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Preface

In 2013, the annual joint workshop of the Fraunhofer Institute of Optronics, Sys-
tem Technologies and Image Exploitation (IOSB) and the Vision and Fusion Labo-
ratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of Technology
(KIT) has again been hosted by the town of Triberg-Nussbach in Germany.

For a week from July, 21 to 27 the PhD students of the both institutions delivered
extended reports on the status of their research and participated in thorough discus-
sions on topics ranging from computer vision and world modeling to data fusion
and human-machine interaction. Most results and ideas presented at the workshop
are collected in this book in the form of detailed technical reports. This volume
provides a comprehensive and up-to-date overview of the research program of the
IES Laboratory and the Fraunhofer IOSB.

The editors thank Miriam Ruf, Julius Pfrommer and other organizers for their ef-
forts resulting in a pleasant and inspiring atmosphere throughout the week. We
would also like to thank the doctoral students for writing and reviewing the techni-
cal reports as well as for responding to the comments and the suggestions of their
colleagues.

Prof. Dr.-Ing. Jürgen Beyerer
Alexey Pak, PhD
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Motion Field Segmentation and Appearance Change
Detection for Hand Tracking from the Ego Perspective

Jan Hendrik Hammer

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
jan.hammer@kit.edu

Technical Report IES-2013-01

Abstract: In this paper a novel method for moving object tracking is pre-
sented and applied in the context of hand tracking for mobile Augmented-
Reality (AR) applications. AR glasses-like devices come with an integrated
camera capturing the field of view of the user. Hand gestures are the most in-
tuitive interaction modality for manipulating AR contents and hand tracking is
the first step towards robust gesture recognition. The presented method fuses
motion segmentation and appearance change detection in a new way to track
hands in front of complex backgrounds under varying lighting conditions -
without the need for previous color calibration. A comparison of this new al-
gorithm with state-of-the-art tracking methods is conducted using a thorough
evaluation methodology and challenging data sets containing different wiping
hand gestures.

1 Introduction

Almost every month a new type of mobile Augmented-Reality (AR) device is an-
nounced. Many companies are working on the so called high-tech glasses offering
optical see-through AR. The imagination of being able to visualize digital content
everywhere in the users field of view allows for an unthinkable amount of applica-
tions - some of them would definitely make our life easier. To just take a picture,
one wouldn’t have to take out the mobile phone. To know where to go to, one
would not have to look at the mobile phone. Information would just be there in
the field of view (FOV) and not on some small display that needs to be carried and
hold into the FOV every time one needs it. When looking at the AR game Ingress1,

1http://www.ingress.com/
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one sees how video see-through AR already changes the way people interact. This
makes one think that one day people might not want to live in a world without AR
- and their private AR glasses - anymore. Fortunately, we still have a few years
before this might become reality, till the visualization capabilities of the head worn
devices becomes good enough for daily usage.

Interaction with these devices will be realized using voice recognition, touch, eye
tracking and hand gestures. Hand gestures are the most intuitive modality for ma-
nipulating AR contents visualized in the field of view. Therefore, the recognition
of hand gestures is a must and robust hand tracking its basis. In the following sec-
tions we will first concentrate on related work (section 2). Then the new tracking
approach is described in section 3. It is compared to several other hand tracking
algorithms in section 5 using the evaluation framework of section 4. After the
comparison this article is concluded in section 6.

2 Related Work

In mobile applications with a head-mounted camera, the background is not static.
Hand localization can therefore not be achieved by simple frame subtraction as
in [BRB09]. The lighting conditions may change all the time and direct sunlight
can be illuminating the scene. Due to this, active sensors utilizing any kind of
infrared illumination are no option. Accordingly, depth information is hard to get
and with only one single RGB camera, scene segmentation becomes a difficult task
and is often not performed. Gloves [WP09], markers [MM09], accelerates [PR11]
or thermal cameras [AAHEM09] are used instead. But the optimal solution would
be to not need to attach further devices to the hands of the user. 3D sensors are
widely and successfully used for hand tracking [Oik12] because depth information
easily results in an accurate segmentation of the scene. Unfortunately, available
active sensors are to heavy for a light-weight head worn device and not sunlight-
proof. A self-built passive stereo camera system would be the only option to create
a more or less light-weight device, but this required effort in creating an new HMD
or attaching the cameras to some existing device. Furthermore, a calibration of the
two cameras would have to be performed and a robust stereo reconstruction algo-
rithm to be developed. The latter one would heavily increase the computational
load. Accordingly it is achievable to use only one single RGB camera and work
without a more or less exact 3D reconstruction of the scene per frame. Therefore,
Pisharady et al. [PVL13] proposed an interesting method for hand posture detec-
tion from single view even in front of a complex background. Unfortunately, their
method is not real-time capable.
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In [HB13] different hand tracking methods were compared to each other. The
presented approaches use skin color detection based on a learned color distribu-
tion and motion information by optical flow estimation. Using our enhanced hand
tracking benchmark, it turns out that skin color models need to be adapted to allow
for robust tracking under challenging lighting conditions. But color model adap-
tion is not trivial since the determination of an area to update with needs a correct
image segmentation that can only be computed using sophisticated models like in
Sun’s nLayers approach [SSB12] which is also not real-time capable. One of the
first steps of nLayers is to perform an initial flow field segmentation. This will also
be utilized in our new approach described in the next section.

3 Moving Object Tracking using Motion and Color

The hand tracking approaches of [HB13] rely on a binary image segmentation.
This image segmentation is achieved using skin-color detection. One algorithm
called tip-tracking is a region-based approach illustrated in Figure3.1 where the
skin-colored pixel are white. It computes the biggest blob of contiguous skin-
colored pixels and then the tip of the hand is determined as follows: First, the
uppermost skin-colored pixel is computed, whose vertical coordinate is the y-
coordinated of the resulting tip position. Second, the mass value of all skin-colored
pixels of the biggest blob with a y-coordinate in a specific range of the maximal
height of the hand (all white pixels behind the green bar) is computed. The hor-
izontal coordinate of this mass value is going to be the x-coordinate of the tip-
tracking result, shown as green dot. Compared to the tracking of the center of the
biggest blob, tip-tracking solves the hand-arm problem. Obviously, tip-tracking
only works when the hand is reaching into the FOV from below. But for the given
case of an HMD, we can assume this to be true, since gestures where the arm in-
tersects the upper margin of the FOV would be completely unnatural. In [HB13]
further methods, like particle filters with different observation and motion mod-
els, were compared to tip-tracking as well as the Camshift [Bra98] and Flocks of
Features [KT04] algorithms.

The new tracking approach presented in the next two sections uses a completely
different segmentation as basis.

3.1 Foreground Segmentation

With only one camera and an inhomogeneous background, it is not possible to per-
fectly segment the hands based on color information [AAHEM09]. But by using
motion information, it is possible to distinguish between different objects in the
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Figure 3.1: Region-based tip-tracking

scene. The motion information utilized in all results shown below is computed by
the Graphics Processing Unit (GPU) version of the optical flow algorithm Dual TV
L1 [ZPB07] implemented in the library OpenCV2. The motion field contains the
movement of each pixel to its position in the next frame.

The new hand tracking approach clusters the motion field. Therefore, k-Means
with k=2 is utilized. One cluster is for the background motion and the other for
the foreground. Affine motion models would be more precise for describing espe-
cially the background motion but, for the sake of simplicity, only a 2D vector is
currently representing each cluster. Of course, this clustering only separates fore-
ground from background correctly, when both, foreground and background, have
a simple structure. Otherwise several motion layers would be needed and merged
to figure out, what is background and what is foreground. For the data set used
below we can assume, that this simple structure is given. When foreground and
background are determined, the difference vector between foreground and back-
ground motion is computed. The first requirement for a foreground object like a
moving hand is a high enough absolute value of this difference vector. Otherwise,
both clusters describe the same background motion. For the computations below
we used a value of

√
10. This means that a foreground motion is detected if the

absolute value of the difference vector of both cluster motions is greater than
√

10.
Additionally, we can fairly estimate that given the resolution of 752x480 pixels
and usual distance of the hand to the camera the minimal size of the hand segment
in pixels must be between 50,000 and 100,000 pixels. If the motion difference and
pixel size requirement are both fulfilled, a hand may be visible in the foreground
cluster.

What happens when a hand is moved into the field of view but hold still at some
point of time t? Accordingly, the hand is not moving and no foreground motion
is visible. In that case, no foreground cluster is estimated. Then, the new tracking
approach assumes that the segmentation of the previous time step t−1 is still valid.

2http://opencv.org/
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In fact, this is the case when the hand is not moved because the hand is still at the
same position.

One important issue after the determination of the foreground segment is its warp-
ing into the present according to the motion field. Since the computed optical flow
describes the motion from the previous frame at time t − 1 to the current frame
at time t, the computed motion field clustering describes the segmentation at time
t − 1. Because of that, the foreground segment must be warped using this flow
field. The result is an approximated foreground segment of the current frame t.

The generated foreground segment can for example yield as segmentation basis
for the tip-tracking algorithm or particle filters mentioned above. In the following
sections we will only consider this foreground segmentation together with the tip-
tracking approach.

3.2 Appearance Change Detection

The described approach works as long as the hand is completely visible. But when
the hand is at the margins of the FOV sometimes only two-thirds of the hand are
visible. Then the segmentation again does not find a foreground motion because
of the requirement that the hand segment must contain a number of pixels in a
certain range. In this case, the current estimation of the segmentation is com-
puted by also using the previous segmentation with additional warping. But at
the image margins another problem occurs: The optical flow is often corrupted at
image margins and may make the segment stay at e.g. the lower margin although
the hand has already left the image. To detect this situation, a color histogram is
created using the RGB color values of the foreground segment. This histogram
is compared to the color histogram of the previous foreground segment by com-
puting the Hellinger distance [Hel09] of both histograms. If this distance value is
above a certain threshold - in the given case 0.3 - then the color distribution has
become too different and the hand is assumed to have left the image. This so called
Appearance Change Detection of the foreground segment prevents from trusting
wrong motion information at the image margins and brings color information into
the game without the need for some calibration procedure before the tracking.

The Appearance Change Detection does not only make sense at image margins,
it could be used as confidence value for the segment tracking. By allowing the
color distributions to vary from frame to frame, illumination changes can be
compensated for.

The following section describes the evaluation framework used in section 5 to
compare different hand tracking approaches.
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4 Evaluation Framework

Our evaluation methodology is based on the metrics for trajectory comparison of
Needham and Boyle [NB03]. Using these makes a thorough evaluation of tracking
results possible, since not only detection rates, like the hit rate, false alarm rate
or precision of the detection results can be compared. Statistical measures as the
mean of the deviations between two trajectories allow for precise conclusions.

4.1 Data sets

Since gesture recognition is the next step after a successful hand tracking, the
current data sets consist of different wiping gestures recorded at 25 fps and a res-
olution of 752x480 pixels. Two persons performed a predetermined sequence of
sixteen gestures under dark and light lighting conditions. Either no or one hand is
visible at each point of time and the sequences of gestures were performed with the
left and the right hand. In total, the benchmark consist of eight videos with more
than 10,000 frames. In 40 % of the frames the hand is visible. During the develop-
ment of different hand tracking methods, it turned out that detecting robustly that
a hand has left the FOV is not trivial. Therefore, it is important to have long peri-
ods in the data sets which show the FOV when the hand has disappeared because
then many false positives are produced if the leaving of the hand is not detected
correctly. This could not be figured out if the video sequences ended directly after
a performed gesture.

4.2 Ground Truth Annotation

The ground truth trajectories for the above described videos were labeled manu-
ally. A person selected the current position of the hand on each frame by estimating
the center of the palm. Since this is somehow subjective, we compared the differ-
ence of different trajectories created by the same person. We measured an average
distance of about seven pixels between corresponding trajectory points. Accord-
ingly, a tracking result of less or about this value can be regarded as excellent. The
average trajectories created by different people could show a higher average offset
depending on the subjective impression what the center of the palm is. Due to the
shifted mean distance this offset can be ignored without negatively affecting the
evaluation.
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4.3 Trajectory Comparison

Methods for trajectory comparison are needed to measure the accuracy of hand
tracking results. The first requirement for a good tracking result is that it was
correctly detected for each frame if a hand was visible or not. Therefore, high true
positive rates, low false alarm rates, a high precision and a high F-measure are to be
achieved. But these detection rates are not enough. Based on the methodology for
trajectory comparison of Needham and Boyle [NB03], we compute furthermore
the mean distance of corresponding trajectory points. But there is a difficulty when
comparing different tracking algorithms. Some of them track the center of the
hand and some the tip [HB13]. Resulting trajectories are therefore almost similar
but shifted by some constant displacement. By compensating for this offset, the
trajectories can be compared again. The mean distance of a ground truth trajectory
and such a shifted tracking result is called shifted mean distance and taken into
account when looking at the accuracy of a tracking result.

4.4 What is a good tracking result?

Finally, it comes to the following question: What is a good tracking result? For
example, it is not important if the hand is already detected when only half of the
fingers are visible. But it is important that the hand is tracked when completely
visible. Similar to the appearing of the hand is the disappearing. Losing the hand,
while it is still completely visible, is bad. But losing it, when it has partly disap-
peared, before it disappears completely, should not be regarded as tracking failure.
Due to this, it turns out that for the described data sets a true positive rate of above
80 % is sufficient, since the frames, in which the hand is only partly visible while
appearing or disappearing, are part of the reference trajectories. The false positive
rate should be as low as possible and the F-measure as harmonic mean of recall
and precision should be as high as possible. Additionally, the shifted mean dis-
tance should be as low as possible, but due to the subjective trajectory annotation
(cf. section 4.2) shifted mean distances of less or about seven pixel per frame can
be seen as excellent and equally good. The best tracking results for the shifted
mean distance, a few of the algorithms reach on single sequences, have never been
below 13 pixels. Even tracks with a shifted mean distance of up to 18 pixels would
subjectively be considered as very good tracking that can be used for recognizing
certain trajectory shapes for gesture recognition.
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5 Evaluation

In the evaluation we take into account the best of our algorithms and test them on
all eight sequences with 10,000 annotated frames:

• Color-Tip-Tracking: Region-based tip-tracking with skin-color segmenta-
tion [HB13]

• Camshift [Bra98]

• Shape-Particle: Particle Filter with std motion and shape observation
model [HB13]

• Flow-Particle: Particle Filter with flow motion and window observation
model [HB13]

• Window-FoF: Flocks-of-Features (FoF) Tracking with window observation
model [HB13]

• MotionSegAppearance: Region-based tip-tracking with motion field seg-
mentation and appearance change detection (cf. section 3)

The detection rates, including the true positive rate (TPR), the false positive rate
(FPR), the precision (PREC) and the F-measure, and additionally the shifted mean
distance averaged over all 10,000 frames are illustrated in table 5.1. All algorithms
except MotionSegAppearance suffer from the problematic skin-color detection.
Although for each of the lighting conditions a specific color model has been used,
the skin color of the hand changes its appearance which is not covered by the
learned model. As a consequence, the particles of the particle filter approaches
cannot concentrate on the hand anymore and the algorithms cannot detect an ap-
peared hand or loose it too often since the true positive rate is below 60 %. Hence,
the particle filter approaches relying solely on skin color fail completely when
based on the skin-color segmentation.

The Color-Tip-Tracking is surprisingly better than the particle filter variants, but
again, the hand blob of contiguous skin-colored pixels often cannot be determined
correctly and no hand is detected. This results in a too poor true positive rate of
only 73 % regarding the notion of a good tracking result described in section 4.4.
Furthermore, the biggest blob often does not contain the hand but parts of the arm
only, what increases the shifted mean distance.

The Flocks of Features variant Window-FoF shows a very good true positive rate
but can only reach this with a very high false positive rate of 23 % and a low
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precision of only 72 %. Additionally, the shifted mean distance averaged over all
true positive frames is way too bad with 64 pixels. This shows that the performed
tracking is not very accurate. When looking at the data, one finds out that often not
the center of the hand is tracked but a part of the arm, and tracking is subjectively
regarded as failure.

The Camshift algorithm reaches a true positive of above 80 % but similar to
Window-FoF has a too high false positive rate of 16 % and a too low precision
of only 76 %.

The new MotionSegAppearance method reaches a very good true positive rate of
94 %. It shows a false positive rate of 8 % which is not optimal. The F-measure
of 91 % is the best of all approaches. The shifted mean distance is too high with
28 pixels but this is due to the fact that the shape of the foreground segmentation
is changing according to the flow. Subjectively seen the track is trembling around
the perfect trajectory. However, this tracking result is reached without any kind of
color calibration and the most simple motion representation for a motion segment
with only a 2D vector. Due to the big potentials for improvements and the already
produced good detection rates, the new tracking approach can be considered as
promising tracking approach.

TPR FPR PREC F1 Shft. dist.
Color-Tip-Tracking 0.73 0.00 0.99 0.84 21 px
Camshift 0.81 0.16 0.76 0.78 26 px
Shape-Particle 0.58 0.00 1.00 0.73 19 px
Flow-Particle 0.57 0.00 1.00 0.73 21 px
Window-FoF 0.93 0.23 0.72 0.81 64 px
MotionSegAppearance 0.94 0.08 0.89 0.91 28 px

Table 5.1: True positive rate (TPR), false positive rate (FPR), precision (PREC),
F-measure and the shifted mean distance (Shft. dist.) results for the complete
benchmark.

6 Conclusion

To sum up, we have shown a new 2D-hand tracking algorithm that does not need
a learned skin-color model to track one hand robustly under varying lighting con-
ditions. Therefore, it clusters the prevalent motion to get the foreground motion
segment which is assumed to contain the hand. This segment is warped to get
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an approximation of the foreground segment at the always current point of time.
To assert the correct detection of a leaving hand despite corrupted optical flow at
image margins, a method named Appearance Change Detection was presented,
which uses a comparison of color distributions to detect, if the object, associated
with the tracked foreground segment, has left the field of view or not. Next steps
are to improve the image segmentation by using more sophisticated segmentation
procedures incorporating motion and color segmentation in parallel. Furthermore,
it is absolutely necessary to use some kind of object recognition method to assert
that the tracked object really is a hand. For this purpose, the benchmark needs
to be enhanced with further sequences containing other moving objects and more
people performing the gestures in front of even more complex backgrounds and
challenging lighting conditions. Real-time capability is another important factor.
Therefore, some parts of the system have to be parallelized on the GPU.
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[KT04] M. Kölsch and M. Turk. Fast 2d hand tracking with flocks of features and multi-cue
integration. In Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ’04.
Conference on, page 158, june 2004.

[MM09] Pranav Mistry and Pattie Maes. Sixthsense: a wearable gestural interface. In ACM
SIGGRAPH ASIA 2009 Sketches, SIGGRAPH ASIA ’09, pages 11:1–11:1, New York,
NY, USA, 2009. ACM.



Motion Field Segmentation and Appearance Change Detection 11

[NB03] Chris J. Needham and Roger D. Boyle. Performance evaluation metrics and statistics
for positional tracker evaluation. In Proceedings of the 3rd international conference on
Computer vision systems, ICVS’03, pages 278–289, Berlin, Heidelberg, 2003. Springer-
Verlag.

[Oik12] I. Oikonomidis. Tracking the articulated motion of two strongly interacting hands. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’12, pages 1862–1869, Washington, DC, USA, 2012. IEEE Computer
Society.

[PR11] V.A. Prisacariu and I. Reid. Robust 3d hand tracking for human computer interac-
tion. In Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE
International Conference on, pages 368 –375, march 2011.

[PVL13] PramodKumar Pisharady, Prahlad Vadakkepat, and AiPoh Loh. Attention based de-
tection and recognition of hand postures against complex backgrounds. International
Journal of Computer Vision, 101:403–419, 2013.

[SSB12] Deqing Sun, E.B. Sudderth, and M.J. Black. Layered segmentation and optical flow
estimation over time. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 1768–1775, 2012.

[WP09] Robert Y. Wang and Jovan Popović. Real-time hand-tracking with a color glove. ACM
Trans. Graph., 28(3):63:1–63:8, July 2009.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical
flow. In Proceedings of the 29th DAGM conference on Pattern recognition, pages 214–
223, Berlin, Heidelberg, 2007. Springer-Verlag.





How to Describe Face Sequences for Fast Person
Recognition
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Technical Report IES-2013-02

Abstract: The evaluation of video material for forensic purposes is a time
intensive and complex work. A common task is to identify or find persons in
video footage. Computer vision based methods can help to reduce the man-
ual effort. However, video databases in forensic applications are often rather
large. This poses harsh requirements with respect to the processing speed
of any automated recognition approach. Specifically, searching for persons
needs to be much faster than real time. An analysis and evaluation of exist-
ing face recognition techniques is performed with respect to this requirement.
Based on this result a promising approach is presented. The key concept is
to use a cascade of the existing techniques and combine them in a way that
the advantages of each one are used. This results in a significant speedup in
processing time and additionally in a slight improvement in the recognition
performance. Using this approach promises to help at the forensic search in
video footage.

1 Introduction

With the increasing availability of video data in all kinds of shape, the interest in
automatic analysis grows. Content-based video search is relevant in a wide area
of applications. Ranging from sorting private holiday videos to professional anal-
ysis of surveillance material. A key interest is the search for known persons in
the video data. As the human face is a discriminative feature for identity, the use
of automated face recognition is useful for this task. The focus of this report is
the forensic analysis of surveillance footage. Computer vision support promises to
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Figure 1.1: Typical images from surveillance video. Containing several chal-
lenges like low resolution, different head poses, motion blur and noise.
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Figure 1.2: Flowchart showing the basic steps of a face recognition system.

speed up investigations which are based on video material. Compared to usual au-
tomated face recognition the main challenges for surveillance videos (see Fig. 1.1
for some sample images) are:

• Unconstrained environment – Head position, illumination and facial acces-
sories may vary from video to video.

• Large database – The database may contain hours or days of video footage.

• Low resolution – Face sizes are typically well below 50 pixels.

In this report, the focus is on the large database while the two other challenges re-
main as side conditions. A research about the processing speed of different existing
approaches is performed, and possibilities to address the problem are discussed.

The typical workflow for a face recognition system is shown in Fig. 1.2. In this
report the first two steps are not considered. We assume that the face detection and
tracking as well as a possible preprocessing is already done. The analysis will con-
centrate on the last two steps. Namely the feature extraction and the comparison of
the extracted features. The wide variety of existing approaches will be discussed
with respect to the main goal: fast recognition.

2 Problem Definition

Usually, in the field of automated face recognition two basic scenarios are known
[PGM11]:
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• Verification / Authentication – A reference identity is claimed and a sample
face is provided. The task is to check if the sample face belongs to the
claimed identity. This task requires a binary answer. A typical scenario is
at border control where the sample face should be compared to a reference
identity given by the passport.

• Identification / Recognition – A sample face is given and the task is to deter-
mine the most likely identity out of a predefined set of identities. This set is
usually represented by a gallery which contains reference data for the face
of each identity. This task requires an integer answer. A typical scenario is
the recognition of a character in a movie.

Usually, automated face recognition compares the sample face to the reference
face and calculates a score which measures the similarity between the faces. In the
identification scenario the identity with the highest score is the result. For the ver-
ification a comparison of the score to a threshold is necessary and the verification
is accepted if the score exceeds this threshold.

For the analysis of the introduced scenario of forensic analysis a few definitions
are necessary. A video will be denoted by V and contains a sequence of F frames
f : V = (f1, ..., fF ). One frame is an image vector of dimension d: f ∈ [0, 1]d. A
collection of B videos is denoted by C = {V1, ..., VB}. Each video V shows the
face of exactly one person. Thus there exists a mapping M : V 7→ id, where id is
one identity in the set of M identities I = {id1, ..., idM}.
If the scenario of forensic analysis must be matched to one of the two previously
defined scenarios, it can be understood as identification task (Fig. 2.1(a)). For
each video in the database C, it must be checked, if it contains the requested
person: M(Vb)

?
= idwanted However, a threshold is necessary to generate the

binary answer for each database video.

A different approach to look at the task of forensic analysis is the way of infor-
mation retrieval. Given a large database of information, in this case video data C,
a specific information should be found by some query information (Fig. 2.1(b)).
Here, the wanted information R are all videos showing the specified identity from
the query: R = {Vb ∈ C|M(Vb) = idwanted}. By defining the problem like this,
a binary decision can be avoided, and the usage of a threshold is obsolete. Instead,
it is sufficient to rate the likelihood for each video in the database that it shows the
specified identity. This results in a sorted list of the database videos with the most
similar ones to the query pattern at the top of the list.

It should be noted, that the perception as information retrieval task is different
from the recognition scenario. In recognition, a gallery G contains a well defined
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1 

(a)

1 

(b)

Figure 2.1: Green boxes represent database videos and the blue box represents a
reference video. (a) Identification performs an identification task for each database
sample video to the reference video. (b) Retrieval poses one search request to the
database with the reference video as search pattern.

and previously built set of data where the identity for each entry is clear. This
means that the mapping M : G → I is known and used to categorize the videos
by identity. For the database C in the presented scenario this is not true. There
might be several videos Vi of one identity idm in the database. But the information
that the Vi belong together does not exist.

Considering the forensic analysis as information retrieval task, the respective per-
formance measures can be used. As measure to rate the ranked result the average
precision is used:

a =
B∑
k=1

p(k) ·∆r(k),

with the precision p(k) at rank k and the difference for the recall ∆r(k) from rank
k − 1 to k: ∆r(k) = r(k) − r(k − 1). Recall r and precision p result from the
amount of true positives tp, false positives fp and false negatives fn up to rank k:

p(k) =
tp(k)

tp(k) + fp(k)
,

r(k) =
tp(k)

tp(k) + fn(k)
.

It is 0 ≤ a ≤ 1 for the average precision a. For a = 1 all relevant videos in the
database, which show the wanted identity, are ranked at the topmost positions. The
lower the relevant matches are ranked, the lower the average precision becomes.
An important feature of the average precision is that it does not just represent the
best match, but the whole ranking. Therefore, a relevant match at rank two in the
list yields a better score than one at rank three. But both contribute to the score.
This procedure fits our scenario of forensic analysis. Usually, the results will be
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1 

(c) (d)

Figure 3.1: Different ways of representing a face: (a) intensity image, (b) in a
subspace, (c) by local features, (d) 3D-model.

inspected by humans at the end. In this case two aspects are relevant. First, it
is not sufficient to sort only one correct match to the top of the list, but as many
as possible. Secondly, it is not a severe problem if a few wrong videos appear
between the correct ones.

Building the mean out of N queries to the database, results in the mean average
precision map:

map =
1

N

N∑
i=1

ai.

3 Face Model

Face recognition for videos can be split into two steps: modeling of the face and
modeling of the temporal sequence. First, in this section the face modeling will be
examined (step 3 in Fig. 1.2). This means to model the single frames fj in a video
V . In the next section the modeling of the sequence V as a collection of frames is
discussed (step 4 in Fig. 1.2).

While there exists a large variety of possibilities to describe objects in images, a
clear amount has established itself in the field of face recognition. The initial step
is a brief discussion of the established approaches. The main concepts to describe
a face in an image [LJ11] are presented in the following list and in Fig. 3.1:

• Intensity image – The intensity image of the face taken by the camera is used
as face descriptor. This was already denoted as f before (Fig. 3.1(a)).
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• Subspace methods – The intensity face image is projected into a pre-
trained face subspace. The well-known Eigenfaces [TP91] and Fisher-
faces [BHK97] approaches work this way. They use a PCA or an LDA
respectively for the projection (Fig. 3.1(b)).

• Local features – The face is divided into several local patches. For each
patch, features like Local Binary Patterns or Gabor features are extracted
[ZJN07]. The combination of the patch features yields the face model
(Fig. 3.1(c)).

• Model based – The face is represented by a 3D-model. An individual face
model can be generated out of a 2D-image [BV03] (Fig. 3.1(d)).

The resulting model for a frame f will be denoted as f̃ . Approximately, the com-
plexity of the approaches increases from the top to the bottom of the list. With
increasing complexity the necessary processing time increases as well. The pro-
cessing time ranges from practically none for the intensity image, because f̃ = f ,
to several seconds for the generation of an individual 3D-model for a specific face.

4 Sequence Model

Modeling a sequence of face images allows the step from still image face recog-
nition to face recognition in video. Obviously, a sequence Ṽ of face models f̃j
contains more information than a single model, provided that the same image ac-
quisition system is used. However, usually video data is of much worse quality
than still image data. The loss of quality for video data mostly comes from lower
resolution and a less constrained environment. Common techniques to create a
sequence model V are:

• Best shot – The quality of each frame f̃j in the sequence is rated with respect
to the face recognition task. The frame which seems suitable best for the
recognition is selected: V = f̃best. This way, the task is reduced to still
image face recognition.

• Set of frames – The frames of one video are interpreted as a set of vectors:
V = {f̃j |j = 1..F}. Thus, comparing two videos means to compare two
sets of vectors. An analysis for the most basic similarity measures was per-
formed in [CMH+11], showing that the Nearest Neighbor Distance seems
to be the best.
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• Linear subspace – All frames of a sequence together build a subspace in the
image space. This subspace could be modeled, for example, by the affine or
convex hull [CT10]. The Mutual Subspace Method (MSM) [YFM98, FY05]
is the most basic one of the approaches. The similarity between subspaces
in this case is measured by the principle angle between them.

