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Abstract

To simulate the mechanical behavior of a material, it is essential to calibrate
the internal parameters of the used material model to experimental mea-
surements. This is typically done in a trail-and-error approach by hand or
automatically using optimization algorithms. As an alternative to trial-and-
error, neural network-based approaches can be used to imitate the inverse
mapping. This is usually realized in a grey-box model, combining neural net-
works, deterministic models, and domain knowledge. However, the proposed
neural network-based approaches found in literature do not address the chal-
lenge that is posed when the parameter identification problem is non-unique.
In the present paper this problem is discussed and an improved approach is
proposed using a mixture of experts model. Mixture of experts is an ensem-
ble technique based on a dynamically structured framework of submodels
aiming to partition the non-unique problem into unique subtasks.

Keywords: Grey-box model, direct inverse model, inverse problem,
machine learning, material modeling, mixture of experts, neural networks,
parameter identification

1. Introduction

Mechanical problems of deformable solids are characterized by universal re-
lations for kinematics and balance equations of mass, linear momentum, and
angular momentum. To close the set of equations, constitutive relations are
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required to represent stress-strain relationships. These constitutive relations
form the material model. The material model can be seen as an operator g
describing the stress response σ for an applied strain ε:

σ = g(ε,m). (1)

In order to represent the material of interest, the internal parameters of
the material model have to be calibrated to experimental measurements.
The aim of this parameter identification problem is to minimize a certain
misfit measure between the stress response of the material model and an
experimentally measured stress σexp:

m = argminm (||σexp − g(ε,m)||Lp) , (2)

where Lp defines the norm.
Solving such problems is everyday work for engineers, which is why lots of

solution approaches exist [1]. In the field of mechanical engineering, mostly
optimization algorithms are used [2, 3]. Optimization algorithms perform
a search in the space of material model parameters aiming to minimize the
misfit measure that is for example described in Eq. (2). The success of
optimization algorithms is highly depending on the chosen starting point,
which is usually not known in advance. To find appropriate parameters
for complex material models, typically many iterations are needed and the
computational costs increase. As a consequence, engineers often have to use
non-optimal parameters.

In contrast to the iterative procedure of optimization algorithms, neural
network-based models can be used to directly estimate parameters that fit
the material model to experimental data. In general, neural networks are
mathematical models that approximate functions for given training data [4,
5]. The training data is generated by the material model itself and consists of
material model parameters and their corresponding responses. By training
a neural network-based model on the reversed input/output relations, a so-
called direct inverse model is set up [6]. The direct inverse model can be
described by an operator G that maps the space of material model responses
to parameter space:

m = G(ε,σ). (3)

In material modeling literature, a commonly used approach is to train feed-
forward neural networks using a squared loss function to generate the oper-
ator G. This approach is first described in [7] to identify parameters of a
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visco-plastic material model. Since then, the approach has been successfully
applied to identify parameters of many kinds of different material models
[8, 9, 10, 11, 12]. Improvements have been proposed in [13] using a Bayesian
neural network [14] to additionally obtain confident intervals for the identified
parameters.

Generating a direct inverse model generally suffers from two drawbacks
[6]:

1. Sampling is not goal-directed: To generate training data, the parame-
ter space of the material model is sampled and the responses are calcu-
lated. To create a direct inverse model, a neural network-based model
learns the reversed parameter/response relations. Consequently, the
actual sampling is done in the output space of the neural network-
based model. In this case, it is not guaranteed that the input space is
covered sufficiently. Therefore, one has to sample in a wide range and
rely on interpolation [6].

2. Direct inverse models have difficulties to approximate an inverse map-
ping, if the mapping is non-unique: The parameter identification prob-
lem is non-unique, when a certain material model response is caused by
more than one parameter set. When this is the case, many supervised
learning algorithms, such as feedforward neural networks trained with a
squared loss function, end up averaging across the potential parameter
sets [15].

For the feedforward neural network approaches found in literature, the latter
is not a problem, because the therein analyzed material models underlie a
unique relation between model responses and internal parameters. However,
such a unique relation is not necessarily the case. Armstrong-Frederick-type
models for example do not hold a unique relation between stress response and
their internal parameters, when the hardening model is described via a series
expansion [16]. Often such material models are used for sheet metal forming
simulations. Another example is the modeling of visco-elasticity through a
series of Maxwell-elements (Prony series [17]). Such models can be used to
simulate the behavior of glass, polymer materials or filled rubber.

