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While carbon nanotubes have technological potential as actuators, the underlying actuation mech-
anisms remain poorly understood. We calculate charge-induced stresses and strains for electrochem-
ical actuation of carbon nanotubes with different chiralities and defects, using density-functional
theory and various tight-binding models. For a given deformation mode the concept of bonding and
anti-bonding orbitals can be redefined depending on the sign of a differential band structure stress.
We use this theoretical framework to analyse orbital contributions to the actuation. These show
charge asymmetric behavior which is due to next-nearest-neighbor hopping, while Coulombic con-
tributions account for approximately charge-symmetric isotropic deformations. In the typical case
of a (10,10) tube strains around 0.1% with 1 nN force along the tube axis are obtained. Defects
and functional groups have negligible influence on the actuation. In multi-wall tubes we find charge
inversion on the inner tubes due to Friedel-type oscillations which could lead to a slight magnifica-
tion of charge-induced strains. Finally, we consider photo-actuation of nanotubes and predict that
transitions between van-Hove singularities can be expected to expand the tubes.

PACS numbers: 61.48.De,68.35.Gy,71.20.Tx,73.30.+y

I. INTRODUCTION

When a new material is discovered, its first applica-
tions are usually of a passive nature: carbon nanotubes
(CNTs)!2 have, for example, been used to reinforce
polymers?, metals* and ceramics®. Meanwhile technolog-
ical advances try to push CNTs forward as an active ma-
terial, e.g. for electronic devices®. Another type of active
application is their use as actuators. The stimulus lead-
ing to a size change of the overall actuator, which is be-
lieved to be mediated by carbon nanotubes, can be quite
different: electrostatic”®, chemical?, electrochemical'® as
well as optical'! actuation have been reported.

Electrostatic actuators are CNT beams or hinges which
can be deflected or rotated by an electric field. In the
other cases the microscopic mechanisms are still under
discussion. However, a change in lattice constant of the
individual CNT was originally proposed!'® and later con-
firmed experimentally'?. While initially electrochemi-
cal actuation was demonstrated by dipping a nanotube
felt — also called “bucky-paper”!® — into a liquid elec-
trolyte, state-of-the-art devices usually consist of three
components: carbon nanotubes are embedded in a poly-
mer matrix which is impregnated with the electrolyte'®.
These devices are dry and can be operated at low voltages
— making them competitive to piezo-electric elements
operated at voltages of above 100 V. Photo-actuation
was demonstrated for free-standing CNTs'* as well as
composites where large strains were observed upon in-
frared irradiation'"1>20, While the latter was linked to
an alignment of individual tubes within the composite
material, no explanation of the underlying mechanisms
that trigger this alignment has been given so far.

Besides charge-induced changes of the lattice constant
of individual tubes, the mutual interaction of tubes due
to the presence of an electrolyte might also be impor-
tant. Electrostatic double-layers mutually repel each
other. This could lead to a swelling of the bucky-paper
and can be described to a first approximation within
the theory of Derjaguin, Landau, Verwey, and Overbeek
(DLVO)?2!. Chemical reactions such as the dissociation
of the electrolyte at the CNTSs’ tips, where large elec-
tric fields are expected, might lead to the production
of a gaseous species which also increases the volume.
While it was shown that the individual tube changes its
properties'?, it is not yet clear whether this is the change
that translates into a macroscopic size change of the ac-
tuator.

For photo-induced actuation other mechanisms are
also conceivable. The actuation could be mediated by
conversion of infrared radiation into heat. However, ther-
mal effects have been found to be an order of magnitude
smaller than the observed photo-actuation!!. Here, we
show that there is an intrinsic quantum-mechanical con-
tribution to a size change upon irradiation (Sec. IX).

This article focuses on quantum-mechanical mecha-
nisms leading to a change in lattice constant for individ-
ual CNTs in the case of electrochemical and optical ac-
tuation. Previous studies of these quantum-mechanisms
have focused on electrochemical actuators?? 24 and, un-
fortunately, give contradicting results for apparently
identical systems, a discrepancy which we resolve in Sec-
tion VII. Our discussion starts by investigating the band
structure of CNTs and identifying the contributions of
different orbitals to the stress which the CNTs can ex-
ert when their size is confined (Sec. IV). This is suf-



ficient to describe the actuation using optical stimulus
where the system stays charge neutral (Secs. V, VI and
IX); however, it is not sufficient for electrochemical ac-
tuation. Here, Coulombic interactions on single tubes
and local charge compensation due to the presence of
the electrolyte needs to be considered as well (Sec. VII).
Within this context, multi-wall tubes are also discussed
(Sec. VIII).

The effect of strain and torsion on the electronic struc-
ture of CNT's has been discussed previously by several au-
thors. White and Mintmire®>25 used a simple m-orbital
nearest-neighbor tight-binding model to derive an analyt-
ical expression for the density of states of CNTs around
the Fermi level. This has been extended to the case of
distorted CNTs by Yang and Han?" by considering the
change in nearest-neighbor hopping due to radial and
axial strain. Accompanying their computational work,
Verissimo-Alves and co-workers??® derived an analytical
model within the same picture but considered isotropic
strain only. Gartstein and co-workers?®29 developed a
theory which also includes next-nearest-neighbor hop-
ping integrals and all possible deformation modes which
do not break the symmetry introduced by the underlying
graphene lattice. In a similar approximation, Hartman
and co-workers'? computed the shift in phonon frequency
due to electromechanical coupling which was experimen-
tally compared to the shift of the Raman G-peak. The
response of short isolated nanotubes was further investi-
gated quantum-mechanically®® and classically by assum-
ing only electrostatic interaction and the CNT’s elastic
response®!:32. Here, we approach the problem by starting
with the electronic density of states in the independent
electron approximation. We assess the validity of the
above theories by comparing different levels of electronic
structure theory.

A variety of literature for actuation of charged met-
als in contact with an electrolyte®® already exists. We
make reference to thermodynamic*3® and electronic
structure36-37 theories where appropriate.

II. STRESS IN TIGHT-BINDING MODELS

As a motivation and an instructional example, we con-
sider the stress in a nanotube within a non-orthogonal
tight-binding model. Given Hamiltonian matrix elements
Hrpug, and overlap matrix elements Sy,j, the general-

ized eigenvalue problem (H — eS)C = 0 yields a set of
eigenenergies ¢, and corresponding eigenvectors C}’H38.

The total energy is given by

E=ERS+Fep=Y_ Y CriHpsCh + Erep, (1)
n IpJv

where capital indices run over atoms while Greek indices
run over orbitals for each atom. Usually the band struc-
ture component of the stress tensor ¢ is computed from

the virial expression
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where 77 is the distance vector between atoms I and J.
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Rewriting expression (2) in the form VpoBS = Y Vyéa™

n

shows that the band structure component of o can be
decomposed into orbital stresses o™ which are occupied
according to the charge state yielding the stress as a
function of charge. Not surprisingly, such decomposition
can be very useful for the analysis of microscopic actu-
ation mechanisms. Of course, the decomposition seems
to be limited to the special case of tight-binding mod-
els. Therefore, we seek in this article for a more model-
independent definition of do. In the following we will first
show why the definition of stress is important for actua-
tion and then generalize this definition for arbitrary de-
formation modes and arbitrary electronic structures the-
ories.

