
E�cient Texture Analysis of Binary Images

Joachim Ohser1, Bernd Steinbach2, and Christian Lang2

May 25, 1998

Abstract

A new method of determining some characteristics of binary images is proposed

based on a special linear �ltering. This technique enables the estimation of the area

fraction, the speci�c line length, and the speci�c integral of curvature. Furthermore,

the speci�c length of the total projection is obtained, which gives detailed information

about the texture of the image. The in
uence of lateral and directional resolution

depending on the size of the applied �lter mask is discussed in detail. The technique

includes a method of increasing directional resolution for texture analysis while keeping

lateral resolution as high as possible.

1 Introduction

A very powerful technique of image processing is the �ltering of digital images. For example,

high-pass or low-pass �ltering can be used to eliminate noise at low or high frequencies,

respectively. In the following we will show that linear �ltering can also be applied in image
analysis. The key idea of this paper is to formulate an algorithm for the computation of the

global characteristics of binary structures which includes linear �ltering as the basic step.

In this consideration a binary structure can be modelled by a planar random set which is

assumed to be homogeneous, i.e. its distribution is invariant under translation of the set. In

other words, the distribution properties of the structure are independent of the position of

the observer. Particularly, the expectation of the area of a structure component � observed

in a window W depends only on the size ofW but not on its position. Such planar structures
can be obtained from a planar section through a materials structure which consists of two
phases. In this case � can be considered as the planar section of one of these phases.

The simplest global characteristic of the component � is the area fraction AA; this is the

mean area of � per unit area of the current section plane. Further global characteristics are

the speci�c line length LA and the speci�c integral of curvature CA. The speci�c line length
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Figure 1: Binary image of a textured materials structure, micro structure of a rolled stainless

steel, white phase { ferrite, black { austenite.

can be expressed in terms of the speci�c length of the total projection pA(#) of � with respect
to the direction #,

LA =
1

2

2�Z
0

pA(#) d#; (1)

see e.g. Ohser (1981). Notice that pA(#) = pA(#+ �). In image analysis this formula is well-
known; it is the base for the determination of the speci�c line length. On the other hand,

the speci�c total projection has its own meaning. The function pA(#) describes texture
properties of �; it is closely related to the distribution of the direction of boundary of �. Let
R(#) denote the distribution function of the normal direction of a randomly chosen element

of the boundary of �; R(#) is called rose of directions. Then the equation

pA(#) =
LA

2

2�Z
0

j cos(#� ')j dR('); 0 � # < 2� (2)

relates these quantities to each other. This means that pA(#) and R(#) can be understood
as two representations of the same function. If R(#) = R(# + �) then the speci�c total

projection and the directional distribution function provide identical information about the

texture of �. In this paper we con�ne ourselves to the texture characterisation of planar

sections through spatial structures. For a detailed description of spatial texture analysis see

Pohlmann et al. (1981). Adams & Field (1992), Adams (1993), and Bene�s et al. (1994).

The speci�c integral of curvature CA is closely related to the speci�c Euler number �A,

CA = 2� �A, and if the component � consists of convex particles then CA is up to a constant

the speci�c particle number, CA = 2� NA.

From the literature about integral geometry it is well-known that the global characteristics
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AA, LA, and CA are the densities of the three random Minkowski measures of �. The proper-

ties of these quantities allow their estimation applying local methods such as linear �ltering.
The algorithm presented in this paper consists of three basic steps:

1. Linear �ltering of the binary image which results in a gray-tone image,

2. generating the gray-tone histogram (integration step), and

3. computing the global characteristics from the data of the gray-tone histogram (analy-

sis).

This estimation procedure is based on ideas of Serra (1982).

Note that the original image in this paper is binary which is transformed into a gray-tone

image by �ltering. Depending on the range of the corresponding �lter mask the sizes of the

gray-tone image and the gray-tone histogram can become very large. Thus in the imple-

mentation of the algorithm their explicit representation should be avoided. However, for a

detailed description of the algorithm we temporarily assume that the grey-tone image as well

as the grey-tone histogram are generated.