• Manifold – Instead of assuming a linear subspace, the sequence is modeled
as a nonlinear manifold. A big variety of manifold models and comparison
approaches have been tested: e.g. LLE [HP09], Isomap [Yan02] or kernel
based methods [CT10, SM11]. However, their high flexibility brings the risk
of overfitting the data.

• Probabilistic – Two approaches fall in this category: distribution based and
test based. In the first, a distribution of the frames in some space is de-
termined and the similarity between videos is rated by standard distribution
distances [ZC06]. The second possibility consists of drawing sample frames
from the videos to test the identity hypothesis [DLZ+13].

A short complexity analysis. Two steps need computation: model generation and
model comparison. Model generation is the less important part as this needs to be
done only once for a video database C. However, there is typically more than one
search request to the database C. Thus, comparisons should have higher priority
with respect to computation time. A simple way to estimate the cost for one com-
parison is the dimension D of the sequence model V . Let d̃ denote the dimension
of one frame model f̃j . Then, the dimension D for the sequence model is usually
the lowest for the best shot approach D = d̃. The dimension D is the highest
for the set of frames and the manifold approaches D ≥ F · d̃, where at least all
frames are part of the model. The dimensionD of the other approaches is typically
somewhere in between.

5 Possible improvements

Typically, set of frames based sequence modeling yields the best recognition re-
sults. But it is quite slow. Two possibilities are presented to reduce the dimension
of the sequence model for set of frames based approaches. The first one is to
perform a vector quantization. Practically this is done by understanding the se-
quence Ṽ as a set and clustering it. For each cluster, one representative vector
is kept. However, this method looses information by omitting data from further
processing. For this reason, the second approach is a content based reduction of
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the sequence model dimension D [Her13]. Similar frames are found based on the
head pose and a fused representation of them is kept in the sequence model.

Another improvement to reduce the computation time is inspired by the most well-
known application for a cascade, the Viola-Jones object detector [VJ01]. The ap-
proaches are comined in a cascade. Starting with the fastest method of sufficient
performance in the first stage of the cascade and ending with the slowest and best-
performing method n the last stage. Each stage in the cascade can either eliminate
complete videos or some frames in each video. The remaining data is processed
by the next stage. Formally speaking, let C0 denote the initial database of videos
V 0
b . A stage s with input

Cs−1 = {V s−1
1 , ... , V s−1

Bs−1}

and

V s−1
b = (fs−1

1 , ... , fs−1

F s−1
b

)

has two processing options. The first is to reduce the number of videos, leading to
the output

Cs = {V s−1
i | i ∈ Nv, Nv ⊂ {1 , ... , Bs−1}}.

The second possibility is to identify and remove irrelevant frames from a sequence
V s−1
b . Thus, the output is

V sb = (fs−1
i | i ∈ Nf , Nf ⊂ {1 , ... , F s−1

b }).

Of course, a stage s can combine both processing options. Keeping track of the
removed videos in each stage allows to create a full ranked list of the videos in
the database with respect to the query. The difficulty in building a good cascade
is to choose the right number of stages with their corresponding parameters. One
possibility is to manually define performance requirements for each stage and then
search for the approach that best fulfills them. This is mentioned in the original
Viola-Jones detector design. There are attempts to automatize the design of a
cascade for the binary classification case [SRB04]. However, they can not be
transfered in a simple way to the information retrieval case and it is unclear if this
is possible at all. This leaves the manual design as the only design option at the
moment.
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Figure 6.1: Comparison of different approaches. Basic approaches are blue, the
ones using dimension reduction are green and the cascade approach is brown. The
’Q’ denotes simple vector quantization and ’Pose’ the content based dimension
reduction. (a) mean average precision map, (b) average query time t and (c)
comparison of map and t. Pay attention to the logarithmic scale of the time axis.

6 Evaluation

For evaluation, the combined Honda/UCSD dataset [LHYK03, LHYK05] is used.
Face images are downscaled to 32 × 32 pixels. The dataset contains 92 videos of
35 persons. The evaluation was done using the leave-one-out strategy. This means
to use one video as query and the remaining 91 as database. The mean average
precision map is based on all 92 possible queries. The measured query time t
consists of the actual time necessary for the database search ts and the necessary
time to prepare the query video tp: t = tp + ts. It contains the whole time which
is needed for one search in the database. In real world scenarios, the query video
is usually not in the database and therefore not preprocessed. Thus, the time tp to
build the sequence model for the query video needs to be included.
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Fig. 6.1 shows the measured results. As basic approaches, MSM with intensity
images (MSM), nearest neighbor with intensity images (NN) and nearest neigh-
bor with local binary patterns (LBP) were chosen. The three methods show the
expected behavior: MSM being the fastest, but worst, LBP being the slowest, but
best and NN in the middle. As can be seen in Fig. 6.1(c) all three have the right to
exist because higher computation time correlates with higher recognition perfor-
mance. Which one should be used depends on the processing time limits. Better
approaches compared to the basic ones, would be below the dashed line, worse
ones above. The better an approach is, reaching a high map in a small time t, the
more to the lower right corner of the diagram it would be located.

Improving the set of frames based nearest neighbor method by quantization makes
LBP faster (LBP Q), but not NN (NN Q). This is because the quantization time tp
of the query video is higher than the whole query time t for the pure NN. So NN Q
is a useless approach. However, LBP Q is located between NN and LBP, both in
terms ofmap and t. The head pose based dimension reduction of LBP (LBP Pose)
yields better search results than LBP Q, but needs a little more processing time. At
the end, it is located between LBP Q and pure LBP.

Finally, a cascade of the three basic approaches is considered. It uses MSM in the
first, NN in the second and LBP in the last stage. The optimization of the cascade
results in the following process: MSM sorts out about 30 percent of the videos,
NN sorts out about 90 percent of the frames in each of the remaining videos and
LBP is performed on the rest. This means that the LBP stage only has to process
about 7 percent of the original data. The results show that the cascade approach
renders the LBP Pose and the pure LBP approach useless as it is faster and yields
a better map than both.

It should be noted, that all presented methods allow querying faster than real time.
Each video in the dataset lasts about 10 seconds, making a total playtime of about
900 seconds. Even the slowest approach needs less than 400 seconds for one query.

7 Conclusion

A thorough analysis of basic face recognition techniques was given with respect
to the scenario of forensic analysis. The mutual subspace method proved to be the
fastest basic solution showing an acceptable performance. The best basic solution
with respect to recognition performance uses the Local Binary Patterns. Several
improvements to reduce the processing time were presented and evaluated. The
most promising solution seems to be a cascade of basic face recognition tech-
niques. The manual design of the cascade might be a drawback but also allows for
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situation specific adaptation. Altogether, the cascade achieved the highest recog-
nition performance on the evaluated dataset while needing less computation time
than most of the other approaches.
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Abstract:
In many fields, active research is currently focused on quantification and

simulation of model uncertainties. The latter are often described probabilis-
tically, allowing for the accurate and detailed answers but necessitating ex-
tensive computations. Recently, the generalized polynomial chaos expansion
(gPCE) has been proposed as an efficient approach to stochastic computing.
In this report, we introduce the mathematical background of gPCE applied to
a system described with partial differential equations (PDEs). The potential
further benefits of gPCE are discussed and illustrated with synthetic examples.

1 Introduction

Nowadays the computer simulation based on mathematical models is commonly
applied in every branch of natural science and engineering disciplines. These
mathematical models are derived from physical laws in form of mathematical
equations. However, due to the lack of knowledge and the inherent variability,
there are always some deviations between the real measurement and the predicted
value from a model. These can be considered as uncertainties in the model. The
simulation of a mathematical model under considering the model uncertainties is
an active research topic in many fields.

It is discussed in [Mat07] that the uncertainties can be described or quantified
using different mathematical theories, such as fuzzy theory, evidence theory or
stochastic theory. Expressing the uncertainties with a stochastic approach allows
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the mathematically most detailed description, hence it is widely applied in many
areas. Nevertheless the intensive computation of a stochastic problem is still the
major disadvantage of this approach.

In the last few years the generalized polynomial chaos expansion (gPC) has been
proposed as an efficient methodology in the computing ot the uncertainties quan-
tification. It is an extension of the original polynomial chaos expansion (PCE)
proposed by Wiener in 1938 [Wie38]. The original Wiener’s polynomial chaos
employs Hermite polynomial to represent Gaussian random processes. The gPC
extends the PCE towards some parametric statistical non-Gaussian distributions,
based on the Askey scheme of orthogonal polynomials.

The adoptions of gPC in many stochastic problems were examined, for example,
in the uncertainties propagation in PDE [XK04], in the calculation of Sobol’s in-
dices for the sensitivity analysis [CLMM09],[Sud08] and in Bayesian inference in
inverse problem [Xiu10]. It was shown that the computational cost of gPC is, in
many cases, lower compared to classical Monte Carlo methods.

In this technical report, we introduce the gPC and its application to the uncertainty
quantification problem, both forward and inverse, especially for distributed param-
eter system. This report is organized as follows: In the section 2, the mathematical
background for the gPC is described. The section 3 illustrates the application of
gPC to the uncertainty quantification problem by means of examples. Conclusions
and the directions of future works are presented in the section 4.

2 Uncertainty quantification with gPC

In 1938, Norbert Wiener introduced the Polynomial Chaos to represent the Gaus-
sian processes by using a series of Hermite polynomials [Wie38]. Ghanem and
Spanos applied the original PCE to quantify the uncertainty in solid mechanics
systems by employing the PCE to the Finite-Element discretization [GS03]. Xiu
and Karniadakis extended the PCE to some parametric non-Gaussian random pro-
cesses [XK02] and named it generalized Polynomial Chaos. This section will in-
troduce the basic concept of gPC and its application to the uncertainty propagation
task.

2.1 Generalized Polynomial Chaos expansion

Consider an arbitrary real-valued random variable Y = Y (ω) according to some
probability space (Ω,F ,P), with sample space Ω, σ-algebra F , and probability
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measure P . In addition, it is assumed that Y (ω) is square-integrable, i.e., y ∈
L2(Ω) =

{
y : E(y2) <∞

}
, where

E (Y ) =

∫
Ω

Y dP

denotes the expectation of Y . Let ξ(ω) be another random variable with known
probability distribution p(ξ). In the Polynomial Chaos (PC) framework, the ran-
dom variable Y is represented as a function of the random variable with known
distribution ξ as:

Y (ω) = f(ξ(ω)) (2.1)

Then the function f(ξ) is expanded in a polynomial series of the random variable.
The original polynomial chaos expansion (PCE), introduced by Norbert Wiener in
[Wie38], decomposes the random variable Y by using Hermite polynomial series
of Gaussian random variable as orthogonal basis.

Y (ω) = f(ζ(ω)) =
∞∑
k=0

akHk(ζ(ω))

whereHk(ζ(ω)) denotes the Hermite polynomial of order k in term of normalized
Gaussian random variables ζ(ω). This expansion can be extended to the multivari-
ate case. Given ζ(ω) = (ζ1, ζ2, . . . , ζd) a set of centered, normalized and mutu-
ally orthogonal Gaussian random variables, the PC expansion of random variable
Y in the multivariate case yields:

Y (ω) = a0H0 +
∞∑
i1=1

ai1H1 (ζi1(ω)) +
∞∑
i1=1

i1∑
i2=1

ai1i2H2 (ζi1(ω), ζi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3 (ζi1(ω), ζi2(ω), ζi3(ω)) + . . .

Cameron and Martin proved in [CM47] that the expression is convergent in theL2-
sense. Being a spectral polynomial expansion this expansion has an exponential
convergent rate. However for non-Gaussian random variables, the expansion may
exhibit low convergence rates and thus require a large number of truncation order.
Therefore Xiu and Karniadakis [XK02] employed the Askey-scheme to general-
ize the original Wiener’s PCE to some common non-Gaussian measure, which
replaces the Hermite polynomial {Hk} by other polynomials, denoted by {Gk}.
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To distinguish between the original Hermite Chaos we use the notation ξ(ω) =
(ξ1, ξ2, . . . , ξd) for non-Gaussian random variables, with a known joint density
p(ξ) =

∏
pi(ξi). The Table 2.1 shows the correspondences between the distribu-

tion of the random variable and orthogonal polynomial family. The multivariate
PC can be generalized to:

Y (ω) = a0G0 +
∞∑
i1=1

ai1G1 (ξi1(ω)) +
∞∑
i1=1

i1∑
i2=1

ai1i2G2 (ξi1(ω), ξi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3G3 (ξi1(ω), ξi2(ω), ξi3(ω)) + . . .

In order to simplify the notation, we define a relation between functional G() and
the new functional Ψ() by using multi-index notation i = (i1, i2, . . . , id) with
|i| = ∑d

α=1 iα and rewrite the expansion as

Y (ω) =
∞∑
|i|=0

βiΨi(ξ1, ξ2, . . . , ξd) (2.2)

Although the multi-index formulation is very clear, the single index is preferable
to express the gPC expansion. The multi-index can be converted to the single index
version, to do this the lexicographic ordering is the most widely adopted method.
Using single index k the equation (2.2) is rewritten as

Distribution gPC basis polynomials  Support

Continuous Gaussian Hermite (‐,)

Gamma Laguerre [0, )

Beta Jacobi [a,b]

Uniform Legendre [a,b]

Discrete Poisson Chalier {0,1,2,…}

Binomial Krawtchouk {0,1,2,…,N}

Negative binomial Meixner {0,1,2,…}

Hypergeometric Hanh {0,1,2,…,N}

	Ψ

Table 2.1: Askey-Chaos corresponding to certain types of probability distributions
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Y (ω) =
∞∑
k=0

βkΨk(ξ1, ξ2, . . . , ξd)

where βk are the deterministic expansion coefficients, and Ψk are polynomials,
orthogonal in the L2-space with regard to the inner product.

〈Ψi,Ψj〉 ≡
∫

Ψj(ξ)Ψi(ξ)p(ξ)dξ = δij 〈Ψi,Ψi〉

For practical reasons, this expansion is normally truncated to finite dimensions.
Denoting N the order of the gPC expansion and {φi}Ni=0 the one-dimensional
orthogonal polynomials degree up to order N from the Askey scheme, the multi-
dimensional gPC basis Ψi is constructed by tensor products of the corresponding
one-dimensional polynomials

Ψi(ξ1, ξ2, . . . , ξd) = φi1(ξ1) · · ·φid(ξd), 0 ≤ |i| ≤ N

The finite dimensional decomposition of Y (ω) in the single-index form is

Y (ω) ≈
P∑
k=0

βkΨk(ξ(ω))

where the basis dimension P is related to the dimension of the multivariate random
variable d and the polynomial order N by the relation P + 1 = (N+d)!

N !d! .

2.2 Uncertainty Propagation

As shown in our previous works [JaBB11] and [Ja12], we focus on the uncertainty
quantification of distributed parameter systems. Considering a distributed param-
eter system with the model y = f(x, t|θ), where x denotes the spatial coordinate,
t denotes time and θ is vector of parameters in the model. The uncertainties of the
model are described by representing θ as random variable. For simplification θ is
expressed by using a finite set of d independent random variables ξ = (ξ1, . . . , ξd)
with a given joint probability density p (ξ). Hence the output y is a functional of
the random variable input and can be written in the form

y = f(x, t, ξ) (2.3)

The uncertainty propagation is the studying of the response of the model outputs
from the given probability distribution of the inputs. The targets of the uncertainty
propagation analysis are normally:
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1. Evaluating the reliability of the outputs.

2. Evaluating the statistical value as low-order moments of the outputs.

3. Assessing the complete probability distribution of the outputs.

Many probabilistic approaches are proposed to resolve these issues. For instance,
most probable point-based methods such as first-order reliability method (FORM)
or second-order reliability method (SORM) are used to evaluate the reliability. The
simulation-based methods such as Monte-Carlo are generally adopted for the sec-
ond and the third issues. Usually the calculation of the model outputs f(x, t, ξ)
for all samples from the distribution p(ξ) can only be achieved with high com-
putational effort. The PCE offers an efficient way to approximate the probability
distribution and the moments of the outputs.

Formulation (2.3) is identical to equation (2.1) and therefore can be expanded with
the PCE in form

y =

∞∑
k=0

βk(x, t)Ψk(ξ(ω)) ≈
P∑
k=0

βk(x, t)Ψk(ξ(ω)) = yP (2.4)

The advantage of PCE is the separation between the deterministic space and the
stochastic space. The probability distribution p(Y ) is approximated by running
the Monte Carlo with equation (2.4) as surrogate model. The PC model needs less
effort than complete model. The statistical moments such as mean and variance
are immediately calculated from gPC coefficients as shown in equation (2.5) and
(2.6).

E (y) = E

( ∞∑
k=0

βkΨk(ξ(ω))

)
(2.5)

=
∞∑
k=0

βkE (Ψk(ξ(ω)) · 1)

=

∞∑
k=0

βkE (Ψk(ξ(ω)) ·Ψ0)

ȳ = β0
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σ2 = E
[
(y(ξ)− ȳ)

2
]
≈ E

[
(yP (ξ)− ȳ)

2
]

(2.6)

= E

[(
P∑
k=0

βkΨk(ξ)− β0

)(
P∑
k=0

βkΨk(ξ)− β0

)]

= E

[(
P∑
k=1

βkΨk(ξ)

)(
P∑
k=1

βkΨk(ξ)

)]

=

P∑
k=1

P∑
l=1

βkβl E [Ψk(ξ) ·Ψl(ξ)]

σ2 ≈
P∑
k=1

β2
k ‖Ψk‖2

2.3 Determination of PC coefficients

Since the gPC coefficients βk characterize the process Y , we thus need the pro-
cedure to determine the gPC coefficients. In the community, three important ap-
proaches are proposed for the determination of the gPC coefficients, which are
classified in an intrusive and a non-intrusive method. These three approaches are
Galerkin projection, least square approximation and non-intrusive spectral projec-
tion (NISP). For the distributed parameter system, model (2.3) is generally de-
scribed with differential equations governing the evolution. Solving the system
of PDE with Finite Element method, formulation of equation (2.3) in the implicit
form is preferable.

M (y(x, t), ξ) = 0 (2.7)

2.3.1 Galerkin Projection

Substituting the PCE expression with truncated order P (eq. (2.4)) to y in equa-
tion (2.7), the model equation is not satisfied anymore, but yields a residual. The
residual has to be orthogonal to the space of expansion basis functions. It yields:〈

M
(

P∑
k=0

βk(x, t)Ψk, ξ

)
,Ψk

〉
= 0, k = 0, . . . , P
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The Galerkin projection lead to a set of P + 1 coupled problems. It usually re-
quires modification of the existing numerical code. If the model is complex, the
Galerkin procedure can be difficult to implement and also not practical in general.
To overcome the difficulties, in practice non-intrusive method (sometimes called
collocation method as well) is applied more.

2.3.2 Least square approximation method

The gPC coefficients can be estimated by using regression method. Denoting{
ξ(i)
}

a sample set of the random variables and y =
{
y(i)
}

the corresponding set
of model output, so that it follows:

M
(
y(i), ξ(i)

)
= 0, ∀i

Let us denote β = (β0, . . . , βP )T the vector of sought PC coefficients in the trun-

cated expansion of the output y. Based on the sample set
{
ξ(i)
}n
i=1

the optimal

approximation β̂ of β can be obtained by solving the least squares problem

β̂ = arg min
β

n∑
i=1

(
y(i) −

P∑
k=0

βkΨk(ξ(i))

)2

(2.8)

The well-known solution of the least square problem (2.8) is

β̂ =
(
ZTZ

)−1
ZTy,

where

Z =


Ψ0(ξ(1)) Ψ1(ξ(1)) · · · ΨP (ξ(1))

Ψ0(ξ(2)) Ψ1(ξ(2)) · · · ΨP (ξ(2))
...

...
. . .

...
Ψ0(ξ(n)) Ψ1(ξ(n)) · · · ΨP (ξ(n))

 .

The sample set can be constructed by sample random sampling, Latin hypercube
sampling etc. The methods from statistical learning are also applied to avoid the
overfitting. For the d-dimensional multivariate random variable, an empirical rule
for the optimal number of regression points is n = P · (d− 1) [Sud08].
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2.3.3 Non-intrusive spectral projection (NISP)

On the contrary of the projection the residual to governing equation as Galerkin
projection, the non-intrusive spectral projection (NISP) exploits the orthogonal-
ity of the gPC basis by projection to sampled model output, by taking the inner
product of the output PC expansion with orthogonal polynomial Ψk

〈y(ξ),Ψk〉 =

〈
P∑
k=0

βk(x, t)Ψk(ξ),Ψk(ξ)

〉
,

where the definition of inner product is:

〈f(ξ), g(ξ)〉 =

∫
Ωd
f(ξ)g(ξ)p(ξ)dξ.

Using the orthogonality property, it yields

βk =
〈y(ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉 =

〈y(ξ),Ψk(ξ)〉
‖Ψk(ξ)‖2

.

Thanks to the polynomial character of the Ψk, the inner product 〈Ψk(ξ),Ψk(ξ)〉 =

‖Ψk(ξ)‖2 can be evaluated exactly. The determination of the PC coefficients is
also the evaluation of d−dimensional integrals:

Ik ≡
∫

Ωd
y(ξ)Ψk(ξ)p(ξ)dξ (2.9)

for k = 0 . . . k, which is usually computed numerically. The numerical integration
is the approximation of the equation (2.9) and has a generic form:

Ik ≈
n∑
i=1

y(ξ(i))Ψk(ξ(i))w(i)

where ξ(i), w(i) are the integration points and their corresponding weight, while n
is the number of integration points. Numerical multi-dimensional integration can
be found in many fields and various methods have been proposed. The integration
methods possess specific advantages and disadvantages to be taken into account
when selecting one of them. Some of the common integration methods are for
example Monte-Carlo Sampling, Quasi-Monte-Carlo Sampling, Tensorization of
one-dimensional quadrature formula and Cubature formula based on Smolyak’s
formula.
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3 Numerical example

To illustrate the potential of gPC in the uncertainty quantification task, we select
examples from Xiu’s papers [XK04] and [MX09]. For studying the uncertainty
quantification of distributed parameters system, we consider the initial boundary
value problem (IBVP) of viscous Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−1, 1) (3.1)

u(−1) = 1 + δ, u(1) = −1

where u is the solution of the field, δ > 0 is a small perturbation to the left bound-
ary condition (x = −1) and ν > 0 is the viscosity. The variables of interest are
the stationary solution at some specific point xs at steady state.

In this technical report, two examples are presented. At first we show the com-
putation of the forward uncertainty propagation with gPC for system with dis-
tributed parameters. Then we demonstrate the gPC approach to Bayesian inference
in inverse problem to estimate the parameter.

3.1 Uncertainty propagation of PDE system

Xiu has shown the application of gPC to this viscous Burger’s equation in his
work [XK04]. Instead of calling a computational expensive FEM-model, the gPC
is used as surrogate model to approximate the probability distribution. Using the
gPC, it only needs to calculate the value of the polynomials, which need less com-
putation compared to computationally expensive FEM-model. The main compu-
tational cost of the gPC is the determination of the gPC coefficients. In [XK04]
the intrusive Galerkin projection method is used to compute the gPC coefficient
(see subsection 2.3.1). The gPC coefficients in this technical report are determined
using the non-intrusive spectral projection method(see subsection 2.3.3).

The computation of the integration (eq. (2.9)) is done by means of the quadra-
ture integration. The integration points and their corresponding weights depend
on the various quadrature rules. The quadrature formula is specified by the prob-
ability distribution p(ξ). Table 3.1 shows the quadrature formula corresponding
to the certain types of probability distributions. For univariate random variable as
in this example the normal quadrature is sufficed. But in case of multivariate ran-
dom variable, the sparse-grid quadrature formulation is implemented to reduce the
computational cost. More information about using sparse-grid in integration can
be found in [NR96].
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Distribution 𝑝 𝜉  Domain  Ω Weight Quadrature 

Uniform [-1,1] 1 
Gauss-Legendre or 
Clenshaw-Curtis 

Gaussian (-,) 𝑒
−

𝑥−𝛼 2

𝛽2  
Gauss- Hermite 

Gamma [0,) 𝑒−𝛼𝑥 Gauss-Laguerre 

Beta [-1,1] 1 − 𝑥 𝛼 1 + 𝑥 𝛽 Gauss-Jacobi 

Table 3.1: Quadrature formula corresponding to certain types of probability
distributions

We study the propagation of the perturbation δ at the left boundary in the viscous
Burger’s equation. The perturbation is considered as a random variable with the
given the probability density function p(δ), which is assumed to be a uniform
distribution p(δ) = U(0, 0.1). In this subsection we consider the solutions at the
points xs ∈ {0.6, 0.7, 0.8, 0.9} as the outputs of the system.

The probability density functions of the outputs are generated from Monte-Carlo
simulation. For each sampling of δ from U(0, 0.1), the IBVP (3.1) is solved by
Finite Element Method. Setting ν = 0.05, the surface plot of the PDF of the
solutions via Monte-Carlo is illustrated in the Figure 3.1(a) and the probability
density functions of the solutions at x = 0.6, 0.7, 0.8 and 0.9 are shown in the
figure 3.1(b).

(a) Surface plot of PDF (b) PDF of solutions at
x ∈ {0.6, 0.7, 0.8, 0.9}

Figure 3.1: Stochastic solutions of viscous Burger’s Equation by Monte Carlo
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Figure 3.2: Probability density function at various locations with gPC order 4
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Figure 3.3: Probability density function at various location with gPC order 8
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For the uniform distribution, the Legendre polynomial is used as orthogonal poly-
nomial (see table 2.1) and the Gauss-Legendre quadrature formula is applied (see
table 3.1) for integrating the equation (2.9). The approximation of the probability
distributions for different orders of truncation of gPC, N = 4 and N = 8, are
shown in Figure 3.2 and 3.3 respectively. For comparison the red lines indicate the
probability densities calculated from the full model.

It is shown, that the gPC can approximate the PDF of the solutions at the points
x = 0.8 and 0.9 very well. It is also obvious, that the gPC with high truncated
order offer the better approximations. But it also shows the stochastic Gibbs phe-
nomenon at the points x = 0.6 and 0.7 where numerical oscillations occur and
they do not disappear as the truncated order increased. This numerical artifact
arises from using globally smooth polynomial basis function to approximate a dis-
continuous function. More discussion about Gibbs phenomenon can be found in
[GS97].

Despite the numerical artifacts, the gPC approch still has an advantage of compu-
tational effort. The full model had to be calculated only at some quadrature points
to build the gPC coefficients, compared to Monte Carlo method that the full model
had to be computed for all sample points. In this example, the gPC approach took
time about 120 s compared to Monte Carlo simulation spending about 4 hours for
1000 sampling points.

3.2 gPC Approach to Bayesian Inference in Inverse Problem

In science and engineering the model parameters are commonly estimated from a
given limited number of observations. Such a problem is called inverse problem,
and there exist various methods for the inverse problem. The Bayesian approach to
the inverse problem provides a quantitative assessment of uncertainty in the inverse
solution simultaneously. Despite of many advantages, the Bayesian approach to
inverse problem normally requires tremendous computational efforts. The gPC
can be an effective tool to reduce the computation of the Bayesian approach as
presented in [MX09].

We use our implementation to solve the example from the paper with some mod-
ification. In the last subsection, we show the application of gPC to compute the
PDF of u by giving PDF of δ. For the inverse problem, our example is formulated
as:

Given noisy observations yi of the steady-state value of the solution at some
specific point u(xs), what is the initial perturbation δ at the left boundary ?
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The noisy observations are modeled as additive measurement noise:

yi = u(xs) + ei, i = 1, . . . , no

In the Bayesian setting, we seek the posterior density of δ condition on the
observations y. The Bayes’ rule has the form

πpost(δ|y) =
π(y|δ)πpr(δ)∫
π(y|δ)πpr(δ)dδ

,

where the Likelihood is

π(y|δ) =

no∏
i=1

πe (yi − ym(δ)) .

In this example, the measurement noise is assumed to be Gaussian, ei ∼ N (0, σ2),
the likelihood for Gaussian noise is formulated as:

π(y|δ) =

no∏
i=1

exp

(
− 1

2σ2
‖yi − ym(δ)‖2

)
.

In common ym(δ) have to be computed with a full model such as FEM model,
which needs a huge effort for the computation of Bayesian approach. The gPC can
be adopt as surrogate model to approximate the full model as

ym(δ) ≈ ỹm(δ) =
P∑
k=0

βkΨk(δ).

Therefore, the approximation of the likelihood is

π(y|δ) =

no∏
i=1

exp

− 1

2σ2

∥∥∥∥∥yi −
P∑
k=0

βkΨk(δ)

∥∥∥∥∥
2
 .