III. CHARGE-INDUCED DEFORMATIONS
WITHIN THE LINEAR ELASTIC
APPROXIMATION

Generally, the total electronic ground-state energy of
a periodic system, as obtained for example from density
functional theory (DFT), can be written as a function
of the nuclei’s relative coordinates Z; and the vectors d;
of the unit cell. The charge state of such a system is
characterized by the chemical potential u giving a to-
tal energy function F({Z;},{d;}, p). If unperturbed, the

system tries to find the minimum energy positions @(0)

and unit cell 5§0). These positions are now perturbed by
applying a set of small strains 7; to the system. In the

most general formulation, these strains transform the co-
ordinates and the unit cell as #; = (1 + M, ("y’))f(o) and

3
a=1+M, ("y’))&'go), respectively. Our goal is to extract
the new minimum energy strains of the charged system
at a chemical potential p from the uncharged case at a
chemical potential p.

The Taylor expansion of the total energy around the

neutral state zero strain 7 = 0 yields

E,u) = EO,pn) +
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where summation over repeated indices is assumed. In
the uncharged case where pu = g one finds %E |lv=0 =0

and %;WE |3=0 being positive definite because the sys-

tem is in equilibrium. If the system’s properties are now
changed by raising or lowering the chemical potential u,



the perturbed system finds a new equilibrium approxi-
mately at a strain
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Equation (4) can be regarded as a single step of a
Newton-Raphson iteration starting from the charge neu-
tral minimum energy configuration. In the same spirit
as generalized forces we define a generalized stress o; for
each deformation mode ~; as

V(TZ‘ = —F 5 5 5
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where 1} is the volume in the unstrained case. Rewriting
Eq. (4) yields

7o) = C(u)~" - & (n) (6)

where C is a tensor of generalized elastic constants.
Hence, by the knowledge of the first and second deriva-
tives of F with respect to the strains in the system,
the maximum strain (Eq. 4) and the blocking stress
(Eq. 5) can be computed. Since the expansion of E(¥)
is quadratic, the stress-strain relation for an arbitrary
load of the actuator is linear. Note, that the usual
stress in cartesian coordinates is included in the defini-
tion of the generalized stresses®®. Using M, = 1 and
M (v) = v2®4 the x-y-component of the cartesian stress
tensor is retrieved, while choosing M ,(y) = 1 the gen-
eralized stress becomes the negative of the hydrostatic
pressure.

In a CNT there are 3 macroscopic (axial, radial and
torsional strain - see Fig. 1) and 2 microscopic (positions
of the carbon atoms within the unit cell) deformation
modes which do not break the symmetry of the underly-
ing graphene lattice?®. Here we consider only axial and
radial strain and neglect the other degrees of freedom.
Torsional strain is difficult to deal with in ab-initio cal-
culations because the conventional unit cell length varies
by orders of magnitude depending on torsion. Using an-
alytical calculations within a m-orbital picture, Gartstein
and co-workers?® have found torsional deformations to be
at least one order of magnitude smaller than radial and
axial strain. In order to justify the neglect of the 2 micro-
scopic deformation modes (which are known to be of im-
portance for the correct elastic constants of graphene?)
we perform additional simulations in which all atomic
positions are relaxed.

With a tube aligned along the z-axis the transforma-
tion matrices for the axial and radial modes become

7 0 0
M, (y,v)=1 and M, (y,7)={0 v 0],
0 0 v

with axial strain | and radial strain ;. These quanti-
ties are related to the isotropic expansion 2y = v + L
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FIG. 1: (Color online) Deformation modes in a nanotube. (a)
Axial deformation (denoted by <), (b) radial deformation
(v1) and (c) torsional deformation (7).

and anisotropic distortion 23 = 7 — L. The corre-
sponding generalized stresses will be denoted by oy, o,
oo and o7, respectively.

We would like to point out that there are more possi-
ble deformation modes in CNTs if symmetry breaking of
the lattice is considered. While the methods described in
this article should be applicable for a complete analysis
of those, too, we expect that the long-wavelength defor-
mations considered here are the dominant ones. Addi-
tionally, the anisotropic ; and torsional 7 deformation
modes are volume conserving in linear order. The overall
deformation of the macroscopic actuator — the actuation
— is thus expected to be dominated by the isotropic g
deformation mode.

IV. ORBITAL CONTRIBUTION TO THE
ACTUATION

The total energy E of a system is usually decomposed
41
as

E = EBS + ECoul + Ecorrj (8)

where the electronic (band structure) part can be written
using the single-electron density of states g(e)

EBS = /de eg(e). 9)

Furthermore, E®°" is the Coulomb interaction energy
and E°°" a correction term leading to the correct total
energy which depends on the respective level of theory.



In DFT, it contains the exchange and correlation energies
while in tight-binding models these are approximated as
a pair-wise repulsive potential. In the following discus-
sion we ignore the Coulomb interaction; we reintroduce it
later. We assume E°°™ to be independent of the chemical
potential p, an approximation already implicit in tight-
binding models.

Taking the derivative of the band structure energy (Eq.
9) with respect to v; yields

n
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where the first term is the derivative of the integral and
captures the change in chemical potential due to strain,
and the second term captures the change in band struc-
ture due to strain. Assuming furthermore that the total
number of electrons in the system,

Ne = /d€g(€)7 (11)

is constant, one finds

o
0 0
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Substituting Eq. (12) into Eq. (10) leads to

N
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whereas the second derivative of the energy EBS with
respect to y; and y; is given by
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We would like to stress that these equations have been ar-
rived at by assuming that the total number of electrons
in the system is constant, i.e. it does not depend on
strain. This is true for closed systems and has been im-
plicitly assumed in previous studies of carbon nanotube
actuation?? 242829 For optical stimulus this is a good
assumption. In the case of electrochemical actuators, the
system is always connected to an electron reservoir and
thus the number of electrons is allowed to change. The
constant electron number is merely an approximation,
and valid only if the whole system has a capacity much
smaller than the interfacial capacity of the nanotube, a

requirement that can be fulfilled by operating the actua-
tor with a galvanostat.

Let us now decompose the density of states into con-
tributions from different bands. We can write g(e) =
Zgartly filled gk(e)—l—Z?ued g1(€) where the sum over [ runs
over bands which are completely filled. The contribution
from the last sum becomes
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where N; = [de g;(e) is the total number of electrons
in the respective band and thus constant with respect to

~i- The energy El(o) = [ de egi(e) is the total energy
of band [. Not surprising, this means completely filled
bands only contribute elastically to the overall actuation,
i.e. they provide a restoring force that is independent of
charging.

Electron or holes injected into bands change the band
structure contribution to the stress oP° = VLO a?/i EBS
We define the differential band structure stress do; as
the change of stress 0P with respect to the number of

electrons Ng in the system, i.e.

0 ms 1 0
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Inserting Eq. (13) yields
n 5
Vodors () = — / de 5-9(0) (17)

and furthermore invoking the constant electron number
constraint Eq. (12) we find

Vodai(p) (18)

3%‘”’
— a central equation of this article. Equation (18) gives
the stress due to an individual electron injected into an
orbital at the Fermi energy p. In this sense the differ-
ential band structure stress corresponds to the orbital
resolved stress at the Fermi level of a finite system. Note
that the total band structure stress is recovered by inte-
grating over all energy levels, i.e.