2 Linear Filtering of Binary Images

Consider a rectangular grid of points xij; i = 0; : : : ; m; j = 0; : : : ; n, with the digital
resolution � and the aspect factor � of the grid, � > 0; � �� is the distance of grid points in

the horizontal direction and � is the distance in the vertical direction, xij = (j��; i�). A
discretisation of the �-phase observed in the rectangular sampling window W = [0; m�] �
[0; n��] is the binary image given by the matrix B = (bij) of pixels

bij = 1�(xij); i = 0; : : : ; m; j = 0; : : : ; n; (3)

where 1�(x) denotes the indicator function. Let F� = (fk`) be the mask of a linear �lter
of �nite size �, � = 0; 1; 2; : : : The coe�cients of F� are given by fk` = 2k+(�+1)`; k =

0; : : : ; �; ` = 0; : : : ; �. We obtain

F0 = (1); F1 =

�
1 4

2 8

�
; F2 =

0
B@ 1 8 64
2 16 128

4 32 256

1
CA ; : : :

Linear �ltering of the binary image B by F� is nothing other than the convolution of B and

F�, G = B � F� . The �lter response is a digital grey-tone image G = (gij),

gij =
�X

k=0

�X
`=0

bi+k;j+` fk`

for i = 0; : : : ; m� �; j = 0; : : : ; n� �. Notice that (� + 1)2 is the number of bits per pixel.

Furthermore, we remark that the components gij of G cannot be computed for i > m � �
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and j > n � �, i.e. the �lter response G is free of edge e�ects within the partial window

W� = [0; (m� �)�]� [0; (n� �)��].

The linear �lter mentioned above is not original since this kind of encoding is used quite

often in mathematical morphology. Its use in image processing was �rst suggested by the

Ecole des Mines de Paris. However, the proposed application of this �lter in stereological

estimation is original.

3 Generating the Grey-Tone Histogram

The next step in the computation of the global characteristics is the determination of the

grey-tone histogram h of the image G. The component hk of h is the number of pixels of

G for which the grey-tone is k. This means the k indicates a pixel con�guration of the

corresponding binary image B, and hk is the number of this con�guration. For example, if

� = 1 then k = 7 is assigned to the point con�guration

�
1 1

1 0

�
:

Consequently, h7 is the number N of these con�gurations within the binary image B,

h7 = N

�
1 1
1 0

�
:

We will use the function �(g; k) to indicate the integers g which are equal to the index k; �
is Kronecker's Delta, �(g; k) = 1 for g = k, and �(g; k) = 0 otherwise. Then the hk can be

expressed as

hk =
m��X
i=0

n��X
j=0

�(gij; k)

for k = 0; : : : ; � � 1. Notice that the sum over the hk is the total pixel number within the
partial window W� ,

P
hk = (m� � + 1)(n� � + 1). Thus

A(W�) = ��2
��1X
k=0

hk;

where � = 2(�+1)(�+1). The grey-tone histogram h of the �ltered image G comprises the

complete information about the global characteristics available from the image. Thus h is
the base of the estimation of AA; LA, and CA.
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4 Analysis

4.1 Area, Area Fraction

The area of � within the window W can be determined from the number of pixels xij for

which the value of gij is odd,

A(� \W�) = ��2
�=2�1X
k=0

h2k+1: (4)

Therefore,

dAA =

P�=2�1
k=0 h2k+1P��1

k=0 hk

(5)

is an unbiased estimator of the area fraction. Let kj� denote the bitwise or of the integers k

and �, e.g. 19j26 = 10011j11010 = 11011 = 27. With the help of this notation Eq. (??) can

be rewritten as

dAA =
��2

A(W�)

��1X
k=0

hk �(k; kj1): (6)

Of course, this seems to be a quite complicated estimator for such a simple quantity as the

area fraction. However, the description of this approach is very instructive in understanding
the method of statistical estimation for the other global characteristics as well.

4.2 Length of Total Projection, Speci�c Line Length

The speci�c total projection pA(#) can be estimated from the probability that a point x
lies in the component � while the point y = x + (r; #) lies in the complement of �. Here r

denotes the distance ky � xk of the points x and y. For a �xed direction # this probability
is a function of the distance r and for r ! 0 the slope of this function converges to pA(#).

