/2 = Qni−1.

4.3.1 The classical Godunov scheme

The focus lies on the segregation flux. Therefore, the model is reduced to a one-
dimensional segregation equation as it has already been done in chapter 3 to analyse
the flux term. Let

∂tq + ∂zf(q) = 0

be a conservation law with convex flux function f(q). The flux differencing formula in
the one-dimensional case is given by

Qn+1
i = Qn

i −
∆t

∆z
(F̄ n

i+1/2 − F̄ n
i−1/2).

As stated in Algorithm 4.2, the flux at zi−1/2 is given by

F̄ n
i−1/2 = f(Q̌i−1/2). (4.23)

For a non-linear flux function f(q) there are five possible Riemann solutions, (i) a left
going shock, (ii) a left going rarefaction wave, (iii) a transonic rarefaction fan, which
is a rarefaction fan spreading in both directions, (iv) a right going shock, or (v) a right
going rarefaction wave as depicted in Figure 4.4. If the waves travel either to the left
or to the right, the solution Q̌i−1/2 at zi−1/2 is given by either Qn

i or Qn
i−1, respectively.

For the rarefaction fan spreading in both directions Q̌i−1/2 = qs, where Qn
i−1 < qs < Qn

i

is the stagnation point fulfilling f ′(qs) = 0. Then, the Godunov flux for a convex scalar
conservation law is given by

F̄ n
i−1/2 =


f(Qn

i−1) if s > 0 and Qn
i−1 > qs,

f(Qn
i ) if s < 0 and Qn

i < qs,

f(qs) if Qn
i−1 < qs < Qn

i ,

(4.24)

where s is the shock speed given by the Rankine-Hugoniot condition 3.1. The for-
mula (4.24) can be written even more compactly as

F̄ n
i−1/2 =


min

q∈[Qni−1,Q
n
i ]
f(q) if Qn

i−1 ≤ Qn
i ,

max
q∈[Qni ,Q

n
i−1]

f(q) if Qn
i−1 > Qn

i .
(4.25)

With this formula, the flux through the cell walls can be computed directly from the
neighbouring states. Unfortunately, formula (4.25) cannot directly be applied to the
segregation equation. Due to the spatial dependence of the segregation flux function,
one has to be more cautious as described in [57]. Assume that the flux function depends
explicitly on z, then the conservation law is given by

∂tq + ∂zf(q, z) = 0. (4.26)
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Discretising the flux, one obtains a flux function fi(q) associated with the i-th grid cell
giving a Riemann problem at zi−1/2 with states Qn

i−1 and Qn
i by

∂tq + ∂zfi−1(q) = 0 if z < zi−1/2,

∂tq + ∂zfi(q) = 0 if z > zi−1/2.
(4.27)

Solving such a Riemann problem generally consists of finding a state Q̌L that can be
connected with left going waves to Qn

i−1 and a state Q̌R that can be connected with right
going waves to Qn

i , such that additionally

fi−1(Q̌L) = fi(Q̌R). (4.28)

One or both of the states Q̌L and Q̌R do not have to coincide with the states Qn
i−1 and

Qn
i . The classical Godunov flux approximation of the directly dicretised flux fails in this

case, because the chosen states do not fulfil condition (4.28). In the next chapter, in
subsection 5.2.1, the effect on the solution choosing states that do not fulfil (4.28) is
shown.

4.3.2 The modified Godunov scheme

Assume the one-dimensional segregation equation is given by

∂tφ− ∂z
(
S
√
T

(
c− φ
c

)
φ

)
= 0. (4.29)

The flux function is non-linear and, since 0 ≤ φ ≤ c, T > 0 and S > 0, it is convex. Due
to the spatial dependence of the granular volume fraction and the granular temperature,
a z-dependence is given in the flux function.

Segregation flux with constant temperature

Similarly to section 3.3, it is assumed that the granular temperature is constant for now,
such that the segregation equation can simply be given by

∂tφ− ∂z
(
S

(
c− φ
c

)
φ

)
= 0 (4.30)

with a segregation flux f(φ, c). Discretising the segregation flux, like in (4.27), a Riemann
problem at z = 0 with left and right states φL and φR is given by

∂tφ+ ∂zfL(φ) = 0 if z < 0,

∂tφ+ ∂zfR(φ) = 0 if z > 0,
(4.31)

where fL(φ) = f(φ, cL). This problem is identical to the Riemann problem (3.71)-(3.72)
with states UL and UR, where U = (φ, c)T , which has been explicitly solved in sec-
tion 3.3 of the previous chapter. From the solutions plotted in the Figures 3.9-3.18, the
correct boundary fluxes, fulfilling condition (4.28), can be found. The states fulfilling
condition (4.28) can be identified directly in the solution plots, which depict the flux
functions fL and fR. In this plot the mentioned states must be connected by a horizontal
line. The conditions for each Riemann solution and the resulting boundary flux are listed
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Case Figure left state condition of right state F̄

1 3.9 φL <
cL
2

φR <
cR
2
, f(UR) > f(UL) f(UR)

2 3.10 φL <
cL
2

φR <
cR
2
, f(U∗) ≤ f(UR) < f(UL) f(UR)

3 3.11 φL <
cL
2

f(UR) < f(U∗) < f(UL) fminL

4 3.12 φL <
cL
2

φR >
cR
2
, cR > c∗ = cL, f(UR) > f(U∗) fminL

5 3.13 φL <
cL
2

φR >
cR
2
, c̃ < cR < c∗ = cL, f(UR) > f(U∗) fminR

6 3.14 φL <
cL
2

φR >
cR
2
, cR < c̃, f(UR) > f(UL) fminR

7 3.15 φL >
cL
2

φR <
cR
2
, f(UR) > f(UL) f(UR)

8 3.16 φL >
cL
2

f(UR) < f(UL) f(UL)
9 3.17 φL >

cL
2

φR >
cR
2

, cR > c̃, f(UR) > f(UL) f(UL)
10 3.18 φL >

cL
2

φR >
cR
2

, cR < c̃, f(UR) > f(UL) fminR

Table 4.1: Conditions and the resulting solutions for the boundary fluxes of the Riemann
problem (3.71)-(3.72).

in Table 4.1. One can see that the resulting boundary flux in all 10 cases is equal to
one of four quantities. In the cases 1, 2, and 7, it is given by the downstream flow rate
f(UR) = fR(φR) and in the cases 8 and 9 by the upstream flow rate f(UL) = fL(φL).
The remaining cases are different. The averaged boundary flux coincides with one of the
extrema of the fluxes fL and fR. In the cases 3 and 4, it is given by fminL = fL(φminL ),
where φminL = cL

2
is the point where fL takes its minimum and in the cases 5, 6, and 10, it

is given by fminR = fR(φminR ), where φminR = cR
2

is the point where fR takes its minimum.
From the given results, a formula can be deduced which yields the right boundary flux
under the respective conditions. Defining the upstream supply by

fup =

{
fL(φL) if φL > φminL

fminL if φL ≤ φminL ,
(4.32)

and the corresponding downstream supply by

fdown =

{
fR(φR) if φR < φminR ,

fminR if φR ≥ φminR ,
(4.33)

the average boundary flux is directly given by

F̄G = max{fup, fdown}. (4.34)

A similar formula can be deduced for the large particle phase, where the flux functions are
concave. In this case the flux functions have maxima and the four possible quantities for
the boundary flux are fL(φL), fR(φR), fmaxL and fmaxR . All solution plots of the Riemann
problem for the large particle phase and a compact formula for the boundary flux are
given in Appendix A.
The notation of the presented flux formula is taken from Jin and Zhang [47]. In their work,
the authors analysed a spatially dependent Riemann problem for the Lighthill-Witham-
Richards (LWR) traffic flow model. The concave flux function, they dealt with, is similar
to the flux function of the large particle phase’s segregation equation. It turned out that
the Riemann solutions which they found are identical with those for the large particle’s



82 Chapter 4 Numerics

segregation equation. Independently from each other, Daganzo [17] and Lebacque [56]
also found identical solutions for the LWR traffic flow model. In 2008 Towers et al. [78]
extended the work done in [17], [47], and [56] and gave the first completely rigorous
convergence proof for the Godunov scheme with the above mentioned flux formula. Fur-
thermore, they introduced a more compact formula for the boundary flux, which clearly
fits also for the large particle flux. Modifying this formula such that it suits for the con-
vex flux function of the small particle phase, the computation formula for the extended
Godunov scheme can be given by

F̄G = max
{
fL(max{φL, φminL }), fR(min{φR, φminR })

}
. (4.35)

One can easily check that the Godunov flux formula (4.35) is in accordance with the
previously derived formulas (4.32)-(4.34). Furthermore, the modified Godunov scheme,
using the flux (4.35), reduces to the classical Godunov version if the granular volume
fraction is constant. Mostly, the modified flux version produces the same result as the
classical flux approximation anyhow. Only in the upstream or the downstream case,
where the boundary flux typically is given by the left state fL(φL) or the right state
fR(φR), the chosen value can be different.
A different choice happens in the upstream case with flux candidate fL(φL) if

fL(φL) < fR(φ), ∀φ ∈ [0, cR]. (4.36)

Analogously, a different choice happens also in the downstream case with flux candidate
fR(φR) if

fR(φR) < fL(φ), ∀φ ∈ [0, cL]. (4.37)

This can be seen in the flux plots of Figure 3.9 and Figure 3.18. In both cases the
necessary condition (4.28) can not be fulfilled. Accordingly, the modified Godunov flux
chooses the “strongest” flux value that is allowed for both, the left and the right flux
function fL and fR. Strongest coincides with the flux’ extrema and is meant in the sense
of absolute values. In the upstream case, the chosen value becomes

fL(φ̌L) = fminR (4.38)

and in the downstream case
fR(φ̌R) = fminL . (4.39)

Mind that in the concave case of the large particle segregation equation, the differences
appear if relation (4.36) and (4.37) are formulated with “>”.

