Device Design and Process Integration of SiC Trench MOSFETs

*<u>Minwho Lim</u>, Oleg Rusch, Tobias Erlbacher and Anton Bauer Fraunhofer Institute for Integrated Systems and Device Technology **IISE**

The 5th International Symposium on SiC Materials and Devices 2021 November 25, 2021, Lotte Hotel Busan, Korea

Semiconductor Device

5th International Symposium on SiC Materials and Devices 2021

- Motivation
 - Additional shielded TrenchMOS design
 - Exploiting benefits of trench-first process
- Design optimization of Double-TrenchMOS
 - Initial design proposal
 - Process flow modeled by using process simulation
 - Static electrical characteristics by using device simulation
- Process Integration
 - Edge termination verified simulation
 - Gate oxide reliability and interface quality

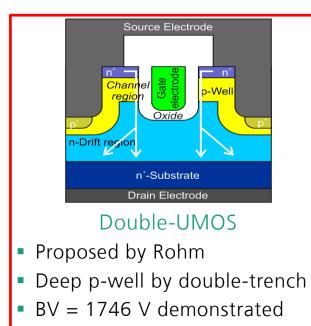
Conclusion

Semiconductor Device

Motivation

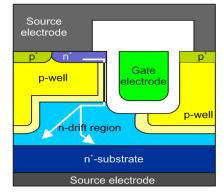
- Additional shielded TrenchMOS design
- Exploiting benefits of trench-first process
- Design optimization of Double-TrenchMOS
 - Initial design proposal
 - Process flow modeled by using process simulation
 - Static electrical characteristics by using device simulation
- **Process Integration**
 - Edge termination verified simulation
 - Gate oxide reliability and interface quality

Conclusion


Semiconductor Device

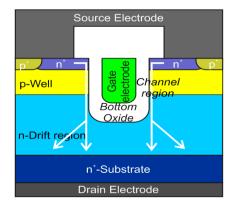
State of the Art Additional shielded TrenchMOS Design

Trench structure compared to planar structure


- © Higher cell density w/o JFET region
- Higher mobility due to vertical channel
 - \rightarrow Reduction of resistance
 - ightarrow Saving chip area and chip cost

• $\rho_{DS,on} = 2.8 \text{ m}\Omega \text{cm}^2$

Semiconductor Device


5th International Symposium on SiC Materials and Devices 2021

Single channel-UMOS

- Proposed by Infineon
- Deep p-well by single channel
- BV = 1366 V demonstrated
- $\rho_{\text{DS,on}} = 3.2 \text{ m}\Omega\text{cm}^2$

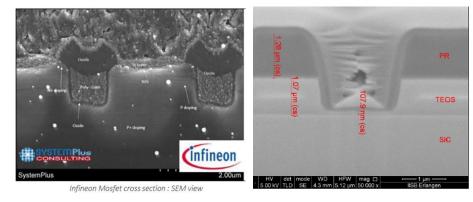
- ⁽³⁾ Needed stable technology for trench etching
- 😕 Gate oxide reliability has to be improved
 - ightarrow Additional shielding required

Thick bottom oxide-UMOS

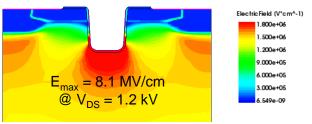
- Proposed by Bosch
- Thick bottom oxide
- 1.5 mΩcm² at 600 V
- 2.7 mΩcm² at 1200 V

Exploting Benefits of Trench-First Process

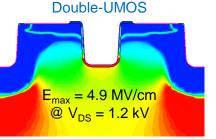
Stable technology of critical fabrication step

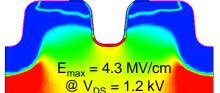

"Implantation-First" process

- A maximal alignment accuracy is allowed
- Difficulty to control the etching behavior
 - Undesirable RIE-rate for ion-implanted silicon carbide
 - Optimal etching process needed for every implantation parameters
- Obstacle by passivating layer and persistent Si + O layers


"Trench-First" process

- Stable SiC-trench etching
- High temperature annealing
 - → Reshaping trench formation to minimize dielectric breakdown field concentration
 - → H₂-etching is favorable for surface conditioning [1].
- Implantation mask is required?
 - → Self-aligned process proposed!


