

LDIC 2012, Bremen, 29th March 2012

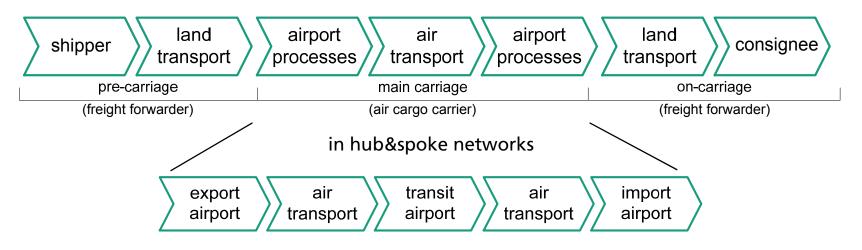
Towards Agile and Flexible Air Cargo Processes With Localization Based on RFID and Complex Event Processing

Dipl. Logist. David Rüdiger

Central Topics

- How can one transfer the concept of a "real-time enterprise" to the air cargo business?
- What are the challenges from a technological and information technology point of view?

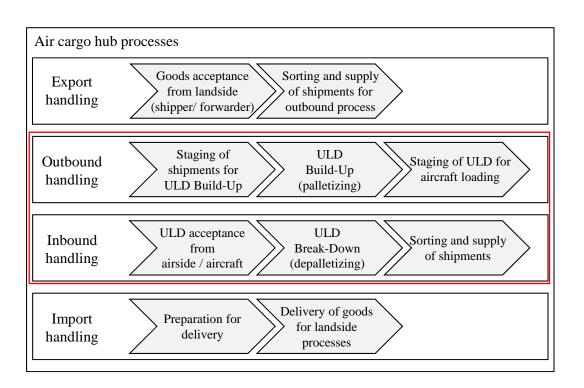
process level	technology level	IT level	
airfreight business	auto-ID solutions	real-time enterprise	
hub processes*	RFID solutions	event-driven architecture	
hub management	real-time localization*	complex event processing*	


airfreight hub management: Lean, Agile, Real-time

* = scope of todays presentation

Fraunhofer IML 2012

international airfreight

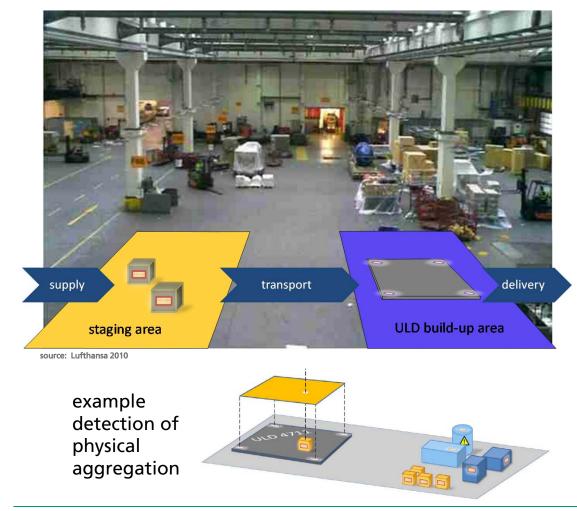


airfreight hub

. 87% (material flow)

main processes	production areas involved		hub activity*
export	export handling	outbound handling	15%
transit	inbound handling	outbound handling	75%
import	inbound handling	import handling	10%

- reducing general lead times / greater throughput
- increasing area utilisation
- increasing producition capacities
- increasing general process quality

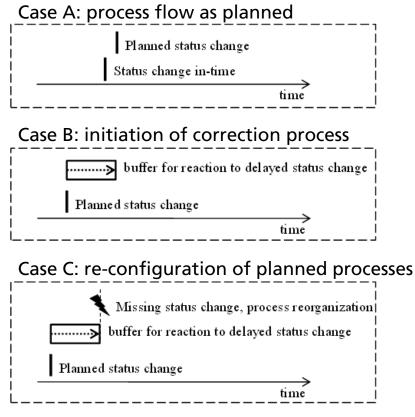


focus on ULD build-up and ULD break-down

Folie 3 © Fraunhofer IML

Approach 1 – Flexible Production Areas

- situation
 - rigid allocation of areas to processes
 - Iow degree of utilization
- solution
 - occurring processes define the function of areas (accurate asset visibility required)
 - increased area utilization
 - increased area capacities
- preconditions
 - RFID based localization system
 - event-driven IT architecture