The present paper addresses the application of neural network-based ap-
proaches to parameter identification problems that are non-unique. There-
fore, we analyze and validate the applicability of a mixture of experts model
[18]. Mixture of experts is an ensemble technique based on a dynamically
structured framework of submodels, i.e. neural networks. The mixture of ex-
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perts model dynamically partitions the input space into unique subtasks [19].
In contrast to the feedforward neural networks trained with a squared loss
function, mixture of experts is able to handle non-unique problems, as long
as the number of possible solutions is known [20]. To the authors knowledge,
this is the first approach that uses a mixture of experts model to identify ma-
terial model parameters in a non-unique parameter identification problem.

The structure of the paper is as follows: First, we introduce an elasto-
plastic material model, for which the identification problem is non-unique.
Then, we describe the neural network-based approach in terms of a grey-box
model and explain the structure of a mixture of experts model. Afterwards,
two numerical examples are given addressing non-unique parameter identifi-
cation problems: A simplified one, to compare feedforward neural networks
trained with a squared loss function with the mixture of experts approach;
and a parameter identification problem for tensile test data of three metallic
materials to show the applicability of mixture of experts to real data. Finally,
concluding remarks are given, as well as an outlook on future research.

2. Methods

2.1. Elasto-plastic material model and non-uniqueness

In this section, we describe an elasto-plastic material model, for which the
parameter identification problem is non-unique. The model is described in
its one-dimensional form for infinitesimal strains. This is sufficient for the
use in the present work, as the numerical examples consider only tensile tests
and therefore a uniaxial stress state is predominant.

The strain is split in an additive manner into elastic and plastic parts.
The linear relation between stress and elastic strain is defined by the Young’s
modulus E:

σ = E (ε− εpl). (4)

The scalar yield function defines when plastic flow takes place and is ex-
pressed as

f = ||σ|| − k0 −R = 0, (5)

where k0 is the initial yield strength and R the hardening stress. The evolu-
tion equation for plastic deformation is given by the flow rule

ε̇pl = λ
df

dσ
, (6)
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where λ underlies the Karush-Kuhn-Tucker conditions and is therefore greater
than zero when the yield point is reached (f = 0) and equals zero otherwise.
To obtain R, a hardening model has to be introduced. In this paper, an
exponential hardening model is used [21]:

R =
∑
i

[
γi
βi

(1− exp(−βisp))

]
, (7)

where sp denotes the accumulated plastic strain and {βi, γi} are internal
parameters. If more than one term is considered (i > 1), the identification
of the internal parameters is a non-unique problem.

A typical scenario is for example the use of two expansion terms (i = 2).
This yields the hardening model

R =
γ1
β1

(1− exp(−β1sp)) +
γ2
β2

(1− exp(−β2sp)). (8)

As the ranges of βi and γi are generally not restricted, one specific model
response can be caused by two parameter sets, due to the relation

R(sp, β1, γ1, β2, γ2) ≡ R(sp, β2, γ2, β1, γ1). (9)

It is to be mentioned, that the non-unique parameter identification problem
can be transformed into a unique one, by strictly separating the parameter
ranges of {β1, β2} and {γ1, γ2}:

β1 < β < β2 , γ1 < γ < γ2. (10)

However, there is no clear method to set such limits adequately and, when set,
the input/output space is cut and certain combinations of model parameters
and responses are excluded from the identification problem. Therefore, one
should allow {β1, β2} and {γ1, γ2} to exist in the same parameter ranges.

2.2. Grey-box models

Grey-box models combine deterministic models, domain knowledge, and data-
driven approaches in order to increase model accuracy. The neural network-
based approaches discussed in this paper can be understood as grey-box
models, as the training data is generated via a deterministic model, namely
the material model. Generating data via a deterministic model generally has
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Figure 1: Workflow to set up a grey-box model that identifies material model parameters
for given experimental measurements

two advantages [22]: First, the amount of data is restricted only by compu-
tation power, whereas the experimentation of complex systems can rapidly
grow very expensive. Second, deterministic models have no random error,
which is why the data is clean and noiseless. The workflow to generate such
a grey-box model is schematically depicted in Fig. 1 and can be described
by two steps:

1. Setting up the forward model: The experimental setup is analyzed and
the boundary conditions of the problem are defined, as well as the
parameter space to cover. Based on that, a physical model is used to
generate training data following a certain sampling strategy. The phys-
ical model includes the material model and represents the experimental
setup.