It should be mentioned that already in 2007 Garavello et al. [28] determined a class of
Riemann solvers for a hyperbolic conservation law with discontinuous flux in the field of
traffic flow models. This class provides existence and uniqueness of the corresponding
weak entropic solutions. However, they impose more conditions to the structure of the
flux as in the work of Towers et al. [78].

Segregation flux with non-constant temperature

The spatial dependence of the segregation equation is not only given due to the gran-
ular volume fraction c but also due to the granular temperature T as it can be seen in



4.4 The CFL condition 83

equation (4.29). Solving the equation numerically, this additional dependence makes no
big difference. Analogously to the statements previously done, the numerical scheme can
be used almost in the same way including the granular temperature. Discretising the
segregation flux, a Riemann problem at z = 0 with left and right states φL and φR is
equivalently given to (4.31) by

∂tφ+ ∂zfL(φ) = 0 if z < 0,

∂tφ+ ∂zfR(φ) = 0 if z > 0,

where this time fL(φ) = f(φ, cL, TL). The solution to the Riemann problem has been
sketched at the end of the last chapter in Figure 3.20. The depicted solutions coincide
with those for the constant temperature case. The only difference is that the contact
discontinuity additionally compensates the difference between TL and TR. The only con-
dition for a suitable flux approximation is again (4.28). If this condition can not be
fulfilled in some upstream or downstream case as in relation (4.36) or relation (4.37), the
flux value of choice is the “strongest” that is applicable for both, fL and fR. Hence, the
explicit description of the modified Godunov flux can be written in the exact same way
as for the equation with constant temperature. It is given by

F̄G = max
{
fL(max{φL, φminL }), fR(min{φR, φminR })

}
.

Clearly, the defined numerical flux reduces to the classical Godunov approach for constant
temperature and constant volume fraction.
If condition (4.28) is not fulfilled, problems appear, since the boundary flux entering the
control volume might be overestimated. Some examples to demonstrate these problems,
and to show that they do not appear for the derived modified Godunov flux, are presented
in section 5.2.

4.4 The CFL condition
The stability of numerical methods, especially explicit schemes, is typically adjusted by
the choice of the time step. For finite volume methods, the relation between the time
and the spatial grid is relevant. For explicit methods, the time step must be decreased
with decreasing spatial grid size to hold the scheme stable. The well-known Courant-
Friedrichs-Lewy (CFL) condition, which was first suggested in 1928, gives a condition
to ensure stability [15]. For convection problems, the so-called Courant number for a
d-dimensional problem is defined by

∆t
d∑
i=1

vi
hi

= Ccfl, (4.40)

where ∆t is the time step size, vi the maximal transport velocity and hi the spatial step
size in direction i. For d = 3, it holds that hi ∈ {∆x, ∆y, ∆z}. A method is stable if
the wave solutions do not interact within one time step. For a method like the previously
derived one, this can be guaranteed if a wave does not reach the opposite cell wall within
one time step (compare Figure 4.4). Hence, it must hold that

Ccfl < 1. (4.41)
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For solving the segregation equation, the upwind method is used for the transport with
the granular bulk and the modified Godunov scheme for the segregation flux. In direction
i, the bulk transport happens with the granular velocity ui and the effective transport
due to the segregation term is given by ∂φf si . Hence,

vi = ui + Si
√
T

(c− 2φ)

c
. (4.42)

As 0 ≤ φ ≤ c, (4.42) can be estimated by

vi = ui + Si
√
T . (4.43)

Consequently, an appropriate time step for solving the segregation equation depends on
the maximal values of the granular velocity u and the granular temperature T .

One should keep in mind that solving the granular flow equations also subjects to stability
conditions. From experiences with the granular flow equations, it is already known that
Ccfl � 1 is necessary [65]. Additionally, a second condition is relevant for the system
stability. It is important that the relative pressure gradient ∇p|Ci| stays bounded, which
appears to be more restrictive than the classical CFL-condition quite often [65].
In this context, it has been experienced that the stability restrictions to the granular flow
model usually dominate the restrictions to the segregation equation. Additional use of
the cut-cell method also reduces the admissible time step that can be used as the cell
volume shrinks for several cut cells.

4.5 Boundary conditions for the segregation equation
Choosing an appropriate boundary condition for the segregation equation clearly depends
on the type of domain boundary (inflow, outflow, solid walls). Let the wall of a control
volume that coincides with the domain boundary be denoted by σbound. Using the flux
differencing formula (4.10), which already has been introduced, it is necessary to define
the flux over the domain boundary F̄σbound . As formulated in equation (4.16), the flux of
the segregation equation can be subdivided into a transport flux and a segregation flux,
where both can be evaluated separately.

At inflows, Dirichlet data are used depending on the application. At the boundary,
it holds φ|σbound = φin. For all quantities of the granular flow equations also Dirichlet
data are used describing a specific value at the inflow walls. The fluxes can directly be
computed by

F̄ t
σbound

= f t(φin,uin) · nσbound|σbound|
F̄ s
σbound

= f s(φin, cin, Tin) · nσbound|σbound|

Normally, there is nothing to be done for outflows if the flux is advective. When the
material is flowing out of the domain, the wall flux is evaluated in the cell centre where all
information are known. As the segregation flux is non-linear, it is not known whether the
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effective transport velocity of a particle phase is pointing out of the domain. Therefore,
a zero Neumann condition ∂nφ = 0 is implemented for the segregation flux if needed.
Hence, the segregation flux at the outflow boundary is always given by the values in the
cell centre

F̄ s
σbound

= f s(φ(P ), c(P ), T (P )) · nσbound|σbound|.

For solid walls, the conditions are different again. In section 2.1, the boundary conditions
used for the granular flow equations are explained shortly. The boundary condition for
the granular volume fraction c at solid walls is defined to be the Neumann zero condition.
The outflow of the material is omitted due to the boundary condition for the granular
bulk velocity u. At solid walls, the transport flux F̄ t

σbound
for the particle phase φ is

handled in the same way to coincide with the existing implementations for the granular
flow model. Similarly, the zero normal velocity at such a wall results in no flux through
the boundary F̄ t

σbound
= 0.

Also there should be no flux through solid walls due to segregation, F̄ s
σbound

!
= 0, which

simply means f s(φ, c, T )
!

= 0. This cannot be realised by Neumann zero conditions.
Simply stating Dirichlet conditions

φ|σbound = c|σbound or φ|σbound = 0

would result in a no flux condition, due to the structure of the flux function. However,
this already would imply that one knows which particle phase will concentrate at this
wall. As this should not be defined in advance, the boundary flux is defined to be zero
to guarantee no segregation flux through solid walls,

F̄ s
σbound

:= 0.





Chapter 5

Simulation and application

In this chapter, the focus lies on the numerical simulation of the previously derived
equations. One essential extension of the model is the introduced segregation direction
vector. In the first section of this chapter, results of the computation of the segregation
direction are shown. In the second section, several one-dimensional test cases are used to
validate the behaviour of the one-dimensional segregation equation and the applicability
of the derived numerical schemes. Afterwards, the interplay of the segregation equation
and the granular flow equations is examined in two-dimensional domains. Finally, in the
last section, further results and applications are presented in the three-dimensional space.

5.1 Verification of the segregation direction

In the modelling chapter, it has been mentioned that for granular shear flows the seg-
regation acts mainly orthogonal to the shear bands. Therefore, a computation scheme
has been derived in subsection 2.2.3 to gain this direction from the underlying flow field.
This procedure is given in Algorithm 2.1. To verify the results of these computations,

Figure 5.1: Part of a three-dimensional shear cell (left) with moving bottom plate. The
domain additionally shows the velocity magnitude from low velocities (blue) to high velocities
(red). The two-dimensional slice of the domain, orthogonal to the y-axis (right), shows the
computed segregation directions depicted by black arrows. The velocities are depicted by
coloured arrows.

87
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Figure 5.2: Three-dimensional chute (left) showing the velocity magnitude of the granular
material from low velocities (blue) to high velocities (red). The two-dimensional slice shows
a close-up view of the domain orthogonal to the y-axis (right). The computed segregation
directions are depicted by black arrows. The velocities are depicted by coloured arrows.

Figure 5.3: Three-dimensional silo (left) showing the velocity magnitude of the granular
material from low velocities (blue) to high velocities (red) while discharging the silo. The
two-dimensional slice shows a close-up view of the domain orthogonal to the y-axis (right)
at a later state in time. The amount of granular material is depicted in light grey. The
computed segregation directions are given by black arrows. The velocities are given by
coloured arrows.
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Figure 5.4: Two-dimensional slice, orthogonal to the x-axis, of the shear cell which is
depicted in the previously shown Figure 5.1. The segregation direction is given by black
arrows.

three different test cases in a three-dimensional domain have been simulated. The first
domain is a cuboid representing a part of a three-dimensional shear cell. The second one
is a chute where the cut-cell method has been used to observe a better representation
of the domain boundaries. The third domain is a silo. All domains are depicted at the
left side in the respective Figures 5.1, 5.2, and 5.3. The three plots additionally show the
velocity magnitude from low velocities (blue) to high velocities (red) during the process
of shearing, flowing down the chute, and discharging the silo, respectively. In the shear
cell simulation, the granular material flows in positive x-direction accelerated through
the bottom of the cell. For the left and right domain boundaries, periodic conditions are
used such that the leaving material re-enters the domain. Hence, a shear flow emerges
parallel to the x-axis. This can be seen in the right plot of Figure 5.1 which shows a
two-dimensional slice of the domain, orthogonal to the y-axis. The slice plot depicts the
velocity field by arrows that correspond in length and colour to the velocity magnitude.
The computed segregation direction for each control volume is given by a black arrow.
The slice of the shear cell shows a perfectly parallel shear flow. The computed segregation
direction matches the expectations.
For the chute simulation, periodic boundary conditions have once more been used to
re-enter the material which is flowing out. Due to gravity, a shear flow emerges at the
upper layers of the granular material. It can be seen in the close-up view of Figure 5.2
(right) that the computation of the segregation direction leads to good results even
though the flow field is not parallel to one of the coordinate axes or the orientation of
the control volumes any more. Furthermore, the direction is exactly as mentioned in
literature for avalanches flowing down chutes (e.g. [37, 36, 34])
While discharging a silo, dead zones appear in the lower left and right corners. The
close-up view in Figure 5.3 (right) shows the process at a late state in time. The material
flows to the discharge while the segregation directions point to the dead zones. The
only region where the computation results for the segregation direction seem to be quite
random is close to the corners of the silo. This happens, because the velocities are close
to zero. As the material is at rest, these directions do not influence the segregation
process.
One also obtains good results in the third coordinate direction, which can be seen in
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Figure 5.5: Illustration of the four examples chosen for the one-dimensional segregation
mechanism. The black line depicts the distribution of the granular temperature T over the
domain. The dashed line shows the granular volume fraction c which is an upper bound
for all particle phases. The initial state of the particle phases is depicted in red which
corresponds to a perfectly mixed initial state, φ = c

2 . In the four examples, c is chosen to
be either constant, linearly decreasing or piecewise constant with a jump. The temperature
is either constant or non-linearly increasing.