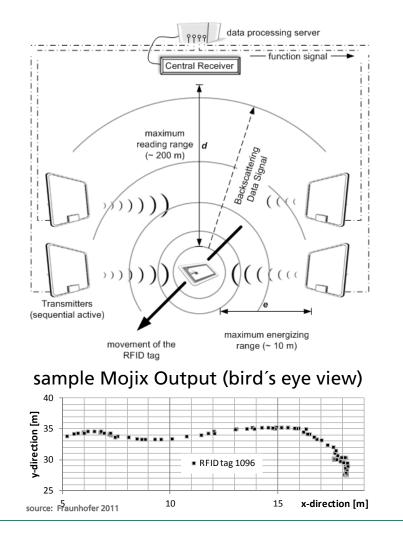

Folie 4 © Fraunhofer IML

source of image: Lufthansa 2010

Fraunhofer IML 2012

Approach 2 – Real-time Hub Management

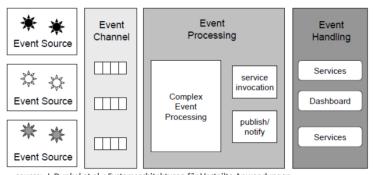
Industrial example:


ULD in build-up process waits for export shipments to be supplied (unloading problems at truck gate)

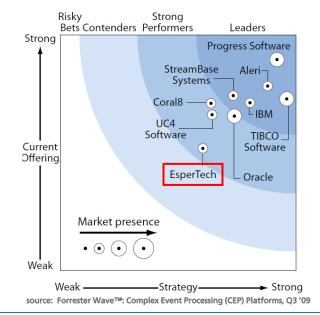
Folie 5 © Fraunhofer IML

- situation
 - rigid scheduling of hub processes
 - high overall lead times
- solution
 - permanent status control of processes
 - dynamic scheduling of hub processes
 - reduced overall lead times
- preconditions
 - RFID based localization system
 - event-driven IT architecture

RFID based Real-time Localization


Mojix STAR system

- passive UHF RFID system
- several energizing RFID antennas [2 W ERP] (steerable phased-array antennas which can be mounted on the ceiling of a facility)
- one central reader (which is designed for the extraction of low-level RFID signals)
- maximum reading range up to 200 meter \geq
- **Real-time localization**
 - non-line-of-sight identification of passive RFID tags
 - localization based on "triangulation" and
 - time-difference-of-arrival
 - radio signal strength indicator


Folie 6 © Fraunhofer IML

Introduction to Complex Event Processing

- Complex Event Processing technology enable applications to <u>monitor</u>, <u>analyze</u> and <u>decide</u> on data in motion
- Key attributes
 - identification of meaningful events (continuously)
 - event pattern matching \rightarrow complex event
 - context enrichment
 (a layer built on top of EDA)
 - turning data to decisions
- Industrial CEP applications
 - financial sector fraud detection
 - energy sector energy grid monitoring
 - logistics (?)

Folie 7 © Fraunhofer IML

simple CEP statements in Esper (correlating event streams)

SELECT	Attribute
FROM	Ereignisstrom 1 AND Ereignisstrom 2
WHERE	Attributs 1 > "Wert" OR Attribut 2 = "Wert"
ORDER BY	Zeitstempel

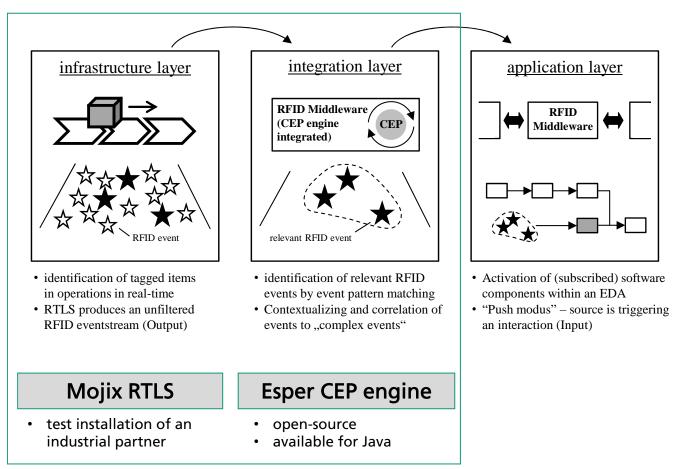
complex CEP statements in Esper (event pattern matching)

SELECT ... Attribute.. FROM PATTERN [... (m=Ereignisstrom1) \rightarrow (n=Ereignisstrom2(Attribut=m.Attribut)...] WHERE n.Attribut > "Wert"

SELECT avg(m.Attribut) AS Average, ... sum(m.Attribut) AS Sum ...