2. Setting up the direct inverse model: A neural network-based model is
trained with the generated data by reversing the role of inputs and
outputs. Then, it is applied to the experimental data of interest in
order to identify a set of material model parameters.

Additionally, domain knowledge can be integrated in grey-box models for

6



example via feature engineering and sampling. Feature engineering is the
process of finding new features that better represent the underlying prob-
lem as the raw data. Having meaningful features can significantly simplify
the parameter identification problem and improve the interpretability of the
grey-box model. Furthermore, choosing the right sampling strategy that suf-
ficiently covers the input space is essential for neural network-based models.
A commonly used sampling strategy is Latin hypercube sampling [23, 22]. It
ensures that the parameters to analyze are represented in a fully stratified
manner. However, in an inverse problem such a sampling strategy is not
goal-directed [6]. In this case, it cannot be guaranteed that the input space
of the neural network-based model is covered sufficiently. The key to handle
this problem is to design a knowledge-based sampling strategy that focuses
sensitive regions of the problem. This can be realized for example by densely
sampling more sensitive regions and sparsely sampling less sensitive regions.
In any case, the generated training data should be reviewed critically from
domain sight.

2.3. Mixture of experts

Mixture of experts is a machine learning method that is originally introduced
in [18] and belongs to the class of ensemble techniques. The concept of
ensemble techniques is to combine several weak submodels into a global model
in order to achieve better performance. The main idea behind mixture of
experts is to partition the global problem into subtasks and assign expert
models to each subtask. The partitioning is performed via a gating model
that determines mixture coefficients indicating the active expert. The experts
and the gate are typically designed as neural networks. It is also possible
to use a Bayesian formulation [24, 25] or design the experts as Gaussian
processes [26]. An alternative, but closely related approach is mixture density
networks [27], in which the mixture coefficients and the expert outputs are
determined in one and the same neural network model. The structure of
mixture of experts is illustrated in Fig. 2. This structure can be called a
dynamic structure, as the model dynamically determines which expert runs
on a given input [19]. To make the mixture of experts model more flexible,
it can be extended to an hierarchical structure [28].

In this work, we use a mixture of experts model, in which each expert is
realized by a feedforward neural network following a Gaussian distribution
[20]. For the ith expert, the local probability distribution for the output y
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Figure 2: Scheme of a mixture of experts model with n experts and one gate. The input
signal is fed to the experts and the gate. The model output is defined by the sum of the
expert outputs Pi weighted by the mixture coefficients gi.

given the input signal X is expressed as

P (y|X, θi) = N (y|yi(X,wi),Γi), (11)

where N denotes a Gaussian distribution and θi includes the network weights
wi and covariance Γi. The mixture coefficients are determined by the gate
via the softmax function

gi(X,v) =
exp(zi(X,v))∑n
j exp(zj(X,v))

, (12)

where n is the number of experts and zi(X,v) the ith output of the gating
network including the weights v. Combining Eq. (11) with Eq. (12), the
global probability distribution can be written as a sum over all experts:

P (y|X, θi,v) =
n∑
i

gi(X,v)P (y|X, θi). (13)

For exact predictions, the mean of the Gaussian distribution of the active
expert is evaluated:

y(X) = gi(X,v)yi(X,wi). (14)

The active expert is determined by the largest mixture coefficient. The mix-
ture of experts model is trained by minimizing the negative logarithm of
the likelihood described in Eq. (13). During training, the neural network
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weights are adjusted via error backpropagation using Adam optimizer [29].
The mixture of experts model is implemented via python package tensorflow
[30].

In the following it is explained briefly how a mixture of experts model can
solve non-unique problems. Therefore, we assume to have a set of data points
derived from a non-unique mapping. For each input parameter, there are n
equivalently valid but unequal outputs. To model this one-to-n mapping,
a mixture of experts model with at least n experts is considered. During
training, the gate softly partitions the input data into n distinct subsets while
every expert gets specialized to one subset. This is achieved by multiplying
the expert outputs by the mixture coefficients gi. As a consequence the
intensity of the backpropagated error increases for possibly active experts
(gi → 1) and decreases for possibly non-active experts (gi → 0). After
training, the mixture of all experts forms the desired one-to-n mapping.