This leads one to construct an estimator for pA(#) in the following way: Let #` denote the

direction of a pair of grid points of the �lter mask F� ; r` is the grid distance corresponding
to this direction, ` = 0; : : : ; 8� � 1. The speci�c length of the total projection pA(#) of the

�-phase with respect to the direction #` can be computed from the grey-tone histogram h

using

cpA(#`) = ��2

r`A(W�)

��1X
k=0

hk �(k; kj�0;`) [1� �(k; kj�1;`)]; ` = 0; : : : ; 8� � 1; (7)

where the masks �0;` and �1;` indicate the pair of grid points of the �lter mask F� concerning

#`. The directions #`, the distances r`, and the masks �0;` and �1;` are given in Table ?? for

the special case � = 1. It has been shown by Serra (1982) that this estimator is asymptotically

unbiased for �! 0. The estimation cpA(#) of the speci�c total projection is an alternative to
the much more complicated measurement of the rose of directions suggested e.g. by Chaix

& Grillon (1996).
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As a discrete version of Eq. (??) we obtain an estimator of the speci�c line length LA,

dLA =
1

2

8��1X
`=0

(#`+1 � #`) cpA(#`): (8)

This estimator is always biased. The bias depends on the lateral resolution as well as the

directional discretisation. The lateral resolution is given by the 1=ri where ri � ��, and the

directional discretisation is represented by the di�erences #`+1�#` � �=(4�). Thus for a small

size � of the �lter mask the lateral resolution is high, and the lateral resolution decreases

for increasing �. On the other hand, the �neness of directional discretisation (directional

resolution) increases with increasing �. In other words, by the parameter � one can choose

between high digital resolution or high directional resolution. Therefore, the problem consists

in �nding an appropriate � depending on the given structure � and the required accuracy
of estimation.

` #` r` �0;` �1;`

0 0 �� 1 4

1 arccot� �
p
1 + �2 1 8

2 �=2 � 4 8
3 � � arccot� �

p
1 + �2 4 2

4 � �� 8 2
5 � + arccot� �

p
1 + �2 8 1

6 3�=2 � 2 1
7 2� � arccot� �

p
1 + �2 2 4

Table 1: The parameters #`; r`; �0;`, and �1;` for a �lter mask of size � = 1.

It should be noted that the same estimators can be computed by reverting the image, so that

the upper-right corner becomes the lower-left corner. Then one can use for each estimation
the mean of the proposed estimators computed on the two images, in order to use all the
information in the original image.

4.3 Euler Number, Integral of Curvature per Unit Area

In this section we describe how to count objects in a planar image where the number of

objects is indicated by the Euler number �. Discrete versions of the Euler number � of �
in the planar sampling window W are closely related to planar graphs associated with the

considered point grid. Starting from a point grid, graphs can simply be constructed by adding

edges. Several modes of construction lead to various types of graphs. Examples are given in
Figure ??; further ones can be easily imagined, see e.g. Serra (1982, p. 174) and Heijmans

(1994, pp. 326{328). A discrete version of the Euler number of � inW is the Euler number of
the corresponding partial graph which can be obtained from one of Euler's famous relations

�0 = v � e+ f; (9)
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Figure 2: Typical graphs generated for rectangular point grids. a) The simple rectangular

graph which is also called 4-connected graph, b) hexagonal-I (6-connected), c) hexagonal-II

(6-connected), d) octagonal-I (4-8-connected).

where v; e, and f denote the number of vertices (points), the number of edges, and the
number of elementary faces (squares or triangles), respectively. We will use �0 to denote the

Euler number of the graph of the �-phase restricted to the given point grid.

For rectangular and 8-connected graphs the Euler number of � is in general not the negative

Euler number of the complement of �, �0(�) 6= ��0(�c). In the case of graph d) the Euler

number �0 depends on translations of the graph, see Figure ??. Note that from a topological

point of view the hexagonal graphs b) and c) are identical (up to edge e�ects). They do
not have the above disadvantages; �0(�) = ��0(�c) is valid, and �0 remains independent of
translations of the graph. For this reason, we choose a hexagonal graph as an appropriate

base for determining the Euler number, see Serra (1982, pp. 186, 201).