Figure 5.4. Due to the deceleration of the material by the outer walls of the shear cell,
the flow field is not constant along the y-axis. This results in curved shear bands. Hence,
the segregation direction not only points downwards but also to the middle of the domain.

The presented examples show that the procedure to compute the segregation direction,
described in subsection 2.2.3, can be applied to granular material flows. In the case of
shear flows, the results are promising which is of major importance in this work.

5.2 Simulating segregation in one space dimension

In this section, some numerical results for the one-dimensional segregation equation are
presented. Therefore, four test cases are used. The spatial domain is the unit interval
[0, 1] in z-direction, which is assumed to be the direction of the segregation process.
The chosen examples differ solely in the choice of the granular volume fraction c and
the granular temperature T . For all examples, the volume fraction of a particle phase is
initially chosen by φ = c

2
which corresponds to an equally mixed initial state. Example 1

is the simplest test case with a constant value for the granular volume fraction c and the
granular temperature T . In example 2, the granular volume fraction is linearly decreasing
with increasing domain height. As opposed to example 2, the granular temperature is
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non-linearly increasing with decreasing granular volume fraction in example 3. The last
example has a constant granular temperature but a jump in the granular volume fraction.
The initial states of the four examples are illustrated in Figure 5.5.

5.2.1 Gaining physical solutions by the modified Godunov
method

The previously mentioned examples 2, 3, and 4 are used to compare the modified Godunov
scheme, which has been derived in the last sections, to the upwind and the classical
Godunov scheme. In these cases, either one or both of the granular volume fraction c and
the granular temperature T are non-constant. The simplest test case given by example 1
is omitted, as in this case, the modified Godunov method reduces to the classical one.
In all simulations, the one-dimensional equation for the small particle phase and also the
large particle phase are solved. The volume fractions are plotted over the z-axis. The
two equations are given by

∂tφ∓ ∂z
(
S
√
T

(
c− φ
c

)
φ

)
= 0, (5.1)

where the segregation rate is set to one in the whole section, i.e., S = 1. The computa-
tion of the numerical flux of the large particle phase can be determined using the flux
approximation formula (A.2) given in Appendix A.
Initially, the system is perfectly mixed with φ = c

2
defining the initial condition for

both particle phases in all chosen test cases. Throughout all three examples, the small
particle phase is plotted in red and the large particle phase in blue. The line style implies
the chosen numerical method. For the modified Godunov scheme the regular line style
is used, whereas the classical Godunov scheme is plotted by a dotted and the upwind
scheme by a dashed line.

Figure 5.6: Simulation result of the one-dimensional segregation process in z-direction
for the small and large particle phase using different numerical schemes at t = 0.75 (left).
A close-up view shows the problematic region (right). The black dashed line depicts the
granular volume fraction c, which is an upper bound for both particle phases and decreases
linearly. The granular temperature is chosen to be T = 1 and the segregation rate is
chosen to be S = 1. Initially, the system is perfectly mixed. Over time, the small particles
concentrate at the left (bottom of the granular bed) and the large particles at the right (top
of the granular bed). Only the modified Godunov scheme prevents a particle phase from
overshooting c.
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Figure 5.7: Simulation result of the one-dimensional segregation process in z-direction for
the small and large particle phase using different numerical schemes at t = 1.1 (left). A close-
up view shows the problematic region (right). The black dashed line depicts the granular
volume fraction c, which is an upper bound for both particle phases and decreases linearly.
The granular temperature increases non-linearly. The segregation rate is chosen to be S = 1.
Initially, the system is perfectly mixed. Over time, the small particles concentrate at the
left (bottom of the granular bed) and the large particles at the right (top of the granular
bed). Only the modified Godunov scheme prevents a particle phase from overshooting c.

Figure 5.8: Simulation result of the one-dimensional segregation process in z-direction
for the small and large particle phase using different numerical schemes at t = 1 (left).
A close-up view shows the problematic region (right). The black dashed line depicts the
granular volume fraction c, which is an upper bound for both particle phases and has an
unsteady jump. The granular temperature is chosen to be T = 1 and the segregation rate is
chosen to be S = 1. Initially, the system is perfectly mixed. Over time, the small particles
concentrate at the left (bottom of the granular bed) and the large particles at the right (top
of the granular bed). Only the modified Godunov scheme prevents a particle phase from
overshooting c.
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Example 2 Example 3 Example 4

h L∞ rate L∞ rate L∞ rate

8.00e-02 0.06702 - 0.06741 - 0.34160 -
4.00e-02 0.03041 1.140 0.02478 1.444 0.32870 0.056
2.00e-02 0.01690 0.847 0.01427 0.796 0.28748 0.193
1.00e-02 0.00969 0.803 0.00731 0.966 0.30736 -0.096
5.00e-03 0.00484 1.001 0.00382 0.934 0.30397 0.016
2.50e-03 0.00260 0.899 0.00196 0.961 0.30226 0.008
1.25e-03 0.00137 0.926 0.00100 0.976 0.30141 0.004
6.25e-04 0.00068 1.004 0.00051 0.971 0.30099 0.002
3.125e-04 0.00035 0.966 0.00026 0.978 0.30078 0.001

Table 5.1: Overview of the overshooting error and the convergence rates for the examples 2-4
shown in the Figures 5.6, 5.7, and 5.8. The listed values are equal for the upwind and the
classical Godunov scheme.
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Figure 5.9: Plot of the overshooting error for different spatial grid sizes. The time step is
chosen to hold the CFL number constant. The error decreases for example 2 (Figure 5.6)
and example 3 (Figure 5.7), both with a convergence rate that is approximately 1. The error
for example 4 (Figure 5.8) nearly stays constant (compare Table 5.1).

Figure 5.6 shows the simulation result for example 2 (left) at time t = 0.75. Additionally,
a close-up view is plotted (right). The granular temperature is chosen to be T = 1.
The granular volume fraction decreases linearly from left to right in the region between
x = 0.05 and x = 0.95, depicted by a black dashed line. This means that the granular
system is less dense at the top of the granular system than at the bottom. The granular
volume fraction is an upper bound for both particle phases. Due to the segregation
process, the small particles concentrate on the left (bottom of the granular bed) and the
large particles on the right (top of the granular bed). The classical Godunov scheme
and the upwind method lead to quite identical results in all plots. Even the modified
Godunov scheme leads to almost the same result for the small particle phase. A different
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result is gained for the large particle phase. In the close-up view, one can see that solely
the modified Godunov scheme does not overestimate the flux values. The two other
methods overshoot the value of the granular material’s volume fraction. In particular,
this happens if the material flows in the direction of decreasing volume fraction. In these
cases, the chosen flux values do not fulfil condition (4.28).
In example 3, which is shown in Figure 5.7, not only c but also the granular temperature
T is non-constant. The granular temperature increases non-linearly from left to right,
which is depicted by the black curve. This means that the temperature is higher in
the upper layers of the granular system. As in the previous test case, the granular
volume fraction decreases linearly. The plot shows the simulation results at time t = 1.1.
One can see, that the modified Godunov scheme still prevents the particle phases from
overshooting c even if both, c and T , vary.

Figure 5.8 shows the simulation result of example 4. The setup is mainly identical to
example 2, but the granular volume fraction c is constant with a large jump at z = 0.56.
This is not very realistic for granular systems, but it is helpful to show the quality of
the numerical method. Again, the small particles concentrate at the left (bottom of
the granular bed) and the large particles at the right (top of the granular bed). The
simulation result is shown at time t = 1, where the system is not yet fully segregated.
Especially in the close-up view, one can see that again only the modified Godunov scheme
does not overshoot the granular volume fraction c.

Several simulations have shown that the overshoot produced by the classical Godunov
and the upwind scheme can mostly be decreased by decreasing the spatial grid size.
Nevertheless, it cannot be avoided. This is illustrated in Figure 5.9 and the corresponding
Table 5.1. The overshoot can be defined by

εover := max{0, φ− c}. (5.2)

The largest overshoot appearing during the segregation process is given by ‖εover‖L∞ . If
‖εover‖L∞ = 0, a solution is physical. Figure 5.9 shows the overshooting error for the
three previously presented examples (Figure 5.6, 5.7, and 5.8). The time steps used in
the simulations for the different grid sizes are chosen in such a way that the CFL number
is constant, i.e., Ccfl ≡ const. The computed errors and the corresponding convergence
rates are given in Table 5.1. In Figure 5.9, as well as in Table 5.1, only one set of data
is shown for each example, since the upwind scheme and the classical Godunov scheme
produce the same simulation results. It can be seen that for example 2 and example 3 the
methods converge linearly to a physical solution whereas the errors for example 4 nearly
stay constant. The modified Godunov scheme fulfils ‖εover‖L∞ = 0 for all three examples.