All parameters are exact the same as the example from the last subsection, the ob-
servations, the solution of the forward model for δ = 0.05 and the observations at
x = 0.8 with σ = 0.05, are shown in the figure 3.4(a). Assuming the prior distri-
bution to be uniform πpr(δ) = U(0, 0.1), the gPC-approximation of the posterior
distribution of δ are presented in Figure 3.4(b). For comparison, the exact poste-
rior density is also calculated using FEM-model. The resulting densities illustrate
that the approximated posterior distribution with gPC order 4 is slightly different
from the exact posterior distribution with the full model. The approximation of
gPC at truncated order 8 is hardly distinguishable from the exact posterior density.
This can imply the convergence of the gPC-based Bayesian algorithm. More in-
formation about the convergence and the proof in the sense of Kullback-Leibler
divergence can be found in [MX09].
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(a) Solution of forward model δ = 0.05
and the observations at x = 0.8

(b) Posterior probability density of δ
conditioned on observations

Figure 3.4: Result of gPC approach for Bayesian inference

4 Conclusion

The simulation of a mathematical model under considering the model uncertain-
ties offers more information for model users. The stochastic approach to quantify
the uncertainties is a powerful tool to analyze the system. However, solving the
stochastic problems requires tremendous computational effort. The generalized
polynomial chaos (gPC) expansion is proposed as an effective methodology to
overcome this difficulty. In this technical report the mathematical foundations for
gPC are introduced. The applications of the forward as well as inverse uncertainty
quantification are discussed by means of numerical examples. It is also shown
that the gPC can be used as surrogate model to approximate the full model, which
causes a reduction of computation time.

Nevertheless many studys of gPC showed the application only to academic exam-
les. Moreover the application of gPC is limited to some parametric probability
density function. Recently the polynomial chaos received a data-driven general-
ization under the name arbitrary polynomial chaos (aPC) [ON12]. The aPC gener-
alizes the polynomial chaos techniques towards arbitrary probability distributions
from the data set. Applying the gPC to real practical cases and using the aPC to
quantify the uncertainty will be the direction of our future research topic.
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Abstract: With the invention of the deflectometry, a method for defect de-
tection and classification on specular surface was presented. Even though
several improvements took place in this field since then, automatic classifi-
cation of data gained by deflectometry method is still a challenge in image
processing. An idea based on wavelet filter banks to classify deflectometry
measuring data is presented in this paper. The advantage of wavelets is their
ability to analyze multi-resolution signals, which is useful for detecting de-
fect in various sizes. Different from other works based on wavelets method
for specular surface presented before, the wavelet filter banks presented here
are optimized for each defect class to obtain good features for classification.
Besides the new optimized wavelet filter bank, the classification possibility
of standard wavelet families is also regarded in this paper. For classification
purposes a classifier based on Bayes’ theorem is applied.

1 Introduction

In recent years, deflectometry has become more and more important in the image
processing, since it was first introduced in the 1980s [KL81]. This area remains
however object of many recent researches, for example in [BHLO12], [RKJ11],
[KS08]. One of the topics is to classify correctly a defect despite of its scales. The
classification should therefore be performed by the multi-resolution analysis of
the deflectometry measuring data. The wavelet analysis would be an appropriate
method for such a mission owing to its ability to decompose signals in different
scales. There are several methods using wavelets for evaluating specular surfaces
introduced before. Ghorai et al. [GMGD12] used several standard wavelet families
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to extract features on specular surface. Wavelets was also used to smooth images
from specular surfaces as proposed in [ZDL+11]. In this work, we propose a novel
approach, where the wavelet filter bank is directly optimized on the defect obtained
by deflectometry measurement.
The paper is organized as follows: in Section 2 theory of wavelets is introduced.
In Section 3 and 4 methods for optimizing M -channel biorthogonal wavelet filter
bank together with the application of standard wavelet families are presented. A
conclusion as well as an outlook for further work is made in the last Section.

2 Wavelets - An Introduction

A signal s can be decomposed and later perfectly reconstructed by an orthogo-
nal basis, where the two vectors {ϕ2n, ϕ2n+1} of the basis are orthogonal to each
other as for example in Figure 2.1. ϕ2n and ϕ2n+1 must however not be always or-
thogonal, like in Figure 2.2. In this case, a perfect reconstruction from decomposed
parts of s can only take place, if there exists another basis {ϕ̃2n, ϕ̃2n+1}, with
(ϕ̃2n ⊥ ϕ2n+1) as well as (ϕ̃2n+1 ⊥ ϕ2n), which together are called biorthogonal
basis. ����

��
Figure 2.1: Orthogonal Basis

����
��

	
��
	


Figure 2.2: Biorthogonal Basis

A function Ψ(t) called mother wavelet analyses a time-continuous signal f(t) ∈
L2(R) as follows:

dab =

∞∫
−∞

f(t)Ψ∗ab (t)dt with a ∈ R+, b ∈ R,

where
Ψa
b (t) =

1√
a

Ψ(
t− b
a

).
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The function Ψ(t) is shrunk in case a < 1 and stretched for a > 1. a and b are
thereby called as dilation- and translation-factor respectively, while dab are anal-
ysis coefficients in relation to a and b. Because an analysis with all combinations
of {a ∈ R+} and {b ∈ R} is highly redundant, the dyadic wavelet transfor-
mation was introduced with {a = 2j , b = k.2j(j, k ∈ Z)}. The dilation and
transformation of Ψ(t) become in this case:

Ψj
k(t) =

1√
2j

Ψ(
t

2j
− k).

A scaling function Φ(t) builds together with the wavelet function Ψ(t) a vector
space, where a multi-resolution analysis of a function f(t) is possible. By increas-
ing the scale j, more details of f should be gained. The idea here is to project a
vector space Vj into subspaces Vj+1 and Wj+1:

Vj = Vj+1 ⊕Wj+1 and Vj+1⊥Wj+1,

where Vj+1 and Wj+1 are stretched by Φj+1
k and Ψj+1

k respectively. On a scale
(j + 1), f is approximated by Φ with coefficients:

aj+1
k = 〈f(u),

1√
2j+1

Φ(
u

2j+1
− k)〉.

The difference between the approximations of f on scale j and (j+1) is considered
as detail coefficients:

dj+1
k = 〈f(u),

1√
2j+1

Ψ(
u

2j+1
− k)〉.

After some mathematical transformations, it can be proved that Ψ(t) and Φ(t) are
equivalent to a filter bank with filters h and g, where:

h(n) = 〈Φ(u),
√

2Φ(2u− n)〉 and g(n) = 〈Ψ(u),
√

2Φ(2u− n)〉.

The multi-resolution analysis can therefore also be performed by an appropriate
filter bank. In general, the dilation- and translation factors of Ψ(t) are discretized
by M :

Ψj
k(t) =

1√
M j

Ψ(
t

M j
− k).

There will be (M − 1) wavelet functions Ψj
k,i(t) (with i = 1, ...,M − 1) and one

scaling function Φjk(t), which stretches the subspace Wj
i and Vj

i respectively. The
vector space Vj is in this case calculated as:

Vj = ⊕M-1
i=1 Wj+1

i ⊕M-1
i=1 Wj+2

i ⊕M-1
i=1 Wj+3

i ...
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Figure 3.1: Typical form of dent and pimple

On a scale j, a function f(t) is analyzed as:

f(t) =
∑
k

〈f(t),Φjk(t)〉Φ′ jk(t) +
∑
i

∑
k

〈f(t),Ψj
k,i(t)〉Ψ

′ j

k,i(t),

where Φ
′ j

k(t) is the biorthogonal basis to Φjk(t). As in case M = 2 it can also be
proved that:

Φ(t) =
√
M

∞∑
n=−∞

h0(n)Φ(M.t−n) and Ψi(t) =
√
M

∞∑
n=−∞

hi(n)Φ(M.t−n).

This means that there is always a filter bank with M channels hi(n) (i =
0, ...,M − 1) equivalent to the set of wavelet functions Ψ(t) and scaling func-
tion Φ(t). A multiscale analysis of a signal f(t) can therefore also be performed
with the help of this M -channel filter bank.

3 Wavelet Filter Banks for Deflectometry Data

3.1 Comparison between Standard Wavelet Families

Firstly, the existing standard wavelet families were used for classification and the
results were compared. As observed, there are two typical defect forms on our test
surfaces, dent and pimple. Extracted from the reconstructed images obtained by
deflectometry measuring, typical form of defects class dent and pimple are shown
in Figure 3.1.

The wavelet coefficients in the area of a dent and a pimple, which are obtained
by filtering deflectometry data with different standard wavelet families, are also
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Figure 3.2: Wavelet coefficients in defect’s area

extracted. For example in Figure 3.2, the filtering results with the wavelet families
Meyer, Coiflet and Biorthogonal spline wavelets (first-, second- and third column
in the Figure respectively) are shown. One can see that the Biorthogonal spline
wavelets presented by Cohen et al. [CDF06] deliver coefficients with higher am-
plitude in comparison to other wavelet families. A defect detection and classifi-
cation based on these coefficients should be therefore better than with coefficients
from other standard wavelet families. Besides these wavelet families, the perfor-
mances of other standard wavelet families were also considered and analyzed. A
quantitative result of detection can be found in table 3.3.

Among the standard wavelet families, the filter bank with Biorthogonal spline
wavelets seems to be best appropriate for detection and classification purpose of
dent and pimple. This wavelet family can later be considered as a reference for our
optimized wavelet filter banks.

3.2 Optimized Biorthogonal Wavelet Filter Banks

A general method for designing biorthogonal wavelet filter banks is presented in
this Section. In the first step the object class to be detected on the surface was
extracted, so that a typical curve can be presented. Based on this curve, a filter
h0 could be designed, which represents the defect and has impulse responses with
the same course as the defect. Then other filters hi are optimized, which create
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Figure 3.3: Compare between standard wavelet families

together with h0 a filter bank with biorthogonal property. This filter bank is used
later to classify data from deflectometry measuring.

The optimization problem turns now into creating a biorthogonal wavelet filter
bank with M channels. The first (M − 1) channels are given, which are normally
defect filters.

Using anM -channel filter bank, an analyzed signal will be perfectly reconstructed
from its wavelet coefficients, if the determinant ∆P (z) of the polyphase-matrix
P (z) of the filters ht (t = 0, ..,M−1) consists of only a single term z−n0 [Gre96].
P (z) has the form:

Pij(z) = z−jHij(z
M ).

Here Hij(z
M ) is the jth polyphase component of the ith filter [Vet86]. Its

determinant ∆P (z) can be calculated as:

∆P (z) = c0z
−M M−1

2 + . . .+ cN−Mz
−[MN−M M+1

2 ], (3.1)

with the constants cm, m = 0, . . . , N −M .

3.2.1 Quality criteria for filter bank design

For an M -channel filter bank consisting of (M − 1) filters ht (t = 0, . . . ,M − 2),
a filter hM−1, which is biorthogonal to all ht, is constructed. In order to match
the biorthogonal wavelet filter bank to a given defect class, a quality criterion Q is
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defined as the Euclidean distance between the filter hi of the defect class Ci and
the filter to be constructed hM−1:

Q = ‖hi − hM−1‖2.

By maximizing the quality criterion Q, the filter hM−1 will be optimized to be
as different from the given defect class as possible. Due to the condition for PR
above, all the constants cj in (3.1) except one need to be set to zero. The constants
cj are weighted sums of coefficients of the filter hM−1 to be constructed:

cj =
N−1∑
n=0

amnhM−1(n).

The construction of hM−1 can thus be considered as optimizing the quality cri-
terion Q under the constraint that the condition for PR is fulfilled. As a linear
system, the set of (N − M) equations cj

!
= 0, which contain the filter coeffi-

cients hM−1(n), (n = 0, . . . , N − 1), is optimized with respect to Q. In order to
solve this optimization problem a Lagrange function with Lagrange multiplier λ
is defined as:

L(hM−1,λ) =
1

2
Q− λT [AhM−1 − 0].

The optimum can be found by solving the derivation equations:

∇hM−1,λL(hM−1,λ)
!
= 0.

This way, we define the coefficients of filter hM−1, which are biorthogonal to
given filters ht (t = 0, ...,M − 2). Using the approach described above, a typical
curve of each defect class is at first extracted and then used to create a representa-
tive filter. Figure 3.4 shows the impulse response of a dent filter with length 8 as
well as its associated biorthogonal wavelet filter.

After the coefficients of all filters ht have been defined, a filter bank for the station-
ary wavelet transform is created based on these filters. Each surface is analyzed
with a filter bank, which results in a wavelet packet tree. Each coefficient node dk
is numbered consecutively, as shown in Figure 3.5 for the case of a 3-channel filter
bank in 2 scales. On the wavelet packet tree, different branch variations, which
also mean the different nodes combinations, can be chosen. Each branch variation
has its own meaning of wavelet analysis. For example the nodes set {d1, d4} in
Figure 3.5 would be appropriate for classifying defects of class C1. Meanwhile
{d2, d8} should analyze defects of class C2 better. In Figure 3.6 the results ob-
tained by the two first transformation scales of a dent are shown. It can be seen,
that the filter has a quite good correlation with the defect.
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(a) dent filter (b) biorthogonal dent filter

Figure 3.4: Impulse responses of a dent filter.
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Figure 3.5: Wavelet packet tree in case M=3

3.2.2 Classification and results

Based on the wavelet packet trees created in the last step, the nodes on this tree
can be considered as features for classification purpose. To classify a point (x, y)
on the surface S, a set of nodes at the same point dk(x, y) are chosen to create a
feature vector d. Based on the idea presented in [ZLGH12], a suitable classifier
can be set up. The parameters µi and σi are considered as mean and standard
deviation of each coefficient on the class Ci for all selected nodes in a feature
vector d. The Bayes’ theorem defines the probability p for vector d belonging to
class Ci as:

p(µi,σi|d) =
p(d|µi,σi)p(µi,σi)

p(d)
.
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Figure 3.6: Dent and his transformation results

The distribution of coefficients can be considered as Laplace [ZLGH12]. The
likelihood for class Ci can therefore be modelled as the product of a univariate
Laplace distribution:

p(d|µi,σi) =
∏
k

1

σi,k
√

2π
exp(−1

2

|dk − µi,k|
σ2
i,k

).

For each class Ci the parameters µi and σi are learned with a training set.

Applying this approach to several M -channel biorthogonal wavelet filter banks
found in the last step, we receive classification results for the classes pimple and
dent. The standard wavelet family biorthogonal spline wavelet (see Section 3.1),
which delivered best results under standard wavelet families, was used as refer-
ence. An extract for the accuracy results of each class using 4 filter bank systems
is shown in table 3.1:

• Two systems with two channels (M = 2): one consisting of a filter adapted
on dent and its associated biorthogonal wavelet filter; one consisting of a
filter adapted on pimple and its associated biorthogonal wavelet filter,

• A three channel system (M = 3) for the case of a filter, which is
biorthogonal to both dent and pimple, and

• A 4-channel system (M = 4) as a combination of the two systems with two
channels above.

is shown in table 3.1. It’s recalled that the nodes on the wavelet packet tree were
numbered as in Figure 3.5. With the help of optimized biorthogonal wavelet filter
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accuracy
surface one surface two

standard wavelet Cd Cp Cd Cp
biorthogonal spline wavelet 3.5 34.7% 80.9% 96.8% 94.9%

M adapted an selected nodes Cd Cp Cd Cp
2 Cd 1 97.8% 98.2% 99.7% 96.4%
2 Cd 1, 3 99.3% 96.7% 99.6% 96.1%
2 Cd 1, 3, 4 99.6% 96.1% 99.4% 95.6%
2 Cp 1 62.2% 84.6% 99.7% 96.5%
3 Cd, Cp 1, 2 96.3% 94.4% 99.7% 96.5%
3 Cd, Cp 1, 2, 4, 5, 7, 8 97.4% 95.7% 99.2% 95.2%
4 Cd, Cp 1, 2 96.9% 93.7% 99.7% 96.5%

Table 3.1: Classification accuracy using standard wavelet and optimized wavelets

banks, the classification accuracy for the class dent reached up to 99% on the two
testing surfaces, and for the class pimple up to 98% on the first surface, as well as
97% on the second one. Compared to the standard Biorthogonal Spline Wavelets,
the classification results were improved significantly for both defect classes.

4 Conclusion

A new method for classification data obtained by deflectometry measuring by de-
signing an optimized M -channel biorthogonal wavelet filter bank was presented.
The optimized wavelet filter banks have delivered higher accuracy rates and shown
thereby his benefit compared to filter bank with standard wavelet families. For a
better correlation between filter and defect in various sizes, an application of op-
timized wavelet filter bank with rational scaling factors is conceivable. Further
work could therefore be the combination of the presented approach with rational
sampling factors to further improve classification result. The method should also
be evaluated with more test samples.

This work was part of a project financed by the Baden-Württemberg Stiftung.
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Abstract: In this report, we consider the challenging problem of recovering a
specular shape from the continuous observation during motion. We find that
under certain constraints, the information contained in the perceived optical
flow (also known as specular flow) is sufficient to locally reconstruct a surface
and its first- and second-order derivatives. We further consider the effect of
measurement errors and the practical implementation issues.

1 Introduction

In the field of computer vision, specularities have always been a challenge for the
3D reconstruction methods. On the one hand, specular objects have no intrinsic
texture suitable for stereo matching. On the other hand, the high sensitivity of the
specular reflection to the small variations in the surface inclination allows for a
very precise inspection of mirror surfaces. In particular, the techniques of the pre-
cision deflectometric inspection of specular objects have matured enough to rival
the accuracy of the more established (and expensive) interferometry [FOKH12].
The more general problem of multi-view specular reconstruction has recently seen
some practical (albeit computationally expensive) solutions [Pak12, WORK13].
Recently, Liu et al [LHS13] suggested that the knowledge of the derivatives of the
registration data may considerably simplify the deflectometric reconstruction.

These state-of-the-art techniques evaluate the camera images of a reflection of
some calibrated screen in the studied object, while the screen displays a series
of encoded patterns. This setup naturally assumes that the studied object, the cam-
era and the projection screen remain static (do not move) during the entire reg-
istration session, which may require a few dozen coded pattern projections. For
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that purpose, some industrial implementations use precision robots that position
the sensors near a fixed object and maintain the chosen configuration during the
projections. Obviuosly, the industry would welcome a more dynamic inspection
method with e.g. objects moving on a transporter band through the control station
(as it is presently done during the inspection by human workers).

There already exist several methods for the industrial on-line inspection based on
specularities. However, the shape reconstruction in those cases is either based
on complicated precision hardware and per-line registration [WASS12a], or is
not performed at all [TAM+12]. Another option is to exploit the perceived op-
tical flow, or the field of displacements of texture points as seen by the camera
under certain motion. Such methods (known as shape-from-specular flow) have
been studied in the context of the global variational reconstruction [LBRB08],
and in [AVBSZ07, AVZBS10, VZGBS11] in a special setup, where a telecentric
camera is fixed with respect to the object, and the infinitely remote textured en-
vironment undergoes a global rotation. The flow field could be obtained from
the camera images with the common algorithms (possibly with some minor mod-
ifications [AZBS11]). The resulting system of coupled linear partial differential
equations is discretized and solved with the standard tools.

While very elegant mathematically, such approach is not ideally suited for the
common industrial settings. A more realistic observation would use some less-
exotic camera, moving along some trajectory with respect to the object, while
the environment is located far enough and does not rotate. In this formulation,
the problem receives an extra dimensional parameter (the distance between the
camera and the object) and the resulting system of second-order coupled non-
linear equations is much harder to integrate. It should be noted though, that this
problem is routinely solved by humans who e.g. notice minor surface defects while
walking near a standing car!

In this report we investigate a scenario, where a pin-hole camera moves along a
known linear trajectory near the object. Inspired by the work of Liu et al [LHS13],
we attempt to simplify the reconstruction by providing additional data: namely, we
assume that in addition to the specular flow its derivatives with respect to the cam-
era coordinates are known. We show that in this case, the problem can be solved
exactly, resulting in a local surface representation for each individual camera ray.

2 Notation and geometry

In the setup shown in Fig. 2.1, the moving camera C makes two subsequent obser-
vations of the specular object O, such that at the time moment t = 0 the projection
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~nB
~m′B

~l′B
~lB

Figure 2.1: Geometry of the specular flow problem

center of the camera is located at the point ~o, and at the moment t = 1 it moves to
~o′ without rotation (i.e. the directions of the camera remain the same).1 The shift
vector ~u = ~o′ − ~o is a known parameter.

Let us first consider the time moment t = 0 and the ray that hits the surface at some
arbitrary pointA. Without losing generality, we may assume that ~o = (0, 0, 0), and
that the sensor’s x and y directions and the main camera direction are collinear
with the global x, y, and z axes, respectively. We also postulate that the camera
sensor is located exactly at the unit distance from the projection center, so that
a ray corresponding to the sensor point (x, y) has direction ~v(x, y) = (x, y, 1).
Under these assumptions, the point A, projected to the sensor point (xA, yA), has
3D coordinates ~lA = ~l(xA, yA), where ~l(x, y) = ~v(x, y) · s(x, y), and s(x, y) is
the scalar depth function.

Under the technical assumption of a sufficiently smooth surface, and assuming that
~l(x, y) is close to the central ray (i.e. that x, y � 1), the depth function is

s(x, y) = s0 + sxx+ syy + sxx
x2

2
+ syy

y2

2
+ sxyxy +O(x3, y3, x2y, y2x).

At any surface point, vectors ∂~l/∂x and ∂~l/∂y describe the motion of ~l as x and y
change, and are thus tangential to the surface. The outer (un-normalized) normal

1In what follows, the primed quantities will correspond to the time moment t = 1.
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vector at A is then ~nA = ~n(xA, yA), with

~n(x, y) =
∂~l(x, y)

∂y
× ∂~l(x, y)

∂x
(2.1)

= (s0sx, s0sy,−s2
0) + x(s2

x + s0sxx, s0sxy + sxsy,−3s0sx)

+ y(s0sxy + sxsy, s
2
y + s0syy,−3s0sy) +O(x2, y2, xy).

Given the sight ray ~lA and the normal vector ~nA, the reflected ray direction at A
could be easily found as ~mA = ~lA−2~nA(~nA ·~lA)/(~nA ·~nA). (The corresponding
expression in terms of xA, yA is needed through the 1-st order, and is easy to find
but bulky. We thus refrain from citing it here.)

Let us now switch to the time moment t = 1. The camera located at ~o′ = ~o + ~u
with ~u = (u1, u2, u3) will observe some different point B, with the corresponding
sight ray ~l′B = ~lB − ~u, where ~lB is the sight ray to point B as it was observed
at t = 0. The corresponding sensor coordinates (at t = 0) would be (xB , yB)

(not to be confused with the sensor coordinates at t = 1, x′B and y′B), and ~lB =
~l(xB , yB). Provided that also xB , yB � 1, the normal vector at B will be given
by ~nB = ~n(xB , yB), according to the same Eq. (2.1). Since the normal vector
at B does not change with time, we may compute the reflected ray direction, as
viewed at t = 1 by the camera: ~m′B = ~l′B − 2~nB(~nB ·~l′B)/(~nB · ~nB).

3 Specular flow and surface constraints

So far, we have specified no relation between the points A and B. Let us now
require that the specular flow transforms the point A to B, i.e. that the perceived
value (color, or texture feature) observed by the camera in the direction of point
A at t = 0 is identical with the value observed at point B later at t = 1. If this
value originates from the background, and this background is located far enough
(or, more precisely, that the distance between the points A and B is much smaller
than the distance to the reflected background), then this requirement is equivalent
to the condition

~mA = α · ~m′B ,

where the factor α accounts for the freedom in the normalization of ~m. This system
of three equations constrains the three unknowns: α, xB , and yB . The solution can
be obtained in closed form and expanded in xA, yA, and the components of ~u.
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Substituting the found xB and yB into ~lB and ~l′B , we find the sensor coordinates
of the point B at the time moment t = 1:

(x′B , y
′
B) =

(
(~l′B)1

(~l′B)3

,
(~l′B)2

(~l′B)3

)
.

The perceived specular flow, obtained from the two camera images, is by definition
~f = (f1, f2) = (x′B − xA, y′B − yA). Evaluating this result at (xA, yA) = (0, 0)
gives us then the value of the flow displacement vector exactly in the middle of
the sensor. However, if we consistently expand all quantities to the first order in
xA and yA, we may also find the derivatives of the specular flow, ∂ ~f/∂xA and
∂ ~f/∂yA at the same point (0, 0).

The resulting expressions are relatively cumbersome but have a simple structure:

~f(0, 0) =
(~u ·N1)

D
,

∂ ~f

∂xA
(0, 0) =

(~u ·N2)

s0 ·D
,

∂ ~f

∂yA
(0, 0) =

(~u ·N3)

s0 ·D
, (3.1)

where D and the elements of the 3x2-matrices Ni are polynomials (of the 6-th
power at most) in the six shape parameters (s0, ..., sxy).

Given some measured values of the LHS vectors in Eq. (3.1), we may solve these
six equations for those parameters and thus completely constrain the surface. Note
that unlike the previous results on specular flow (e.g., [VZGBS11]), our result is
local and does not require one to solve a global system of differential equations,
nor any boundary conditions or regularization data.

Our choice to reconstruct surface in the single point (xA, yA) = (0, 0) in fact does
not diminish the applicability of the result. Given some specular flow field over
a large camera sensor, one may rotate the system of coordinates and adjust the
flow parameters to match the geometry of Fig. 2.1 for each pixel. (Of course, the
computed depth field and its derivatives should then be accordingly rotated back
and adjusted to the original notation.) In a similar fashion, one may correct for the
rotation of the camera between the two positions, and thus apply this method for
the absolutely arbitrary camera trajectories. The only real remaining constraint is
that the object must not rotate with respect to the background between the camera
shots. The corresponding generic transformations and parameterizations will be
discussed in more details in a forthcoming publication.
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4 Absolute surface reconstruction

Finding a closed-form solution of Eq. (3.1) seems to be impossible at the moment.
However, the equations can be solved numerically to any required accuracy. We in-
deed have performed several numerical experiments and checked that given some
simulated specular flow at one point, the solution with Wolfram Mathematica’s
numerical solver (NSolve[]) returns the answer reproducing the ground truth. In
addition to that solution, those equations appear to have quite a few spurious com-
plex and real-valued solutions. However, with a decent gradient-descent solver
(Mathematica’s FindRoot[], or solvers from the GSL library) and a close-enough
initialization, the solution is fast, and the result unique and coinciding with the
ground truth.

In realistic conditions, the measured optical flow fields and their derivatives will
always contain some error. Moreover, the six input parameters are strongly corre-
lated due to the optical flow calculation method, which usually attempts to smooth
out the gradients in the flow field. If we combine the shape parameters s0, ..., sxy
into a six-dimensional vector ~s, and the input parameters f1, ..., ∂f2/∂yA into a
six-dimensional vector ~g, then the Eq. (3.1) will have the form ~F (~s) = ~g. If the

uncertainty in ~g is δ~g, then the resulting uncertainty in ~s will be δ~s = δ~g
(
∂Fi
∂sj

)−1

.
Further, if the 6-by-6 correlation matrix of δ~g is Cg , the corresponding correlation
matrix Cs of δ~s will be given by

C−1
s =

(
∂Fi
∂sj

)
C−1
g

(
∂Fi
∂sj

)T
,

the solution of Eq. (3.1) and its uncertainty shape could be obtained by finding

~s∗ = arg min
~s

{(
~F (~s)− ~g

)
C−1
g

(
~F (~s)− ~g

)T}
.

The derivatives of ~F can be easily computed analytically from Eqs. (3.1) and eval-
uated numerically in any point. In fact, their knowledge will also improve the
performance of the gradient descent solver, and after the solution has been found,
Cs can be provided as the estimate of its accuracy. At this point, given multiple
pixels with the correlated estimates of the depth and its derivatives in each point,
one still has to employ some global fitting method of the sufficient order to fit the
most accurate global smooth function.
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5 Conclusion and outlook

In this report, we present the theoretical basis of the novel method to reconstruct
specular surfaces from uncalibrated natural specular flow under the linear motion
of the camera. By exploiting the derivatives of the flow field, we are able to com-
pletely reconstruct the local profile of the surface near the central ray. The method
easily generalizes to an arbitrary (known) motion of the camera and the sensor pix-
els further away from the center. In the near future, we plan to apply the method
to the real observation data and study its numerical stability in further details.
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[VZGBS11] Yuriy Vasilyev, Todd Zickler, Steven Gortler, and Ohad Ben-Shahar. Shape from specular
flow: Is one flow enough? Proc. CVPR, pages 2561–2568, 2011.

[WASS12a] R. D. Wedowski, G. A. Atkinson, M. L. Smith, and L. N. Smith. Dynamic deflectometry:
A novel approach for the on-line reconstruction of specular freeform surfaces. Optics and
Lasers in Engineering, 50:1765–1778, 2012.

[WORK13] M. Weinmann, A. Osep, R. Ruiters, and R. Klein. Multi-view normal field integration for
3d reconstruction of mirroring objects. Proceedings of the International Conference on
Computer Vision (ICCV), 2013.





Information and Control in Cyber-Physical
Production Systems

Julius Pfrommer

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
julius.pfrommer@kit.edu

Technical Report IES-2013-06

Abstract: Computation and communication have become cheap and near-
ubiquitous. In the domain of manufacturing automation, this led to the de-
velopment of Cyber-Physical Production Systems (CPPS). Traditionally, the
control infrastructure of manufacturing systems ensured the correct execu-
tion of predetermined processes. In CPPS, detailed knowledge about the sys-
tem dynamics and the current runtime state allow more flexible control ap-
proaches to adapt the system behavior to changing tasks and conditions. In
this work, we discuss principles for driving CPPS consisting of many hetero-
geneous components. For this, we identify the four fundamental approaches
for information modeling and control of CPPS, as well as their consequences
concerning the system design and operation.