Semiconductor Device



Conventional UMOS

Reshaped Double-UMOS

Motivation

- Additional shielded TrenchMOS design
- Exploiting benefits of trench-first process

Design optimization of Double-TrenchMOS

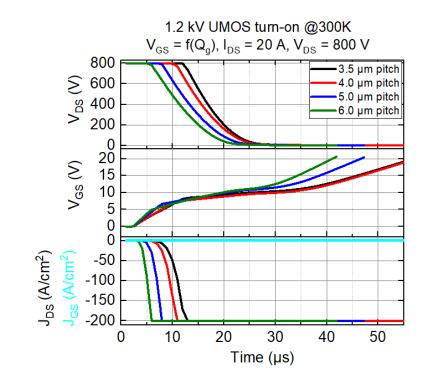
- Initial design proposal
- Process flow modeled by using process simulation
- Static electrical characteristics by using device simulation

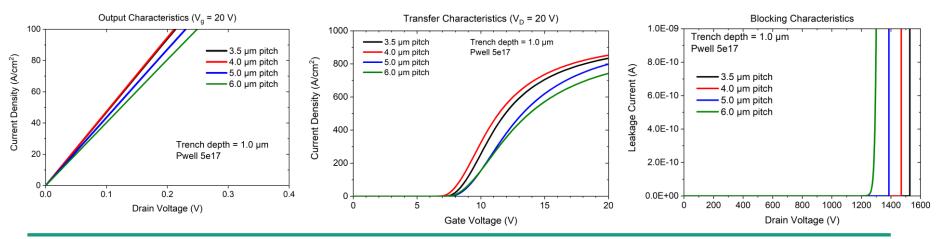
Process Integration

- Edge termination verified simulation
- Gate oxide reliability and interface quality

Conclusion

Semiconductor Device

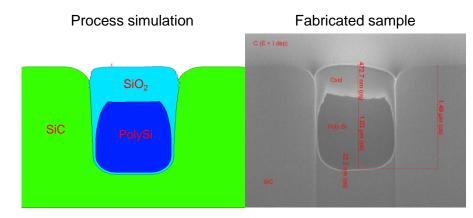

Design proposal

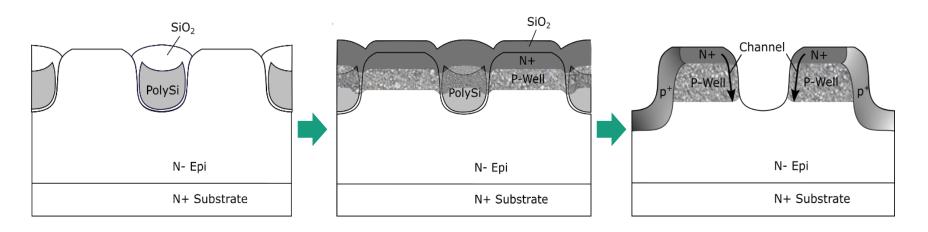

Technology variation

- Performance vs. Manufacturability
- Performance vs. Shielding for gate oxide
- Pitch: ... / 3.5 μm / 4.0 μm / 5.0 μm / ...

TCAD simulation

- Charge compensation
- D_{it} from planar devices
- Smaller cell pitch
- \rightarrow Lower R_{DS,on}, higher BV


Semiconductor Device

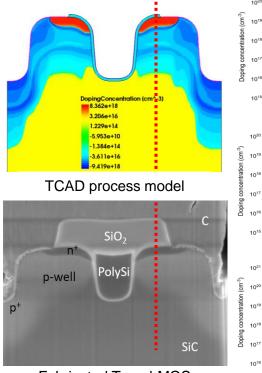

5th International Symposium on SiC Materials and Devices 2021

Process flow of fabricated devices based on modeling by using process simulation

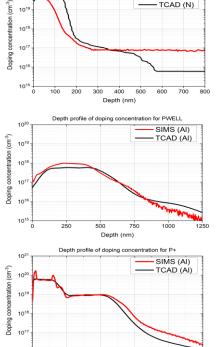
Self-aligned n+-source and p-well implantation

- Deposited and planarized Poly
- Low temperature oxidizing Poly
- Independent on the resolution of lithography system
- Channel length can be controlled by determination of oxide thickness
- Formation of oxide-cap can be surely predicted by calibrated process simulation

Semiconductor Device


5th International Symposium on SiC Materials and Devices 2021

Process flow of fabricated devices based on modeling by using process simulation


SIMS (N)

Ion-Implantation from MC process simulation calibrated by

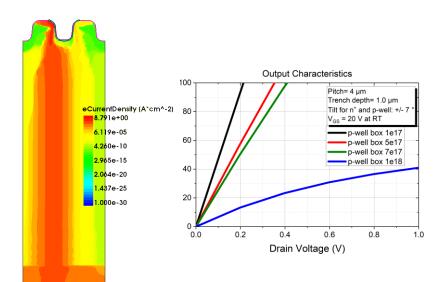
- SEM dopant contrast quantitatively
- SIMS measurement qualitatively

Fabricated TrenchMOS

200

400

Depth (nm)