Examples for successfully applied mixture of experts models to non-
unique problems can be found in other fields of research. In [25] and [31]
it is used to solve inverse kinematics problems and in [32] for a problem of
3D pose reconstruction. Furthermore, in [33] a method to detect ambiguities
in regression problems is introduced, following the idea to split an ambiguous
data set into distinct subsets, however using a fuzzy rule-based system.

3. Numerical examples

3.1. A simplified non-unique parameter identification problem

In a first study, we compare the mixture of experts approach to a feedforward
neural network trained with a squared loss function. For a proof of concept,
we apply both models to a non-unique parameter identification problem. The
feedforward neural network is set up via python package scikit-learn [34].

3.1.1. Problem description

We focus on the hardening model described in Eq. (8). The aim is to
identify the internal parameters of the hardening model for given stress-
strain curves. The parameter identification problem can be described as
follows: Find a set of parameters {β1, γ1, β2, γ2}, for which R(sp, β1, γ1, β2, γ2)
approximates a given curve R(sp). The accumulated plastic strain sp is an
independent variable. Due to the relation described in Eq. (9), the parameter
identification problem is non-unique.
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Table 1: Ranges and units of parameters to identify

parameter min max unit

β1 5 200 -
γ1/β1 100 400 MPa
β2 5 200 -
γ2/β2 100 400 MPa

3.1.2. Data base generated by forward model

Based on Latin hypercube sampling, 10, 000 training samples are generated.
Additionally, 2, 500 samples are generated randomly for validation and fur-
ther 2, 500 for testing. To define the inputs for the neural network-based
models, the stress-strain curves have to be discretized. Therefore, R(sp) is
evaluated at 20 equidistantly distributed points on the strain axis inside the
limits sp = [0, 0.2]. To increase the variety of information in the data, domain
knowledge is integrated in the sampling process.

First, we introduce the parameters {βi, γiβi} instead of using {βi, γi}. The
term γi

βi
determines the limit of R, when sp grows large:

lim
sp→∞

R =
∑
i

γi/βi. (15)

Using this description, the maximal hardening stress in the data set can be
better regulated and the identification task becomes easier to interpret.

Second, we focus sampling on regions where βi is small, as the curvature
of R(sp) is more sensitive to variations of small βi values as for large βi-
values, inside the given limits. This is caused by the exponential form of
the hardening model and the relation shown in Eq. (15). A dense sampling
in regions where βi is small is realized by rearranging the βi parameters
given by the Latin hypercube sampling strategy on a logarithmic scale. As a
consequence, this leads to stress-strain curves with a more realistic curvature.
The considered parameter ranges are listed in Table 1.

3.1.3. Comparing mixture of experts with feedforward neural networks

The feedforward neural network is designed as a three-layer neural network,
in which the hidden layer contains 100 neurons. For training, a squared
loss function is used. The mixture of experts model consists of two expert
networks, as there are two possible parameter sets for each curve to identify.
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Both experts are realized by three-layer neural networks with 100 neurons
in the hidden layers. The gating network is also designed as a three-layer
neural network, but with ten neurons in the hidden layer.

To evaluate both models, it is not suitable to compare the true and the
identified parameters, because first, multiple parameter sets are correct and
second, we are actually interested in how close the material model response
fits the target response. Therefore, we recalculate R(sp) using the identified
parameters and compare the reproduced curve Rrepr(sp) with the target curve
R(sp). To measure the misfit between the two curves, we calculate the mean
absolute error:

MAE =
1

sp1 − sp0

∫ sp1

sp0

|R(sp)−Rrepr(sp)|dsp, (16)

where sp0 and sp1 describe the limits, inside which the curves are evaluated.