1 Introduction

Norbert Wiener described his vision of cybernetics as the conjunction of control
and communication [Wie48]. And indeed, control and communication relations
between system components have been tightly linked in the past. Today, com-
munication can be done nearly structureless. All participants are part of a shared
global network in which interactions can be freely established by the participants
themselves on an ad-hoc basis. But this extra flexibility remains unused if the con-
trol infrastructure is not adopted accordingly. Lunze and Grüne [LG14] describe
the transition from the current networks of information to networks of action of
interacting subsystems. In this work, we expand on this view in the context of
automated manufacturing systems. This domain lends itself conveniently as a test
case for a broader class of networked systems, since a) it currently undergoes the
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Figure 1.1: Organizational principles for CPPS control.

transition towards fully networked system-wide communication, b) it has an intrin-
sic interest in optimizing efficiency whilst c) enhancing its operational flexibility
to adapt to changing tasks, external conditions and internal structural transforma-
tions, and d) every (individual) part of the system is usually well-defined and can
be captured in a behavioral model.1

Given the freedom to establish communication between any two system compo-
nents, two separate but interlinked design decisions need to be made:

“Who holds information about the system and its current state?”
“Who is making control decisions and who is affected by them?”

We classify the possible answers into two broad categories. Either a central au-
thority is responsible (global within the considered context), or the responsibility
is distributed among several components (local). Within this framework, we iden-
tify four fundamental organizational principles for manufacturing control in CPPS
(see Figure 1.1). Note that the lower left quadrant is marked inaccessible, as it
is not sensible to derive global control decisions from a system model with only
a local scope. The following sections each discuss one of the four organizational
principles in detail.

1We assume discrete manufacturing processes, where the actions performed by system components
are deterministic. This renders the problem formulations and optimization techniques quite different
from continuous or hybrid systems, where only few discrete state and control variables are considered.
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2 Local Reactive Control

Traditionally, it was time-consuming to adapt automated manufacturing systems
to new products or product variants. Machines and tools had to be adjusted (and
reprogrammed) manually and the correct interplay of the manufacturing system
components had to be assured. Today, the combination of fast changes between
machine configurations (under various names, such as Single-Minute Exchange
of Die, SMED) and tracking of individual products within a manufacturing sys-
tem using auto-identification (Auto-ID, [MSC+03]), e.g. by visual recognition of
barcodes on the products or RFID-based solutions, is mainstream technology.2

Being able to interleave the production of different products (or product variants)
is considered advantageous also in settings where lot sizes are generally large. For
example, it is essential to the reduction of waste according to the Lean Manufac-
turing principle (i.e. the Toyota Production System, TPS [Ōno88]). It also enables
the automation of mass-customized production tasks. If, say, a customer wants a
custom engraving on his tablet computer, the Auto-ID tag on the product would be
read locally at the engraving machine and the task completed accordingly.

The Auto-ID paradigm does not explicitly require coordination between machines
other than the information transmitted via the products themselves. In case of the
engraving example, decisions about production steps are made locally as a reaction
to local sensor inputs (reading the product tag). In the context of this paper, we
denote this approach as local reactive control.

Local reactive control works well for production settings with highly decoupled
decision problems, i.e. if system components do not need to coordinate their ac-
tions other than at their direct interfaces. It has the advantage of not requiring a
global system model containing an up-to-date representation of the current system
state. On the downside, the actions taken independently by system components
might be suboptimal. If a machine is blocked longer than usual, e.g. during some
elaborate work requested by a product or by an unexpected downtime, it has no
means to communicate this up- or downstream so that other system components
may react accordingly. For example by sending products to a redundant resource
of the same type instead.

Information Model: Local Decision Making: Local

2In the Auto-ID paradigm, the work pieces themselves carry their identification as well as metadata.
We do not distinguish cases when the metadata is contained in the Auto-ID mechanism itself and when
it can be retrieved from a central storage based on the ID.
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3 Central planning of automation tasks

The central planning approach aims to optimize manufacturing operations across
multiple resources (machines and equipment) by specifying their actions and in-
teractions in a detailed plan. The planning authority needs to known the initial
system state and the system dynamics in order to accurately predict future sys-
tem states as part of the planning mechanism. The result is a sequence of actions
to be performed by the available resources. Traditionally, problem formulations
based on mathematical programming have been used for manufacturing planning
[Pin12]. However, solutions are often approximated with heuristics due to a high
problem complexity and time constraints.

One of the main goals of CPPS is to make better use of flexibility in manufac-
turing. Currently, there are two well-researched approaches to handle flexibility
in scheduling. In the Flexible Job-Shop problem, every job (production of a spe-
cific part) is accomplished by executing a set of tasks (first milling, then drilling,
then painting. . . ) in a fixed order. Flexibility is introduced by defining groups of
resources that could all be used to accomplish a certain task. The Flexible Open-
Shop problem is similar, but defines jobs whose tasks can be run in any order. The
assumption of these scheduling models was that products can move freely between
any two resources. But when plant logistics (like conveyor belts, buffer space,
etc.) are considered as part of the system dynamics, the solution space becomes
more complex. First, the use of transportation equipment needs to be adequately
modeled. This includes the need for further cooperation between the actions of
resources. For every execution of a transportation operation, the source, the trans-
portation equipment, and the target resource need to be aligned. Second, the or-
der in which tasks (including transportation) are executed are neither completely
predefined for each product type (this would render the system non-flexible) nor
freely chosen (as there are additional constraints imposed by the plant topology).
Jobs rather become graphs of operations and their precedence constraints (see e.g.
[AKM03]). Lastly, the assembly of several (possibly customized) parts into one
final product is quite difficult to model with classical scheduling tools, as merging
of several workpieces gives rise to a second level of coordination between parts.
To take all these properties of modern manufacturing operations into account, we
present a novel approach to capture the system dynamics of CPPS in Section 3.1.

Information Model: Global Decision Making: Global
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3.1 A discrete event model for the system dynamics of CPPS

In the following, we present a novel formalism to capture the system dynamics
of CPPS. All automated tasks (product transformation, transportation, tooling,
etc.) are part of a single formalism that also handles the temporal coordination for
concurrent execution (parallelism) on many resources.

Products p ∈ P denote product types and not individual physical objects (includ-
ing intermediary products occurring only during production). Resources r ∈ R
represent actual machines. For every resource, we define a set of states Sr the
resource might reside in. A state describes the resource’s mode of operation,
configuration, and contained product.

s = (m, c, p) ∈ Sr ⊆M × Cr × (P ∪∅)

The possible modes of operation m ∈ M are the same for every resource and
describe basic conditions, such as “running”, “halted”, “in maintenance”, etc. On
the contrary, resource configurations c ∈ Cr are defined individually. E.g. for a
mobile robot, the configuration might denote a position, whilst the configuration
of a NC-mill might indicate the type of milling head that is currently used. The
approach of having products contained in a resource lets us model product trans-
formations and movements. The empty set ∅ denotes the absence of a product, i.e.
the resource is currently empty. The state of a specific resource at a specific point
in time is

σ = (s, t) ∈ Sr × R .

We write s(σ) for the untimed state component of a timed state σ. Similar notation
is used to directly access the components of the untimed state. Thus, c(σ) denotes
the resource configuration of a resource r(σ) at time t(σ). The overall system
state is described by the vector σ, containing a timed state for each resource. Its
semantic is the next time t(σr) at which resource r will reach a known state s(σr).
Until then, the resource executes an action whose inner workings remain opaque
from the outside. Actions are defined by the set of participating resources R, and
the respective pre- and post-states sprer , spostr and timing conditions tslackr and tdurr

for each resource r ∈ R.

a = (R, spre, spost, tslack, tdur)

The time slack tslackr gives the amount of time a particular resource r has left –
after the beginning of action a’s execution – to reach the required pre-state spre.
This is motivated by actions where the interaction between resources is not im-
mediate, but can occur later during the execution. The duration until an action is
finished for r ∈ R (after a possible slack time) is given by tdurr .
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Seeing every action a as a symbol from the alphabet of actions A, a sequence of
actions forms a word w = a1a2 . . . Concatenation of an action a to a sequence of
actions w is written as w ◦ a. Given an initial system state σ(ε) (ε being the empty
word), the execution of an action a1 results in a new system state σ(a1), where
the (timed) states of the resources r ∈ R(a1) are changed. Now, the next action
a2 can be applied to reach σ(a1 ◦ a2), and so on. The single rule that governs the
state transition between any σ(w) and σ(w ◦ a) consists of the following pre- and
post-condition:

∀r ∈ R(a), s(σr(w)) = sprer (a)

tstart = max{t(σr(w))− tslackr (a) | r ∈ R(a)}

σr(w ◦ a) =

{(
spostr (a), tstart + tslackr (a) + tdurr (a)

)
, if r ∈ R(a)

σr(w), else

If the pre-condition is fulfilled, then action a can be executed to reach the new state
σ(w ◦ a) given by the post-condition. Note that the above transition rule can be
used to describe the entire system dynamics of a production system, including the

• transformation of work-pieces (products), the

• transportation and storage of products,

• concurrency, e.g. the parallel execution of actions and the synchronization
of resources who collaborate as part of a single action, and

• changes to resource modes (maintenance . . . ) and configurations (e.g. tool-
ing actions, or changing the position of a mobile robot) that might occur as
part of a manufacturing task (transformation/transportation of a product) or
as a dedicated action,

in a single formalism. Here, all actions are assumed to be deterministic. Future
work might consider the possibility of non-determinism for the time until an ac-
tion completes as well as uncertainty of action outcomes (e.g. the probability of a
machine break-down or quality problems).

The presented system model, where discrete actions influence a world state is con-
ceptionally close to McCarthy’s Situation Calculus [Rei01]. The biggest difference
is a narrower definition of the applicability of actions based on specific resources
and their states and the handling of time. However, many results from the litera-
ture based on the Situation Calculus still apply. In a preliminary investigation, we
implemented a planning mechanism based on the presented formalism. The input
is a description of the system’s capabilities (available actions) and the goals that
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(a) Today: fixed assembly line (b) Tomorrow: flexible assembly system

Figure 4.1: Individualized production of the future according to [KWH13]

shall be achieved. The planner then performs a forward-search in the state-space
to find the best (according to some cost function) sequence of actions that achieves
the goal. Unexpected changes to the system state (like a machine breakdown or
quality problems. . . ) are handled gracefully in a replanning step (e.g. by delaying
some actions or even re-routing products on the fly).

In recent years, the performance of planning algorithms for exploring state spaces
has been improved by several orders of magnitude for important example domains
(see [Hof11] for an introduction). However, planning times remain a challenge for
online replanning in large settings. To some extend, this also applies to traditional
scheduling methods and heuristic solvers. Thus, from a computation perspective,
it seems worthwhile to pursue decentralized organization paradigms, where the
optimization problems are split into subproblems that can be solved independently.

4 Independent Agents

In the future, the automotive OEMs will produce more car types with shorter life-
cycles. And their offer will encompass not only gasoline and diesel engines of
various sizes, but also hybrid and electric ones. Since the powertrain has a huge
impact on the car body design, car configurations will differ more profoundly, and
few manufacturing processes will remain identical for all cars, even within the
same type.

Figure 4.1 shows a currently debated vision for manufacturing systems of the fu-
ture. Fixed assembly lines are replaced by assembly stations that are visited by
products depending on their type and desired configuration. This organizational
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paradigm lends itself conveniently to agent-based approaches [Lei09]. Individual
products3 have the ability to decide themselves about actions (in terms of trans-
portation and transformation) they request from the system. Instead of executing
a centrally predefined action sequence, product agents pursue their own goals and
act selfishly. The hope for agent-based manufacturing systems is that flexibility
will increase due to self-organizing behavior of agents and that the overall system
performance remains “good” event though optimization on a global scale (con-
cerning the ensemble of all agents over a long-term time horizon) is omitted. The
actual system performance is not only the result of an individual agent’s actions,
but emerges from the interplay of all agents. In order to coordinate their actions
(e.g. the sequence in which agents enter a production station), agents need to com-
municate and share information. For this, auction mechanisms have been used in
the past [WWWMM01].

Necessarily, the agents need to have some internal knowledge about the produc-
tion system, its current state, as well as their direct surrounding. Since products are
unlikely to be equipped with all the sensors necessary for this task, additional in-
formation needs to be provided by some outside authority. The overview figure 1.1
indicated that agent-based systems can provide a global or local system state model
to the agents. The information received by the agents influences their ability to
predict the effects of their choices and the sophistication of their interaction.

Even though many applications of agent-based technology in manufacturing set-
tings have been developed [SWH06], only few industrial applications have pre-
vailed beyond an experimental stage. In the following, we discuss two main rea-
sons for the lack of industry adoption: 1) efficiency losses in settings where large-
scale agent-coordination would be necessary and 2) lack of a predictable system
behavior and missing guarantees on the minimum system performance.

Figure 4.2 depicts a well-known example of suboptimal agent behavior. It also
exemplifies that the overall system dynamics emerging from individual selfish
choices can be nonintuitive, especially with regards to the introduction of topol-
ogy changes. Thus, before deciding on the use of agent-based control, it would
be helpful to know bounds for a possible efficiency loss. In many settings, it is
possible to state this so-called cost of anarchy [Rou05]). However, in flexible
manufacturing operations, there is often times the possibility of deadlocks where
circular dependencies block resources indefinitely. So a single action of a single
agent (after which a deadlock can no longer be avoided) might have devastating
consequences on the overall system performance. This makes it challenging to
apply the cost of anarchy-principle to find guaranteed performance bounds. If the
behavior of agent-based systems is not predefined but emerging during runtime,

3Or a virtual object representing a product in the relevant software.
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Figure 4.2: Braess Paradox [Bra68]. Assume that one hundred agents intend to
traverse over the depicted network from the source to the sink with minimum time
delay. The time delay per edge is either a fixed value or equal to the number of
agents traversing over this edge (due to congestion, denoted with a variable xi).
By adding an additional edge as in the below graph, the delay per agent increases
from 150 to 200 due to uncoordinated and selfish agent behavior.

how then shall forecasts for business decisions, interactions with customers and
for personnel staffing be made?

Some of these uncertainties can be mitigated by a careful system design, buffer
stock strategy, and so on. But, depending on the application, it might still turn out
advantageous to restrict some of the decisions that agents can make by introduc-
ing a supervisory instance that can reduce the negative impact of uncoordinated
behavior.

Information Model: Local/Global Decision Making: Local

5 Supervised Agents

A planning and control mechanism for an entire production system and agents
who are free to pursue their own goals are on the opposite sides of the spectrum of
centralized and decentralized control of CPPS. We denote the mixed approaches,
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trying to mitigate the downsides of independent agents and centralized optimiza-
tion, as supervised agents4. They try to improve the overall system performance
by setting guidelines to the agents decisions based on the runtime system state.
Essentially, we are limiting the set of choices that agents can take in a particular
situation.

Consider an agent-based CPPS that is subject to possible deadlocks. There are
two ways to overcome this problem. Either by statically limiting the choices of
agents in a way that the Coffman conditions [CES71] necessary for deadlocks to
occur never hold. But this could considerably reduce the system flexibility and
performance. Or by dynamically checking for each agents decision whether it
might lead to a deadlock in the future and removing it from the set of possible
choices if necessary. For this, a detailed and up-to-date system state needs to be
centrally available. In Section 5.1, we discuss such a method based on symbolic
model checking to distinguish between safe and unsafe system states (where a
deadlock can no longer be prevented) in discrete event systems.

To reduce the complexity of the system dynamics model, we can partition a CPPS
into subsystems (e.g. a sequence of machines linked by conveyor belts that can be
seen as performing a single production step) that take the role of resources in the
planning process or deadlock prevention techniques. Still, we need to deal with
the interfaces between subsystems and the necessity for coordination arising from
this. The interfaces between subsystems of CPPS can be classified as follows:

Unbuffered Interface Using an unbuffered interface, products who leave sub-
system a directly enter an adjacent subsystem b. Since this relation does not
offer any slack in terms of the order in which input products are processed,
the two subsystems need to be coordinated on a very fine-grained level.

Buffered Interface A buffered interface (e.g. parts being dropped in a wire-mesh
box) allows for simple decoupling of subsystems. In the best case, the up-
stream subsystem can completely neglect the order in which it delivers prod-
ucts. But there exist also cases, when the exact sequence in which products
enter the downstream subsystems is relevant. For example, if several custom
parts need to be matched into one final product. Then, buffered decoupling
is only temporal, but per-product relations still need to be taken into regard.

Random Access Buffered Interface More advanced technical solutions might
allow to explicitly select elements from a storage buffer. This allows sub-
system to schedule their production more independently. But also Random

4Some author call this approach “hybrid agent negotiation” between a set of heterarchical agents
and a hierarchical supervisory structure. See for example [WLMF06].
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Access Buffered Interfaces there may occur deadlocks. Consider a situ-
ation where the buffer between two subsystems is full. The downstream
subsystem needs to get a specific workpiece in order to continue produc-
tion. The upstream subsystem could deliver the workpiece. But the buffer
– needed for the transfer – is full and cannot take in another product before
the downstream system has removed one first.

In total, the supervised agents approach is based on local decision-making. An
additional supervisory infrastructure knows about the systems dynamics and cur-
rent system state from a global perspective and can set guidelines or coordinate
between local agents. For this, some form of abstraction might be put into place to
reduce the burden for communication and computation. The problem of deadlocks
– and the possibility of using supervisory control to prevent it – was mentioned
several times so far. In the following subsection, we discuss a method from model
checking that can be used for this purpose.

Information Model: Global Decision Making: Local/Global

5.1 Preventing deadlocks via agent supervisory control

The number of possible states of a system suffers combinatorial explosion in the
number of system components. In their seminal paper, Burch et al. [BCM+92]
showed how to use model checking on very large discrete event systems without
enumerating all possible states. They apply logical transformations directly to a
compressed representation of sets (Binary Decision Diagrams, BDD [Bry92]) to
reason about system states and possible transitions between them.

Algorithm 5.1 Computation of deadlock-prone states in a discrete event system
Require: Q: set of all possible system states, Qg: set of goal states, e.g. an empty

manufacturing system, T : possible transitions between system states
1: procedure BACKWARDRESTRICTEDSTATES(Q,Qg, T )
2: k ← 0, X0 ← Qm // Xk are the states with a path to Qg
3: repeat
4: k ← k + 1
5: Xk = Xk−1 ∪ {q ∈ Q|∃q′ ∈ Xk−1 : (q, q′) ∈ T}
6: until Xk+1 = Xk // A fixpoint has been reached
7: return Q\Xk // States without a path to Qg are restricted
8: end procedure
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Algorithm 5.1 shows a procedure used to compile a list of unsafe states from which
deadlocks can no longer be avoided. It assumes as input a set of possible states Q,
a set of target statesQm that shall be reached eventually and a set of possible oper-
ations that result in a transition between system states T ⊆ Q×Q. All of them can
be given in their compressed form as BDD. Binary operations on them are linear
in the length of the BDD (and not in the size of the sets they represent). The al-
gorithm starts at the goal states (for example an “empty” production system where
no partially finished products remain in the system). It then computes backwards
the set of states that can reach the goal states in 1 step. These are added to the
set of “good” states as they obviously do not lead to a deadlock. This backwards
search is continued until a fixed point is reached: No additional system states exist
that can reach one of the goal states by applying operations from T . For a more in-
depth discussion and ways to speed up the computation even more, see [VFL06].
Note that there exist other techniques for model checking that do not necessarily
depend on BDDs for state encoding [BCCZ99].

6 Conclusion

In this work, we presented four organizational principles for the design and control
of CPPS. It became clear that central planning of operations still poses compu-
tational problems. On the other hand, local control of uncoordinated subsystems
may lead to inefficiencies and even deadlocks. To prevent these inefficiencies from
happening, one needs to introduce a system model that holds the current state dur-
ing runtime. This trade-off between the system performance and the technical
complexity of the control infrastructure raises a range of questions that need to be
answered individually for each CPPS: Which information has to be stored at least
about each component? Are there ways to abstract from single resources to sub-
systems in order to lessen the amount of required data exchange and computation?
Can the system be adequately modeled deterministically (with replanning after un-
expected events) or is it necessary to address uncertainty about the system state and
-dynamics in the model used for control? We considered the organizational princi-
ples presented here only in the context of automated production systems. However,
similar questions arise in several domains of the manufacturing industry. For ex-
ample in the supply chain, or on the different hierarchical levels of an enterprise.
It is unlikely that a single organizational paradigm will be used in all of these con-
texts. Then, appropriate interfaces need to be introduced. Linking, for example, a
make-or-buy decision for parts of a customized product order to the actual execu-
tion of automated manufacturing procedures in a CPPS. Of course, humans are to
remain an integral part of this decision making process on the higher levels.
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[LG14] J Lunze and L Grüne. Introduction to networked control systems. In Control Theory
of Digitally Networked Dynamic Systems, pages 1–30. Springer, 2014.

[MSC+03] Duncan McFarlane, Sanjay Sarma, Jin Lung Chirn, CY Wong, and Kevin Ashton.
Auto id systems and intelligent manufacturing control. Engineering Applications of
Artificial Intelligence, 16(4):365–376, 2003.
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Abstract:
In many computer vision, image processing and pattern recognition tasks,

resolution plays a crucial role in the quality of the algorithm. Image super-
resolution, which combines a sequence of low-resolution images to generate
an artificial image with increased resolution and reduced blur, provides an
effective solution. Regarding super-resolution of facial images with a wide
range of facial expressions and pose changes, however, registration of multi-
ple frames becomes more difficult. To handle this problem in this work, a face
alignment approach optimized for low-resolution images is employed. After
fusing the normalized images on the reference frame, a robust image super-
resolution and deblurring algorithm is applied, producing visually superior
results compared to traditional interpolation-based image resizing techniques.

1 Introduction

Facial image analysis has been an important research topic in the computer vi-
sion and pattern recognition community for decades. Recently, in the wake of
increasing demand in video security, biometric tasks for low-resolution images
from surveillance cameras at a distance have gained greater popularity. Even with
HD devices, subjects located far away appear to be of low resolution in the capture
of wide-angle surveillance scenario. Moreover, without subject’s cooperation, as
well as under indoor low-light conditions, poor image quality, e.g., motion blur,
interlacing, low-light noise, etc., is another major disadvantageous condition for
face recognition algorithms. Due to these deciding factors, a minimal resolu-
tion for face recognition, or a general definition of low-resolution facial images
does not exist, since such a boundary varies among different datasets and meth-
ods. Nevertheless, for images smaller than 32 × 24 pixels, or with an interocular
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distance (IOD) of less than 10 pixels, it is almost at the limits of conventional face
recognition methods [WMJW+13].

Super-resolution is considered to be a straightforward approach to break the reso-
lution limitation caused by optical and sensor restrictions. As a preprocessing step,
it provides super-resolved images for the later stages as if they were working on
real high-resolution data. Based on the number of the low-resolution input images,
super-resolution can be categorized into two main classes, multi-frame and single-
frame super-resolution, which, according to their technical approaches, are also
referred to as reconstruction-based and example-based or learning-based methods
in the literature.

This work concentrates on the multi-frame case due to its data-driven property,
as no prior knowledge for super-resolving facial appearance is needed. For the
multi-frame approach, image registration has a huge impact on the final output.
Image artifacts occur at the places where texture is erroneously combined. Unlike
planar motion of rigid objects, faces embed a rich set of motion (e.g., rotation)
and deformation (e.g., facial expression), which cannot be effectively modeled by
simple parameterized transformations. In this paper, this non-rigid problem is ad-
dressed by using a novel registration model with a resolution-aware Constrained
Local Model (CLM) for low-resolution faces. After aligning each face in the given
low-resolution sequence, pixels are warped onto the reference frame with the help
of triangulation, so that a point cloud denser than the original input frame is gener-
ated. Finally, denoising and deblurring are applied to remove averaging effect and
noises caused by illumination difference or registration error among the frames. A
flow diagram of our proposed system is illustrated in Figure 1.1.

The rest of the paper is organized as follows: Brief introduction and literature
review of face alignment and super-resolution, followed by our proposed frame-
work, are presented in §2 and §3 respectively. The experimental setup and results
are discussed in §4. In the end, we conclude our work and discuss future research
directions in §5.

2 Low-Resolution Face Alignment

Face alignment (or facial feature registration) of images in standard resolution has
been extensively studied for decades. It is a crucial step in facial image analysis for
the latter processing stages, e.g., face recognition, pose estimation and expression
analysis, etc. Despite the broad applications with improving performance, due
to the ill-posed problem brought by low-resolution images, most existing work
concentrating on standard-quality facial images is not directly usable and sees a
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Figure 1.1: Flow diagram of the proposed multi-frame super-resolution frame-
work using face alignment

huge performance drop when the resolution decreases, e.g., when images are ac-
quired by web cameras or closed-circuit televisions (CCTVs). This work addresses
this issue by proposing a resolution-aware approach with a mixture of feature de-
scriptors. Difficulties in low-resolution deformable model fitting under changing
conditions are resolved.

2.1 Related Work

Since the seminal work of Cootes et al. for Active Shape Model (ASM) [CTCG95],
as well as its extension Active Appearance Model (AAM) [CET98], fitting 2D im-
ages with a statistical deformable shape model has attracted vast interest in the
community for years. ASM exploits the image patches around a number of pre-
defined points, which are placed at certain characteristic facial feature landmarks.
AAM also employs texture information of the whole face region as a complement
to the shape model. Joint optimization searches the best fit between the actual
shape and appearance and the synthesized ones from the trained model. However,
because of the much larger parameter space, the holistic approach is more prone
to local minima. It also lacks the capability to generalize well on unseen data and
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is thus outperformed by discriminative methods with regard to fitting accuracy
[CC06, Liu09].

Recently, some ASM approaches [CC06, WLC08, SLC11], called CLM in the
literature, utilize an ensemble of local patch experts and jointly estimate the
optimized update for their shape parameters, showing good ability in handling
occlusion, global illumination variation, and unseen data.

When fitting to low-resolution images, most existing deformable model fitting al-
gorithms encounter a mismatch between high-resolution training data and low-
resolution test images. Dedeoǧlu et al. [DBK06] point out that original AAM
causes loss of quality when warping the low-resolution image onto the reference
coordinate frame. Instead, they present a fitting algorithm by reversely modeling
the low-resolution image formation process using high-resolution AAM. Liu et al.
[LTW06] propose an enhancement method for iteratively correcting the AAM fit-
ting procedure and manual annotations, which removes inconsistency in landmark
labeling. The improved face model and multi-resolution fitting yield robust results.
However, the above generative approaches using holistic appearance features are
shown to be more error-prone on unseen data compared to discriminative models
[Liu09], e.g., CLM. The benefit of a multi-resolution statistical deformable model
is also verified by Hu et al. [HCKC12], in which a resolution-aware 3D Mor-
phable Model (3DMM) [BV99] is built with different number of 3D vertices for
fitting under various resolutions.

We approach the task of fitting deformable face models to low-resolution images
by extending the CLM with a 4-level pyramid for the discriminative patch model.
The appropriate pyramid level is automatically selected according to the current
shape estimate. Moreover, a number of possible feature descriptors for extracting
local patch experts in CLM are investigated and compared to each other.

2.2 Resolution-Aware Constrained Local Model

Assume that we have a dataset with annotated landmarks for each image. A shape
denotes the location of these predefined landmarks in a fixed order. Many de-
formable model fitting algorithms make use of a linear subspace to model non-
rigid shapes, which is named Point Distribution Model (PDM). PDM consists of
a compact linear subspace shape model with its variation learned using Principal
Component Analysis (PCA) on the training data. In order to fit the landmarks
to an image, the area around each landmark is exploited. This forms the other
component of CLM—the local patch model.
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The patch model is a square matrix with its center being placed at the respective
landmark. It stores a discriminative texture model around this landmark learned
from the dataset. Given the estimate of the current landmark location, the patch
model is applied to the underlying image patch, revealing a likelihood response. A
discriminative patch model realization is formulated by Wang et al. in [WLC08],
where the positive and negative training patch samples are first trained with linear
Support Vector Machine (SVM), followed by a logistic regressor. Saragih et al.
[SLC11] outline an efficient CLM fitting strategy with regard to the parametric
approximation of the patch model and propose the robust regularized landmark
mean-shift algorithm. Our low-resolution face alignment method also builds on
this framework.

Traditional CLM approaches do not take account of the resolution of the input im-
ages. Given an initial guess of the landmark estimate, the search window around
the landmark is rescaled and warped according to the shape-free reference, i.e.,
the PDM mean shape. For normal fitting tasks, the image resolution is often ade-
quate, meaning that the face in the image is equal to or larger than the reference
shape. Therefore, the image is downscaled to the reference size, discarding higher
frequency spectrum to match the trained patch experts. However, when the image
becomes smaller, the situation changes significantly. Mismatch between the high-
resolution trained patch model and the interpolated upsized low-resolution images
must be taken into account.