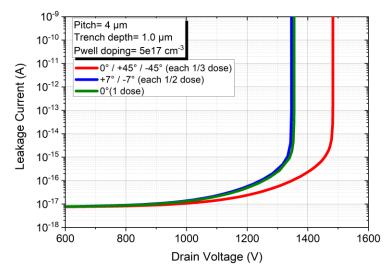

600

800

of doping concentration for n

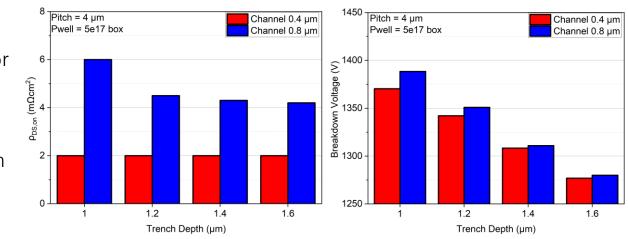
p-well implantation optimization

- Appropriate p-well parameter should be verified due to a trade-off
- Too lower doses prone to reach-through breakdown effect
- Too higher doses cause higher resistance and threshold voltage



Semiconductor Device

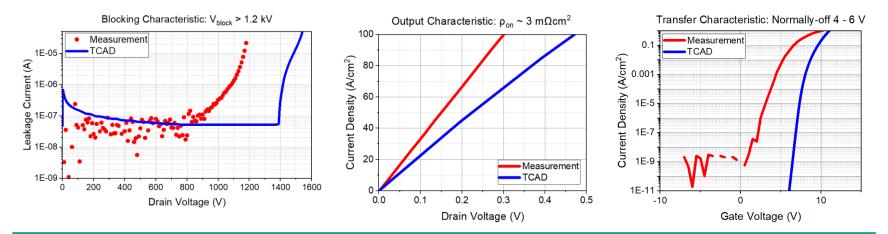
Process flow of fabricated devices based on modeling by using process simulation


p+-shielding implantation

- Tilted implantation proposed
- Trench width : depth = 1: 1
 - → +45° / -45° / 0° for symmetrical doping profile
- Too high energy or doses are to be cautiously used due to deteriorating R_{DS,on} from increasing the effectiveness of JFET region between p-body

Trench depth

- Deeper trench is not absolutely beneficial for BV with limited max. implant energy
- Optimized channel length for trench depth accordingly


Semiconductor Device

Static electrical characteristic

Achieved ~1.2 kV and > 50A devices \rightarrow Room for improvement

- Blocking capability
 - Short channel effect: Possibility for higher blocking voltage (~1.6 kV) with optimized pwell implantation parameters
 - Tilted p⁺-shielding implantation
- Output- and transfer characteristic
 - o Design optimization: Short circuit causing increased leakage current
 - o Misalignment field oxide and shallow n+-source regioin should undergo improvment
 - Gate oxide optimization for higher mobility, dielectric breakdown field strength and improved threshold voltage shift

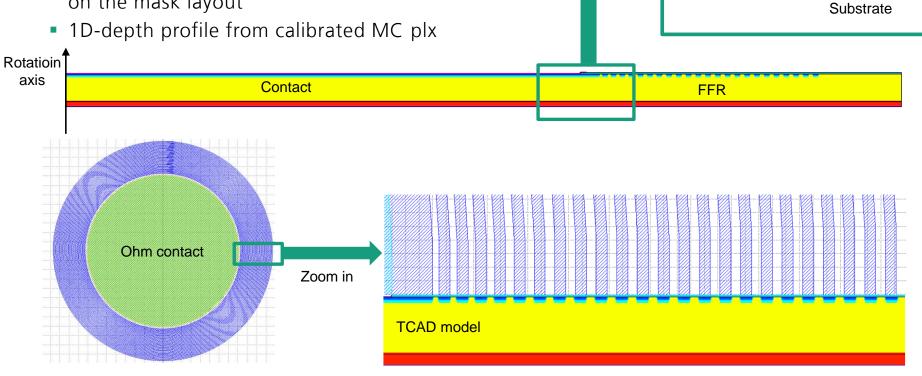
Semiconductor Device

5th International Symposium on SiC Materials and Devices 2021

- Motivation
 - Additional shielded TrenchMOS design
 - Exploiting benefits of trench-first process
- Design optimization of Double-TrenchMOS
 - Initial design proposal
 - Process flow modeled by using process simulation
 - Static- and dynamic electrical characteristics by using device simulation
- Process Integration
 - Edge termination verified simulation
 - Gate oxide reliability and interface quality