12

a5 () = [ de g(0150:(0 (19)
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which is structurally identical to the band structure en-
ergy Eq. (9). Note that the total stress is given by
o = oB% 4+ 5Ol 4 5T which sums to zero if the system
is in equilibrium.

All equations above assume rigid bands with respect to
charging, i.e. the density of states does not change when



the system is charged at constant strain. With respect to
strain, the change in band structure is captured within
linear response. In the following we will generally refer
to this approximation as the rigid band approximation
which we expect to work if the overall charge on the sys-
tem is small. Implicitly, this also assumes that the CNT's
charge homogeneously. Since the transition temperature
for the formation of Peierls instabilities is two orders of
magnitude below room temperature*?, we expect similar
transition temperatures for other instabilities and hence
the rigid band approximation to be valid at room temper-
ature for systems with a chemical potential close to the
Fermi level. We additionally confirm the validity of this
approach in Sec. VII where Coulomb interaction is explic-
itly included in a full NOTB model, and both, the rigid
band approximation and the full NOTB model, agree in
their results.

Note that Eq. (5) of the work of Umeno and co-worker
(Ref. 36) is similar to our approach. It has been derived
without reference to the electronic structure from ther-
modynamic considerations and is therefore a linear re-
sponse approach. For charged bulk surfaces, such as for
gold in Ref. 36, going beyond linear response is difficult
because the electric field penetrates the surface and a
rigid band approximation cannot be made.

It is now up to a certain mlcroscoplc model to estab-

lish the values of g(e), a%g( €) and av 7; g(€). Here, we

compare the results of a m-orbital*® zone-folding®?*445
model, non-orthogonal tight-binding®®4647 (NOTB) —
with charge self-consistency® if appropriate — and DFT
calculations with an extended local basis set*?. While in
the zone-folding model the derivatives of the density of
states can be computed analytically, in NOTB and DFT
we use a second-order finite differences approach with a
step size of Ay = 0.1%. In these cases, the first and
second derivative of E°°™ is explicitly considered for the
computation of the equilibrium strains v°4. It does how-
ever not change with the value of the chemical potential

L.

A. Strains in a m-orbital zone-folding model

Considering next-nearest-neighbor hopping one finds
that the band structure of a deformed CNT in the vicinity
of the special “Dirac” points can be approximated by27 29

ky=7+ Y |&u(k)l. (20)

m=—0o0o

where &, (k) is due to nearest-neighbor hopping and we
assume the next-nearest-neighbor hopping contribution
7 to have no dispersion and hence only shift the Fermi
level. Here m runs over bands and the contribution of
nearest-neighbor hopping is given by

[Em ()| = /AT, + vk, (21)

The corresponding density of states per carbon atom can
be written analytically?27

|Am|)7

|
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with | = «C/v3ao. The quantity Cay =
VN2 + M2 + NMay is the circumference® of a (N, M)
tube, ag the graphene lattice constant and ©(x) the step
function. The gap-parameter

O(le — 7] =

Ay =v) | Ky — A(v18in36 — ncos 36)| /ag, (23)

where 6 is the chiral angle as defined with respect to
armchair tubes, i.e. sinf = QCN and the effective Fermi
velocities

v = aoTto {v3-ay} (24)

o =20 {5}, (25)

which give the slope of the Dirac cone in the graphene
Brillouin zone, contain the influence of distortion. Fur-
thermore, we use the abbreviations

A: oza(), Km:—
to

27(p + 3m) . (26)
3C

Here o measures the strength of the modulation of the
nearest-neighbor hopping matrix element t = ¢y — ad,
where % is the equilibrium hopping matrix element and
0 is the respective change in bond-length. The quan-
tity K, is the quantization condition for k-lines in the
graphene Brillouin zone that give the m-th band of the
CNT’s electronic structure, where p is the integer remain-
der of the division of N — M by 3

The shift in Fermi level due to next-nearest-neighbor
hopping is given by 7 = —3(ug — 870) where ug is the
next-nearest-neighbor hopping matrix element and 3 its
modulation with distance, i.e. u = ug — 3. A detailed
derivation of theses equations can be found in Appendix
A.

The derivatives of the chemical potential p with re-
spect to strain can be computed explicitly. Inserting Eq.
(22) into Eq. (17) one finds for the isotropic differential
band structure stress

2N 384y, (27)

V3 to

which is independent of chirality. In Eq. (27) the Fermi
level has been shifted to zero. This universality is due to
the uniform scaling of bond lengths when the tubes are
isotropically expanded and thus expected to hold true in
more elaborate electronic structure models.

This model is referred to as m-2NH where we specifi-

cally use?® ag = 2.461 A, tg =2.5eV, a =5¢V A" and
B=05eVA"

Vodoo(p) =



There is no intrinsic elastic contribution in the 7-2NH
model. In Refs. 28 and 29, these have been included
using an established analytical elastic model for carbon
nanotubes®®. Here, we only display the contribution to
stress.

B. Strains in non-orthogonal tight-binding models

At a next level of approximation we choose to use
NOTB3%46 where the total energy expression has already
been given in Eq. (1). Charge can be considered by
adding a Coulomb interaction term

1
E%%ul — §ZG”(”J)Aq1AqJ (28)
1J

and solving the resulting equations self-consistently3®48.

The Mulliken charge Agq; is the charge in excess of
the neutral atom I for which we assume a Gaussian
shape®!. This shape determines the short-range behav-
ior of Gyy(rry) while its long-range tail decays as r~!.
The diagonal elements Grr in the sum in Eq. (28) in-
clude a self-interaction term — the chemical hardness or
Hubbard-U.

Due to the discrete nature of the spectrum the chem-
ical potential is given by pu = €, where €, is the energy
eigenvalue of the highest occupied orbital. Thus the dif-
ferential band structure stress Eq. (18) becomes

0]
Vobdo;, = —e€yp, 29
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where the energy eigenvalues can be explicitly expressed
as

en= Y CirHpunCy,. (30)
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With the help of the orthogonality condition 1 =
ZIHJV C}’HS[MJVC?V this simplifies to

OHp, 50 OStpav | s m
Voaaizg;u{ e CpeCy,.  (33)

Choosing M, (y) = v& ® § yields the -y components of
the stress tensor, i.e.

y aHI/,LJV aSI/,LJV
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where we mneglect three-center integrals such that
Hiugu(rrs) and Srugu(rrs) depend only on the relative
position of atom I and atom J. Under these assumptions
our theory thus yields Eq. (34) which is identical to the
naive definition of orbital resolved stress Eq. (2). From
this derivation it also becomes clear, that if three-center
integrals are included the orbital resolved stress cannot
be defined as in Egs. (2) and (34) anymore.

C. Density functional theory calculations

Finally, we investigate our systems  with
DFT®2.  We use norm-conserving Troullier-Martins
pseudopotentials®® and a localized double-¢ basis includ-
ing polarization orbitals, as implemented in the SITESTA
code®. In all calculations involving only carbon atoms
the local density approximation®® as parametrized by
Perdew and Zunger® is employed. When oxygen is
present we use the generalized gradient approximation
as parameterized by Perdew, Burke and Ernzerhof®®.

