Root Cause Analysis of Solar Cell Cracks at Shingle Joints

^{1,2}Nils Klasen, ¹Friedemann Heinz, ¹Angela De Rose, ¹Torsten Rößler, ¹Achim Kraft, Marc Kamlah²

¹Fraunhofer Institute for Solar Energy Systems ISE ²IAM-WBM, Karlsruhe Institute of Technology (KIT)

11th SILICON PV 2021 Hamelin, 19.04.2021

www.ise.fraunhofer.de

Introduction

Shingled Solar Cell Interconnection

- Overlapping solar cells
- Joint formed by an electrically conductive adhesive (ECA)

- Thermomechanical response to temperature changes
- Mismatch of coefficient of thermal expansion α in laminate layers

$arepsilon_{ ext{th}}$	=	$\alpha \Delta T$
------------------------	---	-------------------

Layer	$\alpha / 10^{-6} K^{-1}$
FS (Float Glass)	9
Silicon ¹	1.9 – 3.2
BS (TPT) ²	50
Encapsulant (EVA)*	90 – 270
ECA*	50 – 250

*measured

¹ K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, "Linear thermal expansion measurements on silicon from 6 to 340 K," *J Appl Phys*, vol. 48, no. 3, pp. 865–868, 1977, doi: 10.1063/1.323747.

² U. Eitner, "Thermomechanics of photovoltaic modules," Dissertation, Martin-Luther-Universität, Halle-Wittenberg, 2011.

Defect Observation

Thermal Cycling (TC) Experiments¹

- Defects congruent with printed ECA
- Dominantly on rear side of bifacial solar cells
- First occurence between TC0 TC100
- Cracks outside <111> crystal plane orientation
 - High tensile stresses

Topview microscopy – darkfield mode

Photoluminescence – rear side

Finite Element Simulations

Model Configuration

- Geometries
 - 5 solar cells
 - 3D geometry
 - Pseudo 2D geometry: 1 mesh element in x
- Boundary constraints
 - $\Delta T = -200 \text{ K}$: lamination @ 160 °C to -40 °C
 - Suppressed rigid body motion

Material properties and viscoelastic models for EVA and ECA from previous publication¹

© Fraunhofer ISE

Finite Element Simulations

Results

- First principal stress $\sigma_{\rm I}$ relevant for crack formation in silicon
- 3D model:
 - $\sigma_{\rm I}$ imprints of ECA pads on solar cell surface
- 2D model:
 - $\sigma_{\rm I}$ concentration on rear side
 - $\sigma_{I,max}$ in joint center below ECA
 - Direction of σ_I : parallel to surface
- Metallographic specimens:
 - Crack origin on rear side

Finite Element Simulations

Bending Moment at Shingle Joint

Characteristic stress distribution in cross sections under bending forces:

Bending moment in solar cells at joint center causes high $\sigma_{\text{I,max}}$ in outer fiber

Root Cause(s) for Bending of the Solar Cells

• Cause: $\Delta \alpha_v$ / solar cell shift

Separation of Defect Mechanisms

Anisotropic Thermal Expansion

- Superposition of effects
- Separation of mechanisms by anisotropic thermal expansion in all laminate materials:

Isotropic:
$$\alpha = \begin{pmatrix} \alpha_{x} \\ \alpha_{y} \\ \alpha_{z} \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Thermal expansion in y: $\alpha = \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- Thermal expansion in z: $\alpha = \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Cross Check

- According to Eitner¹ solar cell shift becomes $\cong 0$ when $\alpha_{Si} = \alpha_{FS}$
- Subsequently $\alpha_{\rm Si} = \alpha_{\rm FS} \stackrel{
 m yields}{\longrightarrow} \sigma_{\rm I} \cong 0$
- Hooks law (isotropic materials):

$$\vec{\varepsilon} = \mathbf{C}^{-1} \cdot \vec{\sigma}$$

$$\alpha = \alpha_{y} \rightarrow \sigma_{y}$$

- Contraction in z: $\varepsilon_z = \frac{1}{E} \sigma_z \frac{\nu}{E} \sigma_x \frac{\nu}{E} \sigma_y$
- Poisson ratio ν
 - transversal contraction
 - z contraction
 - Solar cell bending

 ν (polymers): 0.4 – 0.5

Conclusion and Outlook

Summary of talk

- $\sigma_{\rm I,rear} \gg \sigma_{\rm I,front}$ cause cracks in TC
- Driving mechanism: z-contraction of encapsulant
- Cracks at shingle joints with monofacial solar cells and opaque back sheet might occur unnoticed.

Outlook publication

- Glass/glass laminates
- Detailed discussion of both mechanisms
- Proposals for stress reduction

encapsulant

solar cel

solar cell

Thank you for your kind Attention!

gefördert durch Deutsche Bundesstiftung Umwelt The speaker thanks the German Federal **Environmental Foundation** (DBU) for supporting this work within it's PhDscholarship program. 40 YEARS #CreatingTheEnergyFuture Nils Klasen www.ise.fraunhofer.de nils.klasen |at| ise.fraunhofer.de