In the following we con�ne ourselves to the case of hexagonal-II grid. For � = 1 we can write

v = N

�
1 �

� �

�
;

e = N

�
1 1

� �

�
+N

�
1 �

1 �

�
+N

�
1 �

� 1

�
;

f = N

�
1 �

1 1

�
+N

�
1 1

� 1

�
:

Here N() denotes the number of point con�gurations in the binary image where "�" indicates
that the binary value of the corresponding pixel is either 0 or 1. For example, v is the number

of con�gurations for which the upper left grid point is 1 and the others are arbitrary, i.e. v

is simply the number of grid points in W1 for which bij = 1.

The above equations can be rewritten as

v = (h1 + h3 + h5 + h7 + h9 + h11 + h13 + h15);
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e = (h5 + h7 + h13 + h15) + (h3 + h7 + h11 + h15) + (h9 + h11 + h13 + h15);

f = (h11 + h15) + (h13 + h15);

and the Euler relation (??) implies

�0 = h1 � h7: (10)

This discrete version of the Euler number can be assigned the direction #0 = 0. For the

directions #2 = �=2; #4 = �, and #6 = 3�=2 we have

�2 = h2 � h11; �4 = h8 � h14; �6 = h4 � h13: (11)

From the average of the �` one obtains an estimation of the integral of mean curvature per

unit area,

dCA =
�

2A(W�)

3X
i=0

�2`

=
�

2A(W�)
(h1 + h2 + h4 + h8 � h7 � h11 � h13 � h14); (12)

which is asymptotically unbiased for �! 0, see Serra (1982). This estimator can simply be

generalized for each � > 0 when replacing the indices 1, 2, 4, 8 in (??) by 1; 2�; 2�(�+1); 2�(�+2),

and the indices 7, 11, 13, 14 have to be replaced by 1 + 2� + 2�(�+1); 1 + 2� + 2�(�+2); 1 +

2�(�+1) + 2�(�+2); 2� + 2�(�+1) + 2�(�+2), respectively.

5 Example

As an example we consider a binary image B consisting of 16� 16 pixels,

B =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0

0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0

0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0

0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0

0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0

0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0

0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0

0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0

0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

The corresponding hexagonal-II graph of B is shown in Figure ??. The convolution of B

8



u u

u

u u u u u u u

u u u u u u u u

u u u u u

u u u u u u u u

u u u u u u

u u u u

u u u u u u

u u

u

u u u u u

u u u u u u u u u

u u u u u u u

u u u u u u

@@ @@ @@

@@

@@ @@
@@ @@

@@ @@ @@

@@

@@
@@

@@

@@

@@ @@

@@

@@

@@

@@

@@

@@

Figure 3: Hexagonal-II graph for the example image B.

with the �lter mask F1 yields a grey-tone image G with four bits per pixel. For the matrix

G and the grey-tone histogram h of G we obtain

G = B � F1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

8 2 0 8 a a a 2 0 0 0 0 0 0 8 �

c b 2 4 d f f 3 0 0 0 8 a 2 4 �

c f b 2 c f f 3 8 a 2 4 5 9 2 �

4 5 5 1 c f f 3 4 5 9 2 0 c 3 �

0 0 0 0 4 5 5 1 0 0 4 1 0 c 3 �

0 0 0 0 0 0 0 0 0 0 0 0 8 e 3 �

0 0 0 0 0 8 a a a 2 0 8 6 d 3 �

0 0 0 0 0 c 7 d 7 1 8 e 3 4 1 �

0 0 0 8 2 c 3 c 3 0 c f 3 8 2 �

8 2 0 c 3 c b e 3 8 6 d 3 c 3 �

c 3 8 e 3 4 5 5 1 c 3 4 1 c 3 �

c b e 7 1 0 0 0 0 c b a a e 3 �

4 d f 3 0 0 0 0 8 e f f f 7 1 �

0 4 5 1 0 0 0 0 c 7 5 5 5 1 0 �

0 0 0 0 8 a 2 0 4 1 0 0 0 0 0 �

� � � � � � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; h =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

70

12

13

21

13

12

2

5

16

2

11

5

19

5

7

12

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

where the grey-values of G are presented in a hexadecimal code. Note that the right column

and the lower row of G cannot be determined free of edge-e�ects. From the components of
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h we have

A(W1) = 225 ��2
; cpA(#0) = 40 �

A(W�)
�0 = 7;

A(� \W1) = 74 ��2
; cpA(#1) = 50 ��p

1+�2 A(W�)
;

cpA(#2) = 32 ��
A(W�)