Conclusion

Semiconductor Device



Process Integration

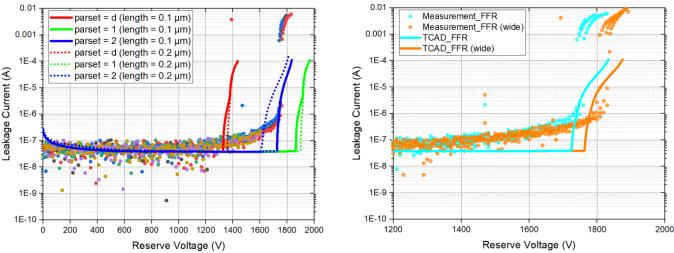
Edge Termination verified by TCAD simulation

Floating Field Ring

- Device simulation of breakdown behavior
- Comparison with measured data for 1.2 kV devices
- Rotationally symmetric 2D-simulation setup based on the mask layout

Semiconductor Device

5th International Symposium on SiC Materials and Devices 2021


Epi

Process Integration

Edge Termination verified by TCAD simulation

Floating Field Ring

- Breakdown behavior depending on lateral scattering (parameter "length")
- Avalanche model dependency:
 - o d (default): Van Overstareten
 - o parset = 1: Application Library
 - o parset = 2: Material DB
- Optimal ring distance for increasing blocking capability
- Model calibration for JTE, Trench-FFR and SJ-FFR for HV (> 3.3kV) devices

length = 0.1 μm Deprecentent 500e+19 1.054+17 2.178e+14 -2.509+10 -2.554+14 -1.359+10

Semiconductor Device

5th International Symposium on SiC Materials and Devices 2021

Process Integration Gate Oxide Reliability and Interface State Density

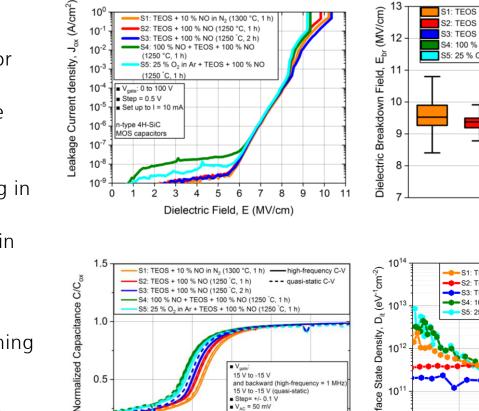
10

10⁻¹

10⁻²

10-3

10-4


10-5

0.0

-3

TEOS as precursor

- Planar MOS capacitors
- TEOS gate oxide suited for Trench Gate devices
 - Conformal trench oxide with high gate oxide integrity
- Post-deposition-annealing in NO in different ambient
- Pre-deposition oxidation in NO or O_2 deleterious for dielectric strength and surface quality
- High temperature H₂-etching is favorable for surface conditioning [2]
 - Connected with trench \bigcirc reshaping

n-type 4H-SiC MOS capacitors

0

Gate Voltage (V)

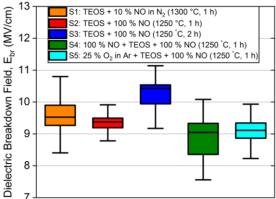
TEOS + 10 % NO in N2 (1300 °C, 1 h)

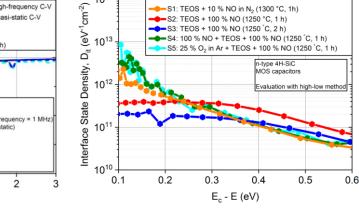
TEOS + 100 % NO (1250 °C, 1 h)

TEOS + 100 % NO (1250 °C, 2 h)

100 % NO + TEOS + 100 % NO

S5: 25 % O2 in Ar + TEOS + 100 % NO


(1250 °C, 1 h)


(1250 °C, 1 h

■ V_{gate}: 0 to 100 \ Step = 0.5 V

Set up to I = 10 mA

Minwho Lim et al., ICSCRM 2019

5th International Symposium on SiC Materials and Devices 2021

-1

-2

Conclusion

- Trench-First process facilitates feasible devices enabling
 - Self-aligned process controlled by oxidation parameters
 - Various customized ion implantation with stable trench formation
 - Room for design improvement depending on foundry (narrow cell, deeper trench etc.)
- Process integration
 - TCAD modeling matching actual design could verify the further advanced edge termination for high voltage devices
 - Gate oxide can be further optimized based on deposited homogene oxide type

Thank you for your attention!

Acknowledgement

This work was supported by GRDC Program through the National Research Foundation (NRF) funded by the MSIT of Korea (NRF-2017K1A4A3013716).

Fraunhofer IISB

Schottkystraße 10 91058 Erlangen Germany

Minwho Lim Department "Semiconductor Devices" Group "Device Development" Tel: +49 (0) 9131 761-495 minwho.lim@iisb.fraunhofer.de www.iisb.fraunhofer.de

Semiconductor Device