5.2.2 Convergence and the mixing entropy

After validating the physical admissibility of the modified Godunov scheme with respect
to overshooting, the quality of the method is further analysed. The examples 1-3, depicted
in Figure 5.5, serve as test cases for the validation. Since an analytical solution can not be
given in general, the concept of the experimental order of convergence (EOC) [40] is used
to show grid convergence of the method. Therefore, a simulation on a fine grid serves as
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Figure 5.10: Plots of the relative errors for examples 1-3 at time tn = 0.5. The grid and
the time step size decrease equally such that the CFL number is constant. The convergence
order, measured in the L1-norm, is approximately one for all three examples.

Example 1 Example 2 Example 3

h L1 rate L1 rate L1 rate

1.00e-01 0.12756 - 0.13094 - 0.13664 -
5.00e-02 0.04854 1.394 0.08152 0.684 0.08367 0.708
2.50e-02 0.02402 1.015 0.03680 1.147 0.04279 0.967
1.25e-02 0.01162 1.047 0.02024 0.863 0.02295 0.899
6.25e-03 0.00542 1.100 0.00996 1.022 0.01068 1.103
3.125e-03 0.00232 1.222 0.00470 1.084 0.00480 1.152
1.5625e-03 0.00077 1.585 0.00163 1.532 0.00198 1.278

Table 5.2: Overview of the relative L1-errors and the convergence rates for examples 1-3,
evaluated at time tn = 0.5. The corresponding convergence plots are depicted in Figure 5.10.

a reference. Generally, the relative error of some quantity Υh, evaluated for grid size h, to
the reference solution Υref is computed in some Lp-norm. The relative error is given by

εrel =
‖Υh − Υref‖Lp
‖Υref‖Lp

. (5.3)

For the one-dimensional examples the reference grid has N = 1280 cells. Hence, the grid
size is h = 7.8125e-04.

In Figure 5.10, the results of the error computations for the three examples are depicted.
The exact values and convergence rates are given in Table 5.2. For the simulations, the
grid and the time step size decrease equally such that the CFL number is constant. The
evaluation is made after running the simulations until tn = 0.5. The convergence order,
measured in the L1-norm, is approximately one for all three examples as expected.
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Characterising the mixing process leads to another method to compare different simu-
lations and also to compare simulations to experiments. Introducing a mixing entropy,
the degree of mixing or segregation can be quantified over time. Using Boltzmann’s
expression, a local mixing entropy for a bi-disperse system of particles can be defined by

e(x, t) = −
∑
ν∈{s,l}

ln(φ̂ν(x, t)) φ̂ν(x, t). (5.4)

For the whole domain Ω, the global entropy in the system can be given by

E(t) =

∫
Ω

e(x, t)c(x, t)dx. (5.5)

To obtain the global entropy, the local entropy (5.4) is weighted by the granular volume
fraction c. For the discretised system, the domain is subdivided into control volumes Ci.
It holds true, that

Ω =
⋃
i∈I

Ci, (5.6)

where I defines some index set. Since only the small particle phase is used for the simu-
lations, the exponent is dropped. To eliminate the other phase’s variable, the saturation
condition (2.59) is used. Then, for each control volume Ci, the discretised version of the
local entropy at some point in time is given by

ei = − ln(φ̂i)φ̂i − ln(1− φ̂i)(1− φ̂i) (5.7)

and the global entropy by
E =

∑
i∈I

eici|Ci|. (5.8)

In literature, different methods are used to describe the degree of mixing. A similar
quantification, as used here, is given in [2, 3]. It is based on particle numbers to analyse
DEM simulations. In analogy to the authors in [2, 3], a mixing parameter is introduced
by

Ψ =
E − Eseg
Emix − Eseg

, (5.9)

which is a normalisation of the global entropy. For the mixing parameter, one has
Ψ ∈ [0, 1] where Ψ = 0 is a fully segregated system and Ψ = 1 is a perfectly mixed
system. The quantities Eseg and Emix are the global entropies for a perfectly segregated
system and a perfectly mixed system, respectively. In the following test cases, and also
in the already introduced examples, the discretisation and the volume ratio of small and
large particles are chosen such that Eseg ≈ 0. Specifically, Emix strongly depends on the
initial conditions of the system as well as the definition of a perfectly mixed system itself.
It is assumed that a system is perfectly mixed if φ̂ is constant over the whole domain.
However, the exact value varies depending on the proportion of small and large particles
in the system. The initial condition for all examples depicted in Figure 5.5 is a perfectly
mixed system. In such a case, Emix can be chosen as the global entropy of the initial
configuration of the system.

As already mentioned, the mixing parameter Ψ quantifies the process of mixing and
segregation. The examples 1-3 can be analysed by computing this quantity from the
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Example 1 Example 1 Example 1

h L∞ rate L1 rate L2 rate

1.00e-01 0.11619 - 0.16532 - 0.13665 -
5.00e-02 0.05817 0.998 0.08301 0.994 0.07084 0.948
2.50e-02 0.02863 1.023 0.04110 1.014 0.03563 0.991
1.25e-02 0.01385 1.047 0.01995 1.043 0.01744 1.031
6.25e-03 0.00647 1.100 0.00932 1.097 0.00820 1.089
3.125e-03 0.00277 1.222 0.00400 1.221 0.00354 1.211
1.5625e-03 0.00092 1.585 0.00133 1.584 0.00120 1.558

Table 5.3: Overview of the relative errors and the convergence rates of the mixture entropies
in example 1. The corresponding convergence plots and entropy curves are depicted in
Figure 5.11 (top row).

results of the performed simulations. Then, for each of the three examples, it can be seen
how the segregation process behaves and at what time the process ends. The value Emix
to normalise the mixing entropy for the three examples is given by

Emix =

{
0.4436 for example 1,
0.3119 for examples 2, 3,

(5.10)

respectively. Figure 5.11 shows the mixing parameter for some of the performed grid
sizes and the convergence of the mixing parameter for all three examples, which have
been simulated. For example 1, the granular temperature, the granular volume fraction,
and the segregation rate S are constantly equal to one. Hence, the segregation time,
denoting the time needed for the system to reach the final segregated state, is also equal
to one. One can see that for a decreasing grid size the segregation time converges to this
value. Furthermore, it can be seen that the segregation time changes for the different
configurations given by example 2 and example 3. Particularly the varying temperature
distribution in example 3 has a large influence on the segregation speed and thus, on the
segregation time. However, the chosen method performs well as can be seen in the con-
vergence plots (Figure 5.11, right side). For all three examples, an expected convergence
rate of approximately one can be confirmed. The exact values of the computed relative
errors and the corresponding convergence rates are given in Table 5.3, Table 5.4, and
Table 5.5, respectively.
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Figure 5.11: Mixture entropy (left) and relative errors (right) for the examples 1-3. Time
step is chosen such that the CFL number is fixed. The segregation speed depends on c
and the granular temperature in the system, which can be seen in the entropy plots. The
detailed error values and convergence rates are given in Tables 5.3, 5.4, and 5.5.
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Example 2 Example 2 Example 2

h L∞ rate L1 rate L2 rate

1.00e-01 0.09442 - 0.11481 - 0.09411 -
5.00e-02 0.04282 1.141 0.04701 1.288 0.04174 1.173
2.50e-02 0.03134 0.45 0.03458 0.443 0.02974 0.489
1.25e-02 0.01323 1.244 0.01362 1.344 0.01223 1.282
6.25e-03 0.00563 1.232 0.00546 1.318 0.00517 1.242
3.125e-03 0.00247 1.193 0.00185 1.562 0.00192 1.432
1.5625e-03 0.00119 1.056 0.00116 0.678 0.00106 0.856

Table 5.4: Overview of the relative errors and the convergence rates of the mixture entropies
in example 2. The corresponding convergence plots and entropy curves are depicted in
Figure 5.11 (middle row).

Example 3 Example 3 Example 3

h L∞ rate L1 rate L2 rate

1.00e-01 0.11645 - 0.18139 - 0.14262 -
5.00e-02 0.05547 1.070 0.08852 1.035 0.07311 0.964
2.50e-02 0.03265 0.765 0.05315 0.736 0.04522 0.693
1.25e-02 0.01516 1.107 0.02332 1.189 0.02027 1.158
6.25e-03 0.00713 1.088 0.00995 1.229 0.00888 1.190
3.125e-03 0.00308 1.211 0.00362 1.457 0.00343 1.374
1.5625e-03 0.00110 1.487 0.00177 1.032 0.00155 1.144

Table 5.5: Overview of the relative errors and the convergence rates of the mixture entropies
in example 3. The corresponding convergence plots and entropy curves are depicted in
Figure 5.11 (bottom row).

5.3 Simulating a two-dimensional shear cell
In this section, the test case of choice is a two-dimensional shear cell. To verify the results
from the previous section an idealised Couette flow is used, as depicted in Figure 5.12
(left plot). In contrast to the one-dimensional case, the granular flow equations come
into play for the two-dimensional variant. Therefore, the influence of the granular flow
equations on the segregation process is analysed. The dimensions of the shear cell setting
are chosen to be similar to the experimental setup in the works of Golick and Daniels [33]
and May et al. [60]. The resulting shear thinning flow, which is topic of the upcoming
subsection 5.3.2, is sketched in Figure 5.12 (right plot). Hence, the same system can be
used in the last part of this section to compare the computed segregation process to the
experimental measurements. Since the dimension for all upcoming test cases are chosen
similar to experiments, all domains, quantities, and parameters are given in SI units.