We address the critical impact of resolution mismatch by incorporating a pyramid
patch model into the existing CLM framework. A facial image is smoothed and
bilinearly downsampled, producing a 4-level pyramid for CLM training. When fit-
ting images, the patch model of the most closest size with reference to the current
shape estimate is selected. This model selection step ensures a similar frequency
spectrum between model and image, avoiding outliers brought by high-resolution
model. Furthermore, at low resolution, images lose a great amount of texture data
dependent on decimation scale. To make the most out of the remaining picto-
rial information, we also employ a number of feature descriptors alongside the
raw intensity of the image to add robustness under different conditions. Gradient,
Modified Census Transform (MCT), and Laplacian filter are incorporated into the
patch model to obtain illumination-invariant and high-passed features. We have
already detailed this approach in [QMS13]. Interested readers are thus referred to
the original paper. Example fittings on public datasets are given in Figure 2.1.
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Figure 2.1: Example fitting results of the proposed low-resolution face alignment
algorithm

3 Multi-Frame Super-Resolution

High-quality images are always desired in most imaging applications. Although
with the progress of digital imaging technology, better and cheaper optical sensors
and objectives come into existence from day to day, high-resolution images are
not always available in some areas, e.g., surveillance video, medical and satellite
imagery, etc. To break the optical limitation on spatial resolution of the image,
research on super-resolution came into existence since early 90’s. As one of the
most active research topics in the past years, approaches on super-resolution span
from frequency domain to spatial domain, and from signal processing techniques
to machine learning algorithms. In contrast, domain-specific tasks with respect
to deformable objects, e.g., human faces, have received very little attention. The
reason therefor is the difficulty of registration for low-resolution non-rigid objects
between frames. A global assumption for motion is not or only partially satisfied
here. This paper presents a novel approach to register low-resolution facial images
using the face alignment method demonstrated in §2.

3.1 Related Work

In low-resolution images, high-frequency information from the scene is lost during
the degradation process when obtained by the image sensor. If those aliased images
are artificially upscaled, e.g., using image interpolation techniques, high-frequency
components cannot be recovered since no additional information is provided.
Super-resolution solves this ill-posed problem by combining non-redundant infor-
mation from multiple low-resolution frames of the same scene. Figure 3.1 illus-
trates the basic idea of multi-frame super-resolution inspired by the low-resolution
observation process. When multiple low-resolution images are recorded, small
motion of the scene with respect to the sensor produces subpixel shifts in the
high-resolution image coordinate. When sampled at a lower frequency, they are
mapped to the low-resolution image coordinate with the same integer pixel shift.
If these subpixel offsets are registered precisely, the non-redundant information
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Figure 3.1: Multi-frame super-resolution reconstruction: low-resolution frames
with subpixel shifts are registered on the higher-resolution image raster

can be recovered and super-resolution beyond the limitation of the optical system
is possible.

Existing multi-frame super-resolution frameworks [IP91, SS96, HBA97,
FREM04, UPWB10] employ simple motion models or just assume that motion
is known in prior. The non-rigid property of faces, i.e., deformation caused by
expressions changes, blinking, talking, etc., fails their observation models when
super-resolving facial images. Current multi-frame approaches try to overcome
this challenge with diverse motion estimation and compensation algorithms.

Yu and Bhanu [YB06] handle different parts of the faces non-uniformly. Faces are
segmented into 5 regions, i.e., left/right eyebrows, left/right eye and mouth, and
tracked respectively in the low-resolution video. Fine registration is done using
an optical flow method, while patches with lower matching score are discarded
from the super-resolution process. This step helps remove misalignment and large
deformations. Visually superior results after applying the Iterative Back-Projection
(IBP) [IP91] algorithm to the warped patches compared to uniform reconstruction
are demonstrated.

Another non-rigid registration method is presented by Yu and Bhanu later in
[YB08]. Unlike the segmentation approach in [YB06], Free Form Deformation
(FFD) based on B-spline with embedded low-resolution imaging model deforms
the input image so that the difference to the reference image is minimized ac-
cording to some energy functions. The proposed FFD approach shows promising
performance in dealing with complicated deformations of human faces. However,
a direct comparison to the previous method [YB06] is not given in the paper.
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Recently, a real-time super-resolution method with optical flow motion estimation
based on robust total least squares is published by Schuchert and Oser [SO12].
The structure tensor approach is embedded in a recursive coarse-to-fine manner,
estimating the covariance matrices propagated through the pyramid, which, as mo-
tion and confidence measure, are combined with the multi-frame super-resolution
approach [FREM04] to enhance the quality of facial image super-resolution.

Since the image registration problem, as a critical component to the multi-frame
methods, is yet to be solved, some researchers choose to go another way. Single-
frame super-resolution, originated by Baker and Kanade [BK02], is also known as
face hallucination. The essence of those learning-based methods is to study the
relationship between low-resolution and high-resolution image patches. In face
hallucination, the super-resolution process is formulated as a Maximum a Posteri-
ori (MAP) estimation to obtain high-frequency components from parent structures
using a pyramid derivative set of features instead of raw data. Liu et al. [LSF07]
treat the MAP formulation in two steps, where the first step uses Eigenfaces [TP91]
to produce a smooth global face, followed by high-frequency residue face learned
by the training data. Additionally, single-frame super-resolution can also be inter-
preted as manifold learning to model the correspondence in the low-dimensional
subspace [YWHM10].

Although precise registration is not required with example-based algorithms, pose
remains a big problem. Mortazavian et al. [MKC09] fit a 3DMM [BV99] to low-
resolution facial images, and perform pose normalization before face hallucina-
tion. Bilgazyev et al. [BESK11] also employ ASM for face alignment, but only
the global motion (i.e., scale, rotation and translation) is estimated before applying
example-based super-resolution [YWHM10].

3.2 Registration

Low-resolution face alignment, introduced in §2, returns the position of the land-
marks on the image coordinate. Figure 3.2 demonstrates an example fitting result
of 66 landmarks on low-resolution video data with facial expression (smile) and
pose change (roll). Compared to 3DMM with typically more than 50000 vertices,
our sparse landmarks are able to offer relatively rough registration inside the tri-
angulated areas. These triangles can be generated with Delaunay triangulation on
the predefined landmarks in prior.

In multi-frame super-resolution, the low-resolution images to be combined should
have as little difference to the reference image as possible in order to suppress ar-
tifacts to a minimal level. In computer vision, the most straightforward method
for face normalization is the piecewise affine warp. The piecewise affine warp
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Figure 3.2: Example faces aligned with our resolution-aware CLM in §2
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Figure 3.3: Piecewise affine warp

projects each pixel inside a source triangle to the respective location of the des-
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Afterwards, all low-resolution images are warped to the normalized image. An
example of the registration result is seen in Figure 1.1.

Since the core realization [SLC11] for our face alignment approach outputs the
estimated 3D coordinate of the fitted landmarks, the 3D coordinates of all pixels
inside the face region, i.e., the convex hull of the triangles, can be calculated using
the barycentric projection. In this way, a 3D point cloud for each frame is pro-
duced. The normalized sparse point clouds are then fused on the reference frame,
yielding a denser point cloud for super-resolution.
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3.3 Super-Resolution

In consequence of interpolating during piecewise affine warp and averaging of
multiple point clouds, a natural process of the blurring effect occurs. The fast
and robust multi-frame super-resolution technique of Farsiu et al. [FREM04] is
integrated in our framework. We denote x as the high-resolution image and yi
(i ∈ {1, 2, . . . , N}) as the registered low-resolution frames bilinearly interpolated
from the 3D point clouds. The low-resolution image acquisition process can be
formulated as

yi = DHFix + vi,

where Fi is the geometric motion operator between the high-resolution frame x
and low-resolution frame yi. The blurring matrix H simulates the camera’s point
spread function (PSF), where a Gaussian kernel is applied here for approximation.
D means the downsampling decimation operator and vi is the additional system
noise. Farsiu et al. [FREM04] estimate the super-resolved image x̂ by minimizing
the modeled degradation image and the actual observations as

x̂ = arg min
x

{
N∑
i=1

||DHFix− yi||11 + λΥ(x)

}
, (3.1)

where the regularization term Υ(x) uses `1-based Bilateral Total Variation (BTV)
to preserve sharp edges while denoising super-resolution artifacts. The conven-
tional `2-based least square approaches are proven to be non-robust against inap-
propriate modeling and registration errors, compared to the `1 norm employed in
Eq. (3.1) [FREM04]. The solution to this function is broken into two steps. First,
a blurred version of the high-resolution image z = Hx is determined by median
operator on the low-resolution point clouds on the high-resolution grid, then z is
deblurred iteratively. One is referred to [FREM04] for details.

4 Experimental Results

In this section, we demonstrate the effectiveness of the proposed multi-frame
super-resolution approach with a low-resolution video of a face registered by our
face alignment method.

The progressive fusion procedure of the normalized point clouds is shown in Fig-
ure 4.1. In the original reference point cloud, the pixels are very sparse and the face
is hardly visible on the black background. The more the input point clouds are reg-
istered and fused onto the reference frame, the brighter the result point cloud is,
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(a) (b) (c) (d)

Figure 4.1: Fusion results of (a) 1 (b) 4 (c) 7 and (d) 10 sparse point clouds

(a) (b) (c) (d)

Figure 4.2: Dense 3D point clouds after registration and fusion in (a) frontal (b)
top (c) half profile and (d) profile view

because the “holes” in the point cloud are gradually “filled” with more and more
pixels from the subsequent frames. In doing so, more detail is incorporated into
the super-resolution image. Note that due to imprecise face registration regarding
to large expression changes, or illumination variation, the final point cloud con-
tains some outliers, which can also be seen in the interpolated 2D image in Figure
1.1. These outliers are later removed in the denoising step of super-resolution.

Figure 4.2 reveals the super-resolved 3D point cloud in different views. With 3D
registration, it is possible to generate novel views. However, with the rough mesh
based on the sparse landmarks from face alignment, the degree of freedom is rather
constrained. For example, there is no landmarks on the flat area of the cheek.
Hence from the top view in Figure 4.2(b), the large structureless triangles make
the face look very unrealistic. Since the video is recorded mostly in frontal view,
few pixels near the contour of the face are visible, therefore a lot of “holes” are
seen in the profile view (see Figure 4.2(d)).

Figure 4.3 compares the performance of our super-resolution algorithm with the
original low-resolution image upscaled with bilinear interpolation. IOD of the
original image is approximately 15 pixels. More details and increased sharpness of
edges at facial features, e.g., eyes and mouth, are reconstructed with our approach.
Noise, which is common in low-resolution images, is also suppressed with the
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Figure 4.3: Example low-resolution image in (a) and our super-resolution result
in (b), as well as details of the right eye in (c) and (d) respectively

regularized multi-frame super-resolution algorithm. This result justifies the fea-
sibility of our proposed face super-resolution framework using face alignment as
registration method.

5 Conclusions and Future Work

This paper presents a novel framework for multi-frame facial texture super-
resolution. Our resolution-aware face alignment method is applied to the low-
resolution video to address the difficulties in deformable object registration of low-
resolution images. On the basis of the fitted sparse landmarks, pixels are warped to
the reference grid using piecewise affine warp in the triangulated mesh. A fast and
robust multi-frame super-resolution method is integrated, yielding visually better
results.

The robustness of registration plays an important part in super-resolution. Just
one pixel error of the landmark in the low-resolution image could lead to error
of several pixels in the high-resolution grid. Therefore, a better low-resolution
face alignment algorithm with state-of-the-art performance is under research. It
is also remarked that the current approach with sparse facial landmarks only al-
lows a limit degree of pose and facial expression variation. A realistic morphable
model fitting [MKC09] might provide greater capability in handling these situ-
ations. However, the efficiency of the 3DMM-based approaches must be taken
into account for online applications. Furthermore, single-frame super-resolution
[BK02, LSF07, YWHM10] could show another direction for super-resolving
faces, as the trouble of precise multi-frame registration does not exist any more.
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Abstract:
The color of a material is one of the most frequently used feature in au-

tomated visual inspection systems. While it is sufficient for many “easy”
tasks, more complex materials such as food-stuffs and minerals usually re-
quire more complex features. Spectral “signatures” in the near infrared or
UV spectrum have proven useful, but hyperspectral imaging devices are still
too costly and too slow for industrial application. Therefore, off-the-shelve
cameras and optical filters are used to extract characteristic features from the
spectra. While the visual inspection community has acknowledged the bene-
fits of this method, relatively few works are concerned with automatic selec-
tion of suitable filters. In a novel approach, filter selection is generalized as
feature selection problem. In contrast to existing methods, this method can be
used to select the best out of a large given set of filters, e.g. from a catalogue.
This meta-method is exemplified by application of feature selection methods
based on linear discriminant analysis, information theory and boosting.

1 Introduction

At the present time, automated visual inspection of bulk materials is primarily
achieved by utilizing color information. This approach ensures high throughput
and economic feasibility, but hits a wall when the materials under inspection are of
similar color (low inter-class variance) or when the material of one class occupies
large regions of the color space (large inter-class variance). Both is commonly the
case with organic materials, like fruit and crop, but also applies to inorganic sub-
stances such as minerals and alloys. Often, reliable discrimination is still possible
by exploiting reflectance-characteristics outside of the visible spectrum, especially
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the near infrared and ultraviolet spectral bands, or by utilizing narrow banded,
faint fluorescence and luminescence effects. One might be tempted to use the full
“spectral fingerprint” of a material for classification by including a hyperspectral
imaging device in the inspection pipeline. However, such devices are more ex-
pensive, have a low spatial resolution and require brighter illumination or longer
exposure times than off-the-shelve industrial cameras. Furthermore, these devices
produce much higher data volume, which in turn increases the time required for
data transfer and processing. These factors make such a solution impractical in an
industrial settings.

A common workaround solution combines off-the-shelve cameras with optical fil-
ters. The spectral signatures of the materials under inspection are obtained in the
laboratory or from a spectral database and analysed to determine the discriminative
wavelength bands. Suitable optical filters are manufactured or acquired accord-
ingly. The resulting visual inspection system uses only the reduced, usually one-
to four-channel image to perform it’s task. This approach is all the more attractive,
since existing solutions can often be repurposed with minimal effort.

There are two general methods to determine the filters: top-down (design) and
bottom-up (selection). In the design approach, filter transmission functions are
designed based on the results of the analysis and realized using e.g. thin-film op-
tical filters [Mac01]. The resulting solution is optimal for the task at hand, but –
depending on the complexity of the transmission function – relatively expensive.
Selection, on the other hand, chooses the best few filters from a pool of possibil-
ities. While the pool may contain arbitrary transmission functions, an interesting
case emerges when it is matched with optical filters in a catalogue. This solution
is often sub-optimal, but since the filters can be mass-produced, it is generally
more cost-effective than the design approach. This work focuses on the second
approach, selection, for application in an industrial setting.

1.1 Related Work

The visual inspection community has long since acknowledged the usefulness of
filter selection based on hyperspectral imaging. For example, Kleynen et at. se-
lected a combination of four bandpass filters from a pool of 24 possibilities in
order to detect defects in “Jonagold” apple fruits [KLD03]. They rated each com-
bination using the correct classification rate of a quadratic discriminant analysis
classifier on the filtered spectra. In [PLK+08], Piron et al. use a similar method
to select up to four filters (out of 22) to discriminate weeds from crop. While this
exhaustive search works well with a small pool of filters, it does not scale well due
to combinatory explosion.
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Other approaches do not focus on finding the best performing filter combination,
but rather, identify the most discriminative wavelengths to guide a subsequent
(manual) filter selection. Osborne et al. use the regression coefficients obtained
in partial least squares analysis as proxy to rank wavelengths by their relative im-
portance [OKJ97]. This approach can be used to select both an optimum (with
respect to discriminative power), or fixed number of wavelengths. In [FVG01],
Feyaerts and van Gool rank wavelengths using the Fisher criterion, i.e. the ratio
of variability between, and variability within classes. The highest ranking wave-
length is selected automatically, while lower ranking wavelengths are only con-
sidered when they are positioned “sufficiently far” from the already selected ones.
Similarly, Chao et al. perform a stepwise selection according to the Fisher crite-
rion in a five-class classification problem [CCHP01]. However, unlike Feyaerts
and van Gool, the ranking in each step is computed with respect to the already
selected wavelengths. Similar ideas can be found in the remote sensing field: Pal
uses (i) coefficients of the weight vector of a support vector machine and (ii) model
parameters in sparse multinomial regression to create a ranking. The intuition is
that, similar to the approach of Osborne et al., both methods encode the relative im-
portance of each wavelength [Pal09, Pal12]. Guo et al. utilize mutual information
of each band with a set of key-spectra that they expect to find in the hyperspectral
images [GGDN06].

Alternative methods lend ideas from filter design: De Backer et al. parametrize a
set of band-pass filters by their central wavelength and band-width [DBKDS05].
The parameters are jointly optimized by adaptive simulated annealing using the
Bhattacharya bound (which is an upper bound on the Bayes error) as merit func-
tion. Similarly, Nakauchi et al. optimize band-pass parameters – lower and up-
per wavelength – by a global, random sampling based search followed by local
optimization [NNY12]. In both steps the Fisher criterion serves as merit function.

All these band selection and parameter optimization approaches indeed show
promising theoretical developments in their respective application areas. How-
ever, there is no guarantee that matching physical optical filters are available or
even realizable in an economically feasible way. Therefore it is worth to take a
step back and look at the problem in a different light.

2 Methods

Filter selection can be formalized in the following way: Given a set of filter trans-
mission functionsF , a ground truth dataset T , and a merit function γ(·, ·), the goal
is to select an optimal set of filters, i.e. S ⊆ F so that γ(S, T ) is at a maximum.
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(a) Feature selection using wrapper methods.
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(b) Feature selection using filter methods.

Figure 2.1: Schema of feature selection by wrapper and filter methods.

By simply replacing the words “filter transmission functions” with “features” one
arrives at a formal definition of feature selection as known in the machine learning
community. This is an important insight, as it allows to use the numerous methods
found in literature. Generally, these methods can be divided into three classes:
wrapper, filter and embedded methods.

Wrapper methods select a feature-subset according to some selection parameters
or feature ranking. A model is trained using the subset, and the model’s prediction
performance is used to re-parametrize or re-rank the feature selection. The process
is repeated until some stopping criterion is reached. While this is a straightforward
method, it is prone to overfitting the chosen predictor: the feature selection may
not work as well when using a different method.

Filter methods on the other hand select a subset according to some classifier-
independent, objective criterion. Since the election contains the (globally) most
relevant features, it is expected to work equally well on different classifiers.
However, the selection may be suboptimal when a specific model is concerned.

Finally, in embedded methods the feature selection process is embedded in the
learning algorithm in a fundamental way – hence the name. Popular examples of
such algorithms are random forests [Bre01] and multinomial logistic regression
with sparsity constraints.

2.1 Preliminary Considerations

Before showing the application of wrapper, filter and embedded methods in the
context of optical filter selection, it is necessary to fill in some details of the above
definition: The ground truth dataset T consists of N training samples (si, yi),
where si ∈ Rb is a measured point spectrum with b bands, and yi = ±1 denotes
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the associated class. The K filter transmission functions (i.e. features) f ∈ F
map a given measurement to a scalar, f : Rb → R, where g = f(s) represents the
response of the filter f to the spectrum s. A selection of features is a subset S ⊆ F ;
the complement S = F \ S contains the K − |S| unselected features. To enable
a concise notation, fS = (f1, . . . , fS)

> is used to denote the vector of features in
the selection S.

Some methods require discrete features to be efficiently computable. The
discretization of the feature fk will be denoted hk, where in this work

hk(s) =

{
1 if fk(s) ≤ τk
−1 otherwise.

The threshold τk can be determined arbitrarily, e.g. through random selection or to
minimize classification error of a classifier using (fk(si), yi) as training data.

Note that the filter functions fk can be chosen arbitrarily; if only one band is
extracted, the resulting method will in fact be a band selection technique.

2.2 Wrapper Methods

A simple wrapper method can be derived from Fisher’s linear discriminant analysis
(LDA). Briefly, LDA determines a projection direction w that maximizes class
separation of the projected training samples by optimizing the Fisher criterion

J(w) =
w>SBw

w>SWw
.

Here SB and SW are the between-class and within-class covariance matrices of
the training samples. By differentiating J(w) with respect to w it can be shown
that the J(w) is maximized by

w ∝ S−1
W (m1 −m−1),

where my denotes the mean of training samples in the respective class. Note
that as w does not represent a separating hyperplane, but only a projection that
maximizes class separation, LDA is in itself not a classification method. A linear
classifier is usually constructed from w by choosing a threshold τ to separate the
projected features:

H(s) =

{
1 if w>s ≤ τ,
−1 otherwise.
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Wrapper methods often evaluate feature subsets by classification error using that
subset, usually by the means of cross-validation. In the case of LDA this is not
necessary: Provided that an optimal threshold was chosen, the classification error
depends only on w. Therefore J(w) acts as a surrogate for the classifier perfor-
mance. This observation motivates the following greedy feature selection method:
Starting with an initial (empty) selection S0 = ∅, unselected features are iteratively
added to maximize the Fisher criterion, i.e.

ft = arg max
f∈St−1

J(wt),

where wt is computed using the feature f candidate and the selection of the last
step St−1. To ensure minimality of the feature set, the procedure may be extended
by backward elimination: After each selection step, features may be unselected
when removal has little impact on the classification performance.

2.3 Filter Methods

As mentioned above, wrapper methods select features that are optimal with re-
spect to a given classifier, but there is no guarantee the selection will perform as
well with other methods. This is especially problematic in the context of indus-
trial applications, where the classifier is often not an elaborate method, but simple
application of thresholds. In contrast, filter methods evaluate a given subset of fea-
tures by means of some utility function that is independent of any classifier. Well
known methods are based on information gain, Pearson’s correlation coefficient or
mutual information. Recently Brown et al. unified many of those methods in their
Conditional Likelihood Maximisation framework [BPZL12], which will be briefly
outlined below.

The framework is developed by maximization of the log-likelihood of a hypothet-
ical predictive model q with parameters θ on the feature selection S,

` =
1

N
logL(S, θ|T ) =

1

N

N∑
i=1

q(yi|fS(si), θ).

They show that the log-likelihood can be decomposed into three terms,

lim
N→∞

−` = Efy

{
log

p(y|fS)

q(y|fS , θ)

}
+ I(FS ;Y |FS) +H(Y |FF ),

where FX and Y denote random variables corresponding to the feature vectors fX
and class labels y respectively. The first term represents how well q can model the
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true distribution p. The conditional mutual information (CMI) term I(FS ;Y |FS)
encodes the amount of additional information about class labels that can be gained
from the unselected features, given what is already known from the selected fea-
tures. The last term, H(Y |FF ), is the entropy of class labels conditioned on all
features and represents the remaining uncertainty of the class labels, even when all
features are considered.

Since the CMI term depends only on the feature selection, ` can be maximised
independently of the model q by minimizing I(FS ;Y |FS). Similar to the LDA
approach, this is achieved by iterative greedy selection: In the selection step, the
feature that maximizes the CMI with the labels is added to S,

ft+1 = arg max
f∈St

I(F ;Y |FSt) =: arg max
f∈St

Jcmi(f,St).

In the elimination step, a feature fk may be unselected if the removal does not
significantly decrease information content, i.e. if I(Fk;Y |FSt\{fk}) < τ .

For further analysis, the criterion is decomposed into three terms that each encode
different aspects of the selection method:

Jcmi(fk,S) = I(Fk;Y )− I(Fk;FS) + I(Fk;FS |Y ).

The first term evaluates the relevance of the feature fk to separate the classes,
while the second term penalizes redundant features. The third term rewards redun-
dant features, but only if those features show strong statistical dependency within
classes1. Joint optimization of Jcmi is computationally intractable, so simplify-
ing assumptions have to be made: For all unselected features fk, it is assumed
that (i) selected features are conditionally independent given fk and (ii) selected
features are conditionally independent given fk and y. The criterion can then be
approximated as

Ĵcmi(fk,S) = I(Fk;Y )−
∑
fj∈S

I(Fk;Fj) +
∑
fj∈S

I(Fk;Fj |Y ).

Using this formulation several well known methods can be reformulated to fit
in this framework. The Minimum-Reduncancy Maximum-Relavance (MRMR)
criterion proposed by Peng et al. [PLD05], for example, can be expressed as

Jmrmr(fk,S) = I(Fk;Y )− 1

|S|
∑
fj∈S

I(Fj ;Fk).

1Brown et al. note that this conditional redundancy term is often ignored in the literature [BPZL12].
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This formulation can be interpreted such that MRMR assumes class-conditional
pairwise independence of the selected features, therefore dropping the conditional
redundancy term. As the selection grows, MRMR gradually adopts the additional
assumption that the selected features are pairwise independent.

Yang and Moody’s Joint Mutual Information (JMI) [YM99] expands MRMR by
the conditional-relevancy term,

Jjmi(fk,S) = I(Fk;Y )− 1

|S|
∑
fj∈S

(
I(Fj ;Fk)− I(Fj ;Fk|Y )

)
.

Unlike MRMR, JMI does not assume class-conditional pairwise independence
from the start, but adopts this belief as the number of selected features increases.

Motivated by these interpretations, both methods can be modified to include prior
knowledge derived from the use case: Two features are likely to be pairwise (and
pair-wise class-conditionally) independent, if the corresponding optical filters do
not overlap. This can be encoded by some similarity measure s(fj , fk), where
s(fj , fk) = 0 denotes no overlap, and s(fj , fk) = 1 means that fj and fk share
the same transmission spectrum. The resulting criteria, similarity-MRMR and
similarity-JMI, are computed as

Jsmrmr(fk,S) = I(Fk;Y )−
∑
fj∈S

s(fj , fk)I(Fj ;Fk) and

Jsjmi(fk,S) = I(Fk;Y )−
∑
fj∈S

s(fj , fk)
(
I(Fj ;Fk)− I(Fj ;Fk|Y )

)
.

2.4 Embedded Methods

Embedded methods position themselves between wrappers and filters. Like wrap-
pers, they utilize a model to select features. However, the selection is not based on
predictive performance, but rather a direct result of the learning algorithm. In the
following, an embedded method is derived from Freund and Schapire’s AdaBoost
algorithm [FS95].

In boosting, the decisions of several weak classifiers ht are pooled to build a clas-
sifier H . Even though the individual ht may perform barely better than chance,
their collective vote will form a strong classifier. In AdaBoost, this classifier is of
the form

H(s) = sign

(
T∑
t=1

αtht(s)

)
.
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The weak classifiers ht and corresponding weights αt are selected in an iterative
process: A distribution of weights Wt encodes the importance of each training
sample (initially each training sample is equally important, W1(t) = 1

N ). In the
t-th iteration, ht is selected to minimize the weighted error rate on the training
samples, i.e.

ht = arg max
h

∣∣∣∣12 − ε(h)

∣∣∣∣ , where

ε(h) =

N∑
i=1

Wt(i)
[
h(si) 6= yi

]
.

The corresponding weight αt is computed from the weighted training error ε(ht),
typically as log-odds of the (weighted) correct classification rate,

αt = log
1− ε(ht)
ε(ht)

.

Finally, the weight distribution is updated so that the training samples that ht
classified incorrectly will be more important in the next round:

Wt+1(i) = exp
(
αt
[
ht(si) 6= yi

]) Wt(i)∑N
i=1Wt+1(i)

.

Iteration is stopped if either a maximum number of weak learners is selected, or if
ε(ht) is not significantly different from a random choice.

By recalling the feature discretization in section 2.1 it is apparent how AdaBoost
can be used for feature selection: Each discretized feature is itself a weak learner.
The classifier ensembleH then represents the feature selection, where |αt| encodes
the importance of the feature ft.

An interesting observation is that this technique could also be used for filter design:
Since H represents a linear combination of filters, one could derive a global filter
transmission function by choosing f ∈ F to represent suitable basis functions
instead of physical filters. However, note that this may results in two filters, one
corresponding to the positive, and one corresponding to the negative transmission
coefficients.

3 Conclusion

Numerous works have shown the benefit of using optical filters derived from spec-
tral analysis for visual inspection tasks. There are two general approaches to obtain
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suitable filters: design of a specialized transmission function and selection from a
pool of possibilitiers. The design approach generally produces filters optimally
suited for the task at hand, but the high manufacturing costs hamper application
in an industrial setting. Selection, on the other hand, results in low costs due to
the usage of off-the-shelve filters, although the solution may be suboptimal. While
there are many methods suitable forfilter design, especially in the field of remote
sensing, surprisingly few works are considered with automatic filter selection.

In a novel and comprehensive approach, filters selection is explicitly reduced to
feature selection as it is known in the machine learning literature. The approach
has been exemplified by a wrapper method based on LDA, a filter method using
information theoric measures, and by embedding the selection into the AdaBoost
algorithm. Interestingly, the third method could also be extended to allow filter
design.

Although targeted at visual inspection, the presented approach can also be used
for band selection in remote sensing applications. Another interesting application
arises when the filter pool does not only contain individual filters, but arbitrary
combinations (e.g. monomials, which correspond to chains of filters) as well.
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Abstract: Visibility is a general problem in visual inspection tasks. Espe-
cially in deflectometry, where the measurement area depends on how light is
reflected on the surface, and thus of the shape of the surface itself. We con-
sider the problem of finding an inspection plan such that the whole surface is
completely covered. This problem is related to the classical set cover prob-
lem and is known to be NP-hard. We formulate the problem as a non-greedy
optimization problem and investigate the usage of two global optimization
algorithms and their combination for small sized problems.