3.1.4. Results and discussion

The mean and the maximal MAE for both models applied to the samples in
the test set is given in Table 2. The results show that the mixture of experts
model achieves a higher accuracy in the given non-unique parameter identifi-
cation problem than the feedforward neural network trained with a squared
loss function. The latter ends up averaging across the possible targets. This
behavior can be observed in Fig. 3. Therein, the identified parameters are
depicted, as well as the ground truth of the test set. The identified param-
eters lie close to the β-space diagonal and γ-space diagonal. This behavior
is caused by the relation given in Eq. (9) and the averaging tendency of the
used feedforward neural network model trained with a squared loss function.
In contrast, the mixture of experts model partitions the parameter identifica-
tion problem dynamically into two distinct subtasks. While the partitioning
is rather unsystematic in the input space, it has a clear effect on the output
space; see Fig. 4. The expert outputs are separated along the β-space di-
agonal and γ-space diagonal and thereby cover the whole parameter space.
Consequently, the expert networks are able to solve the assigned subtasks.

This shows that typically used feedforward neural network models trained
with a squared loss function cannot be applied to non-unique parameter
identification problems. To identify parameters in a non-unique parameter
identification problem alternative learning methods should be used, such as
the mixture of experts model. When the number of possible solutions is
known in advance, the mixture of experts model shows satisfying results.
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Figure 3: The space of model parameters: Distribution of parameters in the test set and
the parameters identified by the feedforward neural network using a squared loss function.

Table 2: Mean and maximum MAE of the results obtained by the feedforward neural
network trained via a squared loss function and the mixture of experts model.

method mean MAE max MAE unit

feedforward neural network 32.1 197.6 MPa
mixture of experts 4.8 32.8 MPa
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Figure 4: Space of model parameters: Distribution of parameters in the test set and the
parameters identified by the mixture of experts model. The colors indicate the assigned
experts.

3.2. Using mixture of experts to identify material model parameters for ten-
sile test data

In a second example it is shown that the mixture of experts model can be
used to identify parameters in a non-unique parameter identification problem
for given experimentally measured data. The experimental data is extracted
from tensile tests of three metallic materials, namely AA6014 aluminum al-
loy1, DC04 deep drawing steel2, and DP600 dual-phase steel3; cf. Fig. 5.

3.2.1. Problem description

To represent the behavior of the three metallic materials, the isotropic elasto-
plastic material model described in Section 2.1 is used. The parameters
to identify are therefore {E, k0, β1, γ1, β2, γ2}. The parameter identification
problem can be described as follows: Find a set of parameters {E, k0, β1, γ1, β2, γ2}

1Tests performed at Fraunhofer IWU during AiF project 18810BG [35]
2Tests performed at IUL Dortmund during DFG project Graduate School 1483 [36]
3Tests performed at IFU Stuttgart during DFG project Graduate School 1483 [37]
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Figure 5: Engineering stress-strain curves of tensile tests of AA6014 aluminum alloy, DC04
deep drawing steel, and DP600 dual-phase steel.

for which the isotropic elasto-plastic material model approximates the experi-
mentally measured stress-strain curve σexp(ε). The strain ε is an independent
variable.

Following the grey-box model approach described in Section 2.2, the train-
ing data is generated via the material model itself. As the material model
is an idealization of real material behavior, the information contained in
the training data is slightly different to the information contained in exper-
imentally measured data. In this example, this is mainly caused by two
phenomena:

1. Measurement errors: The experimental measurements of AA6014 and
DC04 are quite accurate and result in rather smooth stress-strain curves,
whereas the experimental measurements of DP600 underly a large fluc-
tuation. In contrast, the response of the isotropic elasto-plastic mate-
rial model is generally smooth (except for the transition between elastic
and plastic deformation).

2. Idealization of discontinuous yielding: Note the transition from elastic
to plastic behavior in the measured stress-strain curves of DP600 and
DC04. Especially the DP600 specimen shows a broad zone of discontin-
uous yielding. The material model, in contrast, idealizes the transition
as only one point, the yield point.
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Table 3: Ranges and units of parameters to identify

parameter min max unit

E 50000 200000 MPa
k0 100 400 MPa
β1 5 200 -
γ1/β1 50 400 MPa
β2 5 200 -
γ2/β2 50 400 MPa

As a consequence, the accuracy of grey-box models decreases, when they are
trained on ideal data and applied to real measurements. However, modifying
the training data can handle this problem as we will describe in the following
section.

3.2.2. Data base generated by forward model

Using Latin hypercube sampling, 50, 000 training samples are generated. Fur-
thermore, 5, 000 randomly distributed samples are generated for validation.
To test the model we use the tensile test data of the three materials. The
parameter space of γi and βi is sampled as described in Section 3.1. The
parameter ranges are listed in Table 3. We assume, that the parameters to
identify lie inside the chosen parameter ranges.