5.3.1 The idealised case

After analysing the one-dimensional case in the last section, simulations in two space
dimensions are performed. As already mentioned, a shear cell setting is chosen, based
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Figure 5.12: Sketches of two-dimensional shear cells with periodic boundary conditions
at the left and right domain boundaries and different velocity profiles. Linearly increasing
velocity profile which results in a constant shear rate and thus, in a constant temperature
field (left). Shear thinning flow with non-constant shear rate and granular temperature
(right).
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Figure 5.13: Normed mixture entropy for the idealised two-dimensional shear cell for
different grid sizes. The time step is chosen such that the CFL number is constant. The
system segregates from a perfectly mixed initial state like in the one-dimensional case (left).
Starting from an inversely graded initial state, the system mixes before it re-segregates
(right).

on an experiment performed by Golick and Daniels [33] and May et al. [60]. In the
experiment, small and large glass beads, with a size ratio of R = 1

2
and a mean diameter

of 3mm, segregate in a Couette shear cell. To measure the velocity profile and the
segregation process, the authors used high-speed digital imaging and particle tracking.
The scanned shear cell part has a size of 0.025 × 0.025m2. The chosen domain for the
simulation is given by

Ω = [0, 0.025]× [0, 0.025]. (5.11)

For the first two-dimensional simulation, only the dimension of the considered domain
part is fitted to the experiment. The granular volume fraction is set to a constant value
c = 0.64 in the whole domain. Also, the granular bulk velocity is pre-defined to guarantee
a linear velocity profile and a constant temperature distribution, as depicted in Figure 5.12
(left plot). This configuration adds the effect of the granular transport to the segregation
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(a) Initial state. (b) State after 0.5 s.

(c) State after 0.75 s. (d) State after 1.0 s.

(e) State after 1.5 s. (f) Final state.

Figure 5.14: Simulation result of the idealised two-dimensional shear cell. The plot shows
the volume fraction of the small particles at the initial state, after 0.5 s, 0.75 s, 1.0 s, 1.5 s,
and 2 s. The system starts inversely graded. After a mixing phase the system re-segregates.
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equation, but the granular flow equations do not have to be used. The segregation rate
Ssl0 is chosen such that the segregation velocity

Ssl = −Ssl0

√
TPg = 0.025 m

s
. (5.12)

As initial condition, a fully mixed system withφ̂ = 0.5 is chosen. Using these configura-
tions, one can expect the same segregation time as for the one-dimensional example 1.

In fact, one observes that the segregation behaviour is identical. Figure 5.13 shows the
normed mixture entropy Ψ for different grids for the idealised two-dimensional shear cell.
The left picture shows the segregation process under the aforementioned configurations.
The entropy plots for the different grids are almost identical to the one-dimensional
example 1, depicted in Figure 5.11 (left picture, top row).
In the right plot of Figure 5.14 the segregation process of an initially different distribution
of particles is shown. Starting from an inversely graded system with all small particles are
located above a layer of purely large particles, the system mixes before it re-segregates. In
Figure 5.14, the simulation result is shown for different points in time. It can also be seen
that the system never reaches a perfectly mixed state. While the system still mixes in the
middle part of the domain, layers near the top and the bottom plate are already in the
final segregated state. This can also be seen in Figure 5.13 where the mixing parameter
Ψ never reaches its maximum value.

5.3.2 Influence of the granular flow equations

After performing a simulation under idealised conditions, the setting is now chosen to be
more realistic. This has been done by using the full system of equations, as summarised
in section 2.5, fitted to the mentioned experiment. The only simplification made, is the
omission of the back-coupling from segregation equation to the granular flow model.
Changing RLP and RCP values would lead to a loss of contact between the glass beads
and the top plate, since the domain size is fixed. In the experiment, the top plate of
the shear cell is free to move vertically which ensures the contact of the plate and the
material, even when the system changes its volume due to the segregation process. In
this more realistic test case, a shear thinning flow is observed with a velocity profile
decreasing exponentially. The simulation setting deviates from the experiment in one
aspect. In the experiment the bottom plate is accelerated, while in the simulation
the top plate accelerates the granular material. This makes it easier to gain a similar
velocity profile due to the gravitational force. A sketch is shown in Figure 5.12 (right plot).

Before the segregation process itself is considered, the focus lies on the granular flow equa-
tions. The aim is to validate their influence on the segregation equation. To simulate the
bulk material, a set of parameters is needed. These are given in Table 5.6. The viscosity
η0 is used as fitting parameter and has been chosen in such a way that the resulting flow
profile is similar to the one identified in the shear cell experiment. The other parameters
are taken from Niedziela et al. [66], in which the same granular flow equations as here
were used to simulate glass beads. To easily hit the experimentally measured velocities
near the top and bottom plate, these values are used as Dirichlet boundary conditions.
For the fast top plate the velocity is set to utop = 0.0055 m

s
and for the bottom plate the
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Figure 5.15: Velocity profile (left) for different grid sizes in a two-dimensional shear cell
which is sketched in Figure 5.12. The horizontal grey lines represent the confidence intervals
for the velocities measured in [60]. The grey curve connects the midpoints of the confidence
intervals. In some regions, the velocity gradients increase due to the convergence of the
velocity profile. This leads to an increase of the granular temperature in these regions
(right). Furthermore, an increase of the mean granular temperature in the granular system
can be observed (bottom).

symbol value unit symbol value unit

η0 1.3e-04 [m] T0 1.8 [m
2

s2
]

λ0 3.4e-04 [m] φrlp 0.5757 [1]
ε0 1477.15 [ 1

m
] φrcp 0.632 [1]

Table 5.6: Parameters for the granular flow equations as used for simulating glass beads in
[66], except for η0.

velocity is set to ubottom = 0.0007 m
s
. The initial volume fraction of the granular material is

chosen to be c = 0.6, which lies above the RLP value to ensure contact with the top plate.

Figure 5.15 shows the resulting velocity profile (upper, left picture) and the temperature
distribution (upper, right picture) over the normed domain height for different grids.
One can see that the velocity profile converges. As it changes for different grid sizes, the
temperature distribution changes accordingly. The maximum of the granular tempera-
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ture increases for finer grids, because the velocity gradients increase, too. Additionally,
the mean granular temperature in the domain is plotted (lower picture). It can be seen
that the mean granular temperature converges but increases noticeably with decreasing
grid size.

In the previous subsections, non-constant but pre-defined velocity and temperature fields
have been used to show grid convergence for the segregation equation. Dealing with the
full system of equations, these fields are a solution of the granular flow equations. Due to
the grid convergence of the velocity and the temperature field presented in Figure 5.15,
grid convergence is also ensured for the segregation equation, when using the full system
of equations.

To validate the influence of the granular flow equations on the segregation process in
more detail, the computations for the different grids are used. These already provide
slightly different velocity and temperature profiles. For the validation the results, which
are obtained from the experiment, are used for comparison. In Figure 5.15, one can
see that the computed velocity profile lies within the confidence intervals for grids of
at least 40 cells per dimension. However, the velocity and the velocity gradients are
slightly underestimated compared to the mean of the confidence intervals. The confidence
intervals for the velocity are depicted by grey bars. The mean value is given by a grey
curve. The temperature field changes accordingly.

The described velocity and temperature fields for different grids influence the segregation
process in different ways. The bulk velocity is relevant in the segregation equation for
the transport with the granular material. A change of the velocity profile merely changes
the flow behaviour of the granular system but has no direct influence on the segregation
process. Especially for the perfectly parallel shear flow in the shear cell setting, there is
no effect on the segregation pattern.
An indirect influence of the granular velocity field is given by the granular temperature,
since both influence each other in the granular flow equations. This influence of the
granular temperature to the segregation process is strong, since the segregation velocity
scales with

√
T . A higher granular temperature leads to a higher segregation velocity in

these regions. As the mean granular temperature in the system increases for finer grids,
one would expect that the segregation reaches its final state faster. This is not generally
the case as it will be shown in the upcoming subsection. More important than the total
amount of the granular temperature in the system is the distribution of the granular
temperature. The temperature distribution obtained for finer grids in the shear cell case
leads to faster segregation close to the fast top plate. However, the region with low
granular temperature also grows in the bottom half of the shear cell. Hence, a bottleneck
for the segregation process emerges. This increases the time until a final state can be
reached.

5.3.3 Comparison to a shear cell experiment

In this subsection, the focus lies on a more detailed comparison of the simulations and the
shear cell experiment, especially concerning the segregation process. In Figure 5.15, it
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Figure 5.16: Height plot of the sheared granular bed for 11 experimental runs (grey lines).
The thick black line is the average of the 11 runs. Plot taken from [60].

has already been shown that the velocity profile converges to a profile that is lying within
the confidence intervals measured in the experiment. However, comparing to the mean
of the measurements, the simulations underestimate the velocity and the velocity gradi-
ent in the bottom half. This results in very low granular temperature values in this region.

To analyse the segregation process, more information from the shear cell experiment can
be used. It already has been mentioned that the top plate of the shear cell is free to
move vertically in the experiment performed by May et al. [60]. This ensures the contact
between the top plate and the material, even when the system changes its volume due to
the segregation process. The authors measured the vertical movement of the top plate to
track the segregation process over time. Figure 5.16 shows the movement of the top plate
for all eleven runs of the experiment in grey. The black curve shows the mean value of
all runs. The first peak is mainly a result of the transition of the granular material from
a static to a flowing regime. After that, the measured height decreases as the inversely
graded particles start to mix before the re-segregation process starts. The segregation
process ends after 700 s. This information can be used to fit the segregation rate Ssl0 .