1 Introduction

In deflectometry [Wer11] the test object is part of the measurement mapping and
can only be observed indirectly through the reflection of the environment or pre-
specified patterns. Depending on the size of the pattern generator and the surface
shape only small regions of the test object may be observed. E.g. on a convex
shaped object the light cone when observed from the camera, expand. Therefore
the inspected area decreases with increasing convex curvature.

To reduce this problem a larger screen could be used. For example a so called cave
could be used. The cave is a room where images can be projected onto its walls by
means of a projector, i.e. the walls serve as the display. The test object is placed
in the room and the reflection of of the walls can be viewed on the surface. Never-
theless it is not guaranteed that every possible surface can be fully observed. Here,
we follow the approach of using a movable sensor (e.g. fixed on a robot arm). This
makes it possible to plan for a whole coverage and to observe difficult locations on
the surface. The challenge here is to select appropriate sensor configurations (i.e.
position and orientation of the display and camera) for the deflectometric sensor.
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Generally, it is possible to choose the sensor configuration manually. But in con-
trast to measuring with a camera sensor, the measurement areas in a deflectometric
measurement can have nontrivial shapes, especially for complex shaped objects.
This makes the procedure for a human non trivial and time consuming.

We investigate an automatic determination of sensor configurations for the deflec-
tometric inspection task. We assume that the inspection surface can be represented
as a function f and a reference surface is given (e.g. in form of a CAD model),
which has only small deviations from the surface to be inspected. Then, the
planning procedure can also be executed offline We choose a sequence of sensor
configurations, also called a plan, which covers the whole surface.

This report is structured as follows: In Section 2 the set cover problem is intro-
duced and its relation to surface inspection in deflectometry is established. Section
3 gives a short description of the deflectometric measurement/simulation model
used in this report. Section 4 introduces to the planning problem and the next
section to optimization algorithms used for solving it. The solution procedure is
evaluated on several surfaces in a simulation in Section 6. Finally, we conclude in
Section 7.

2 Covering Problem

The problem of surface inspection in deflectometry is related to the more gen-
eral and well known set cover problem. In the classic set cover problem a finite
set of elements U and a collection of subsets S is given. The problem is to find
the smallest subcollection S ′ ⊂ S of subsets such that their union contains all ele-
ments in the finite set. This subcollection is called the minimal set cover. It is well
known that the set cover problem is NP-hard. An optimal solution can only be
found for small sized problems or in some special cases. Practically, approxima-
tion algorithms have to be used. The performance γ of an approximation algorithm
is measured by the quotient of the number of sets found by the approximization
algorithm capprox to the number of sets in the minimal cover copt:

γ =
capprox
copt

.

For some approximation algorithms lower and upper bounds of the performance
can be guaranteed.

This applies for example to the greedy algorithm. It is an iterative algorithm which
picks in every iteration the set S ∈ S which covers the largest remaining elements
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of U until a cover is established. For the greedy algorithm an upper bound on its
performance is given by [Sla96]

cgreedy
copt

< ln |U| − ln ln |U|+ 0.78 , (2.1)

where cgreedy is the number of sets in the cover found by the greedy algorithm.
This bound is tight, because there exists a problem where the performance has the
lower bound [Sla96]

ln |U| − ln ln |U| − 0.31 <
cgreedy
copt

. (2.2)

Furthermore it is shown that no greater improvements can be expected with a poly-
nomial time algorithm [Fei98, LY94]. In the case when S is not finite a bound can
be given by means of the VC-Dimension of S [BG95]. If the VC-Dimension for
a problem is lower than O(log(|U|)), then the performance guarantees are better
than (2.2) and (2.1). Unfortunately, even for simple inspection problems these re-
quirements are not met as shown in [IKDV04] in the case for inspection with a
camera.

General approximation algorithms beyond the greedy algorithm are Linear Pro-
gramming or heuristic methods such as Genetic Algorithms [BC96] or Simulated
Annealing algorithms [JB95]. For the interested reader we refer to the survey
[CTF00] which provides an overview of recent and effective methods for the set
cover problem.

The deflectometric planning problem can be seen as a set cover problem if the nor-
mal accuracy is neglected. The set U consists of the points of the surface and and
the collection of sets S are the measurement areas. The difference to the classical
formulation is, that U and S are not finite. If the problem is discretized by discretiz-
ing the surface in surface elements and also the sensor configurations, then there
can only be a finite number of distinct measurement areas. Algorithms for the set
cover problem usually require that the collection S is given explicitly. This is not
the case in the deflectometric planning problem, because the measurement areas
are defined implicitly by the sensor configurations. The presented method in this
work will only discretize the surface and not the sensor configuration space. The
optimization over the continuous sensor configurations is established by means of
a heuristic method.
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3 Deflectometric Simulator

A deflectometric setup consists of a display, a camera and the surface to be in-
spected. The display shows a set of patterns which decode every pixel on the
screen. The reflection of the pattern is observed by the camera and the observed
pattern is deformed due to the shape of the surface. The result of the measure-
ment is a mapping from camera pixel to display pixels. With this mapping and the
knowledge of the configuration of the deflectometric sensor the light path can be
reconstructed and with it the normals of the surface.

From a measurement a partial differential equation can be formulated which solu-
tion space is generally an one dimensional manifold [Bal08]. This means that it is
generally not possible to infer the shape of the surface from a single measurement.
A regularization procedure is needed to choose one surface solution. Here we will
focus on the visibility of the surface but not on the normals. With the assumption
that a reference surface is given the visibility can be calculated unambiguously.

If the surface were diffuse, the intersection of the camera view cone with the sur-
face would yield the measurement area. In the case of a specular surface not all
those surface points are visible in the deflectometric sense. In a deflectometric
setup a surface point is visible with respect to a sensor configuration if there exists
a light path which passes from the display to the surface point and into the camera.
Generally the measurement area can be arbitrary complicated depending on the
shape of the surface.

For the planning procedure we need a simulator to calculate the measurement area
of a deflectometric measurement. We use a ray tracing approach by sending rays
from the camera pixel. To measure the coverage we discretize the surface by par-
titioning its domain into cells. In every cell the corresponding surface element is
approximated by a plane. If a ray hits the plane its corresponding cell is assumed
to be visible. Because this simulation will be executed frequently during the opti-
mization procedure only a small subset of the rays are traced. The approximation
quality is crucial because sending to few rays or choosing to large cells can lead to
oversimplified measurement areas. The area which is visible after n measurement
with sensor configurations θ1, . . . , θn is denoted with A(θ1, . . . , θn).

4 Planning Problem

A deflectometric sensor configuration consists of the position and orientation of
the camera and the display. Additionally the intrinsic parameters of the camera
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can be considered. We choose a parametrization of the sensor configuration which
takes the reference surface into account (see [RB12]). This has the advantage that
we can always construct a sensor configuration with which at least one surface
point is visible.

A measurement with a sensor configuration leads to a measurement area. The goal
is to find a plan which provides a complete coverage of the surface. This can be
formulated as an optimization problem

min
θ1,...,θn

n

subject to A(θ1, . . . , θn) = |U|.
An approximate solution can be found for example through the greedy algorithm.
The sensor configuration θk is chosen such that

θk = arg max
θ
{A(θ1, . . . , θk−1, θ)−A(θ1, . . . , θk−1)} ,

i.e. the configuration which covers the most remaining area is chosen. This algo-
rithm terminates if full coverage is reached, i.e. A(θ1, . . . , θngreedy ) = |U|. As
discussed in Section 2 performance guarantees can be given for the solution of the
greedy algorithm, but better solutions might be found through a heuristic search
for moderate sized problems. We solve this problem by choosing a maximal num-
ber of possible measurements nmax, where it can be guaranteed that there exists a
solution such that the surface is fully covered. This can be done by means of the
greedy algorithm. Then we set ñ = nmax − 1 and solve the optimization problem

max
θ1:θñ

A(θ1, . . . , θñ). (4.1)

We reduce the number of measurements ñ further and solve (4.1) until the
optimization problem yields a solution which does not cover the surface fully.

5 Optimization Algorithms

The dimensionality of the optimization variable in Eq. (4.1) is n · d, where d is the
dimensionality of the sensor configurations. The number of measurements n can
be very large and therefore an algorithm which optimizes the sensor configurations
all at once converges slowly. This is illustrated in Fig. 5.1, where this effect can
be seen after 400 iterations. Therefore we use the following method: We iterate
over all sensor configurations θ1, . . . , θn. In each iteration the optimization (4.1)
is solved with all the sensor configurations fixed except for one (say θj). The
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optimization algorithm is canceled early, so that the algorithm is not caught in a
local maximum. In the following, such an iteration over all sensor configurations
shall be called a sweep. The advantage of sweeps is that the inner optimization is
over a low dimensional variable. This procedure is repeated till convergence or a
specified number of sweeps.
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Figure 5.1: Number of unobserved cells depending on the number of iterations.
The algorithm used is Nelder-Mead. It can be seen that the convergence is slow
after 400 iterations.

The target function of the optimization problem has no simple closed form and
multiple local minima. Furthermore a derivative can not be computed. Problems
with these properties can be solved by derivate-free optimization algorithms.

Two well known algorithms in this field are the Nelder-Mead algorithm and the
Simulated Annealing algorithm.

The Nelder-Mead algorithm [NM65] belongs to the so called simplex methods. It
is an iterative algorithm that stores in each iteration a simplex, a set of d+1 points,
and selects the point with the lowest and greatest function value. The point with
the lowest function value is tried to be exchanged by another better point through
a set of rules. If no improvements can be done the simplex is shrinked in the
direction of the point with the greatest function value. This algorithm has proved
successful in many practical applications.

Another well known optimization algorithm which does not need derivative infor-
mation is the Simulated Annealing algorithm. It is motivated by a physical process
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of cooling: After a metal is heated it is cooled slowly such that stable crystals are
build.

The algorithm works iteratively and in each iteration the current solution is per-
turbed randomly. If the new solution leads to a higher function value than it is
accepted immediately otherwise it is accepted with a probability depending on
the current temperature, i.e. in contrast to normal local optimization algorithms
the solution can decrease in an iteration. The temperature is decreased in each
iteration according to a cooling schedule. This algorithm has many free parame-
ters for example the perturbation strategy, the acceptance function and the cooling
schedule.

The perturbation strategy describes how the solution space is explored. The trivial
way perturbing the solution is a random walk in the solution space by adding a
small increment δx to the current solution xk

xprop = xk + αδx ,

where α is a real valued variable describing the extent of the step and xprop is the
proposed solution. Another strategy is to partition the configuration vector into
meaningful components (like the distance of the camera, the orientation of the
camera etc.) and then choose one random component and only perturb this part of
the vector randomly.

xprop = xk + αQcδxc ,

where c is the component, δxc is a random sample from the component space
and Qc maps the component into the sensor configuration space. In deflectome-
try the largest improvements in optimization are made by changing the distance
of the camera or display. This can be incorporated in the optimization by assign-
ing a higher probability to these important components and then decreasing them
depending on the temperature.

As can be seen in Fig. 5.2 Simulated Annealing converges in a small number of
steps to the optimum. The convergence speed is very high at the beginning of
the optimization. However, Nelder-Mead decreases slowly due to flat regions in
the optimization function (only the first 145 steps are shown). But one step of
the Simulated Annealing algorithm is slower than one step of the Nelder-Mead
algorithm (about 12 times slower in our case). Therefore we suggest to combine
both algorithms by alternating between the two optimization algorithms. We start
with the Simulated Annealing algorithm and optimize a number of steps. If the
improvement of the new plan is not sufficient we switch the algorithms. This is
repeated till convergence by adapting the threshold for improvement. The result of
an experiment using this algorithm can be seen in Fig. 5.3. Although more steps
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Figure 5.2: Number of unobserved cells in each step for the Nelder-Mead algo-
rithm and the Simulated Annealing algorithm. Here a step is the optimization of
one sensor configuration in a sweep. It can be seen that Simulated Annealing con-
verges in a small number of steps. Nelder-Mead falls rapidly but then decreases
slowly due to flat regions in the optimization function.
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Figure 5.3: Number of unobserved cells in each step for the algorithm alternating
Nelder-Mead and Simulated Annealing. About 25% of the steps are optimized
with Nelder-Mead.



Optimizing Deflectometric Measurements for Visibility 109

are needed for the optimization compared to Simulated Annealing in Fig. 5.2, the
optimization converges faster due to faster steps of the Nelder-Mead algorithm.

6 Experiments

(a) Surface A (b) Surface B

Figure 6.1: The two example surfaces denoted with A and B. The color encodes
the heights of the surface from blue (lower values) to red (higher values).

We tested the presented method on several simple surfaces in a simulation. The
surfaces are depicted in Fig. 6.1(a) and Fig. 6.1(b). Both surfaces are overlayed
with a periodic wave such that the measurement areas are not trivial. The cam-
era was approximated with maximal resolution of 40 × 30 pixels. The degree of
approximation was adaptively changed during the optimization process. The dis-
play size was set to 17 Inch. In this example the starting value for the number
of measurements was set heuristically but could also be found more systemati-
cally by using a greedy algorithm. Also note, that in this example the start values
(Fig. 6.2(a) and Fig. 6.2(b)) of the sensor configuration were chosen such that the
initial measurement areas are lying on a grid, but the optimization is robust against
random start values due the Simulated Annealing optimization. The qualitative
results are depicted in Fig. 6.2(c) and Fig. 6.2(d). For the first surface only four
measurements suffice to cover it completely the second surface only needs two.

7 Conclusion

The deflectometric inspection task with known reference surface can be seen as
a set cover problem. Theoretically it is known that the greedy algorithm already
yields results which cannot be improved much further. Practically, for moderate
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Figure 6.2: Results of the planning process for the example surfaces A and B.
The startvalues of the measurement areas are depicted in (a)-(b) and the respective
measurement areas after the optimization in (c)-(d). Points with different colors
are measured with different sensor configurations.

sized problems and in bounded domains heuristics methods can be found which
can yield better results. But these are not proved theoretically. We have seen that
finding a plan of sensor configurations for the covering problem in deflectometry
can be solved by an optimization algorithm. A combination of the Nelder-Mead
algorithm with Simulated Annealing showed good results.

There are several points which need to be investigated to improve the results and
applicability of the method. For a deflectometric measurement not only the visi-
bility of a surface patch is important but also the uncertainty of the normal. This is
ignored completely by the presented algorithm. But it could easily be incorporated
for example by estimating the normal of every plane in the cell. Another problem
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is that the size of the cells is equal but should generally depend on the curvature or
the size of the area it occupies, so that the approximation with a plane is justified.
It needs to be investigated if Nelder-Mead and Simulated Annealing can be com-
bined in a more natural way. Finally more tests should be made with more realistic
surfaces and quantitative evaluations.
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Abstract: Optical imaging under water represents a still unresolved problem.
Poor visibility, blurred images and a limited signal-to-noise-ratio are the con-
sequences of absorption and scattering dominating the properties of water. In
order to enhance or even restore image content from underwater images, it
is essential to understand and model the imaging process. In this technical
report a new model is derived, taking into account three different components
of light transportation. Thus most image degradation effects in underwater
imaging can be described and therefore also removed.

1 Introduction

Most inspection and exploration tasks under water use acoustic imaging sensors
instead of visual sensors such as cameras. This is because visual imaging under
water hits its limits. Water interacts with light and therefore acts as an optical el-
ement. Thus, degradation effects like chromatic aberrations, blurring and loss of
contrast appear in images taken under water. However, visual images are easy and
cheap to obtain by cameras, the information density in terms of scene texture and
object shapes is high and they are intuitively interpretable by human observers.
Thus visual imaging can play an important role in the future of underwater inspec-
tion and exploitation.
In order to use visual imaging efficiently in underwater tasks image enhancement
or image restoration is inevitable. Thus, image restoration has to be applied on un-
derwater vision tasks. Therefore precise models and parameter estimation methods
have to be developed in order to use visual imaging in underwater surroundings.
This technical report provides a new imaging model, based on linear, geometric ray
propagation considering the reflection at scene surfaces, wavelength-dependent
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absorption and scattering in participating media. The derived model consists of
different additive components of light transportation. This model can be easily
adapted to the accuracy requirements of imaging tasks.

First we explain some radiometric quantities necessary for the derivation of the
model. Next, different effects of light propagation are described in ascending
complexity order. Finaly some conclusions are given.

2 Radiometry

To understand radiative transfer, some physical quantities have to be explained.
These are in detail the radiant flux, the radiance, the irradiance and the radiant
intensity. In this technical report the term ’light rays’ is used equivalently to
geometric beams of electromagnetic radiation.

2.1 Radiant Flux

Light sources

Φ(A)

Figure 2.1: Illustration of the radiant flux

The radiant flux Φ is the measure of
the power of radiation passing through
some surfaceA. Its unit is Watt [W ]. If
the surfaceA is a sphere around a light
source, the corresponding radiant flux
gives the emitted power of the light
source. The figure to the right illus-
trates the concept of radiant flux Φ(A)
through surface A.
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2.1.1 Radiance

n

θ

x
dA

dω

r

Figure 2.2: Illustration of outgoing
radiance from an area element dA in
direction r into a solid angle element
dω.

An important quantity of radiometry is the
radiance. It is best associated with a single
light ray at a certain position propagating
in a certain direction. The radiance L is
the area-projection of the density of power
coming from an area element dA radiated
into a solid angle element dω. The figure
beside illustrates the radiance.
The relation between radiance and the ra-
diant flux Φ is given by the integral over
all solid angles and the area A.

Φ =

∫
Ω

∫
A

L(r,x) cos(θ) dAdω ,

where x ∈ A denotes the position of ra-
diance, r denotes the direction of radiance
with its polar angle θ and ω ∈ Ω denotes
the solid angle corresponding to the direc-
tion r. Hence the unit of radiance is writ-
ten as Watt per square meter and steradian
[ W
m2sr ].

2.2 Irradiance
n

r

xdA

Figure 2.3: Illustration incom-
ing irradiance at an area element
dA

The quantity of irradiance E(x) describes the
density of radiant flux Φ arriving at an area
unit. Thus irradiance can be written as:

E(x) =
dΦ

dA
,

with its unit [ Wm2 ]. The relation between radi-
ance L(x, r) and irradiance E(x) is given by
the integral over all solid angles

E(x) =

∫
Ω

L(x, r) cos(θ) dω,

where θ is the angle between the normal vector n of the surface and the direction
of the incident radiance r. The solid angle element dω corresponds to the
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direction r of the incident radiance L(x, r).

2.3 Radiant Intensity

x

dω

r

Figure 2.4: Illustration of the outgo-
ing radiant intensity into a solid angle
element dω

Whereas irradiance is the density of
radiated power related to an area ele-
ment dA, the radiant intensity I(r) is
the density of radiated power related
to a solid angle element dω. Thus the
radiant intensity can be defined as:

I(r) =
dΦ

dω
,

with its unit Watt per steradian [Wsr ].
Hence the relations between radiance
and radiant intensity are given as

I(x) =

∫
A

L(x, r) cos(θ) dx,

where θ is the angle between the nor-
mal vector of the surface and the direction of the outgoing radiance.
The concept of radiant intensity is useful to describe point sources, but it has not
found much application in modeling radiative transfer under water except in the
definition of the volume scattering function [Mob94, Cha60].

2.4 Scattering

A photon can be deflected by a particle into direction r divergent from origin
direction r′. This process is called scattering. First of all scattering causes a
decrease of radiance from direction r′. The decrease in radiance while crossing a
volume element at x in direction r′ due to scattering is proportional to the incident
radiance. Thus loss of radiance due to scattering can be described by

rT∇xL (x, r′) = −b(x)L (x, r′)

Here b(x) denotes the scattering coefficient.
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E(x, r′)
dI(x, r)

dV

The loss of radiance in one direction
by scattering do not cause a reduc-
tion of radiance in radiation field. The
part of the energy lost from an incident
light beam will reappear as scattered
radiation in other directions. The dis-
tribution of angles of scattered radia-
tion can be described by the volume
scattering function β (x, r), which is
defined [Mob94] as

β(x, r′↔r) =
dI(x, r)

E(x, r′) dV
,

where dV denotes a volume element of scattering medium. The relation between
volume scattering function β(x, r) and the corresponding scattering coefficient b
can be described by

b(x) =

∫
Ω

β (x, r′↔r) dω(r)

as a consequence of conservation of energy in radiation field by scattering. Here
ω ∈ Ω denotes the solid angle corresponding to the direction r.
In summary, increase of radiance at location x in direction r by scattering can be
written as

rT∇xL (x, r) =

∫
Ω

β (x, r′↔r)L (x, r′) dω′ , (2.1)

where r′↔r represents the change of direction from r′ to r.

2.5 Reflection

Reflection is the change of the direction of a radiant beam on a surface. The law
of specular reflection says that the angle of the incident radiance respective to the
surface normal equals the angle of the reflected radiance.

dE(x, r′)

n

θi
dL(x, r)

Most objects do not have perfectly
reflecting surfaces. Thus the an-
gle of the reflected radiance differs
from the incident angle. This phe-
nomenon is called diffuse reflection.
The properties of objects respect to
their reflection can be described by the
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Bidirectional Reflectance Distribution
Function defined as

f(x, r′, r) =
dL (x, r)

dE (x, r′)
=

dL (x, r)

dL (x, r′) cos(θ′) dω′
,

where E (x, r′) is the incident irradiance, θ′ is the angle between surface normal
and direction r′ and ω′ is the solid angle corresponding to the incident direction
r′. Thus the reflected radiance in direction r can be written as

L (x, r) =

∫
Ω

f (x, r′, r)L (x, r′) cos(θ′) dω′ .

3 Single Scattering Model

In this section the single scattering imaging model will be derived. This model
only takes into account the light rays scattered no more than once. The model
contains three components, which are the direct component, the backscattering
component and the blurring component. Figure 3.1 illustrate the properties and
the used variables.

p

o(u)

ξ

u

direct component
o(u′)

blurring component
backscattering

Figure 3.1: Illustration scene and its
properties

We model the camera as a pinhole-
camera with its pinhole-position p.
Pixels u are represented as scene
points in world coordinates. The scene
surface point, which corresponds to
the pixel u is denoted as o(u), where
the distance between the pinhole p
and the scene surface point o(u) is
d(u) := ‖p− o(u)‖. For simplifi-
cation of model description only one
emitting point light source at ξ is con-
sidered.

Direct Component

The direct component is the unscattered part of the light rays, originating from
the light source ξ travelling through the water and is relected by the scene surface
point o(u) further pass it until it reaches the pinhole p and is projected at u.
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Backscattering Component

The backscattering component is the integration over all light rays, emitted from
the light source and scattered at the sight line of the pixel u towards u. This part
of the model does not contain any information about the scene surface. It acts only
as an additive intensity during the imaging process.

Blurring component

The blurring component represents the light rays, which come from the scene sur-
face o(u′) and are scattered into a line of sight of another pixel u. This part
of the imaging model does contain information of the scene surface, but inte-
grates information from neighboring pixels. As a consequence, the image appears
blurred.

3.1 Light field of a point light source

In this section the character of a point light source will be discussed. A point light
is a light source with defined radiant flux Φ > 0 without any finite spatial extent.
Hence, any emitted radiance, irradiance and radiant intensity spring from one
infinitesimally small point. In nature there cannot be any real point light source,
otherwise energy density would be infinite. In computer graphics infinitesimal
point light sources are often used to reduce computational complexity.

x

r
‖r‖ = 1A

ξ ∈ A

Figure 3.2: Illustration of point
light

For further thoughts an empty space is consid-
ered, which only contains a point light source
at the scene point ξ. For a scene point x with
‖x− ξ‖ = 1 the radiant intensity E(x) and
the irradiance I(x) at x can be calculated in
the same manner by integrating the radiance
over a spherical cap A around the scene point
x containing the light point source ξ

I(x) =

∫
A

L(x, r) dr.

Evidently the Irradiance I(x) is independent of the areaA of the spherical cap and
depends only on the direction x− ξ

I(x) = S(x− ξ),
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where S(·) is the radiant intensity of a point light in a donated direction. The
boundary value

I(x) = S(x− ξ) = lim
A→0

∫
A

L(x, r) dr

and the sampling property of dirac delta function leads to the formulation of the
radiance

L(x, r) = S(x− ξ)δ(r − x+ ξ).

Analogous this can be extended to each scene point x 6= ξ

L(x, r) = S

(
x− ξ
‖x− ξ‖

)
δ

(
r − x− ξ
‖x− ξ‖

)
,

where ‖r‖ = 1. In 3.2 the explained scene is figured out.

3.1.1 Point light in participating media

The light field associated with a point light in an absorbing and scattering medium
is completely different. Nevertheless, regarding only the direct part of the light
field, that are light rays coming directly from the light source without being
scattered into other directions, the light field can be depicted as

L(x, r) = S

(
x− ξ
‖x− ξ‖

)
δ

(
r − x− ξ
‖x− ξ‖

)
e−c‖x−ξ‖. (3.1)

The exponential factor stems from attenuation by combined out-scattering and
absorption, which follows from the Lambert Beers law.

3.2 Reflection from scene surfaces

As described in section 2.5, reflection at scene surface points can be characterized
by the BRDF

L (o, l) =∫
Ω

f

(
o,

r

‖r‖ ↔ l
)
L

(
o,

r

‖r‖

)
nTr

‖r‖ dω(r) ,

where n is the surface normal vector and dω(r) is the corresponding solid angle
in direction r. Instead of referencing the solid angle, area A is used to describe
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properties

L (o, l) =∫
A

f

(
o,

r

‖r‖ ↔ l
)
L

(
o,

r

‖r‖

)
nTr

‖r‖
1

‖r‖2
dr .

ξ

o
n

l

r

Figure 3.3: Illustration of
surface reflectance

This leads together with (3.1) to

L (o, l) =f

(
o,

o− ξ
‖o− ξ‖ ↔ l

)
S

(
o− ξ
‖o− ξ‖

)
·

e−c‖o−ξ‖
nT (o− ξ)

‖o− ξ‖
1

‖o− ξ‖2
. (3.2)

The reflected radiance depends on the cosine-angle
of incoming light and on the reciprocal of the
squared distance to the light source.

3.3 Direct Component

Regarding the direct component of light transporta-
tion, which are the non-scattered light rays travel-
ling directly from light source via the scene surface
to the camera sensor leads to

L

(
p,

p− o
‖p− o‖

)
= L

(
o,

p− o
‖p− o‖

)
e−c‖p−o‖ ,

which gives with (3.2)

L

(
p,

p− o
‖p− o‖

)
=f

(
o,

o− ξ
‖o− ξ‖ ↔

p− o
‖p− o‖

)
S

(
o− ξ
‖o− ξ‖

)
·

e−c(‖p−o|+‖o−ξ‖)
nT (o− ξ)

‖o− ξ‖
1

‖o− ξ‖2
. (3.3)
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3.4 Backscattering Component

dτ

xd
τ

dτ
θ

r

l

Figure 3.4: Illustration of scattering in
volume elements

Scattering in participating media is
described by the volume-scattering-
function (2.1). Referring to the area
instead of solid angles scattering at a
point x into direction l can be written
as

d

dτ
L(x, l) =∫

A

β

(
x,

r

‖r‖ ↔ l
)
L

(
x,

r

‖r‖

)
1

‖r‖2
dr ,

(3.4)

where the light beam incide from di-
rection r and dV . For better under-
standing figure 3.4 shows properties of
given variables.
Regarding the incoming light from point light sources (3.1) leads to

d

dτ
L(x, l) = β

(
x,

x− ξ
‖x− ξ‖ ↔ l

)
S

(
x− ξ
‖x− ξ‖

)
e−c‖x−ξ‖

‖x− ξ‖2
. (3.5)

Hence, integrating the in-scattering (3.5) at all volume elements along the sight
line gives the total backscattering component

L

(
u,

u− p
‖u− p‖

)
=

d(u)∫
0

dL

(
p− τ u− p

‖u− p‖ ,
u− p
‖u− p‖

)
dτ ,

where each point of the sight line of the pixel u can is described by x(τ) =
p+ τ p−u

‖p−u‖ and p is the pinhole of the camera. This leads to

L

(
u,

u− p
‖u− p‖

)
= (3.6)

d(u)∫
0

β

(
x(τ),

x(τ)− ξ
‖x(τ)− ξ‖ ↔

u− p
‖u− p‖

)
S

(
x(τ)− ξ
‖x(τ)− ξ‖

)
e−c(‖x(τ)−ξ‖+τ)

‖x(τ)− ξ‖2
dτ .
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3.5 Blurring Component

The blurring component consists of both, a direct illumination of a scene surface
point and in-scattering of light into the sight line of one pixel. Hence, this com-
ponent is a composition of both (3.6) (3.3). Beginning with the description of
scattering at one scene point (3.4)

d

dτ
L(x, l) =

∫
A

β

(
x,

r

‖r‖ ↔ l
)
L

(
x,

r

‖r‖

)
1

‖r‖2
dr ,

the radiance L(x, r
‖r‖ ) is not caused by an infinite point light source, but by the

illuminated object surface. This leads to

d

dτ
L(x, l) =

∫
A

β

(
x,

x− o
‖x− o‖ ↔ l

)
L

(
x,

x− o
‖x− o‖

)
1

‖x− o‖2
do ,

where the integration has to be done over all scene surface points o. With Lambert
Beers’ law this leads to

d

dτ
L (x, l) =

∫
A

β

(
x,

x− o
‖x− o‖ ↔ l

)
L

(
o,

x− o
‖x− o‖

)
e−c‖x−o‖

1

‖x− o‖2
do .