In NOTB and DFT calculations 20 equally spaced k-
points sample the full 1D-Brillouin zone and a Fermi
broadening of 0.1 eV is used when relaxing the struc-
tures. For tubes with a large unit cell, i.e. in the case of
defects or functionalization, we perform I'-point calcula-
tions for relaxing the initial structures. Final densities of
states are broadened by kp - 300 K ~ 26 meV.

V. ACTUATION IN METALLIC AND
SEMICONDUCTING TUBES

We start our study of single tube actuation by looking
at the details of a metallic (10, 10) and a semiconducting
(17,0) tube, both of the same diameter. The density of
states, shown in Fig. 2a, for the three microscopic mod-
els agrees around the Fermi level. Moving away from the
Fermi level (i.e. away from the K-point in the graphene
Brillouin zone) the predictions of the m-2NH model be-
come worse as expected due to the underlying linearized
graphene band structure. NOTB and DFT give almost
identical density of states for the valence states, while
the conduction states show different behavior. Unoccu-
pied states are not considered in the tight-binding fitting
procedure which leads to inferior accuracy of the conduc-
tion states as compared to DFT calculations?®6.

Turning to the differential band structure stress for the
isotropic deformation mode dog (Fig. 2b), one finds a be-
havior which almost perfectly matches the universal rela-
tionship Eq. (27). In NOTB, this relationship is followed
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FIG. 2: (Color online) Actuator response of a metallic (10,10) (upper panel) and a semiconducting (17,0) (lower panel)
nanotube. Thick solid lines show DFT results, thin solid lines results from NOTB calculations and broken lines results from
a simple nearest-neighbor Hamiltonian, all within the linear stress-strain approximation, Eq. (3). Squares denote results from
NOTB calculations with full relaxation, i.e. computations beyond the linear stress-strain approximation. From left to right
the figures show (a) the density of states, (b) the isotropic differential band structure stress doo, (c) the equilibrium isotropic
strain 754, (d) the anisotropic differential band structure stress éo1 and (e) the equilibrium anisotropic strain 7;® as a function
of energy. The Fermi level is located at zero energy. Negative (positive) values of the differential band structure stress are
termed anti-bonding (bonding) since they will expand (contract) the tube if populated.

over a window of approximately 2 eV while the DFT re-
sults show an earlier breakdown. However, around the
Fermi level a perfect linear relationship is obtained in
both cases. This holds also true for the semiconducting
tubes just outside the band gap. The energy of transition
between orbitals which contribute compressive stress and
orbitals which contribute tensile stress can be attributed
to next-nearest-neighbor hopping: it lifts the symmetry
between the valence and conduction bands. If 3 =0 in
the m-2NH model — giving a nearest-neighbor model —
the curve becomes symmetric around the origin as the
transition energy moves to the Fermi level.

The isotropic equilibrium strain v5? (Fig. 2c) shows
distinct kinks at the van-Hove singularities (VHS). Since
dog is smooth these kinks are not related to the isotropic
differential band structure stress. They are directly
caused by the density of states contained in Eq. (19).
An additional contribution from the anisotropic differen-

tial band structure stress via Eq. (6) is negligible as can
be confirmed by relaxing only .

The open symbols in Figs. 2c¢ and 2e denote NOTB
calculations where all atomic coordinates have been re-
laxed for each charge state using the FIRE optimisation
scheme®’. These agree with calculations using approxi-
mation (3). This shows that the strain is small enough
for a linear stress-strain relation to hold and relaxation
of internal degrees of freedom is negligible.

The isotropic differential band structure stress dog pro-
poses a new definition of bonding and anti-bonding or-
bitals. Population of orbitals where dog < 0 leads a vol-
ume expansion of the whole system while population of
orbitals where dog > 0 contracts the system. This be-
havior corresponds to what is typically expected of anti-
bonding and bonding orbitals where usually changes in
bond-lengths are monitored to determine the bonding
character of a orbital. In terms of bonding and anti-
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FIG. 3: (Color online) Actuator response of a metallic (10, 10)
(upper panel) and a semiconducting (17,0) (lower panel) nan-
otube as shown in Fig. 2. Here, all quantities are dis-
played for the axial (||) and radial (L) instead of isotropic
and anisotropic distortion modes.

bonding states the behavior of the isotropic equilibrium
deformation ~;? is straightforwardly explained. Starting
from the charge-neutral case and lowering the chemical
potential leads first to a de-population of anti-bonding
states (the differential band structure stress in Fig. 2b is
negative for these energies) — and thus a shrinking of the
tube. For even lower chemical potentials the states be-
come bonding and a de-population of those leads to tube
expansion. When increasing the chemical potential from
© = 0 anti-bonding states are populated and this also
leads to an expansion of the tube. Note that this dis-
cussion also holds for semiconducting tubes. Here, the
valence band edge is always anti-bonding since a band-
gap of around 3 eV would be needed to move the valence
band edge to a bonding orbital.

The behavior with respect to anisotropic distortion is
irregular. The differential stress do; depends on the chi-
rality of the tube and no universal relationship, like Eq.
(27), exists. While isotropic distortion varies the Fermi
velocities v and v homogeneously, anisotropic distor-
tion deforms the shape of the Dirac cone in the graphene

Brillouin zone. Furthermore, it displaces the minimum
of the cone from the K-point if the tube is not armchair.
Namely, upon isotropic expansion all matrix elements are
scaled uniformly, while in anisotropic distortion the mod-
ulation depends on chirality. This is shown in Fig. 2d
where besides having a different functional form the over-
all magnitude of the differential band structure stress do
differs considerably between the armchair (10,10) and
zig-zag (17,0) tube. This is also reflected in the equilib-
rium strain 7;? as shown in Fig. 2e.

The 9 and ~; modes allow a decomposition of the
tubes’ deformations into principal modes with qualita-
tively distinct behavior. Natural for the description of
actuation is the linear combination of these modes which
leads to axial (elongation) v and radial (thickening) v
deformations of the tubes as shown in Fig. 3. The
universal behavior of dog is however obscured since the
anisotropic mode influences both, axial and radial modes.
However, the behavior of 4 and 7, in the conduction
bands is dominated by the isotropic v, mode. The va-
lence bands are irregular and thus primarily dominated
by the 1 mode. In the case of the (10, 10) tube depopula-
tion of valence states always leads to a radial contraction
of the tube since this mode contains a linear combination
of the 71 mode and the inverse of the 1 mode, leading
to an almost monotonic behavior.

The force exerted by the tube can be computed
straightforwardly. For the (10,10) tube we find ap-
proximately —2 nN and 5 nN axially at a charge of
—0.05 e/atom and 0.05 e/atom, respectively. The macro-
scopic stress is sensitive to the packing of the tubes. As-
suming a hexagonal array of tubes and a tube-tube dis-
tance of 2 nm, one arrives at macroscopic axial stresses
of between —0.2 GPa and 0.5 GPa for charges between
—0.05 e/atom and 0.05 e/atom.

An overview of the size-dependence of the actuation
behavior for armchair CNTs from (4,4) to (10,10) and
zig-zag CNTs from (5,0) to (18,0) as probed using DFT
is shown in Fig. 4 where the charge dependence of the
4 modes o, 71, v and v (individual columns) is dis-
played. As for the (10, 10) and (17,0) tube the p-mode
is uniform for all tube sizes. The number of kinks in the
actuator response — especially in 77% — increases with
increasing tube diameter because the VHS move closer
to each other. In other words, in the zone-folding pic-
ture the spacing between the quantization lines in the
graphene Brillouin zone becomes smaller. For low charg-
ing all armchair tubes show qualitatively similar actu-
ation because their density of states around the Fermi
level is identical. The zig-zag tubes can be grouped ac-
cording to the respective value of p, the integer remain-
der of the division of N — M by 3 (individual rows in
Fig. 4). For metallic tubes where p = 0, the actuation
around the Fermi level is identical for all tubes except for
the small diameter (6,0) tube, for which rehybridization
takes place.