Figure 5.18 shows the segregation process for a simulation with a space discretisation of
80 cells per dimension. The segregation rate is chosen to be Ssl0 = 4.56, such that the
segregation process in the numerical simulation ends like in the experiment. Due to the
non-linear velocity profile and the resulting temperature distribution, the segregation
patterns during the whole process differ from the idealised case, which is depicted in
Figure 5.14. Since the temperature is not constant over the whole domain, the segrega-
tion velocity changes with domain height. Therefore, large particles reach the top plate
much earlier than small particles reach the bottom plate. The general behaviour fits to
the experiments. After a slight mixing of the system in a short time interval, a long
period of time is needed to reach the final re-segregated state. This can also be seen in
Figure 5.17, which shows the behaviour of the mixture entropy in the system for different
grids. The segregation rate, Ssl0 = 4.56, is the same for all grids and corresponds to the
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Figure 5.17: Mixture parameter for different grids. The
segregation rate, Ssl0 = 4.56, is chosen such that the simu-
lation with a grid resolution of 80 cells per dimension fits
the experiment. The time to reach the final state increases
for finer grids.

N Ssl0

10 1.28
20 2.01
40 3.08
80 4.56
160 6.24

Table 5.7: Segregation
rate for different grids.
The value is fitted to the
time needed to reach the
final state in the experi-
ment.

shown simulation result in Figure 5.18. The segregation process differs for the different
grids. For a coarse grid, the system mixes more rapidly and the final re-segregation time
is much shorter than for finer grids. This verifies the observations from the previous
subsection. For a coarse grid, the maximum of the granular temperature profile lies
further in the centre than for finer grids. Furthermore, the region where the granular
temperature is close to zero is small for a coarse grid. This region grows for decreasing
grid size. The emerging bottleneck increases the final re-segregation time considerably.
Fitting the simulation for each grid to the experimental measured segregation time, the
segregation rates range between Ssl0 = 1.28 and Ssl0 = 6.24 as can be seen in Table 5.7.
However, it can be assumed that most segregation rates given in Table 5.7 are overesti-
mated. This results from the fact that the velocity profile computed by the granular flow
equations does not exactly hit the mean of the measured velocities in the experiment.
Especially the velocity gradients close to the bottom plate are too small in the performed
simulations compared to the experiment.

Summarising the above, it can be said that the general behaviour of the segregation
process works well. The grid convergence ensures also the convergence of Ssl0 . However,
the segregation process depends strongly on the distribution of the granular temperature
and therefore, on a good agreement of the granular flow equations to the real material.
It is almost more important to hit the velocity gradients than the absolute values of the
velocity. Otherwise, a suitable segregation rate can vary a lot.
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(a) Initial state. (b) State after 13 s.

(c) State after 26 s. (d) State after 132 s.

(e) State after 330 s. (f) State after 660 s.

Figure 5.18: Simulation result of the two-dimensional shear cell with a grid resolution
of 80 cells per dimension. The plots show the volume fraction of the small particles at
the initial state and the states after 13 s, 26 s, 132 s, 330s , and 660 s. The system starts
inversely graded. After a mixing phase the system re-segregates. The segregation rate is
Ssl0 = 4.56, such that the process ends after 700 s.
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5.3.4 Verifying the shear-temperature relation

In contrast to many other models presented in literature, the segregation equation derived
in chapter 2.2 depends on the square root of the granular temperature and not on the
shear rate. Therefore, the relation

γ̇ =

√
2

3

ε0

η0︸ ︷︷ ︸
=:

1
k

√
T

has been derived in 2.1.6. This expression is an approximation attained from the granular
temperature equation. In Figure 5.19, one can see the kγ̇ and

√
T -profile in the two-

dimensional shear cell setting, computed using the granular flow equations with a grid
resolution of 80 cells per dimension. Both profiles are not identical, but they behave
the same. They mainly vary by a scalar factor of approximately 0.692. Therefore, one
can say that for shear flows the chosen relation is a valid approximation. In these cases,
the segregation equation produces the same result using the square root of the granular
temperature or the shear rate if the segregation rate is chosen appropriately.
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Figure 5.19: Plot of the kγ̇-profile and the
√
T -profile in the two-dimensional shear cell

setting (left), computed by the granular flow equations with a grid resolution of 80 cells per
dimension. The profiles are close to identical besides a scalar factor of approximately 0.692
as shown in the right plot.

5.4 Applications in the three-dimensional space
This last section focuses on simulations in the three-dimensional space. These simulations
are most important for real applications. The use case of choice is a plain rotating tumbler
for several reasons. First of all, the general behaviour of the granular material in such
a tumbler is already well known, since it is used in industrial processes and therefore,
a thoroughly investigated case in literature. Furthermore, the granular material shows
different regimes during the rotation of the tumbler. There are flowing regimes where
segregation takes place as well as static regimes.
The behaviour of the granular material in a rotating tumbler depends not only on the
material properties but also on the rotation speed. Additionally, the filling height and
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the wall friction can influence the regime of the granular material. Mellmann [63] gives
an extensive overview of the different conditions and regimes. All types of bed motion
can be subdivided into three forms, called

• slipping motion,

• cascading (tumbling) motion,

• cataracting motion.

The two types of slipping motion, sliding and surging, only appear for low rotational
velocities and unfavourable frictional conditions between granular material and the walls
of the tumbler. In these two regimes, the tumbler walls need to be very smooth, such
that the material slides as static block relative to the tumbler wall, which is of no interest
in this work.
Of high interest in industrial processes and also in this work is the cascading regime, which
formally can be subdivided into three states of motion, namely slumbing, rolling, and
cascading. The slumbing regime is also of low interest, because of the very low rotational
speed. The other two states of motion are quite similar and they are characterised by
a uniform flow of granular material on the surface and a large part of the granular bed
that is moving statically with the rotation of the tumbler. Past and current research has
concentrated on this regime ([2, 3, 41, 48, 68, 82]).
For very high rotational speeds, the motion of the granular bed becomes turbulent in the
cataracting regime, which formally includes also the centrifuging state of motion.

5.4.1 The rotating tumbler

The first simulated test case, is situated in the rolling regime. The tumbler has a
diameter of 0.1m with periodic boundary conditions at the end walls. This guarantees
a large granular bed and lower computational costs compared to simulating a tumbler
of extended thickness. For the granular material, the parameter set for the glass beads
is used as has been done in the shear cell experiment. The parameters are given in
Table 5.6. The segregation rate is set to Ssl0 = 1, which is in the order of the rates gained
for the shear cell simulations. In contrast to the shear cell simulations treated in the
previous section, no contact with a top wall has to be guaranteed. Hence, the full model
can be used, including the back-coupling from the segregation equation to the granular
flow model. This leads to varying RCP and RLP values during the segregation process.
For the interaction between material and side wall, a wall friction angle of 11◦ is chosen
(compare 2.1.5), which corresponds to a smooth side wall. The tumbler rotates in a
clockwise direction with a speed of 0.1 revolutions per second (rps).

The rotation of the tumbler is realised with a software module for moving and rotating
domains, which is provided in CoRheoS. Using this module, the set of equations is solved
in the rotating reference frame. In this rotating reference frame, the domain and the
grid are static, but the gravity vector rotates. Additionally, fictitious forces, like the
centrifugal force and the Coriolis force, have to be added. For solving the whole set of
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(a) Initial state. (b) State after 2 s.

(c) State after 5 s. (d) State after 25 s.

Figure 5.20: Half-filled rotating tumbler showing the perfectly mixed initial state and the
further segregation process at time 2 s, 5 s, and 25 s. Due to the segregation process, a core
of small particle forms and the large particles are located at the periphery. The plots show
the relative volume fraction φ̂ of the small particle phase.

equations in the rotating reference frame, only the body force term given by the gravity
vector has to be replaced by the rotating gravity vector and the fictitious forces, i.e.,

Fgravity = Frot
gravity + Fcentrifugal + FCoriolis. (5.13)

For the illustration, the whole grid is simply transformed back to the inertial system.

The initial state of the simulation is a half-filled tumbler in a perfectly mixed state
with equal volume fractions for small and large particles. From literature (e.g. [1]), the
segregation behaviour for the rolling regime is known. In this setup, a special pattern
forms due to the rotation. Near the surface, the particles are in motion while the bulk of
the granular material beneath the surface layer stays in a static state. The segregation
is then concentrated in the shearing top layers. Here, the system segregates with small
particles percolating downwards and large particles are lifted to the surface. In the
static regime below, the material rotates with the tumbler without further segregation.
This behaviour can be accurately observed in Figure 5.20. As expected, a core of small
particles is formed due to the segregation, whereas the large particles eventually wander
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to the periphery. In the plots, the relative volume fraction φ̂ of the small particle phase
is shown. Accordingly, the colour bar is fixed between 0 and 1.

It is known, that the segregation pattern is sensitive to changes in the filling height.
This can be observed in the simulation. Again small particles percolate downwards in
the sheared regime near the granular surface. However, the small particles do not even
reach the core of the granular material, due to the increased height of the granular bed.
Finally, a ring of small particles forms around a completely unchanged core. The large
particles accumulate next to the walls. Figure 5.23 shows the simulation result of a
rotating tumbler filled to a height of 75 % after 25 s (top row, left). One can see exactly
the described pattern. Besides the filling height, the whole setup is chosen identical to
the half-filled tumbler.

Similar results are given by Arntz et al. [2, 3]. The authors studied the segregation
process in horizontal rotating tumblers using DEM simulations. Especially, they focused
on the influence of the rotation speed on the segregation process. To quantify the degree
of mixing, they used an entropy expression based on their DEM data. The method is
similar to the mixture entropy defined in 5.2.2 which is based on the data gained from the
continuum fields. They found that for a fill level of 50 %, the segregation effect is strong
for slow rotating tumblers. With increasing rotation speed the system tends to a mixed
state. A maximal plateau of this process begins with the beginning of the cataracting
regime, where the motion becomes turbulent. If the rotation speed is increased further,
the particles start to demix again, which is where the cataracting-centrifuging regime
begins. In this regime, all particles are pressed to the outer walls, where the smaller
particles tend to accumulate.

