ECSCRM 2018

Raman spectroscopy characterization of ion implanted 4H-SiC and its annealing effects Z. W. Xu^{1, a*}, Y. Song^{1, b}, M. Rommel^{2, c*}, T. Liu^{1, d}, M. Kocher^{2, e}, Z. D. He^{1, f}, H. Wang^{3, g}, B. T. Yao^{1, h}, L. Liu^{1, i}, F. Z. Fang^{1, j}

¹State Key Laboratory of Precision Measuring Technology & Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, China

²Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany ³State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, China

Introduction

P-type doping of 4H-SiC by implantation with very low resistivity is still a challenging process step in 4H-SiC device development. In order to further study p-type 4H-SiC prepared by ion implantation and annealing method, the characteristics of Al implanted 4H-SiC samples under different ion implantation doses and different annealing condi-

tions were analyzed by the sheet resistance measurements and Raman spectroscopy.

• P-type 4H-SiC with different doses of 2.45×10^{12} cm⁻² - 9.0×10^{14} cm⁻².

Experimental

Laser Raman spectroscope XPLORA PLUS from HORIBA Scientific.

• Parameter setups: 532 nm, 2400 gr/mm, 50×100 nm objective lens and a 500 μ m hole.

Sheet resistance measurements

Fig 2. LO and LO+ Raman results for the same 4H-SiC sample using different objective lenses.

Fig 3. Raman results for Al-implanted 4H-SiC samples with different surface concentrations.

Fig 4. Raman results for Al-implanted 4H-SiC samples with different surface concentrations and annealing conditions.

Summary

Fig 5. Changes in electrical activation rate and deep level defects with different ion implanted doses [1].

0 Implanted AI concentration (10¹⁹cm⁻¹

Fig. 1. Sheet resistance measurement of Al implanted p-type 4H-SiC. (a) Schematic diagram of Transfer Length Model (TLM) structure sample; (b) Sheet resistance changes with the concentration of Al ions implanted and the annealing conditions.

Acknowledgements

The study was supported by the National Natural Science Foundation of China (No. 51575389, 51511130074), National Natural Science Foundation of China (NSFC)-German Research Foundation (DFG) International Joint Research Programme (51761135106), State key laboratory of precision measuring technology and instruments (Pilt1705).

References

[1]. H. Fujihara, J. Suda, T. Kimoto, Electrical properties of n- and p-

Results showed that the Raman results can sensitively analyze the typical damages for different ion implantation and annealing fabrication conditions of p-type 4H-SiC.

1. The Raman characterization results were helpful to explain the sheet resistance variation for different ion implantation and annealing setups in experiments.

2.Annealing at 1800 °C for 30 minutes and annealing at 1900 °C for 1 minute have better lattice recovery effect than annealing at 1700 °C for 30 minutes. 3. Increasing the surface concentration above 10^{18} cm⁻³ could well eliminate majority of the deep level defects in the 4H-SiC substrate, and the relevant Raman results showed better crystallinity.

type 4H-SiC formed by ion implantation into high-purity semiinsulating substrates, Jpn. J. Appl. Phys. 56 (2017) 070306. [2]. S. Nakashima, H. Harima, Raman investigation of sic polytypes, J. Physica Status Solidi Applied Research. 162 (1997) 39-64. [3]. H. Harima, S. Nakashima, T. Uemura, Raman scattering from anisotropic LO-phonon-plasmon coupled mode in n-type 4H- and 6H-SiC, J. Journal of Applied Physics. 78 (1995) 1996-2005.

zongweixu@tju.edu.cn, mathias.rommel@iisb.fraunhofer.de