From experiments, interfacial capacities of up to
10 uF cm~2 have been reported for single-wall CNTs!¢
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FIG. 4: (Color online) Isotropic (left panel), anisotropic (middle left panel), axial (middle right panel) and radial (right panel)
strain of different carbon nanotubes upon charging where positive v°? means expansion, from DFT calculations in the rigid
band approximation. The tubes are grouped into armchair (N, N) and zig-zag (N, 0) tubes for different values of p where p
is the remainder of the division of N by 3. The isotropic behavior is similar for all tubes and approaches the same limit with

increasing tube diameter.

and graphite®®. Taking the surface area of a carbon atom
occupied in an ideal graphene sheet one arrives at a ca-
pacity of roughly 0.03eV~!/atom. Hence, the range of
charges displayed in Fig. 4 (—0.1e/atom to 0.1e/atom)
corresponds to the maximum charging we expect in ex-
periments when the system is driven at 3—4 V.

VI. INFLUENCE OF FUNCTIONALIZATION
ON TUBE ACTUATION

Carbon nanotubes as synthesized and purified by ox-
idation usually have 5% of carbon atoms located at a

defect site®®. It is generally assumed that functional
groups attach to these defects upon treatment in an oxy-
gen plasma or acid (improving the tubes’ solubility)%°.
Here we exemplarily analyse the influence of the com-
mon carboxyl group attached to a triple vacancy. We use
five unit cells per functionalization for the semiconduct-
ing (11,0) and the metallic (12,0) tube giving a defect
density similar to those found in experiments.

The relaxed configuration and Mulliken charges on
the functional group are show in Fig. 5. Between the
(11,0) and (12,0) tube Mulliken charges differ by less
than 0.005e. In the following we discuss the (11,0) tube.
The density of states (Fig. 6a) shows that the vacancy



FIG. 5: (Color online) Relaxed atomic configuration of the
carboxyl group and the triple vacancy. The numbers are Mul-
liken charges in units of —e.

introduces a gap state and decreases the band gap. The
origin of the gap state is the vacancy’s dangling bond.
Attachment of a carboxyl group increases the band gap
and the density of the gap state. The contribution of the
gap states to isotropic differential band structure stress
doo does not deviate from the universal behavior (Fig.
6b). It is however shifted to lower energies for both the
triple vacancy and the functional group. This shift gives
rise to a stronger actuator response as compared to the
bare CNT (Fig. 6¢). Due to this shift the orbitals have a
stronger anti-bonding character which leads to stronger
expansion upon population and stronger shrinking upon
de-population. For anisotropic distortion, the gap-state
for neither defect nor functional group has an influence
on the actuation since its contribution to doq vanishes
(Fig. 6d). The overall behavior is irregular and the in-
troduction of additional states due to the vacancy and
the functional groups leave the overall variation in the
differential band structure stress (Fig. 6d) and strain
(Fig. 6e) mainly unchanged.

The density of states of the ideal metallic (12, 0) is con-
stant around the Fermi level. Introduction of the vacancy
and functional group gives rise to distinct fluctuation in
that region as shown in the lower panel of Fig. 6a. Fur-
thermore a triple vacancy decreases the average density
of states for the conduction bands. The differential band
structure stress for isotropic deformation dog follows the
universal behavior and is independent of functionaliza-
tion (Fig. 6b). No shift as in the case of the semicon-
ducting tube is observed. The corresponding equilibrium
strains 7, (Fig. 6¢) are similar for the bare and the func-
tionalized tube. A slightly weakened response is observed
in the conduction band for a triple vacancy which can be
attributed to the lower density of states. The stress dv;
(Fig. 6d) for anisotropic distortion is similarly irregular
to the semiconducting (11, 0) case. The overall strain re-
sponse v, (Fig. 6e) is therefore similar to the ideal tube
case.

VII. COULOMBIC CONTRIBUTION TO THE
ACTUATION

Previous sections discussed the change in band struc-
ture under strain ignoring all Coulombic effects which in
reality also contribute to the overall actuation. In the
case of electrochemical actuators'? the individual carbon
nanotubes are charged. This charge is compensated by
ions drifting to the surface of the CNTs forming the di-
electric double-layer?!. Due to temperature fluctuations,
the positions of the compensating charges are not fixed;
however, on average the charges are well localized as de-
scribed by Poisson-Boltzmann theory?!, for example.

We present two different approaches to model the ac-
tuator including Coulomb interaction — both based on
NOTB. First, we include a model of the dielectric double-
layer (which we model as a uniformly charged cylindrical
shell) into a full NOTB model where the Coulomb in-
teraction is computed between all atoms as given in Eq.
(28). Second, we use the rigid-band approximation and
approximate the Coulomb interaction by the energy ex-
pression for a cylindrical capacitor. The second approach
has the advantage that solvent effects on the dielectric
constant can be incorporated in a mean-field sense. Also,
the underlying band structure can be obtained from full
DFT calculations in the latter case.

In full NOTB, we model the dielectric double-layer in a
mean-field spirit as a uniformly charged cylindrical shell.
Because of Gauss’ law®! its radial character is not im-
portant unless the charges on the carbon atoms overlap
with the double-layer. Hence, the double-layer’s charge
distribution is given by (see inset in Fig. 7b for an illus-
tration)

p(z,y,z) = (Vw2 +y?—ro) — (35)

271l lelyl,
which can be regarded as a cylindrical 2D-jellium. Here,
ro is the cylinder radius and @ the total charge in the
unit cell with dimensions I, [, and [,. The latter term
compensates the cylinder’s charge and is cancelled by
the 3D-jellium background implicit in the Ewald sum®?
which we use in our calculations. The solution of Pois-
son’s equation with the appropriate periodic boundary
conditions (see Appendix B) is given by

o —-T2 3 MEwlaer

G, Gy#0;G.=0

where Jj is the Bessel function of the first kind and zeroth
order. During relaxation, the cylinder radius is always
kept at a constant distance d from the outer CNT wall.
This effective solution model is implemented straightfor-
wardly in NOTB. In plane-wave or real-space DFT cal-
culations the electron affinity of the cylinder depends on
its width. The delta-function approach used here would
hence lead to electrons “spilling” from the system which
accumulate on the cylinder when it is positively charged.
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FIG. 6: (Color online) Actuator response of functionalized semiconducting (11,0) (upper panel) and metallic (12,0) (lower
panel) CNTs computed within DFT and the rigid band approximation. Thick solid lines show results for unfunctionalized
tubes, while broken lines and light solid lines are results for tubes with a triple vacancy and an attached carboxyl group,
respectively. From left to right the figures show (a) the density of states, (b) the isotropic differential band structure stress
doo, (c) the anisotropic differential band structure stress do1, (d) the equilibrium isotropic strain 75 and (e) the equilibrium

anisotropic strain 77 as a function of energy.
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FIG. 7: (Color online) Influence of the unit cell size on the
actuator strength shown for a (10, 10) carbon nanotube from
NOTB calculations. (a) Charge compensation using a 3D-
Jellium model. (b) Charge compensation using a homoge-
neously charged cylindrical 2D-jellium. In direction perpen-
dicular to the tube axis, the unit cell was chosen to be square
with the side length given in the graph. In panel (b) all unit
cell sizes fall exactly on top of each other. Lines connect cal-
culated points.