; �2 = 8;

cpA(#3) = 49 ��p
1+�2 A(W�)

;

cpA(#4) = 42 �
A(W�)

; �4 = 9;

cpA(#5) = 53 ��p
1+�2 A(W�)

;

cpA(#6) = 33 ��
A(W�)

; �6 = 8;

cpA(#7) = 50 ��p
1+�2 A(W�)

:

We remark that the variation of the Euler number is a pure edge e�ect; the mean Euler

number is 8. The binary image consists of 10 objects, two of them are intersected by the

edge of the sampling window W and a further one is not simply connected. Furthermore, the
di�erences between cpA(#`) and cpA(#`+4); ` = 0; : : : ; 3, are also caused by edge e�ects only.

If the basic grid is a square grid, � = 1, then we obtain the estimations

dAA = 0:329; dLA = 0:506=�; dCA = 0:223=�2
:

We remark that stereological interpretation of these values yields estimates of the volume

fraction, the speci�c surface area, and the speci�c mean curvature.

6 Digital Resolution and Fractal Dimension

It seems to be impossible to increase the lateral resolution as well as the directional resolution.

In fact, improved estimation of the speci�c line length LA and the texture representation

pA(#) basing on high lateral and directional resolution is only possible if the in
uence of
the lateral resolution is known. If the in
uence of lateral resolution is low then cpA(r; #) �cpA(�; #) where cpA(#; r) and cpA(#;�) are estimates of pA(#) at (r; #) and (�; #), respectively.

Thus

log(r � cpA(r; #)) � log(� � cpA(�; #)) + log
r

�
: (13)

If the in
uence of the lateral resolution cannot be neglected then Eq. (??) must be modi�ed.
Simple extension yields the approach

log(r � cpA(r; #)) � log(� � cpA(�; #)) + (1 + d) log
r

�
(14)

where d is an appropriately chosen constant, d � 0. In this linear model the function cpA(�; #)
is independent of the lateral resolution 1=r, and the slope d is assumed to be independent

of the direction #.
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The unknown values of cpA(�; #) and d can be found as the least-squares solution to the

overdetermined set of linear equations

log cpA(r�` ; #�` ) = log cpA(�; #�` ) + d log
r
�
`

�
; ` = 0; : : : ; 8� � 1; � > 0 (15)

(loglinear regression). Here, the r
�
` and the #

�
` denote the distances and the directions,

respectively, for chosen size �. From the cpA(�; #) one can obtain an improved estimator

of the speci�c line length LA,

gLA =
1

2

8��1X
`=0

(#`+1 � #`) fpA(#`) (16)

with fpA(#`) = cpA(�; #`). This estimator is robust with respect to variation of the size �

because it is related to the maximum lateral resolution 1=�. This means, in some bounds

the directional resolution can be increased without a considerable reduction of the lateral
resolution.

The slope d describes in
uence of the lateral resolution on the estimates dLA and cpA(#).
Clearly, dLA ! gLA and cpA(#) ! fpA(#) as d ! 0. Furthermore, if the component � can be
described by a fractal set then d > 0 and the real number fD = 1 + d can be used as an

estimator of the fractal dimension D of �; D is called correlation dimension, see Stoyan &
Stoyan (1994, p. 61).

7 Algorithm and Implementation

7.1 The Size of the Histogram

The size of a histogram � depends on the size � of the �lter mask, � = 2(�+1)(�+1). This

size becomes very large just for small �. Therefore, the computation of the histogram h

as a substep of the algorithm is only practicable for � � 2. In this case, the size of h is

always smaller than the size of the binary image. This means that the computation of h

can involve a considerable reduction of the data size. Otherwise, if we enlarge the size of
the �lter mask, then the size of the histogram explodes, e.g. �(� = 5) = 33; 554; 432 or

�(� = 7) = 562; 949; 953; 421; 312. Thus we need a modi�ed algorithm which avoids the

computation of both the grey-tone image and the histogram.