FROM Ereignisstrom1.win:length(x) AS m ...

WHERE ... Average > "Wert" ... OR Sum > "Wert".


- high number of Event Processing Languages (EPL) exist due to missing standards
- most EPL are derived from the logic of SQL
- FROM: defining event streams to be analyzed
- FROM PATTERN: definition of pattern criteria to a set of data of different event streams
- SELECT: defining the event attributes to be analyzed
- WHERE: event correlation and filtering

Folie 8 © Fraunhofer IML

Test Implementation – General System Architecture

Test implementation:

Folie 9 © Fraunhofer IML

Test Implementation – Esper Statements for Approach 2

1.) Combining location information with spatial information

INSERTINTO EventBuffer1

- SELECT mov.EPC as EPC,mov.timestamp as timestamp, top.locationId as locationId
- FROM MovementEvent.win:keepall() as mov, TopologyEvent.win:keepall() as top
- WHERE mov.xPosition >= top.xStart AND mov.xPosition < top.xEnd
- ORDER BY mov.timestamp
- 2.) Comparision of actual and planed process progress

INSERTINTO EventBuffer2

ł	SELECT	Buff1.EPC as EPC, plan.locationId as locationId, plan.timestamp as timestamp,
		Buff1.timestamp as timestamp2, Buff1.locationId as locationId2,
		(case when (Buff1.locationId - plan.locationId) < 0 then "WARNING"
		else "OK" end) as status,
	FROM	EventBuffer1.win:length(1) as Buff1, PlandataEvent.win:keepall() as plan
,	WHERE	Buff1.timestamp <= plan.timestamp
	ORDER BY	Buff1.timestamp

3.) Extraction of critical events

 INSERTINTO
 EventBuffer3

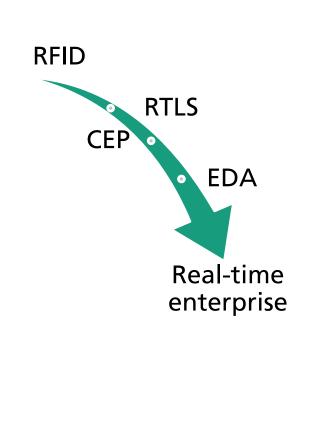
 SELECT
 Buff1.EPC as EPC, Buff1.timestamp as timestamp, Buff1.ocationId as locationId

 FROM
 EventBuffer1.win:keepall() as Buff1

 WHERE
 prev(Buff1.locationId) !=Buff1.locationId

 ORDER BY
 Buff1.timestamp

4.) Monitoring of reactions


SELECT	Buff2.locationId, Buff2.timestamp, Buff3.locationId, Buff3.locationId
FROM	EventBuffer2.win:length(1) as Buff2, EventBuffer3.win:length(1) as Buff3
WHERE	$Buff2.locationId = Buff3.locationId \ AND \ Buff3.timestamp > Buff2.timestamp > Bu$
ORDER BY	Buff3.timestamp

- Input of three event streams
 - Movement event stream (output of Mojix RTLS)
 - Plan data event stream (operational temporal information)
 - Topology event stream (spatial information of system topology)
- Output
 - Controlling permanently the progress of processes
 - Displaying time critical events to managerial staff in real-time
 - Recommendations how to solve the identified problems

Folie 10 © Fraunhofer IML

Conclusions

- Complex Event Processing is well-suited for monitoring and controlling the processes in air cargo hubs
- In Combination with an appropriate RTLS manual scan processes will be eliminated and immediate quality checks will be enabled
- Following the concept of a real-time enterprise and its central idea of permanent control about on-going business
 - the company's ability to react to internal / external irregularities will be sharpen
 - a differentiated communication with customers will be enabled

Folie 11 © Fraunhofer IML

Thank you for your attention!

Dipl. Logist. David Rüdiger david.ruediger@iml.fraunhofer.de Joseph-von-Fraunhofer-Str. 2, 44227 Dortmund, Germany