Our approach is fundamentally different to earlier work
on carbon nanotube actuation?? 24, where charge com-
pensation was achieved using a 3D-jellium which smears
the compensating charge over the whole unit cell. Such a
jellium is obtained by cancelling the zero-wavelength con-
tribution in Ewald summation®2. It leads to the follow-
ing physical problems. First, the charges on individual
tubes in the periodic assembly are not screened — this
allows the tubes to interact electrostatically. Second, the
self-energy of the 3D-jellium contributes to volume ex-
pansion. The total actuation therefore depends on the
density of the 3D-jellium which in return depends on the
choice of unit cell size perpendicular to the tube. Fig-
ure 7 demonstrates this effect for NOTB calculations and
shows that for the compensating cylindrical jellium shell
no such dependence is observed because the Coulombic
interaction between different tubes is screened and the
3D-jellium density is constant. This also explains the
apparently contradicting results of Refs. 22, 23 and 24:
the size of the unit cell was simply chosen differently.



While Sun and co-workers?* make a strong argument that
their 3D-Jellium calculations are applicable to carbon-
nanotube intercalation compounds, the validity in the
case of a double-layer is questionable.

In the rigid band model, approximation (4), Coulom-
bic effects can be included using a cylindrical capaci-
tor whose capacitance and total electrostatic energy are
given by

1 l, 2
C =2 (L+ ,YH)d and ECU = ;2—0 (37)
n (1+ m5m)

Here @ is the total charge in a cell of length [,, R the
CNT’s radius, d the double-layer distance, and ¢ the con-
stant of permittivity of the respective medium. Note that
in the NOTB model the relative permittivity is set to
unity since other choices would involve spurious inter-
face charges. In the rigid band model the relative per-
mittivity €, of the medium can be included. The total
energy has also a Coulombic self-energy contribution; in
NOTB this is modeled by a single chemical hardness per
atom3®48. While this self-energy contributes to the total
capacitance of such a device, it only weakly depends on
strain and is thus negligible.

Figure 8 shows the actuator response of a (10,10) CNT
including Coulombic contributions where we compare re-
sults of a full NOTB calculation using the cylinder model,
Eq. (35), with an approximate computation using only
rigid bands and the capacitor model Eq. (37). We use
a distance d of 4 A between CNT and double-layer in
both cases. Both models show good agreement. Small
differences can be attributed to the distance-dependence
of the self-energy and the breakdown of a linear stress-
strain relation. As a reference we also display the results
without Coloumb interaction for which the dielectric con-
stant becomes effectively e, — oco. For solvents it is usu-
ally assumed that the dielectric constant in the vicinity of
solvated ions saturates below its bulk value. The specific
value is around e, = 5 for water or methanol®. Using
this dielectric constant, quantum-mechanical and elec-
trostatic actuation are similar in magnitude, while in the
e, = 1 case electrostatics dominates the overall response
(see Fig. 8). For electron injection (¢ > 0) the quantum
response is very pronounced and thus becomes the ma-
jor driving force at &, = 5 for the isotropic 79 mode. In
contract, for hole injection (¢ < 0) the quantum response
is almost negligible and thus electrostatics dominates the
actuator behavior. Going to charges well above the dis-
played 0.1 e/atom electrostatics becomes the dominant
source of actuation for both, electrons and holes. The
anisotropic v; mode only weakly depends on the electro-
static interaction. In the e, = 5 case the curve almost
ideally follows the non-interacting behavior at €, — oo.
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FIG. 8: (Color online) Actuator response of a (10, 10) car-
bon nanotube including Coulombic contributions. The figure
shows the response of (a) isotropic v5? (b) and anisotropic v;*
modes using full NOTB calculations with cylindrical charge
compensation (symbols) and NOTB calculations within the
rigid band approximation and a simple capacitor model (37)
for the Coulomb energy (lines). The response for an effective
dielectric constant of &, = 5 as expected for water is shown
within the NOTB rigid band model only. The CNT double-
layer distance d is 4 A.

VIII. ACTUATION AND CHARGE TRANSFER

FOR MULTI-WALL TUBES

The picture employed above changes for multi-wall
tubes since the rigid band approximation breaks down.
Depending on the outer tube’s ability to screen an electric
field charges accumulate within multi-wall tubes. This
can be probed with the NOTB double-layer model.

Figure 9a shows the charge per wall atom on the dif-
ferent walls of a (15,15) — (10,10) double-wall and a
(15,15) — (10,10) — (5,5) triple-wall CNT as a function
of total charge per outer wall atom. Thus, we compare
responses for the same charge per surface area — i.e.
the charge per atom differs from system to system. The
inner walls of the double and triple-wall tube acquire
charges. For low charging these have the same sign and
are thus due to the evanescent field. Above 0.05 e/atom
the charge on the inner tube changes sign indicative of a
Friedel-type oscillation. In the triple-wall case the in-
ner tube is always negatively charged which indicates
an increased electron affinity for small diameter tubes.
The screening effect of the outer tube is overestimated in
NOTB since in a minimal basis set atoms cannot polarize.
The magnitude of these values has thus to be regarded
as a lower limit. The right panel of Fig. 9 compares a
double-wall tube where the inner wall is a metallic (15, 0)
with a double wall tube where the inner wall is a semi-
conducting (14, 0) tube. It is noticeable that the charge
transfer to the semiconducting inner wall is zero as long
as the chemical potential is within the band gap. At the
onset of charge transfer the charge on the inner wall has
the opposite sign of the charge on the outer wall.

The overall actuation (shown in Fig. 9b) is lower than
the corresponding single-walled tube. In our supercell
calculations the walls are rigidly coupled i.e. the inner
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FIG. 9: (Color online) Charging and actuator response of
a (15,15) — (10,10) double (57) and a (15,15) — (10,10) —
(5,5) triple-wall (O) tube. (a) Charges on the inner walls
of the CNTs as a function of charge per surface atom. (b)
Actuator response upon charging. The broken line shows the
response for a (15,15) single wall tube. The charge response
is displayed as charge per atom on the respective inner tube .

tubes has to be scaled according to the elongation of the
outer one. In reality, the tubes are more weakly coupled
via van-der-Waals interactions. The behavior is there-
fore determined by the frictional drag of the outer tube
on the inner ones. Since the force of sliding the different
walls against each other is rather small®4%% the results
of Fig. 9b represent a lower limit for the outer tube actu-
ation, because the inner tubes stick to the outer ones and
hinder their motion. With no inter-tube sticking, charge
inversion due to Friedel oscillations could even amplify
the charge on the outer tube by a small amount leading
to a slight increase in actuator response. No differences
are observed between the metallic and semiconducting
inner tubes because the charge transfer on these tubes is
negligible.