Figure 5.21 shows the normalised mixture entropy for the simulation of the rotating
tumbler with different rotation speeds in the rolling and cascading regime. The value
Emix to normalise the mixing entropy for the use case of the half-filled tumbler is given
by Emix = 1.717e-05. The slowest rotation speed of 0.1 rps lies in the rolling regime and
the fastest in the cascading regime with a rotation speed of 1.5 rps. Latter rotation speed
is already quite close to the beginning of the cataracting regime where Arntz et al. [2]
gained the mixed granular system. Similar to the results described in [2], the system with
the lowest rotation speed segregates until a certain point, where the system stays with
small periodic fluctuations appearing with every revolution of the tumbler. For increasing
rotation speeds, the entropy value of the final state increases. The granular beds are less
segregated. The system with the highest rotation speed barely changes and stays in an
almost perfectly mixed state. For even faster rotation speeds, it can not generally be
expected that the model, derived in this work, is applicable, since turbulent flows have
not been considered deriving the segregation equation.
The tendency of the granular system to mix or segregate for different rotation speeds
fits the results presented in the work of Arntz et al. [2]. However, the simulation results
shown in Figure 5.21 reach their final state faster than the DEM simulations performed
in [2]. Furthermore, the entropy values of the steady states in the simulation range from
0.3 to 0.93. The values in [2] vary between 0.6 and 0.98. However, the large discrepancy
between the two lower values suggests that the segregation rate is too large for this use
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Figure 5.21: Normalised mixture entropy for the simulation of the rotating tumbler with
different rotation speeds in the rolling and cascading regime. The slowest rotation speed
of 0.1 rps lies in the rolling regime and the fastest in the cascading regime with a rotation
speed of 1.5 rps. The influence of the segregation process decreases with increasing rotation
speed in these regimes as observed in [2].

Figure 5.22: Half-filled rotating tumbler at time 25 s with a rotation speed of 0.8 rps (left)
and 1.2 rps (right). Due to increasing rotation speeds the typical segregation pattern is less
strong, as observed in Figure 5.20. The plots show the relative volume fraction φ̂ of the
small particle phase.

case. Two examples of the performed simulations for the rotation speeds 0.8 rps and
1.2 rps are shown in Figure 5.22.
Not only the segregation rate can control the segregation process but also an additional
remixing term in the model could improve the results. As already mentioned in chapter 1
and 2, such a term is already discussed in the literature, but the ratio between segregation
rate and diffusivity is still unclear. If a suitable form and the dependences of such an
additional term can be found, the model can be improved further. A physically correct
interplay of segregation and remixing probably can improve the simulation results much
more than only fitting the segregation rate.
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Figure 5.23: Segregation pattern (top row) in a tumbler filled to a height of 75 %. The
plot shows the relative volume fraction φ̂ of the small particle phase. Additionally, the
granular volume fraction c is shown (bottom row). The same simulation has been done with
back-coupling (left) and without back-coupling (right). All plots show the respective state
after 25 s.

5.4.2 Influence due to binary particle packings

The final model, as given in section 2.5, uses varying RCP and RLP values depending
on the relative volume fraction φ̂ of the small particle phase. To show the effect of
these varying packing values, the rotating tumbler with a filling height of 75 % has been
simulated with and without varying packing values. This means the model is solved
with and without a back-coupling from the segregation equation to the granular flow
equations. The resulting segregation pattern after 25 s is shown in Figure 5.23 (top row).
Additionally, the granular volume fraction profile is shown (bottom row). The plots on the
left show the simulation with and the plots on the right without varying packing values.
One can see that both simulations yield almost identical segregation patterns. However,
the advantage of the varying packing values can be seen in the granular volume fraction
plots. The profile for the simulation without varying RCP and RLP values simply shows a
lithostatic profile which is characteristic for a mono-disperse system. In the case of varying
packing values, the lithostatic profile is superimposed by a profile that is similar to the
segregation pattern. One can see that the volume fraction is much higher in regions where
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the system is partially mixed than in regions where solely one particle phase is present.
The packing values that have been reached in the mixed regions are much higher than
any value in the volume fraction profile for the simulation without back-coupling, which
is in agreement with the expectations.
In summary, one can say that a simple version of the final model without back-coupling
is applicable to reproduce correct segregation patterns. However, back-coupling from the
segregation equation to the granular flow model leads to more realistic results for the
volume fraction profiles in the case of binary particle systems.

5.4.3 Discharging a silo

After performing several simulations for the rotating tumbler, another entirely different
test case has been studied. The process of interest in this section is the discharge of a silo
filled with some granular material. Therefore, also the properties of the granular material
are modified compared to the tumbler simulations. Assuming the surface of the used
particles is less smooth than the glass beads simulated before, the RLP is chosen to be
smaller, than that in the tumbler simulation. All parameters that have been used for the
model are given in Table 5.8. The silo has a flat bottom plate and a free discharge located
in the middle of the bottom plate. The silo has a dimension of 0.5× 0.145× 0.04m3 and
is filled with small and large granular particles with an average diameter of 3.3mm. The
size ratio is R = 1

2
. Initially, the system is perfectly mixed. For the interaction of the

particles and the wall, a wall friction angle of 30◦ has been chosen. Figure 5.24 shows
the full domain and the relative volume fraction φ̂ of the small particle phase. One can
see that due to the discharge of the silo a segregation pattern forms.

Combarros Garcia et al. [14] have performed several experiments discharging silos of
different kind and shape. The silos had a transparent side wall to image the resulting
segregation patterns. They have also performed an experiment for a silo with a flat bottom
plate and free discharge. Images of their experiment at different states in time during the
discharging process are shown in Figure 5.25. The small particles in the experiment are

Figure 5.24: Segregation pattern as a re-
sult of simulating a discharging silo. The
plot shows the relative volume fraction φ̂ of
the small particle phase.

symbol value unit

η0 0.00175 [m]
λ0 3.4e-04 [m]
ε0 126.984 [ 1

m
]

T0 1.5 [m
2

s2
]

φrlp 0.4 [1]
φrcp 0.64 [1]
Ssl0 0.2 [1]

Table 5.8: Set of parameters
that have been used in the fi-
nal model for simulating the dis-
charging silo.
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Figure 5.25: Segregation patterns for a discharge out of a silo with a flat bottom and
free discharge at different states. The large particles are darker than the small particles.
Pictures taken from Combarros Garcia et al. [14].

Figure 5.26: Segregation patterns for a discharge out of a silo with a flat bottom and free
discharge at different states. The simulation result shows the lower part of the silo. The red
areas show a high concentration of small particles given by the relative volume fraction φ̂.

light and the large particles dark. During the discharging process, a V-shaped layer of
small particles emerges from the corners of the discharge. This is a characteristic pattern
for a silo with a flat bottom plate.
Figure 5.26 shows the simulation result in the lower part of the silo during the discharging
process. Similar to the experiment performed in [14], a V-shaped layer of small particles
emerges. Hence, the main characteristic pattern can be reproduced.





Chapter 6

Conclusion

This work investigates the simulation of granular material flows with segregation. The
used model extends a set of Navier-Stokes-like equations with a non-Newtonian and
non-linear rheology model, to incorporate the segregation process of binary granular
systems with small and large particles in up to three space dimensions.

The segregation equation has been derived using mixture theory. Due to the coupling of
the segregation equation to the granular temperature, the segregation process is regulated
in the different regimes. Depending on the behaviour computed by the granular flow
equations, segregation takes place in regimes where the granular material is sheared
or random particle movement can be observed. In contrast to this, the segregation is
inactive for plug flows or static systems.

Unlike most other models in literature, the segregation equation derived in this work de-
pends explicitly on the local value of the granular volume fraction. The volume fraction is
non-constant over the whole domain, since the granular flow equations are compressible.
Therefore, due to the varying granular volume fraction field, the segregation equation
needs to be treated numerically in a special way. Therefore, a Riemann problem for each
possible combination of left and right states has been solved. Additionally, all solutions
have been illustrated in the phase space. Based on these solutions, a modified version
of Godunov’s method has been formulated for the small particle phase (convex). The
corresponding solutions and the formulation of the scheme for the large particle phase
(concave) are given in Appendix A.

To make the model applicable to a wide field of applications, where the flow direction
might change, a local segregation direction vector has been introduced. This segregation
direction is computed based on the granular flow field which also makes the segregation
process invariant to the choice of the coordinate system. An advantage compared to
common models of a similar type is that the segregation process does not have to act in
the same direction in the whole domain.

Section 2.3 has addressed the topic of particle packings. The packing fraction of binary
particle systems differs depending on the ratio of the particles’ radii and especially on
the proportion of small and large particles. Therefore, the granular flow equations have

117



118 Chapter 6 Conclusion

been modified to account for this property. Depending on the state of segregation, which
is computed by the segregation equation, the random close packing value and also the
random loose packing value for the granular system change.

In chapter 5, the derived model has been tested for different test cases in different space
dimensions. It has been shown that the derived numerical scheme prevents the system
from reaching unphysical states. For the segregation equation, first order convergence has
been observed. Furthermore, the model performs well for the chosen examples. However,
it has been pointed out that for real applications it is quite important to accurately fit
the basic model to the real material, since the temperature field has a strong influence
on the segregation process.

All numerical results presented in two and three-dimensional space have been com-
puted using the finite volume solver GRAIN, which is included in the software platform
CoRheoS, developed at ITWM. The implementation of the segregation equation, as well
as the modifications to the granular flow model were implemented by the author using
C++.