7.2 Area, Area Fraction

Of course, it is trivial to count the black pixels in the window W� of the binary image. The

computation of the area fraction runs in O((m� �)(n� �)) time, which is linear in the size
of the image.
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7.3 Speci�c Length of Total Projection

The function projection calculates the vector of 8� texture coe�cients cpA(#`) for a given

binary image B and returns a pointer to this vector.

double *projection(int ny, double zeta, int m, int n, bin_image B)

{

double *p, *r;

int i, j, l;

int all = (m-ny)*(n-ny);

p = (double *)malloc(8*ny*sizeof(double));

r = (double *)malloc(4*ny*sizeof(double));

for(l=0;l<8*ny;l++) p[l] = 0.0;

for(i=0;i<n-ny;i++)

for(j=0;j<m-ny;j++)

{

if(B[i][j]) for(l=0;l<ny;l++) if(!B[i+l][j+ny]) p[l]++;

if(B[i][j]) for(l=0;l<ny;l++) if(!B[i+ny][j+ny-l]) p[l+ny]++;

if(B[i][j+ny]) for(l=0;l<ny;l++) if(!B[i+ny][j+ny-l]) p[l+2*ny]++;

if(B[i][j+ny]) for(l=0;l<ny;l++) if(!B[i+ny-l][j]) p[l+3*ny]++;

if(B[i+ny][j+ny]) for(l=0;l<ny;l++) if(!B[i+ny-l][j]) p[l+4*ny]++;

if(B[i+ny][j+ny]) for(l=0;l<ny;l++) if(!B[i][j+l]) p[l+5*ny]++;

if(B[i+ny][j]) for(l=0;l<ny;l++) if(!B[i][j+l]) p[l+6*ny]++;

if(B[i+ny][j]) for(l=0;l<ny;l++) if(!B[i+l][j+ny]) p[l+7*ny]++;

}

for(l=0;l<ny;l++) // radius part 1

r[l] = sqrt(l*l+(ny*zeta)*(ny*zeta));

for(l=0;l<=ny;l++) // radius part 2

r[l+ny] = sqrt(ny*ny+(ny-l)*zeta*(ny-l)*zeta);

for(l=1;l<2*ny;l++) r[2*ny+l] = r[2*ny-l]; // sym. copy of radius

for(l=0;l<8*ny;l++) p[l] = (p[l]*zeta)/(all*r[l%(4*ny)]);

free(r);

return p;

}

The run time of projection is dominated by the nested for-loops. There are at most 8�(m�
�)(n��) iterations. Each iteration takes a constant amount of time. Therefore, projection
runs in O(�(m��)(n��)) time. For the �nal calculation of cpA(#`) we need 8� coe�cients r`.
The formulas for these coe�cients can be picked up in the program at // radius part 1

for the interval 0 � ` � � and at // radius part 2 for the interval � � ` � 2�. Additional,

we use the symmetry properties

r2�+` = r2��`; 1 � ` � 2� � 1 (17)

and
r4�+` = r`; 0 � ` � 4� � 1 (18)

for the distances of the corresponding pairs of points.
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7.4 Speci�c Boundary Length

The function length returns the speci�c line length dLA using the vector of 8� texture

coe�cients cpA(#`) calculated by the previous function projection.

double length(int ny, double zeta, double *p)

{

int l;

double l_a = 0, *delta_theta;

delta_theta = (double *)malloc(4*ny*sizeof(double));

for(l=0;l<ny;l++) // theta part 1

delta_theta[l] = atan2(l+1, zeta*ny);

for(l=0;l<ny;l++) // theta part 2

delta_theta[ny+l] = atan2(ny, zeta*(ny-(l+1)));

for(l=2*ny-1;l>0;l--) // delta_theta

delta_theta[l] = delta_theta[l]-delta_theta[l-1]

for(l=0;l<2*ny;l++) // sym. copy of delta_theta

delta_theta[2*ny+l] = delta_theta[2*ny-(l+1)]

for(l=0;l<8*ny;l++) // length

l_a += p[l]*delta_theta[l%(4*ny)];

free(delta_theta);

return l_a/2;

}

The loops of length are iterated at most 8� times. Each iteration takes a constant amount
of time. Therefore, length runs in O(�) time. In the function length you �nd the formulas

to calculate #` for the �rst two intervals and �#` = #`+1 � #`; 0 � ` � 2� � 1. As for the
distances r`, there is also a symmetry property for �#`.