IX. ABOUT PHOTO-INDUCED ACTUATION

Exposure of carbon nanotubes to radiation leads to
the formation of excitons®6. Perturbation theory predicts
that the most dominant transition is between VHS in the
valence and conduction band because of their large den-
sity of states®” °. We discuss the density of states of the
(17,0) CNT shown in Fig. 2. Taking an electron from the
highest occupied VHS and placing it into the lowest un-
occupied VHS corresponds to an excitation energy of ap-
proximately 1.5 eV — an energy that can be provided by
near infrared radiation. The overall system stays charge

neutral. Thus the charge neutrality assumption leading
to the expressions of Sec. IV is fulfilled. Electrons from
the highest occupied VHS have a negligible contribution
to the overall stress for volume deformation and a nega-
tive contribution for anisotropic deformation. When an
electron is promoted to the unoccupied VHS these con-
tributions change. In the anisotropic case, expansion al-
ready occurs when the electron is taken from the highest
occupied VHS because a bonding state is depleted. In
the lowest unoccupied VHS the excited electron occu-
pies a bonding state, further amplifying the effect. The
tube expands anisotropically and isotropically. For other
types of tubes the discussion continues along a similar
path. While anisotropic deformations depend on tube
chirality, the volume response is universal owing to Eq.
(27). However, the actual magnitude of the deformation
also depends on the radiation intensity and the lifetime
of the excitation.

An analytic expression for the isotropic radiation-
induced band structure stress can be given within the
m-2NH model. The VHS are located at energies +A,, as
given in Eq. (23). Let n denote a valence VHS edge and
m a conduction VHS edge where n and m run from —oo
to co. The transition between the n and m edge is of
energy AFE,., = A, + A,, and accompanied by a change
in isotropic band structure stress of

V0A0'07nn,, = V050'0(Am) — Voéo'o(—An)

= ado AEnm

B V3to
where use of Eq. (27) was made. Hence, the expected
strength of the response for a single electron (per unit
cell) is linear in excitation energy and always negative,
which mean the 7y mode will always expand.

(38)

X. CONCLUSIONS

In accordance with previous studies??7242829 our

results predict a charge-induced quantum-mechanical
change in the size of carbon nanotubes. Our decomposi-
tion of the total band structure stress into energy resolved
band structure stresses yields a natural criterion for the
discrimination of bonding and anti-bonding states that
intuitively explains the observed quantum-mechanical re-
sponse. We define the character of an orbital, bonding or
anti-bonding, with respect to the 79 mode, i.e. a uniform
scaling of the system. It is the most natural mode since
it describes simultaneous elongation of all bonds. The
anisotropic 1 mode, for example, conserves the overall
volume in the limit of small distortions and represents a
modulation of the radial and axial actuation modes that
are otherwise dominated by the vy mode.

Beyond previous studies our results indicate, that ad-
ditional functionalization has little influence on the ac-
tuation of metallic tubes. Since it is not yet possible
to separate CNTs by chirality on a large scale, we ex-
pect that metallic CNTs dominate the overall behavior



because the band gap needs to be overcome in order to
be able to charge semiconducting CNTs. Hence func-
tionalization should have little influence on the expected
response of a composite actuator.

In this article the Coulomb interaction of tubes in an
electrolyte is introduced in a realistic manner. It leads
to a strain that is symmetric in charge. This will av-
erage out the differences observed between tube chiral-
ities within the quantum-mechanical response and lead
to a more uniform actuation. In our work the capac-
ity of the double-layer is independent of charge. This
rather crude approximation is completely sufficient when
regarding the actuation as a function of charge. Future
work should focus on modeling the actuator including
electron reservoirs which will require to capture the ca-
pacities of the individual components of the actuator.
Hence for obtaining the actuator response as a function of
applied voltage, the underlying double-layer model plays
a crucial role. The total charge which can be brought
onto a tube then also depends on the tube’s quantum
capacity. This quantity is linked to the density of states
at the Fermi level’®, and has been discussed in detail
for gated CNT devices™"72. Nevertheless, the inclusion
of Coulomb interaction allows quantitative predictions of
the expected magnitude of the response which is of the
order of 0.1%, comparable to piezo-actuators.

A simple consideration sheds some light on the major
approximation made in this and previous works?2 24:28:29,
the assumption that the number of electrons on the sys-
tem stays constant when the CNT is strained. Since
for metallic CNTs the density of states per atom at the
Fermi-level is independent of the CNT chirality, the tubes
quantum capacitance (per atom) is given by Cq = e2g(u).
From Eq. (22) one obtains g~ (1) = +lagto(v/3 — Ay)
which depends on the axial strain 7. The classical
double-layer capacitance (per atom) C; as obtained from
the simple capacitor model Eq. (37) saturates for large
diameters and to linear order in ~ and v, at Cq =
er€od 1 (1 4+ v9)Ac where d is the double-layer distance
and Ac the area per carbon atom in the unstrained
case. This leads to interfacial capacities (per interface
area Ajn) of roughly Cin_n% = 8uFcem™2, CclAi_n% =
11 pFem™2 and a combined interfacial capacitance of
CtotA;n% = 4.5 uFcm~2 for water (d = 4A and €, = 5).
These values are in good agreement with experimentally
reported!®%® values of 4-10 uF cm™2, which shows that
such a simple model is already a reasonable approxima-
tion. Since both Cy and C¢ (per atom) increase with in-
creasing 7| the total capacitance Cioy = (Cq’1 + C'C_ll)’1
of the CNT-double-layer system is strain dependent and
no cancellation occurs. Thus, the results obtained here
are valid for experiments in which the actuator is con-
trolled galvanostatically where the influence of a change
in capacitance is automatically compensated.

We also present first insights into possible mechanisms
leading to photo-induced actuation. The model does not
give absolute strains and stresses, however we expect
these to be similar in magnitude to the charge-induced

case. Qualitatively, the tubes modulate intrinsic stresses
in the polymer-nanotube composite which could trigger
kinking of individual tubes, as proposed in Ref. 11. Fu-
ture experiments should measure strains as function of
irradiation wavelength. Our results predict that the re-
sponse of a single excited electron should be proportional
to the photon energy. Quantitative predictions of the ex-
pected intrinsic stresses could be obtained by combining
our results with appropriate activation cross-sections and
lifetimes of the expected excitations.
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Appendix A: Next-nearest-neighbor m-orbital model

A next-neighbor zone-folding model for the electronic
structure of distorted CNTs was first given by Yang and
Han?" and later extended to next-nearest-neighbor hop-
ping by Gartstein and co-workers?®2?. We follow along a
similar line and give a full derivation of the model since
our notation and some approximations differ from the
work of Gartstein.

The next-nearest-neighbor m-orbital Hamiltonian for
graphene is given by

o (Hn Hf2>

Al
Hip Hyp (A1)

where
Hi; = 2u, cos k- a1z + 2uy cos k- ds + 2u,. cos k- a1 (A2)
and

Hio =t, +tyexp ik - + te expiE- asy (A3)

with di2 = d; — d2. Here d; and do are the vectors of
the graphene unit cell, t,, ty, and ¢, the nearest-neighbor
hopping matrix elements and wu,, up and u. next-nearest-
neighbor hopping matrix elements as defined in Fig. 10.
Writing k= :cll_ﬁ + 1'252 in terms of the reciprocal lattice
vectors 51 and 52 leads to two energy bands

€(w1,72) = T(21,72) + &(21,22) (A4)

where the contribution due to nearest-neighbor hopping

is given by

E2(wy, ) =t + 17 4+ t2 + 2t 4ty cos 1y

(A5)
+ 2t .ty cos Ty + 2tpt. cos(zy — x2).



and the contribution due to next-nearest-neighbor hop-
ping by

T(21,x2) = —2uq cO8(T1 — T2) — 2up COS Ty — 2U COS T1.