The final system of equations have shown good results for the different test cases. To
further increase the accuracy of the model, some additional modifications and extensions
could be investigated. As pointed out in this work, the structure of the segregation equa-
tion leads to a strong influence of the granular temperature on the segregation process.
Therefore, it is advisable to compare the granular flow equations to more experiments of
different kinds. To obtain suitable results for a large variety of flows in almost arbitrary
domains, it is currently expected that some aspects of the model need to be improved.
Moreover, it is not easy to identify the parameters of the granular flow model to fit a real
material. Currently, there is no standard procedure to obtain all parameters from par-
ticle properties or simple experimental measurements. A promising approach to obtain
macroscopic properties is the combination of DEM simulations and upscaling methods
such as coarse graining [80, 84].
Concerning the segregation process itself, several further improvements are already topic
of the current research. This includes a diffusive remixing term in the segregation equa-
tion which has already been modelled and thoroughly discussed, e.g. in [36]. A physically
correct interplay of segregation and remixing probably could improve the simulation re-
sults a lot. However, the ratio between segregation velocity and diffusivity is still unclear.
Other improvements of interest are a segregation rate that explicitly depends on the par-
ticle sizes [59], the extension to n-particle phases [34] or the density segregation. Also,
models of combined size and density segregation [35, 79] are an interesting research topic,
as further effects come into play like the reverse Brazil nut problem.
An extension of the current model to n-particle phases, as has been done in [34], could
easily be achieved. The same holds true for a segregation rate that explicitly depends on
the particle sizes. It should furthermore be investigated, how to include diffusive remixing
or the combined size and density segregation in a consistent way.



Appendix A

Riemann solutions for the large particle
phase

Let φ = φl be the volume fraction of the large particle phase. Similarly to the equation
of the small particle phase (4.30), one can augment the simplified equation for the large
particle phase

∂tφ+ ∂z

(
S

(
c− φ
c

)
φ

)
= 0 (A.1)

into a resonant system. A Riemann problem can be solved in the same way as presented
in Chapter 3. For the large particle phase, the segregation flux is concave. In this
case, the integral curves in the state space are identical to the convex case of the small
particle phase but the allowed paths in the state space are different. The state space
can, depending on the position of the left Riemann state UL, be decomposed into 10
regions for the location of UR, which results in different wave combinations. These
regions are depicted in Figure A.1. The different Riemann solutions are depicted in
Figure A.2 - A.11. The conditions for each combination of wave solutions and the resulting
approximated boundary fluxes are listed in Table A.1. Since the flux curves are concave,
their extrema are maxima. Hence, these values are denoted by fmaxL and fmaxR , whereas
the corresponding arguments are denoted by φmaxL and φmaxR , respectively. The resulting
numerical flux function of Godunov type in the concave case can be written by

F̄G = min {fL(min{φL, φmaxL }), fR(max{φR, φmaxR })} , (A.2)

where fL(φ) = f(φ, cL).

For the segregation equation of the large particle phase without constant temperature,

∂tφ+ ∂z

(
S
√
T

(
c− φ
c

)
φ

)
= 0, (A.3)

the average flux over the cell boundary can be given by expression (A.2) as well, where
fL(φ) = f(φ, cL, TL).
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Figure A.1: Different regions for UR depending on UL which yield different Riemann
solutions for a concave segregation flux. Four regions if UL is located left of the transition
line Γ (left Picture) and six regions if UL is located right of Γ (right Picture). The lower
right part defines an unphysical area, as φ > c.
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Figure A.2: (1) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region I shown in Figure A.1, where φR < cR

2 , cR > c̃,
and f(UR) < f(UL). The solution consists of two basic waves, a standing wave (UL, ǓR)
and a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = f(UL).
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Figure A.3: (2) Example showing the wave solution in state space (left). UL is located left
of the transition line Γ andUR in region II shown in Figure A.1, where f(UR) > f(UL). The
solution consists of two basic waves, a standing wave (UL, ǓR) and a shock wave (ǓR,UR)
with positive speed, given by s = (f(UR) − f(ǓR)/(φR − φ̌R) > 0. Furthermore, the flux
function for a left and a right state is plotted (right). The wave solution is highlighted. The
flux curves are connected by the contact discontinuity. The resulting average boundary flux
is given by F̄ = f(UL).
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Figure A.4: (3) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region III shown in Figure A.1, where φR > cR

2
and f(UR) > f(UL). The solution consists of two basic waves, a shock wave (UL, ǓL)
with negative speed, given by s = (f(ǓL) − f(UL)/(φ̌L − φL) < 0 and a standing wave
(ǓL,UR). Furthermore, the flux function for a left and a right state is plotted (right). The
wave solution is highlighted. The flux curves are connected by the contact discontinuity.
The resulting average boundary flux is given by F̄ = f(UR).
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ǓR

UR

φ-axis

f
f
=
f
(φ

L
, c

L
)f
=
f
(φ

R
, c

R
)

S

R

C

UL

ǓL

ǓR
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Figure A.5: (4) Example showing the wave solution in state space (left). UL is located
left of the transition line Γ and UR in region IV shown in Figure A.1, where φR < cR

2 ,
cR < c̃, and f(UR) < f(UL). The solution consists of three basic waves, a shock wave
(UL, ǓL) with negative speed, given by s = (f(ǓL) − f(UL)/(φ̌L − φL) < 0, a standing
wave (ǓL, ǓR), and a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0.
Furthermore, the flux function for a left and a right state is plotted (right). The wave
solution is highlighted. The flux curves are connected by the contact discontinuity. The
resulting average boundary flux is given by F̄ = fmaxR .
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Figure A.6: (5) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region V shown in Figure A.1, where φR < cR

2 ,
cR > c∗, and f(UR) < f(U∗). The solution consists of three basic waves, a rarefaction wave
(UL,U

∗) with characteristic speed λ1(φ, cL) < 0, a standing wave (U∗, ǓR), and a second
rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the flux
function for a left and a right state is plotted (right). The wave solution is highlighted. The
flux curves are connected by the contact discontinuity. The resulting average boundary flux
is given by F̄ = fmaxL .
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Figure A.7: (6) Example showing the wave solution in state space (left). UL is lo-
cated right of the transition line Γ and UR in region VI shown in Figure A.1, where
f(UR) > f(U∗). The solution consists of three basic waves, a rarefaction wave (UL,U

∗)
with characteristic speed λ1(φ, cL) < 0, a standing wave (U∗, ǓR), and a shock wave
(ǓR,UR) with positive speed, given by s = (f(UR) − f(ǓR)/(φR − φ̌R) > 0. Further-
more, the flux function for a left and a right state is plotted (right). The wave solution
is highlighted. The flux curves are connected by the contact discontinuity. The resulting
average boundary flux is given by F̄ = fmaxL .
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Figure A.8: (7) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region VII shown in Figure A.1, where φR > cR

2
and f(UL) < f(UR) ≤ f(U∗). The solution consists of two basic waves, a rarefaction
wave (UL, ǓL) with characteristic speed λ1(φ, cL) < 0 and a standing wave (ǓL,UR).
Furthermore, the flux function for a left and a right state is plotted (right). The wave
solution is highlighted. The flux curves are connected by the contact discontinuity. The
resulting average boundary flux is given by F̄ = f(UR).
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Figure A.9: (8) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region VIII shown in Figure A.1, where φR > cR

2
and f(UR) > f(UL). The solution consists of two basic waves, a shock wave (UL, ǓL)
with negative speed, given by s = (f(ǓL) − f(UL)/(φ̌L − φL) < 0 and a standing wave
(ǓL,UR). Furthermore, the flux function for a left and a right state is plotted (right). The
wave solution is highlighted. The flux curves are connected by the contact discontinuity.
The resulting average boundary flux is given by F̄ = f(UR).
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Figure A.10: (9) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region IX shown in Figure A.1, where φR < cR

2 ,
c̃ < cR < c∗, and f(UR) > f(U∗). The solution consists of three basic waves, a rarefaction
wave (UL, ǓL) with characteristic speed λ1(φ, cL) < 0, a standing wave (ǓL, ǓR), and a
second rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0. Furthermore, the
flux function for a left and a right state is plotted (right). The wave solution is highlighted.
The flux curves are connected by the contact discontinuity. The resulting average boundary
flux is given by F̄ = fmaxR .
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Ũ

φ-axis

f

f
=
f
(φ

L
, c

L
)f
=
f
(φ

R
, c

R
)

S

R

C

UL

ǓL
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Figure A.11: (10) Example showing the wave solution in state space (left). UL is located
right of the transition line Γ and UR in region X shown in Figure A.1, where φR < cR

2 ,
cR < c̃, and f(UR) > f(UL). The solution consists of three basic waves, a shock wave
(UL, ǓL) with negative speed, given by s = (f(ǓL) − f(UL)/(φ̌L − φL) < 0, a standing
wave (ǓL, ǓR), and a rarefaction wave (ǓR,UR) with characteristic speed λ1(φ, cR) > 0.
Furthermore, the flux function for a left and a right state is plotted (right). The wave
solution is highlighted. The flux curves are connected by the contact discontinuity. The
resulting average boundary flux is given by F̄ = fmaxR .

Case Figure left state condition of right state F̄

1 A.2 φL <
cL
2

φR <
cR
2
, cR > c̃, f(UR) < f(UL) f(UL)

2 A.3 φL <
cL
2

f(UR) > f(UL) f(UL)
3 A.4 φL <

cL
2

φR >
cR
2
, f(UR) > f(UL) f(UR)

4 A.5 φL <
cL
2

φR <
cR
2
, cR < c̃, f(UR) < f(UL) fmaxR

5 A.6 φL >
cL
2

φR <
cR
2
, cR > c∗, f(UR) < f(U∗) fmaxL

6 A.7 φL >
cL
2

f(UR) > f(U∗) fmaxL

7 A.8 φL >
cL
2

φR >
cR
2
, f(UL) < f(UR) ≤ f(U∗) f(UR)

8 A.9 φL >
cL
2

φR >
cR
2
, f(UR) > f(UL) f(UR)

9 A.10 φL >
cL
2

φR <
cR
2
, c̃ < cR < c∗, f(UR) > f(U∗) fmaxR

10 A.11 φL >
cL
2

φR <
cR
2

, cR < c̃, f(UR) > f(UL) fmaxR

Table A.1: Conditions and the resulting solutions for the boundary fluxes of the Riemann
problem in the concave flux case corresponding to the large particle phase.
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