The radiance of scene surface point o illuminated by direct illumination is given
by (3.2). Hence, the scattered part of radiance is

d

dτ
L(x, l) =

∫
A

β

(
x,

x− o
‖x− o‖ ↔ l

)
f

(
o,

o− ξ
‖o− ξ‖ ↔

x− o
‖x− o‖

)
S

(
o− ξ
‖o− ξ‖

)
e−c(‖x−o‖+‖o−ξ‖)

1

‖x− o‖2
do .

Transporting the radiance from x to the pinhole p and integrating all points over
the sight line of u finaly leads to

L(u,
u− p
‖u− p‖ ) =

d(u)∫
0

∫
A

β(x(τ),
x(τ)− o
‖x(τ)− o‖ ↔

p− x(τ)

‖p− x(τ)‖ )

f

(
o,

o− ξ
‖o− ξ‖ ↔

x(τ)− o
‖x(τ)− o‖

)
S

(
o− ξ
‖o− ξ‖

)
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e−c(‖x(τ)−o‖+‖o−ξ‖+τ) 1

‖x(τ)− o‖2
dodτ . (3.7)

3.6 Other unconsidered Components

There are many other unconsidered components of radiative transfer like multiple
scattering or illumination of scene surface by scattered light. These components
increase the computational load. Because of linearity of geometric light trans-
portation, each other component appends an additive contribution to the resulting
image

Ltotal(u,
u− p
‖u− p‖ ) =

∞∑
i=0

Li(u,
u− p
‖u− p‖ ) . (3.8)

Every component is non-negative Li(u, u−p
‖u−p‖ ) ≥ 0, furthermore assuming non-

emitting volume and surface elements total amount of light energy is limited. As
a consequence the equation (3.8) converges to a concrete value.

3.7 Affine Image Model

In this section a new imaging model is presented considering the derived single
scattering model. This model allows describing many different imaging effects of
underwater imaging, like loss of intensity, color-shift, loss of contrast and blurring.
Therefore one channel of an image is regarded as column vector g ∈ RN , where
N is the total number of pixels. Hence, the model

g = Γρ+ b

is an affine transformation of the signal vector ρ ∈ RN , which represents the
reflectance at the scene surface assuming lambertian surfaces. Γ = (γij) ∈ RN×N
is the transportation matrix, which describes the direct and the blurring component
of single scattering light transportation. b ∈ RN is the additive backscattering
component.
The matrix diagonal elements γii are the direct components derived from (3.3)
with lambertian surfaces f(oi, r↔ l) = f(oi) = ρi

γii = S(
oi − ξ
‖oi − ξ‖

)e−c(‖p−oi‖+‖oi−ξ‖)
nTi (oi − ξ)

‖oi − ξ‖
1

‖oi − ξ‖2
,
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thereby oi is the surface point corresponding to the image pixel gi.
The other elements of transportation matrix Γ are caused by the blurring compo-
nent (3.7). γij quantifies the amount of light which comes from scene surface point
oj and is scattered into the sight line of ui

γij =

d(ui)∫
0

β(x(τ),
x(τ)− oj
‖x(τ)− oj‖

↔ p− x(τ)

‖p− x(τ)‖ )

S

(
oj − ξ
‖oj − ξ‖

)
e−c(‖x(τ)−oj‖+‖oj−ξ‖+τ) 1

‖x(τ)− oj‖2
dτ .

Vector b contains the additive backscattering component (3.6)

bi =

d(ui)∫
0

β(x(τ),
x(τ)− ξ
‖x(τ)− ξ‖ ↔

ui − p
‖ui − p‖

)S(
x(τ)− ξ
‖x(τ)− ξ‖ )

e−c(‖x(τ)−ξ‖+τ)

‖x(τ)− ξ‖2
dτ .

This formulation leads to a very clear mathematical description of imaging model.
In case of lambertian surfaces and the considered components, light transportation
can be explained as an affine transformation of scene surface reflectance, where the
transformation depends on the optical properties of water, the shape of the surface
and the location of light sources.

4 Conclusion

In this technical report a new imaging model for underwater imaging was derived,
which is able to model different image degradation effects, like image blurring,
color shift, decrease of signal intensity, loss of contrast. Mathematically it is an
affine transformation of the scene reflectance. This formulation leads to a better
understanding of underwater imaging and provides a straight forward access to the
theme of image restoration.

4.1 Future Work

Formulating the process of image acquisition as an affine transformation allows
to perform image restoration by established methods described in [Rie03]. Thus,



126 Thomas Stephan

underwater image restoration can be handled as standard linear inverse problem,
where approaches like Tikhonov-Phillips regularization, Landweber iteration or
conjugate gradient method can be used.
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Abstract: This report discusses three merit functions to optimize optical in-
terference filter coatings. The applications of these filters are intentionally op-
tical 3D sensors, e.g. a chromatic confocal triangulation sensor. Optimizing
these optical filters is done by minimizing the measurement uncertainty of the
sensor. The measurement task is handled as a parameter estimation problem
and the sensor is considered as a physical experiment. As part of the experi-
mental design, the optical filters are optimized to achieve measurements with
lower uncertainty. The first merit function is based on a frequentistic statistic
utilizing the Cramér-Rao lower bound. An example is used to point out disad-
vantages and two alternative merit functions are proposed. Instead of a lower
bound, the other merit functions incorporate a specific estimator function.

1 Introduction

Designing a sensor from scratch offers many degrees of freedom. The process is
equal to setup an experiment and fixing all the design variables in the sense of an
optimal experimental design. In literature [HK05],[Bos07], [Ber85],[CV95] ex-
perimental design is a well-studied topic. The basic idea is to apply estimation
theory to model the outcome of an experiment. On top of this model optimality
criteria are defined, which quantify the performance of the experiment. Finally,
using these criteria as merit functions in an optimization framework will lead to
improved experimental designs. In [Bos07],[VAdDVDvdB02] it is proposed to
utilize the Cramér-Rao lower bound to quantify the variance of the experimental
outcome. The Cramér-Rao lower bound is a general lower bound of the variance of
an arbitrary estimator function [Bos07]. Because the purpose of this research is to
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optimize a measurement sensor, the variance of an estimator function is of special
interest. According to [fS04], the uncertainty of a measurement is quantified by
variances or standard deviations and the measurement itself is only an estimate of
the value of the measurand. The main advantage of the Cramér-Rao lower bound is
its compact closed form expression. Unfortunately, the Cramér-Rao lower bound
implicit linearizes the physical model for a given set of design variables. This
report emphasizes the resulting drawbacks for oscillating non-linear models. An
example similar to [VDBCT03] is presented. To overcome this problem it is pro-
posed to use a specific estimation function instead of a lower bound. For this
purpose [MVDBB94] proposed to use the variance of a least square estimator.
However, the sensor model had to be linearized. A general approach is Bayesian
experimental design [HM13], [CV95],[VDBCT03], [Ber85]. In [HM13] the ap-
plication of Bayesian experimental design is shown for nonlinear models. They
optimize an experiment based on a merit function utilizing the Kullback-Leibler
divergence. The Kullback-Leibler divergence is used as distance measure between
the posterior and the priori and quantifies the information gain made by an exper-
iment. The idea was originally proposed by [Lin56] and is derived from Shannon
information theory. The principle approach was generalized [Lin72],[CV95] to al-
low other utility functions than the entropy as information measure. In section 3.3
this approach is used in combination with a variance like utility function. However
this approach lead to experimental design, which are optimal on average. As an al-
ternative in section 3.4 a merit function for experimental design is proposed, which
optimizes always the worst case. In this case there is no risk that some working
points of the experiment have higher uncertainty for the benefit for others.

2 Sensor Model

This section provides a rough sensor model. For simplification details are ne-
glected but can be found in [THB13]. The intention of this section is to clarify the
notation and the application. In the next section estimation theory is applied to the
provided model.

The interference filters are optimized for a chromatic confocal triangulation (CCT)
[TB12] sensor. In principle, interference filters can realize arbitrary transmission
characteristics by customized thin film layer stacks. The scope of this research is
to optimize the sensor by adjusting the thicknesses of these thin film layers, which
in turn change the filter transmissions. Assume a CCT sensor with six filters cor-
responding to six camera channels. The gray values of each channel are organized
in a vector and denoted as g = (g1, . . . , g6)>. Each filter is determined by its
thin film layer stack. The characteristic thicknesses of each layer are organized
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as a parameter vector pi and the index i specifies the corresponding optical filter.
For simplification all filters are summarize in one long vector p. In experimental
design these parameters are sometimes called design variables.

The measurement procedure of a CCT sensor is to estimate a height, which is op-
tical encoded by a wavelength λ, based on the gray values g. Apart of a nonlinear
relationship, height and wavelength λ are equivalent and instead of the height, λ is
used as the parameter of interest. Assuming an arbitrary estimation function f(.)
the normal working procedure of a CCT senor can be formalized as:

λ̂ = f(g; p),

with the target to estimate the corresponding wavelength. In estimation literature
the parameters p are denoted as nuisance parameter, because they are not of in-
terest. In experimental design these parameter are the adjustment screws to gain
better performance.

A requirement to apply powerful estimation functions, like the Maximum Likeli-
hood estimation, is to specify the distribution of the measurements. The dominant
non-systematic error source in the CCT sensor is the photon noise of the involved
camera. For large number of photons the Poisson distribution can be approximated
by the normal distribution. For this case the six channel camera gray value g is
modeled as random variable G:

E{G} = gµ(λ; p),gµ : R→ R6, λ 7→ g

G ∼ N
(
gµ(λ; p), diag(σ2

1(λ; p), . . . , σ2
6(λ; p))

)
, with

σ(λ,p) = σd + kgµ(λ; p), σ : R→ R6, λ 7→ σ = (σ1, . . . , σ6)>

p(g|λ,p) =
6∏
i=1

1√
2πσi

e
− 1

2

(
gi−gµ,i(λ;p)

σi

)2

(2.1)

The sensor model gµ(λ; p) defines the expectation value of G. In [Bos07] this
sensor model is called expectation model. The random variable G is assumed to
be normal like distributed and each of the six camera channels is assumed to be
statistically independent. The independence property results in a diagonal covari-
ance matrix. The variance of each camera channel is a function of the sensor model
again, to realize an approximation of the Poisson distribution.

For the Bayesian framework the deterministic parameter λ is considered as a
random variable Λ. A non-informative a priori probability density function is
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assumed:

p(λ) =

{
1

λmax−λmin
, if λmin ≤ λ ≤ λmax

0, else,

which just expresses the knowledge that the wavelength will be within certain
boundaries. Using the Bayes’ theorem, the a posteriori probability density function
is given by:

p(g|p) =

∫
p(g|λ,p)p(λ)dλ

p(λ|g,p) =
p(g|λ,p)p(λ)

p(g|p)

=


p(g|λ,p)∫ λmax

λmin
p(g|λ,p)dλ

, if λmin ≤ λ ≤ λmax

0, else.

3 Optimizing the Experimental Sensor Design

In this section merit functions are derived to optimize the sensor performance.
Optimizing the performance of such a sensor aims to minimize the measurement
uncertainty. According to [fS04] the measurement uncertainty is defined as stan-
dard deviation (or variance) of the measurement result, while the measurement
is only an estimation of the true value. Because the measurement process is an
estimation procedure, the optimization tries to minimize the variance of the esti-
mation. The following subsections define different design criteria, which propose
optimal design parameters p? for optimal experimental design settings.

3.1 Cramér-Rao Lower Bound Approach

The Cramér-Rao lower bound is a fundamental lower bound for the variance of
any estimator. Because the lower bound is a function of the experimental design
parameters, too, it is a easily accessible way to improve an experiment. The as-
sumption behind this approach is that estimators are available, which reach this
lower bound at least asymptotically. A famous example is the Maximum Like-
lihood estimator[Bos07] (p. 81). According to [Bos07] the Cramér-Rao lower
bound for normal distributed observations is defined as:

Var{f(g; p)} ≥
(
∂g>(λ,p)

∂λ
C−1 ∂g(λ,p)

∂λ

)−1

,
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with a covariance matrix C. In the CCT sensor application only one parameter λ
is of interest, this scalar variance measure can directly be used as a merit function
to optimize the experimental design. Because a sensor is only as good as its worst
working point, a Minimax optimization is proposed:

p? = arg min
p

max
λ

Var {f (g(λ,p))} ,

which concentrates on minimizing the highest variance whithin the measurement
range.

As comparison in [THB13] several merit functions were presented. To link this re-
sult to these, a slightly different noise model (2.1) is assumed. For this comparison
the covariance matrix Cov = σ2I is modeled with constant standard deviation σ
and identity matrix I. In this case the Cramér-Rao lower bound can be expressed
as:

Var{f(λ)} =

(
∂g>(λ,p)

∂λ
(σ2I)−1 ∂g(λ,p)

∂λ

)−1

=
1

σ2

(∥∥∥∥∂g(λ,p)

∂λ

∥∥∥∥−1

2

)2

, (3.1)

which is identical to the proposed ”sensitivity” merit function in [THB13] and
reflects the result in a different light.

Unfortunately, this kind of experimental optimization will fail due to the non-
linearity of the CCT sensor model. The model g(λ,p) is highly non-linear and
has in particular an oscillating character. Optimizing only the lower bound of
the estimation variance will lead to an ill-posed estimation problem. The well
posed property will be lost, because the oscillating character of g(λ,p) will cause
ambiguities. To clarify the problem, an example is provided in the next section.

3.2 Example - Effect of Non-Linear Models

The following example is intent to emphasize the problem of a non-linear CCT
sensor model. Especially, the oscillating function character leads to ambiguities
and causes the estimation problem to be ill-posed. The example is adapted from
[VDBCT03]. Instead of investigating the CCT sensor model an simplified sensor
model is assumed:

gµ(λ,p) =
1

2
sin (p1(λ− p2)) +

1

2
, (3.2)
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Figure 3.1: Blue graph depicts the non-linear (sinus like) relationship between
the gray value gµ(λ,p) and λ. Furthermore, the normal distribution p(g|λ0) is
depicted and the gradient at λ0 as part of the Cramér-Rao lower bound. Finally,
the posteriori probability density function is illustrated, too. The posteriori shows
four peaks with equal probability. However, this ambiguity is not recognized by the
gradient used to calculate the Cramér-Rao lower bound. The example is adapted
from [VDBCT03].

with clear oscillating character. The model is depicted in Fig. 3.1 as blue graph.
This model lead to an estimation process which is ill-posed due to ambiguities.
Assuming a measurement (observation) of g = 200, there is no evidence to prefer
one of the four estimates: λ̂ ∈ {415, 460, 565, 610}. The task of a experimental
design is to remove the ill-posed property and too ensure measurements with low
uncertainty. The key idea is, that this can be done in parallel if the current esti-
mation variance is minimized. Ambiguities in the estimation process increase the
uncertainty of the estimate and thus the variance of the estimator.

Assume that the frequency p1 and the offset p2 in the example model (3.2) would
be adjustable design parameters of the experiment. Then, an optimal solution for
a setup with well posed estimation process is shown in Fig. 3.2. The depicted
solution is optimal, because every higher frequency p1 would introduce an ambi-
guity. On the other side, a lower frequency would decrease the gradient ∂gµ/∂λ
and according to the Cramér-Rao lower bound increase the variance of the estima-
tion. The step between the result depicted in Fig. 3.1 and the proposed preferred
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Figure 3.2: Blue graph shows a sensor model g(λ) in optimal experimental set-
tings. The estimation problem is well-posed and the uncertainty for this case is
minimal.

result in Fig. 3.2 is optimizing the experimental design. However, the Cramér-
Rao lower bound approach will lead to a contrary result. According to equation
(3.1), the lower bound involves a sensor model gradient. With view to the exam-
ple model (3.2) an optimized design would increase the frequency p1 to infinity,
because:

∂g(λ,p)

∂λ
=

1

2
cos(p1(λ− p2))p1 ≤

1

2
p1.

This shows clearly that ambiguities are not recognized by the local gradient.

In the following two sections experimental design approaches are presented, which
incorporate a specific estimation function. If e.g. an Maximum-a-Posteriori Prob-
ability (MAP) estimator is used, the estimate is just the maximum of the poste-
riori probability density p(λ|g, λ0). As depicted in Fig. 3.1 the posteriori prob-
ability density function consists of four asymmetric gaussian like distributions.
These four peaks contain the information of an increased measurement uncer-
tainty, caused by ambiguities due to the non-linear sensor model. Utilizing the
MAP estimator variance will prevent the experimental design optimization to turn
into an ill-posed problem.
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3.3 Bayesian Experimental Design

The last two sections show that the Camér-Rao lower bound variance measure is
not suitable for non-linear models. This section overcomes the disadvantages of
a lower bound by involving a estimation function. Restricting to a specific esti-
mation function allows to access the variance without approximation. As shown
in example 3.1, ambiguities heavily increase the estimation variance. Minimizing
this variance in an experimental design optimization will prevent ambiguities in
the estimation process.

The idea to incorporate a concrete estimation function in experimental design does
not justify to change over from a frequentistic to a Bayesian approach. It’s rather
a free decision of the author. In [CV95] a general approach of Bayesian exper-
imental design was presented. An experimental design is defined by the design
variables p and observations g which will be made in the experiment. Based on g
an estimation function λ̂ = f(g; p) estimates the unknown parameter of interest
λ. Then, the best Bayesian experimental design is given by [CV95]:

p? = arg min
p

min
f∈F

∫ ∫
u(f, λ,p,g)p(λ|g,p)p(g|p)dλdg. (3.3)

The utility function u(f, λ,p,g) reflects the purpose of the experiment and with
the idea of a variance measure it is chosen to u(f, λ,p,g) = (λ− λ̂)2. The double
minimization takes into account, that both, a suitable estimation function f out of
a set of estimation function F and the best design parameters p must be chosen.
Suitable estimation function are e.g. the Bayesian estimator:

λ̂ =

∫
λp(λ|g,p)dλ

and the Maximum a posteriori (MAP) estimator:

λ̂MAP = arg max
λ

p(λ|g,p).

Without prove, the MAP estimator is preferred, because the non-linear model will
cause an asymmetric posterior probability density function which will cause a bias
for the Bayesian estimator. Although, the Bayesian estimator is proven to have the
lowest variance [Ber85](p.136).

3.4 Worst Case Experimental Design

The approach of the Bayesian experimental design (section 3.3) contains a hidden
risk. The integral over λ causes an averaging over all possible working points.
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Thus an experimental design can be improved by increasing the measurement un-
certainty of a single working point for the benefit for others. However, a sensor is
only as good as its worst working point and this behavior is undesirable. In litera-
ture, the worst case optimization in combination with experimental design is rarely
studied. A related idea Maximum Mean Squared Error optimization was proposed
by [SSW89] and [SWMW89]. In [Coh96],[SHL12] an similar idea was discussed.
As a side note, the following formulation of a merit function is neither purely fre-
quentistic nor Bayesian. For a given working point λ0, the squared difference of
an estimator function λ̂ = f(g) is given by:

u(f, λ0,p,g) = (λ̂− λ0)2,

as a function of the observations g and its corresponding random variable G.
According to [Coh96] the expected mean squared error (MSE) is given by:

EMSE{G} =

∫
(λ̂− λ0)2p(g|λ0,p)dg.

This equation evaluates the expected MSE at the working point λ0. The best worst
case experimental design is then given by:

p? = arg min
p

max
λ0

∫
(λ̂− λ0)2p(g|λ0,p)dg.

In contrast to (3.3) the optimization of the selected estimation function was
neglected.

4 Conclusion

The research points out, that the Cramér-Rao lower bound implicit linearizes a
sensor model. Using the lower bound to optimize the experimental setup for non-
linear models is problematic. For the application to optimize interference filters for
a CCT sensor, the optimized experimental design results in a ill-posed estimation
task. To avoid this problem an alternative approach is proposed. Specifying a con-
crete estimator, the estimation variance can directly be minimized. Open questions
are an experimental validation with a comparison between the Bayesian experi-
mental design and the proposed worst case experimental design. In an former pub-
lication [THB13] the problem of an ill-posed estimation process was avoided by an
additional merit function. A comparison with this approach would be interesting,
too. Another open question is the selection of a suitable estimation function.
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A topic that was not tackled is the numerical realization in an optimization frame-
work. Due to the non-linearities, the overall optimization problem is highly non-
convex. The found optimized experimental design will be a local optimum with
high probability. For this reason, the calculation complexity will influence the
quality of experimental design, too. For the application itself, the calculation speed
is of great importance.
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Abstract:
Many existing methods describe structural or statistical textures. For the

transition region, the structural-statistical textures, only very few dedicated
methods are known. In this report, a texture model is presented that allows
the description of certain structural-statistical textures. The way of looking at
modulation from communications technology is applied to textures. A struc-
tural texture may be subject to a variation of the gray value, i.e., amplitude
modulation, or primitive, i.e., frequency modulation. This is based on the de-
scription of the modulated texture using an extended two-dimensional Fourier
series. This enables not only the representation of modulated textures, but also
the demodulation with the help of a presented phase-locked loop. Thus, an
assessment of a modulated texture is achieved.

1 Introduction

In the field of image processing, the analysis of textures is an important area. Tex-
tures are described as two-dimensional distinct structure with certain determinis-
tic or statistical regularities. Structural, structural-statistical and statistical texture
types can be distinguished, depending on how much knowledge of a texture exists.
Structural textures are characterized by a texture primitive that is repeated in a fixed
local arrangement scheme. If the primitive or the arrangement scheme is subject
to certain stochastic variations, we speak of a structural-statistical texture type. If
no primitive or arrangement scheme is visible, we talk about a statistical texture
type. Depending on which type of texture is present, there are different methods
of analysis. The methods for statistical textures are mainly related to differences
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(a) AM of a texture (b) FM of a texture

Figure 1.1: Examples of the analysis of structural-statistical textures similar to the
communications technology.

in the statistics of first and second order. Histogram features such as the mean, the
variance, or the autocorrelation function may be used for evaluation. Known meth-
ods for this type of texture also determine the co-occurrence matrix (GLCM) and
the associated Haralick features [HSD73, Har79, Bey11] or the use of local binary
patterns [WH89]. Furthermore, statistical properties can be mapped with the help
of an AR-model [MJ92]. For structural textures the primitive can be determined
for example using the GLCM, the autocorrelation function or the Renyi entropy
[GP03] and the arrangement scheme by looking at the Fourier transform [RH99].
For the analysis of structural-statistical textures the methods for purely structural
or statistical textures are often combined. Methods that are explicitly used for the
structural-statistical texture type don’t exist.

In this report, an approach will be further developed, which has been proposed
in [Vog12] and allows a structural-statistical description of textures. The con-
cept of modulation, as known from communications technology, is introduced
for textures. A variation of the gray value corresponds to an amplitude modu-
lation (AM) (1.1(a)) and the changes in the shape of the primitive or the frequen-
tial arrangement of the primitives corresponds to a frequency modulation (FM)
(Fig. 1.1(b)). The step from communications technology to modulated textures is
achieved with the help of an extended two-dimensional Fourier series (EFS). This
report considers particularly the area of FM and presents a proposal for solution
for demodulation with the help of a phase-locked loop.

The report is organized as follows: In Section 2 the modulation model from the
communications technology is first derived for arbitrary signals and a phase-locked
loop is described which allows demodulation of frequency modulated textures.
Section 3 shows different results of this demodulation. Summary and outlook are
given in Section 4.
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2 Modulated Texture

2.1 The modulation model: From communications technology
to arbitrary signals

The modulation in the communications technology allows to transmit a desired
signal or modulating signal v(t) by a suitable carrier x(t). The information of
the desired signal can be introduced in the amplitude (AM) xAM (t) or frequency
(FM) xFM (t) of the carrier signal:

x(t) = a0 cos(2πf0t+ ϕ0),

xAM (t) = [a0 + a1v(t)] cos(2πf0t+ ϕ0),

xFM (t) = a0 cos(2πf0t+ ∆ΩV (t) + ϕ0),

with V (t) =

∫ t

0

v(t′) dt′ and ∆Ω = frequency deviation

The creation of the analytic signal using the Hilbert transform and the complex
envelope permits demodulation, i.e., the recovery of the desired signal v(t) from
the modulated carrier signal (xAM (t) or xFM (t)) [Kam11].

In [Vog12] it is shown how this approach can be expanded for any periodic one-
and two-dimensional signals by using Fourier series. The unmodulated structural
texture, described by a complex 2D-Fourier series, can be used as two-dimensional
carrier signal:

f(x, y) =

∞∑
m=−∞

∞∑
n=−∞

Emn e
j(m2πfxx+n2πfyy),

with fx =
1

Tx
, fy =

1

Ty
, and

Emn =
1

TxTy

∫ Ty

−Ty

∫ Tx

−Tx
e−j(m2πfxx+n2πfyy)f(x, y) dx dy

Emn denotes the Fourier coefficients, which are obtained from the primitive tex-
ture. fx and fy are the fundamental frequency in x- and y-direction of the ar-
rangement scheme. A structural-statistical texture can be generated by introduc-
tion of modulation. Specifically for the FM, which will be examined in more
detail below, this means introducing modulation terms Vx(x, y) and Vy(x, y) for
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(a) (b) (c)

Figure 2.1: Structural-statistical textures generated by the modulation approach:
(a) Modulation only in x-direction (Vx(x, y) = Vx(x), Vy(x, y) = 0), (b) Indepen-
dent modulation in x- and y-direction (Vx(x, y) = Vx(x) = Vy(x, y) = Vy(y)),
(c) Combined x-y-modulation (Vx(x, y) = 0, Vy(x, y)).

the corresponding fundamental frequencies and thus leads to the EFS:

fFM (x, y) =
∞∑

m=−∞

∞∑
n=−∞

Emn e
j(m(2πfxx+Vx(x,y))+n(2πfyy+Vy(x,y)))

Fig. 2.1 shows some examples of structural-statistical textures that can be de-
scribed with the help of the modulation approach and the EFS. Likewise, inclined
modulation can be guaranteed by the dependence of the modulation terms of both
x and y (Fig. 2.1(c)).

2.2 Demodulation using a phase locked loop

With the approach described in Section 2.1 structural-statistical textures with
known modulated arrangement scheme can be represented. A simple demodu-
lation analogous to the communications technology is no longer possible due to
the summation of the Fourier series. But just because this area is in the analysis of
modulated textures of special interest, a method presented below enables the de-
modulation and the determination of the modulation terms Vx(x, y) and Vy(x, y).
This method involves the use of a phase-locked loop (Fig. 2.2), which allows re-
cursive determination of the modulation terms using the EFS as a reference model
fM (x, y, Vx(x, y), Vy(x, y)). Variables to be regulated are the modulation terms
Vx(x, y) and Vy(x, y):

fM (x, y, Vx(x, y), Vy(x, y)) =
∞∑

m=−∞

∞∑
n=−∞

Emn e
j(m(2πfxx+Vx(x,y))+n(2πfyy+Vy(x,y)))
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Figure 2.2: Phase-locked loop for demodulation of modulated textures.

As the first component the texture g(x, y) to be demodulated is coupled in the
control loop as an input variable (Fig. 2.2 (a)). Thus, the Fourier coefficients
for the reference model can be determined first. The subsequent determination
of the modulation terms occurs recursively for every pixel. In the next step the
start parameters for the further regulation are derived for the subject pixel (x, y)
(Fig. 2.2 (b)). As first start parameter the initial values for the modulation param-
eters VxStart(x, y) and VyStart(x, y) are calculated with the help of the preceding
neighbors:

VxStart/yStart(x, y) =
Vx/y(x− 1, y) + Vx/y(x, y − 1)

2

The second start parameter contains the maximum gray value jump ∆gmax within
the neighborhood U (Fig. 2.3):

∆gmax = max
(
|g (x, y)− g (x− 1, y − 1)| ,

|g (x, y)− g (x− 1, y)| , ..., |g (x, y)− g (x, y − 1)|
)

The consideration of the gray value jump ∆gmax is necessary because, especially
for EFS with a few number of Fourier coefficientsEmn, a large gray jump can lead
to a higher model deviation or requires a setting time. The model deviation ∆fM
reached with the help of the previously defined start parameters denotes the third
and last start parameter:

∆fM = |g(x, y)− fM (x, y, VxStart(x, y), VyStart(x, y))|

The calculated start parameters are compared below with previously defined
thresholds (Fig. 2.2 (c)). If the gray value jump is too high ∆gmax > G, which
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Figure 2.3: Neighborhood U for determining the gray level jump.

can’t be covered by the model or reached within a pixel transition due to the set-
ting time, the previously determined start values of the modulation parameters are
taken directly for the current pixel (Fig. 2.2 (d)). This is to prevent the modu-
lation parameters to vary too much especially at edges. If there is no high gray
value jump, next the model error is considered, which is reached with the start
values of the modulation parameters. If this one is located within a range of
tolerance ∆fM < F a further adaption of the modulation parameters is not re-
quired and the start values can again be used directly for the current pixel (Fig. 2.2
(d)). An optimization using a qualitiy function ϕ(Vx, Vy) to determine the modu-
lation parameters is subsequently necessary if the constrains described above, i.e.,
∆gmax < G and ∆fM > F , do not apply (Fig. 2.2 (e)). The required quality
function ϕ(Vx, Vy) can be defined differently:

• Model deviation:

ϕ(Vx, Vy) = |g(x, y)− fM (x, y, Vx(x, y), Vy(x, y))|

• Model deviation for neighborhood

ϕ(Vx, Vy) =
∑

(k,l)∈U

|g(x− k, y − l)− fM (x− k, y − l, Vx(x, y), Vy(x, y))|

• Model deviation + Penalty term for parameter changes

ϕ(Vx, Vy) = |g(x, y)− fM (x, y, Vx(x, y), Vy(x, y))|
+ |Vx(x, y)− VxStart|+ |Vy(x, y)− VyStart|
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Figure 2.4: Choice of a new optimization point at the Downhill-Simplex algorithm
(red: worst point).