To increase the accuracy of the mixture of experts model when applied to
experimentally measured stress-strain curves, the training data is modified
as follows:

1. To make the mixture of experts model robust to measurement errors, a
Gaussian noise with zero mean and variance s2 is added to the material
model response data [38]:

σnoisy = σ (1 + N (µ = 0, s2 = 10−4)). (17)

2. It is ensured that the evaluation points (the inputs for the mixture
of experts model) do not lie inside the transition zone. Therefore, 20
equidistantly distributed points are evaluated in the plastic zone, after
the discontinuous yielding, and one point is evaluated in the elastic
zone before discontinuous yielding takes place.
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Table 4: Identified parameters for the isotropic elasto-plastic material model to fit the
experimentally measured stress-strain curves

Material E [GPa] k0 [MPa] β1 [-] γ1 [MPa] β2 [-] γ2 [MPa]

AA6014 62 110 6 254 17 1496
DC04 184 170 12 617 26 2827
DP600 175 306 68 13238 14 1354

3.2.3. Results and discussion

To assess the quality of the parameter estimates, the stress-strain curves
reproduced by the material model using the identified parameters are com-
pared to the experimentally measured stress-strain curves; see Fig. 6. The
identified parameters are listed in Table 4.

The best result is obtained by identifying parameters for the elasto-plastic
material model to represent the AA6014 specimen. The reproduced stress-
strain curves lies close to the experimentally measured curve. Also, in case
of DC04, the identified parameters satisfyingly fit the material model re-
sponse to the experimentally measured data. Though, the material models
response deviates slightly from the experimental data, when discontinuous
yielding takes place. The broad zone of discontinuous yielding in the DP600
measurements is challenging for the grey-box model approach. Fitting the
isotropic elasto-plastic material model to this zone is generally not possi-
ble, as the material model does not take into account discontinuous yielding
at all. Furthermore, due to fluctuation in the experimental measurements,
the material models response deviates slightly from the experimental curve
across the whole plastic zone. Anyhow, a rather pragmatic estimate of k0
ensures that the material models response still follows the experimental curve
acceptably.

From an engineers sight, the experimentally measured stress-strain curves
are approximated sufficiently by the material model using the identified pa-
rameters. Furthermore, a general advantage of neural network-based ap-
proaches is shown. Once the model is trained, it can be used to directly
identify material model parameters given tensile test data of different mate-
rials.
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Figure 6: Engineering stress-strain curves of the three metallic materials and the curves
obtained by the material model using the identified parameters. The crosses indicate the
inputs for the mixture of experts model.

4. Conclusion and outlook

In the present paper, a grey-box model approach for parameter identification
of material models is described. An important part of the grey-box model
is the integration of a neural network-based model to set up a direct inverse
model that estimates optimal material model parameters. For this purpose,
typically feedforward neural networks are used, trained with a squared loss
function. In this work, it is shown that these algorithms cannot be applied to
non-unique parameter identification problems. However, when the problem
is non-unique, a dynamically structured model can be applied, such as the
proposed mixture of experts model.

In any case, a fundamental understanding of the material model is es-
sential and the source of non-uniqueness should be well understood. For a
successful use of mixture of experts, it is crucial to define the right number
of subtasks to partition the problem. This has to be done in advance and is
rather difficult for complex material models. This justifies the need for data-
driven approaches to efficiently determine the number of possible solutions of
a non-unique problem. Furthermore, the development and analysis of alter-
native machine learning models to represent one-to-many relations is needed.
Generally, the prediction accuracy of neural network-based models and the
computational costs of generating data depends highly on the sampling strat-
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egy. Unfortunately, for parameter identification problems sampling is done
in parameter space and is therefore not goal-directed. In the present paper
this problem is tackled by integrating domain knowledge in the sampling
process. Thereby, physically meaningful training data is generated and the
space of material model responses is covered sufficiently. However, further
research is needed to develop data-driven sampling strategies that enable a
goal-directed sampling for inverse problems.

It should be mentioned here that the described grey-box model approach
is not restricted to the field of material modeling. This holds for the inte-
grated neural network-based models and especially for the described mixture
of experts approach to solve non-unique parameter identification problems.
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