
AOT2C.4.pdf 2016 Imaging and Applied Optics Congress (3D, AO, AIO,
COSI, DH, IS, LACSEA, MATH) © OSA 2016

Marginal blind deconvolution of adaptive-optics 
corrected images of satellites 

 

Roberto Baena-Gallé 1,2, Laurent M. Mugnier 3 and Szymon Gladysz 4 
 

1. Real Academia de Ciencias y Artes de Barcelona. Rambla de los Estudios 115, 08002, Barcelona, Spain 
2. Instituto de Ciencias del Cosmos – Universidad de Barcelona. Facultad de Física, Martí i Franquès 1 

rbaena@am.ub.es 
 

3. ONERA – The French Aerospace Lab. 29 avenue de la Division Leclerc, FR-9232, Chatillon, France 
mugnier@onera.fr 

 
4. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation,  Gutleuthausstraße 1, 76275, 

Ettlingen, Germany 
 

Abstract: Conventional blind deconvolution estimates jointly the PSF and the object 
being imaged, and therefore it is subject to degeneracies. Instead, we use a marginalized 
approach which has good statistical properties. We show results on AO-corrected 
observations of satellites. The method will be extended to anisoplanatic imaging. 
 
OCIS codes: (100.1455) Blind deconvolution; (100.2000) Digital image processing; (010.1080) Active or 
adaptive optics; (010.1330) Atmospheric turbulence. 

 
1. Introduction  

The performance of many optical systems is highly degraded by atmospheric turbulence. This problem 
can be partially alleviated using adaptive optics (AO). Additionally, the partial correction problem can be 
tackled using post-processing techniques such as deconvolution. 

A possible approach consists of representing the AO point spread function (PSF) through an 
appropriate basis. Then, the PSF is expressed as a weighted sum of functions, possibly with a sparsity 
constraint, i.e., with only a small number of non-zero coefficients, thus reducing the number of effective 
unknowns in the problem. In this work, a marginal blind restoration method (AMIRAL) [1] is used to 
compute such parameters in order to avoid the degeneracy of the solution encountered in the traditional 
joint blind deconvolution.  

The final goal of this research is to propose solutions for the more general case of a PSF that varies in 
the field of view, e.g. for wide-field observations with single-conjugate AO. Both the use of a marginal 
approach and the PSF parameterization will help make the method robust, which is all the more necessary 
as we extend the method to the anisoplanatic case. 

 

2.  Method 

For tests, two subsets of four AO long-exposure PSFs were taken from a large database of simulated PSFs 
which were simulated analytically using the PAOLA package [2]. The two simulations from which the 
subsets were taken differed only in the vertical distribution of turbulence above the telescope. One profile 
(“atmosphere 1”) had strong ground-level turbulence. The contrary was true for the second profile 
(“atmosphere 2”). The simulations were carried out for the 3.5-m SOR telescope located in New Mexico. 
A common value of 1.2’’ for seeing and 1 µm wavelength was adopted. More information about these and 
other parameters used in the simulations, as well as the atmospheric conditions assumed, can be found in 
[3]. Figure 1 shows all 8 PSFs. As test object we used the image of the Hubble Space Telescope (HST). 
The object was convolved with the PSFs and white Gaussian noise was subsequently added to the blurred 
image. 

The marginal estimator of [1] was applied to identify the correct PSF that creates an image, from a 
given set of possible PSFs. The principle of marginal estimator is to integrate the object out of the 
problem by integrating the joint probability of the object and the PSF parameters over all possible values 
of the object; this reduces the number of unknowns since only the PSF parameters are estimated. Hence, 
the criterion to minimize reduces to:  
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Fig 1. Top row, set of 4 PSFs corresponding to the so-called “atmosphere 1”. Bottom row, “atmosphere 2”. For a description of 

the simulations we refer the reader to [3]. Images are shown in log scale.  
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where 𝚤̃(𝜈) and ℎ�(𝜈) are the Fourier transform of the image and the PSF, respectively, the object is 
assumed to be described by a stationary Gaussian prior probability distribution with mean value 𝑜�𝑚(𝜈), 
𝑆𝑜(𝜈) and 𝑆𝑛 are the power spectral densities (PSD) for the object and the noise, respectively, and the 
Greek letter 𝜈 is the frequency index. Note that in equation (1) the object 𝑜�(𝜈) is not explicitly included; 
once the PSF parameters have been estimated the final object can be reconstructed using any non-blind 
deconvolution algorithm, e.g., a Wiener filter.  