�#2�+` = �#2��1�`; 0 � ` � 2� � 1: (19)

Notice that in comparison with (??) the symmetry line is shifted by a half index and the
symmetry interval is enlarged by one. However, the coe�cients �#` are also periodically as

the r`,
�#4�+l = �#`; 0 � ` � 4� � 1; (20)

see also Eq. (??), so we calculate only half of the coe�cients.

7.5 Calculation of the Speci�c Integral of Curvature

Finally the function curvature calculates and returns the speci�c integral of curvature per
unit area dCA for a given binary image B and a selected dimension of �lter �.

double curvature(int ny, int m, int n, bin_image B)

{

int count, i, j, h = 0;

for(i=0;i<n-ny;i++)

for(j=0;j<m-ny;j++)
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{

count = B[i][j]+B[i+ny][j]+B[i][j+ny]+B[i+ny][j+ny];

if(count&1)

if(count&2) h--; else h++;

}

return h*3.14159265359/(2*(m-ny)*(n-ny));

}

The function counts the number of black pixels in the corners of the �lter mask (variable

count). A single histogram variable h is incremented for a count = 1 and decremented

for count = 3. An even value of count does not change the histogram variable. There

are (m � �) � (n � �) distinct positions of the �lter mask. Therefore, curvature runs in

O((m� �) � (n� �)) time.

7.6 Implementation and Practical Results

The above source code shows the main approach for e�cient texture analysis of binary

images. All the 3 + 8� coe�cients can be calculated for each relevant size of the �lter mask
�. This program has been implemented on PC Pentium (133 MHz) and optimized for speed.

Using the binary image shown in Figure ?? which has 1654 columns and 1136 rows (about
two million pixels), the program runs 1.48 sec for � = 1, 6.42 sec for � = 10, and 80.23 sec
for � = 100 on this computer.

The most time consuming function is projection. We have changed only this function to a
table based approach and reduced the run time to 0.71 sec for � = 1, 2.35 sec for � = 10,

and 19.78 sec for � = 100.

As an example of application we consider a binary image which is obained from a micro

structure of a rolled stainless steel observed in a planar section. Figure ?? shows the typical
structure of a micro-duplex structure; in this image the light component is the ferrite phase
(�) and the dark one is the austenite phase (
). The section plane is chosen as a longitutinal

micro section of the specimen, i.e. the x-axis is the rolling direction and the y-axis represents

the main direction of materials deformation. It is clear the area fraction of � depends on the

composition of the steel. For micro-dupex steel the area fraction is about 50%. A quantity

important for process control is the texture of the boundary line between � and 
. It mainly

depends on the chosen amount of working as well as on some kind of recovery. The aim

is to produce a microstructure with a high speci�c boundary line length where the speci�c
integral of curvature should be as small as possible.

For the binary image in Figure ?? the estimated area fraction is dAA = 0:569. This value

has been obtained for � = 0. Figure ?? shows the texture of the micro structure which is

represented by the speci�c total projection pA(#). To demonstrate the in
uence of a de-

creasing lateral resolution, pA(#) has been estimated for several sizes � of the applied �lter
mask. The graphs of the estimates cpA(#) show that with increasing � the directional reso-

lution increases such that a rose of intersections is obtained which is practically continuous.

Furthermore, this example makes clear that with decreasing lateral resolution the absolute
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values of cpA(#) can decrease very fast. Just for � > 3 this e�ect is considerable. This is due

to the fact that the grain size of the structure is not much greater than the lattice distance
�. Figure ?? shows the same e�ect; the speci�c boundary length decreases for increasing

�. Finally, the texture of the �lter mask in
uences the estimates cpA(#) by an additional

reduction of the lateral resolution for directions close to #` with ` = �; 3�; 5�; 7�. In Figure

?? this e�ect is very clear for � > 3. Both e�ects, the in
uence of lateral resolution and the

in
uence of the texture of the �lter mask on estimates cpA(#) can be considerably reduced

by the methods described in x??. Correspondingly modi�ed algorithms are vailable from

http://www.informatik.tu-freiberg.de/prof2/publikationen/jom 97.html.

Nevertheless, the diagrams in Figures ?? and ?? have an own meaning; they represent some

kind of autocorrelation of the structure.
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Figure 4: The speci�c total projection cpA(#) depending on the order � of the �lter mask.
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