(A6)
The bands touch where £2(Z) has its minimum. In the
undistorted case (i.e. t, = t, = t. and v, = up = u,)
these points are located at 7(*) = (—27/3,27/3) and
70 = (27/3,—27/3). We now approximate the next-
nearest-neighbor contribution to be dispersionless and
given by the value at 79, i.e. 7= —uq — up — Ue.

The nearest neighbor contribution £2(xq,x3) is ex-
panded around its wundistorted minimum. An expan-
sion up to second order is used to determine the new
minimum, while a fourth order expansion is necessary
to determine the curvature at the new minimum. Let
# = 7 — 7 and expanding cos up to fourth order in
£2(7), i.e. using

2 1 2
o(er )i
o (a7)
33 % 5
+ 2% T 18 + O(z°)
and
4 1 3 2
COS(“?F) *T%m T
) (A8)
_ ﬁx‘S ~ L L oud)
12 48
one finds for the second order expansion
2
(62) (@, ah) ~ €+ 12 + €2 — taty + ol + Lot
1 2
+ Stats (x’l + \/ﬁ)
1 9 (A9)
+ gteta (5~ V3)
1 2
+ 5tote (x'l — 2 — \/§) .

For small changes in hopping matrix elements looking for
the new minimum of ¢?)(¥) within this expansion yields

3 ¢
—*/(0) — 3 - c _ 1
v \/_{ta+tb+tc (tb) }

which means the minimum is moved away from the K-
point when the lattice is distorted. The curvature of
€2(%) at () determines the slopes of the Dirac cone in

-

the k - p’ approximation. This curvature is determined
from the fourth order expansion of £(Z) since it is con-
stant in expression (A9). One finds

(A10)

02 2
My = W) (&
t Oxl? ( ) )

2@ (A11)

27tqte }

5
= 2ty + 1)1 — ——=Ltale
pto(ta+ 0){ 5(ta + ty + to)?

- armchair
0

y <> << zig-zag

FIG. 10: Definition of the unit cell and the chiral angle in
the graphene lattice. Inset: Notation of next-neighbor and
next-nearest-neighbor hopping matrix elements.

0? 2
Myy = 9272 (5(4)) (@) )
2 7@ (A12)
Dt ty) {1 - el
Togreve T 5(ta + ty + te)?

and

My = 2 (69)’ (@)

= / /!
0z} 0xh

z2(0)
A13
5 272 (A13)
=tpteql— —2——
2 5(ta + ty + te)

where the hopping matrix elements t,, t;, and ¢. need
now be expressed in terms of bond lengths.

The hopping matrix elements are assumed to vary
linearly as t, = tg — «d, where J, is the change in
bond length due to distortion. The roll-up vector ¢ =
n1dy + nads is characterized by the tube circumference
|é] and the chiral angle # which is defined as the angle
with respect to armchair tubes, i.e. ¢ = (cosd,sin@) in
the coordinate system of Fig. 10. The matrix

cosf sinf
R(0) = (— sinf cos 9)

rotates the roll-up vector onto the z-axis. Thus for
isotropic g, anisotropic y; and torsional 7 deformation
the transformation matrix is given by

(A14)

r-no) (7, 1m0



which can be used to calculate the basis vectors of the de-
formed graphene and nanotube unit cell. The individual
next-neighbor bond length [, are given by

1ip Ui .
lo =@l +aj|, lb:§‘2a1T—a2T (A16)

3
and

1
l. = = |af —2at
3 |a1 Qg

(A17)
where the superscript T' denotes deformed unit cell vec-
tors, i.e. 7 = (1 + T)Z. Expanding to linear order in
Y0, 71 and 7 the change in bond length becomes

B cos ¢, /2 cos ¢z /2
5y =10 (Sin %/2) T (Sin ¢x/2> (A18)
- %l;m tr {T (1 + R(¢.))} (A19)

where ¢, = 0, ¢, = —27/3 and ¢. = 27/3 is the rotation
angle of the respective bond relative to the z-axis and
19 = g /+/3 the equilibrium bond length. Now the band
energy can be written as the quadratic form

1
E(@) = 57 MT (A20)

with M being a symmetric matrix with coefficients given
by equations (A11) to (A13). The coefficients of M are
now computed up to linear order in bond lengths, i.e.

My _ 2_%5,,:2_%Atr{z<1+ﬁ<¢bm, (A21)

Moo 4A 2
——=2——6.=2— —Atr{T(1+ R(o. A22
Fe2- ZHAUT (14 R00) (A22)
and

M 2A

T2 1 (=80 + Oy + Be)

tO ap

(A23)

1
= -1+ %A tr {I(]. - 2E(¢a))}

with A = aap/to. Furthermore, R(¢q)+ R(dp) +R(de) =
0 has been used. This can be used to write the coefficient
matrix as

M =B'R'KRB (A24)

with

K — agts (3 - 2v3A(y0 — )

—V/34n )
- 2 — \/gAn

3—2V3A(y0 +m)
(A25)
where the superscript ¢ is the matrix transpose and B =
A~1 are the reciprocal basis vectors. In order to express
this equation in k-space, the vector k = (k1,k)) needs to

be rotated onto the tube’s system by applying R~*. One
finds

Z=AR 'k (A26)
and the dispersion relation in k-space becomes
IR
(k) = SRk = vitki + 0t k] (A27)

where terms proportional to k| k. have been absorbed by
shifting k). The effective Fermi velocities now become

1

v = {@ (3 —2V3A(7 +71))}2

(A28)
~ aoTto (\/5 — Al + 71))
and
vy = {@ (3 —2V3A(y0 - ’71)) }é (420)

aoTtO (\/5 — Ao — 71)) :

Q

Furthermore, the minimum of €2(%) moves to k(© =
RB"#"), giving

20y _ (718in36 — ncos 36
ka0 = <'yl cos 36 4 1 sin 360 4. (A30)

Appendix B: Solution of Poisson’s equation for the
charged cylinder

The Fourier-transform of the cylinder’s density Eq.
(35) is given by

Vo(G) = / &*r p(F)eiCT (B1)

=Q5Gz,o/d27“ et T
" {5(\/332—1—3;2—7“0) 1

—— . B
271’7’0 lxly} ( 3)

In cylindrical coordinates and after carrying out the in-
tegration over r this yields

(B2)

27
N 1 e
VoG) = Q.0 5 [ di eI b _ad 0 b
0

(B4)
where the integral gives rises to a Bessel-function of the
first kind and zeroth order Jy, i.e.

27
2mdo(|z]) = /dgp i cosee. (B5)
0



The G = 0 term of the Bessel-function cancels the cor-
responding one from the 3D-jellium background. The
density in reciprocal space is thus given by

o I

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

QJo(|Glro) if G, =0;G., Gy #0

B6
0 else (B6)

Vp(G) = {

—

and the electrostatic potential ¢ is found by p(G) =

G2¢(G).

Equation (36) constitutes the back transfor-

mation into real space by direct summation.
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