• Model deviation for neighborhood + Penalty term for parameter changes

ϕ(Vx, Vy) =
∑

(k,l)∈U

|g(x− k, y − l)− fM (x− k, y − l, Vx(x, y), Vy(x, y))|

+ |Vx(x, y)− VxStart|+ |Vy(x, y)− VyStart|

An optimization/minimization of the selected quality function is carried out with
the Downhill-Simplex algorithm according to J. Nelder and R. Mead [NM65,
LRWW98]. Based on the start values of the modulation parameters three start-
ing points are selected, for example [(VxStart + ∆, VyStart), (VxStart, VyStart +
∆), (VxStart, VyStart−∆)]. For the starting points the corresponding function val-
ues [ϕ(VxStart + ∆, VyStart), ϕ(VxStart, VyStart + ∆), ϕ(VxStart, VyStart−∆)]
are calculated and checked whether the lowest function value is within the range
of tolerance. If this is the case, the modulation parameters of the associated start
point can be entered for the current pixel. If the smallest function value is outside
the range of tolerance, the worst point is replaced by a new point (Fig. 2.4) and
with the new point constellation the calculation is performed as to the three start-
ing points. This procedure is repeated until an optimum point is found or as long
as a certain number of iterations is reached. Thus, a calculation of the modulation
parameters is achieved by means of optimization for the current pixel. This proce-
dure is performed for all pixels of the texture to be examined g(x, y). As a result,
the modulation parameters Vx(x, y) and Vy(x, y) are obtained.

It should be noted that in the presented control loop different variable values are
provided, which can influence the quality and the result of the determination of
the modulation parameters. The variable parameters are the threshold values for
the gray value jump G and the model error F , the choice of the quality function
ϕ(Vx, Vy) and the distance between the starting points ∆ at the Downhill-Simplex
algorithm.
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(a)

(b) (c)

Figure 3.1: Modulated texture example 1: (a) Original modulated texture, (b)
Synthesized texture with the modulation parameters Vx(x, y) and Vy(x, y) from
the phase-locked loop, (c) Ideal profile of the modulation parameter Vx(x, y) =
Vx(x) (Vy(x, y) = 0).

3 Results

This section shows some results of the phase-locked loop presented in Section
2.2 for the analysis of modulated textures. The two examples in Fig. 3.1(a) and
Fig. 3.2(a) show a purely in x-direction modulated texture, i.e., Vy(x, y) = 0
and Vx(x, y) = Vx(x) (3.1(c) or 3.2(c)). The investigation of the texture by the
phase-locked loop, i.e., demodulation, delivers the estimated modulation param-
eters Vx(x, y) and Vy(x, y) whereby a synthesized texture can be created (3.1(b)
or 3.2(b)). To get an idea of the profiles of the modulation parameters from the
phase-locked loop, in Fig. 3.3-3.5 the results are shown row-wise.

It can be seen that the ideal profile of the modulation parameter is not achieved by
the determination with the phase-locked loop. The profiles show strong variations
and jumps. However, the basic shape of the ideal profile can be seen if we consider
the superimposed line by line profiles (Fig. 3.3(d) and Fig. 3.5). The existing
jumps are not desirable and should be addressed in future extensions of the control
loop. The partially significant variations suggest that the optimization problem is
not clearly identified or the description of the modulated texture with the current
EFS is not unique. Nonetheless a synthesis of the texture is possible by means of
the estimated modulation parameters.
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(a)

(b) (c)

Figure 3.2: Modulated texture example 2: (a) Original modulated texture, (b)
Synthesized texture with the modulation parameters Vx(x, y) and Vy(x, y) from
the phase-locked loop, (c) Ideal profile of the modulation parameter Vx(x, y) =
Vx(x) (Vy(x, y) = 0).

The problem of nonunique description using the EFS also becomes apparent when
we look at an example with combined x-y modulation (Fig. 3.6). The results of the
phase-locked loop for the modulation parameters are seen in Fig. 3.7 and have a
distinctly different profile with respect to the ideal profile (Fig. 3.6(c)). However,
the synthesized texture from the determined modulation parameters (Fig. 3.6(b)) is
comparable to the original input texture with a few failures. By varying the various
variable parameters of the control loop, it is possible to determine modulation
parameters, which produce a synthesized texture that perfectly corresponds to the
input texture. But the profiles of this modulation parameters deviate even more
clearly from the ideal profile.

The results indicate that with the help of the phase-locked loop a basic demod-
ulation of frequency modulated textures is possible. However, the determined
modulation terms can vary considerably from the modulation parameters used for
modulation of the original texture. To what extent this issue affects the analysis
of modulated textures must be considered in further studies. Possible approaches
for improving the results could be achieved by making changes at the control loop
or by introducing additional conditions, for example for the prevention of outliers.
Through a better usage of neighborhood relations also smoother modulation pro-
files would be possible. Another important issue involves the uniqueness of the
EFS model. It is necessary to investigate how far the EFS model has to be changed
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(a) (b)

(c) (d)

Figure 3.3: Selection of row-wise results of the modulation parameter Vx(x, y)
for example texture 1 (Fig. 3.1): (a) Line 10, (b) Line 20, (c) Line 30, (d)
Superposition of all row-wise profiles for the example texture.
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(a) (b)

(c) (d)

Figure 3.4: Selection of row-wise results of the modulation parameters Vx(x, y)
and Vy(x, y) for example texture 2 (Fig. 3.2): (a) Vx(x, y) for Line 20, (b) Vy(x, y)
for Line 20, (c) Vx(x, y) for Line 60, (d) Vy(x, y) for Line 60.
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(a) (b)

Figure 3.5: Superposition of all row-wise profiles of the modulation parame-
ters Vx(x, y) and Vy(x, y) for the example texture 2 (Fig. 3.2): (a) Vx(x, y), (b)
Vy(x, y).

(a)

(b) (c)

Figure 3.6: Modulated texture example 3: (a) Original modulated texture, (b)
Synthesized texture with the modulation parameters Vx(x, y) and Vy(x, y) from
the phase-locked loop, (c) Ideal profile of the modulation parameter Vy(x, y)
(Vx(x, y) = 0).
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(a)

(b)

Figure 3.7: Modulation parameter Vx(x, y) and Vy(x, y) for example texture 3
(Fig. 3.6): (a) Vx(x, y), (b) Vy(x, y).
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or simplified to get a unique solution. The reduction to one modulation parameter
could be the first stage of development.

4 Conclusion and Outlook

This report deals with the description of structural-statistical textures with the help
of the modulation approach from the communications technology. The variation
of the gray value, the variation of the primitive or the arrangement scheme can
therefore be seen as amplitude or frequency modulation. For this, the EFS was
introduced as a new structural-statistical texture model.

Further, a phase-locked loop has been presented which allows demodulation. Us-
ing the observation of examples it was demonstrated by comparison with synthesis
results that the determined modulation parameters reflect the modulation. It also
turned out that this modulation parameters do not necessarily have to be unique,
i.e., for a modulated texture different profiles for the two modulation parameters
are conceivable. Furthermore, the results depend strongly on the choice of the
variable parameters of the control loop and can be subject to wide fluctuations and
jumps.

Overall, the basis for the description and analysis of structural-statistical textures
was created. It now applies to future work to use the first experiences with the
model and the phase-locked loop to achieve uniqueness of the optimization prob-
lem and to prevent jumps and fluctuations of the modulation parameters by suitable
extensions. First ideas and approaches are presented in this report.
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Abstract:
Today the inspection of specular surfaces, especially in the automobile

sector, is often done by humans. An automated inspection would be prefer-
able for reasons such as reproducibility, reliability, and objectivity. However it
is problematic to replace humans by machines in this field. The main reasons
for this are their greater flexibility for changes in the production process and
their ability not only to find defects but to decide whether a customer would
complain about those defects. With the deflectometric principle, there is a
measurement method for specular surfaces that is fast and accurate enough
to compete with humans. Open problems are the necessary expenses for
the parameterization of the defect detection and the missing link to the hu-
man perception of defects. The first problem is addressed in this paper. An
overview of methods capable of detecting and classifying defects of different
shapes and scales on unknown surface shapes is given. Then all methods are
compared empirically on real measurement data.

1 Introduction

The automated visual inspection of specular surfaces is a practical problem with
many applications. Today, there are methods known to get precise measurements
of specular surfaces, ranging from small glossy mobile devices up to large lac-
quered automobile bodies. One measurement principle is deflectometry which can
be used for specular to partially specular surfaces. It has the advantage of being
especially sensitive to changes in the surface curvature. This corresponds to the
human perception of specular surfaces is therefore often used for the inspection
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of surfaces that have to “look good”. Additionally deflectometry can be used to
obtain metric measurements of functional specular surfaces like mirrors.

A typical surface inspection consists of several steps, as follows:

1. Measurement: the acquisition of the objects surface,

2. Detection: the determination of defect locations,

3. Classification: the assignment of defects to defect classes,

4. Assessment: the rating of the defects visibility,

5. Decision: whether to accept or reject the surface.

In this paper, at first, the surface topology is measured using the deflectometric
method. Then possible defect locations are detected and each defect is assigned to
a specified class. Beyond the content of this paper, based on this classification, the
severeness of each defect has to be estimated. Finally, combining the information
of all surface defects, the decision, whether to accept or reject the object, has to be
made.

In the following sections multiscale features are introduced and compared to get
useful information for the detection and classification task. Hence, two classifiers,
a Bayesian classifier and a Support Vector Machine (SVM), are used to learn the
regions in feature space that correspond to the defect classes. For training and
testing of each feature and classifier, several datasets were created. These datasets
were acquired from flat lacquered metal sheets with several pimple and dent de-
fects. For each metal sheet a ground truth was manually created. Then the dataset
was divided in two independent datasets, to evaluate the generalizing properties of
each feature-classifier combination.

2 Related Work

In the past several studies were made to evaluate the inspection qualities of hu-
man inspectors. Schoonard et al. [SGM73] studied influencing aspects for the
inspection of small integrated circuits. They found that the more accurate the in-
spectors were, the less eye fixations during the inspection task they had, resulting
in a higher accuracy and a faster completion of the inspection task. Additionally,
they observed that the rate of missed defects of the inspectors was quite high, while
only a few defects were mistakenly detected. Furthermore, they observed that a
variation of the given inspection time by factor 6 only led to variation in accuracy
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by less than factor 2. Finally, changes in the inspection setup had small influence
on the inspection results. As a consequence for this technical report, an automated
inspection has to compete with the inspector’s flexibility to adapt to changes in
the setup and their low false negative rate finding defects. In addition it has the
potential to exceed the inspectors with an lower false positive rate and objective,
repeatable results.

The detection, classification and evaluation of surface defects is a rather gen-
eral task with many applications and accordingly a lot of studies exist in this
field. The studied applications range from the evaluation of auto-body pan-
els [And09, Fer13], assessing scratch damages in bulk materials and coatings
[HWP03], scratch visibility on polymers [RSW+03, JBH+10, LBS+11] and
defects on machined and painted surfaces [PK06].

The standard approach to detect surface defects is to find changes between the
measured surface and the surface model. The matching of the measurements with
the surface model as well as the interpretation of changes between both are dif-
ficult. Li and Gu [LG05] used some special points on the surface to align the
measurement data with the CAD model and defined a maximum tolerance for
the deviations based on the tolerance of the manufacturing process. Savio et al.
[SCS07] summarized the state of the art for a general free-form inspection based
on a reference model. They structured the matching algorithm in several stages.
First of all, multiple overlapping measurements have to be aligned. Depending
on the necessary accuracy this can be computational expensive. Alternatively the
surface can be marked with reference points which can be used for the alignment.
Then a filtering operation has to separate between measurement noise, geometrical
surface features and the surface form. Now the measurement data has to be aligned
with the model, which is in general split into a coarse and a fine alignment step.
The result of the alignment depends on the chosen merit function, usually the mean
squared differences are minimized. The final evaluation of all deviations from the
model also depends on some function to describe the deviations and region de-
pendent maximum tolerances of this function. Another possibility is to match
derivatives of surface instead of the surface itself, like Kase et al. [KMN+99] did,
matching the surface curvature. This simplifies the evaluation of changes, because
the curvature is invariant to deviations in the absolute height.
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3 Methods

In this section a short introduction to deflectometry, wavelets, support vector ma-
chines, and Bayes classification is given, as these methods are used in the fol-
lowing experiments. Furthermore, methods used for extracting the feature vectors
from deflectometric measurements of specular surfaces are presented.

3.1 Deflectometry

Deflectometry is a method for topography measurements of specular surfaces. Due
to the specularity of the surface optical measurement methods relying on a diffuse
reflection of a projected pattern are not applicable. In contrast, deflectometric
methods exploit the specularity of the surface. Furthermore, if the objective is to
find defects that are disturbing for a human, the perception of a human has to be
considered. Since the surface itself is only visible through its reflection of the sur-
rounding area, the optical aberrations caused by the surface are more perceptible
than the surface itself. The virtual image of the surrounding area, which is visible
in the specular surface, is determined by the shape of the surface, or more precisely
by the surface curvature. The curvature can be calculated from the derivative of
surface normal field. To obtain this surface normal field, a sequence of patterns,
uniquely coding each point on a screen PL, is observed over the reflection at the
surface, using a camera with an image plane PI . Based on these observations,
geometric information about the light path from the camera to the screen is known
and saved in the deflectometric registration l, which implies information about the
surface:

l : PI 7→ PL, l[u, v] = (xL, yL),

where u and v are points on the camera sensor and xL an yL are points on the
screen. The deflectometric registration itself can be used as non-metric measure-
ment to characterize the surface and to detect defects, since it is similar to the
gradient field of the surface and therefore its derivative corresponds to the hu-
man perception. Alternatively the surface can be reconstructed, so that an esti-
mated metric representation of the surface topography can be used for measure-
ment purposes. For the reconstruction, additional knowledge, e.g. the distance
between camera and surface, is required. Balzer [Bal08] proposed two approaches
to obtain additional regularizing information of the surface that lead to a unique
reconstruction. The field was extensively researched in the past ten years, see
[HAN00, LKKG05, SCP05, BSG06, LBRB08, WMHB09, BHWB10].
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3.2 Wavelet Transform

The wavelet transform is related to the Fourier transform, as it represents signals
in the frequency domain. As the Fourier transform is a global transform, local
changes in the signal affect the whole frequency domain of the signal. The rea-
son for this are the periodically oscillating sine and cosine functions with infinite
support which are used as basis functions for the transform. On the contrary, the
wavelet transform uses small wavelets with finite support both in spatial and in fre-
quency space. This results in a good localization in both spaces. Something similar
is achieved with the short time Fourier transform, which has a fixed width window
function that is multiplied with the basis sine and cosine functions. Due to the
fixed size of this window the short time Fourier transform has a limited frequency
resolution. Using a short window function, the resolution in spatial space (called
localization) is good but in frequency space the resolution is limited to higher fre-
quencies. In contrast, wavelets have an adaptive window length and with the best
possible localization in spatial space and in frequency space. The idea behind the
wavelet transform is clear when looking at the definition of the continuous wavelet
transform (CWT). It is defined as the inner product of a signal f(x) with a wavelet
ψ in varying scales s and translations t:

F (s, u) :=W{f(x)} =< f, ψs,u >, with ψs,u(x) =
1√
s
φ

(
x− u
s

)
.

In practice the more computational efficient discrete wavelet transform (DWT) is
used instead. Additional requirements to the wavelet function assure that only
dyadic scales and integer translation have to be considered. By defining a scaling
function φ, the signal f(x) can be approximated in various scales s:

as[u] =

∫ ∞
−∞

f(x)
1√
2s
φ

(
x− 2su

2s

)
dx, (s, u) ∈ Z2.

The scaling function has a low-pass characteristic, which results in a loss of high-
frequency information of f(x) with increasing scale. Furthermore, the scaling
function is required to be orthogonal to the wavelet function, which allows the
multiresolution analysis. The wavelet function, which has a high-pass character-
istic, captures the details that are lost from one scale to the next. For an efficient
calculation of the approximations and details, instead of the scaling and wavelet
function, filter banks are used. Starting with an approximation of the signal in
scale s (wavelet crime: a0[x] := f [x]), the next coarser approximation is calcu-
lated with low-pass h. The details are calculated with a high-pass filter g. Multidi-
mensional functions are calculated separately in each dimension, resulting in one
approximation space and three detail spaces for the 2-dimensional signal f(x, y):
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as+1[u, v] =
∞∑

m=−∞
h[m− 2u]

∞∑
n=−∞

h[n− 2v]as[m,n], (3.1a)

ds+1,1[u, v] =
∞∑

m=−∞
h[m− 2u]

∞∑
n=−∞

g[n− 2v]as[m,n], (3.1b)

ds+1,2[u, v] =
∞∑

m=−∞
g[m− 2u]

∞∑
n=−∞

h[n− 2v]as[m,n], (3.1c)

ds+1,3[u, v] =
∞∑

m=−∞
g[m− 2u]

∞∑
n=−∞

g[n− 2v]as[m,n]. (3.1d)

One more difference between the wavelet and the Fourier transform is the freedom
of choice for the basis functions. It is possible to choose a wavelet out of existing
families of wavelet functions with special properties or to define a new wavelet.
A good overview over the theory and applications of wavelets is given by Mallat
[Mal09].

Although the DWT allows a perfect reconstruction of the signal, there is a major
drawback of the transform: due to the subsampling of the signal, precise locations
of local irregularities are lost in higher scales. When the same signal is translated
with a translation operator τt by t the whole scale space may changeW{τtf(x)} 6=
τtW{f(x)}. It is not translation invariant. By leaving out the subsampling, the
undecimated or stationary wavelet transform (SWT) circumvents this problem by
introducing additional redundancy. This results in increased memory requirements
and increased computational efforts. Nevertheless, the translation invariance is
indispensable for the given application.

3.3 Support Vector Machine

The classification is performed by a support vector machine (SVM) as described
by Vapnik [CV95]. As the standard SVM only discriminates between two classes
the SVM has to be extended for separation of more than two classes. In the fol-
lowing experiments the free library LIBSVM by Chang and Lin [CL11] was used.
Amongst others, they provide an implementation of Vapnik’s SVM with an exten-
sion to combine several two-class SVMs to one multiclass SVM. Moreover they
implement an extension that allows the SVM to give probability estimates for each
classification.
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3.4 Bayes Classifier

Another classification method is the direct application of Bayes law as described
in Duda et al. [DHS00],

p(µi,Σi|d) =
p(d|µi,Σi)p(µi,Σi)

p(d)
.

Depending on the prerequisites a probability density function representing the like-
lihood has to be chosen. Here, a normal density is assumed that describes the mean
µi and the covariance Σi of the data d for each class i. In some cases, where
the individual features are class conditional independent, the probability density
function simplifies to several univariate densities for each feature dimension.

3.5 Features

In the following section features and classifiers that are used to detect and classify
defects on specular surfaces are shown. The feature extraction methods share the
similarity of being applicable in different scales depending on a scaling parameter.

3.5.1 High-pass

The high-pass filter approximates an ideal high-pass filter with a defined cutoff
frequency ωc with a finite number of coefficients in spatial space. To avoid spectral
leakage effects the filter coefficients are multiplied with a Hamming window of
the same length as the filter function. Depending on the scale s, the filter length
n = s + 1 and the number of cutoff frequencies ωc ∈ { iπ

s+1 | i ∈ 1 . . . s} were
varied.

3.5.2 Gradient

The gradient filter calculates the Euclidean norm of the gradient magnitude

gσ(x) =
√
dxσ(x)2 + dyσ(x)2

at each point x. Each gradient direction is approximated by the first partial
derivative of a Gaussian hσ(x) with variance σ2

dxσ(x) = −∂hσ(x)

∂x
=

x

2πσ2
e−
‖x‖2

2σ2 .
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Depending on the parameter σ of the Gaussian, edges in different scales are
detected. The discrete filter has a radius r = 2σ.

3.5.3 Laplacian-of-Gaussian

The Laplacian-of-Gaussian (LoG) filter [BPLF12] approximates the sum of all
second partial derivatives of the smoothed signal. It is obtained by calculating the
Laplacian of a Gaussian hσ(x)

lσ(x) = −∂
2hσ(x)

∂x2
− ∂2hσ(x)

∂y2
=

2σ2 − ‖x‖
2πσ6

e−
‖x‖2

2σ2 .

Depending on the parameter σ of the Gaussian, edges in different scales are
detected. The discrete filter has a radius r = 2σ.

3.5.4 Wavelets

In Hahn et al. [HZHR13] several wavelet families with different support sizes
were studied for the detection and classification task. The best families were the
family of Symmlets and Biorthogonal Spline wavelets, especially those with a
small support. The reason for this could be that a larger support leads to a worse
detection but should have better invariance properties for curved surfaces. In the
experiment only flat surfaces were studied, so the invariance properties weren’t
necessary.

Only wavelets from the Symmlet family were studied in this paper. Symmlets are
nearly symmetric and have invariance properties, called vanishing moments, which
depend on the length of the wavelet’s filter function. These vanishing moments
define the ability of the wavelet to suppress parts of the analyzed signal. Functions
with a degree smaller than the number of vanishing moments of the wavelet do not
appear in the detail space. For surfaces which are represented by cubic splines, all
surface properties of lower order, i.e. the surface shape, are suppressed.

4 Experimental Setup

For the experimental evaluation of the methods above, five independent datasets
were used. Each dataset was acquired from black flat lacquered metal sheet using a
deflectometric measurement setup and a FEM-based reconstruction of the surface.
Two surfaces have two defect types (dent and pimple), the rest has one defect type
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(pimple). Defects of the type pimple are characterized by a small lateral extent and
a steep gradient. The dent defects have a larger extent and a low gradient.

All defects were labeled by hand to provide a ground truth. Each point within the
extent of a defect was labeled as belonging to this defect. For large defect extents
it was difficult to definitely decide which points belong to the defect area. In these
cases, the defect extent was chosen 50% smaller, to ensure that defect-free areas
were not marked as defect.

For testing the ability of the feature-classifier combination to differentiate between
trained defect classes and an unknown surface shape, some synthetic surfaces were
generated from the real measurements. As most real world inspection problems
have to deal with surface curvature, it is an interesting property of the inspection
system to be adaptable to unknown or changed curvatures. The synthetic surface
was generated from the sum of a measurement dataset and function generating
some surface model. Here two models were assumed. The first model was a sine
function with amplitude one and one period over the whole the surface area in one
direction. The second model was product of two sine functions with amplitude
one and one period over the whole surface area in both directions.

The feature set d for a point x on the surface S is given by selected coefficients
from the SWT in 5 scales or by multiple evaluations of the other features described
above calculated in 5 scales at the same point. Now each of the classifiers decides,
based on the feature vector, which class the point on the surface belongs to.

Three different classifiers were evaluated in this experiment. Two classifiers were
Bayesian and use parametric density functions. As a third classifier a parameter
free SVM as described above was used.

For the first Bayesian classifier class conditional independence of all features is
assumed, i.e. the feature for each scale is class conditional independent of the
other scales. While this assumption holds for orthogonal wavelets [ZLGH12],
it is most likely violated by the other features. The classifier is defined by two
parameter vectors µi and σi, representing mean and standard deviation of each
feature in class Ci. Consequently the probability for a feature vector d belonging
to class Ci is determined by Bayes’ rule:

p(µi,σi|d) =
p(d|µi,σi) p(µi,σi)

p(d)
.

Tests [ZLGH12] have shown that the coefficients are often Laplace distributed.
Hence the likelihood for class Ci is modeled as product of univariate Laplace
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Figure 4.1: Comparison of classifiers using the Symmlet wavelet on a flat surface.

distributions:

p(d|µi,σi) =
∏
k

1

σi,k
√

2π
exp

(
−1

2

|dk − µi,k|
σ2
i,k

)
.

The parameters µi and σi are chosen such that for each class Ci the likelihood for
the training set is maximized. The prior is chosen as uniform distribution over all
classes.

The second classifier uses a multivariate normal density with a mean vector µi and
a covariance matrix Σi to describe the likelihood of the data for each class

p(d|µi,Σi) =
1

|Σi|
p
2 (2π)

p
2

exp

(
−1

2
(d− µi)TΣ−1

i (d− µi)
)
.

For the training of this classifier the parameters µi and Σi were chosen such that
the first two moments of the estimated density match the first two moments of the
data.

The SVM classifier uses a radial basis function e−γ|u−v|
2

as kernel function. Be-
sides the necessity for training data the SVM needs to be parametrized with two
parameters: a regularization parameter for weighting the costs of misclassifica-
tions C and the width of the kernel function γ. The optimization of these parame-
ters γ ∈ {2i/2}, C ∈ {2j/2}, i ∈ {−4, . . . , 40}, j ∈ {−24, . . . , 24} was realized
using a five fold cross validation with 200 feature vectors for each class and a grid
search as proposed in [HCL10].

To compare the performance of the classifiers and features, the receiver operating
characteristics was plotted for each combination of classifier, feature, training and
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Figure 5.1: Comparison of trained SVM with 5-scale feature vectors on a flat
surface with pimples and dents (first row) and the corresponding curved surface
(second row).

testing dataset and defect class. All studied classification methods return probabil-
ity values for each of the three respectively two classes. Now the decision value
can be varied between 0 and 1, which results in different false and true positive
rates.

5 Results & Discussion

The comparison of the three classifiers using the Symmlet 4 wavelet (Fig. 4.1)
shows that the SVM clearly outperforms the other two classifiers. While the mul-
tivariate Bayes classifier still discriminates between defect free and defect areas,
the naive Bayes classifier fails. The ROC curves of the Bayes classifiers only con-
sist of a few points with a false positive rate between 0 and 1. This is due to the
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Figure 5.2: Comparison of trained SVM with 5-scale feature vectors on a flat
surface with pimples (first row) and the corresponding curved surface (second
row).

fact, that those classifiers have a narrow band of probability values for all classi-
fied points on the surface and a change in the decision threshold leads to either an
acceptance or a rejection of all points on the surface.

To compare the features, only the results obtained with the SVM classifier are
shown here. The classifier was always trained with on feature extraction method
on a flat surface and was then tested on other surfaces with the same defect types.
The comparison of the feature extraction methods (Fig. 5.1), shows that on flat
surfaces the gradient feature outperforms the other features in all the classification
rate of all three classes. Both, the Laplacian and the high-pass feature have a bad
classification performance. The performance of the SVM in combination with the
Symmlet 4 feature is lower compared to the gradient feature but still leads to good
classification results. The performance of all features but the Symmlet 4 and the
Laplacian feature changes dramatically, when the classifier is tested on a curved
surface. While the performance of the Laplacian feature gets slightly worse, the
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Figure 5.3: Scale dependency of a Symmlet 4 feature vector and the SVM
classifier on a flat surface with pimples and dents.

performance of the Symmlet 4 feature stays on the same level. The same effect
can be observed on the other data set with only 2 defect classes in Fig. 5.2.

As shown in Fig. 5.3 the classification performance of the Symmlet 4 feature in-
creases as the number of scales that are included in the feature vector increases.
Starting with 5 scales, the classification performance only slowly increases by
adding more scales to the feature vector.

6 Conclusion

In this paper methods for the inspection of specular surfaces were proposed and
compared. The classification method is not the crucial factor here, but the evalu-
ation has shown that the naive Bayes and the multivariate Bayes classifiers with
the given density assumptions had a worse performance than the SVM. Two of the
proposed features, the Symmlet 4 and the gradient feature led to good classifica-
tion results in combination with a SVM classifier, when both, the training and the
testing dataset were flat surfaces. As soon as the testing dataset differs from the
training dataset significantly in surface shape, only with Symmlet 4 feature, the
classification results kept good. This is an important property of the wavelet fea-
tures, due to their vanishing moments, that differentiates them from the other pro-
posed features. Additionally the wavelet transform is more efficient than the other
features, as the length of filter function stays constant over the scales. Therefore
the combination of an appropriate wavelet in combination with a SVM has a high
practical relevance for real inspection problems. The invariance of the wavelets to
the surface shape allows a deflectometric measurement system to be adapted faster
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to new product types and allows a robust classification of several defect classes on
specular surfaces.
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