Parametric models for both the PSF and the object PSD are assumed. The PSF is modeled by a 
weighted sum of modes, i.e., ℎ(𝑥) ≈ ∑ 𝛼𝑗ℎ𝑗(𝑥)𝑗 , where 𝑥 is the spatial index, 𝛼𝑗 are the parameters to be 
estimated, and ℎ𝑗(𝑥) the modes. By modes we mean any set of functions that form a basis where to 
project the PSF solution. In this work a simple set of simulated PSFs depicted in figure 1 has been used. 
However, in more complicated scenarios such as anisoplanatic observations, a different basis might be 
more convenient such as the principal component (PC) decomposition. For the PSD the following 3-
parameter model is used [4]: 𝑆𝑜(𝜈) = 𝑘

1+� 𝜈𝜈0
�
𝑝 . Since the noise is assumed to be Gaussian and 

homogeneous, 𝑆𝑛 = 𝑐𝑡𝑒 , hence the total set of parameters to be estimated is �𝛼𝑗 ,𝜈0 , 𝑝,𝑆𝑛 𝑘� �. There is no 
analytical expression for the solution of equation (1) so the minimization must be done numerically. In 
this work, a Variable Metric with Limited Memory and Bounded (VMLM-B) has been used [5]. Initial 
PSF parameters were assumed to be uniformly distributed at the beginning of the minimization. 

 
3.  Results 

Table 1 and figure 2 show the results obtained with AMIRAL for PSFs depicted in figure 1. The marginal 
method is able to estimate the parameters of interest, here 𝛼𝑗, corresponding to the correct PSF in 3 out of 
4 cases. It currently has problems with the non-elongated one (PSF 4; rightmost panels in figure 1). We 
believe this is related with the current absence of prior information about PSFs in the method and the fact 
that we are currently not imposing positivity on the object. Figure 3 shows PSDs for the true object, the 
solution and the image. 

 
Table 1. Results of AMIRAL for simulated AO PSFs. The highest values of the synthesis coefficients 𝛼𝑗are highlighted in red. 

  ATMOSPHERE 1 ATMOSPHERE 2   ATMOSPHERE 1 ATMOSPHERE 2 

 

PSF 1 

True  1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0  

PSF 3 

True  0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 

Estimated  1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Estimated  0.2 0.0 0.8 0.0 0.4 0.0 0.6 0.0 

 

PSF 2 

True  0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0  

PSF 4 

True  0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 

Estimated  0.1 0.9 0.0 0.0 0.1 0.9 0.0 0.0 Estimated  0.4 0.5 0.0 0.1 0.4 0.4 0.0 0.2 
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Fig 2. Leftmost panel, ground truth image. Middle panel, blurred image with PSF 1 from atmosphere 2. Rightmost panel, 

deconvolved image using the marginal method. All panels are shown in linear scale from 0 to 10^4. 

 
 

Fig 3. Leftmost panel, PSDs for the true object (black) and deconvolved image (red). Middle panel, squared modulus of the true 
Optical Transfer Function (OTF, black) and of the estimated one (red). Rightmost panel, PSD of the true object multiplied by the 

squared modulus of the true OTF (black), PSD of the deconvolved image multiplied by the squared modulus of the estimated OTF 
(red), PSD of the image (green), and PSD of noise (blue). 

 

4.  Conclusions and future directions 

It has been shown that AMIRAL is a very promising tool for myopic deconvolution of AO images in the 
isoplanatic case. However, in order to make it more robust, the criterion to be minimized must be 
modified to include additional prior information about the PSFs and/or about the object, such as 
positivity. Our final goal is to extend this method to anisoplanatic conditions, for which several ideas will 
be incorporated into the current approach. Firstly, in order to reduce the number of parameters, the basis 
of modes will be based on decompositions in PCs of simulated PSFs [3]. Such a decomposition 
guarantees that, for a certain number of modes, the reconstruction error will be minimal in comparison 
with any other possible basis. Secondly, the sparsity concept can be incorporated on the PSF 
decomposition on a dictionary by use of the l1 norm, or by group lasso. This should allow us to find the 
correct atmospheric conditions among those described by two or more dictionaries of PSFs. Finally, 
optimization procedures which combine the augmented Lagrangian of the problem with proximal 
mapping operators [6,7] will be used to minimize the criterion with the aforementioned priors, while 
speeding up the convergence. All these ingredients can be applied to different regions in wide-field AO 
observations affected by anisoplanatism to extract the PSF at different locations in the field of view. The 
obtained set of PSFs can then be used to perform a final image restoration using a fast approximation of 
the shift-variant blur [8]. 
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