

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

International Conference on Silicon Carbide and Related Materials, September 17th - 22th 2017, Washington, D.C., USA

Influence of AI doping concentration and annealing parameters on TiAI based ohmic contacts on 4H-SiC

M. Kocher^{1, a}, M. Rommel^{1, b}, T. Erlbacher^{1, c}, A. J. Bauer^{1, d}

¹ Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Schottkystrasse 10, 91058 Erlangen, Germany ^a Matthias.Kocher@iisb.fraunhofer.de, ^b Mathias.Rommel@iisb.fraunhofer.de, ^c Tobias.Erlbacher@iisb.fraunhofer.de, ^d Anton.Bauer@iisb.fraunhofer.de

Motivation	Γ	Sample preparation
 TiAl is on of the preferred metal stacks used to form ohmic contacts on p-doped SiC [1] and is known to grow a Ti₃SiC₂ layer directly on the SiC surface [1, 2] Ti₃SiC₂ is the key to achieve an ohmic contact behavior [2] 		 Three 100 mm 4H-SiC wafers with epitaxial layer (6 μm; 10¹⁶ cm⁻³) p⁺ front side implantation 15 different Al box profiles with concentration ranging from 3.3·10¹⁸ cm⁻³ to 5.0·10¹⁹ cm⁻³

- Ohmic contacts on p-doped SiC are commonly verified on epitaxial layers, but ohmic contacts on Al implanted layers are technologically more relevant
- → Performing a DoE with different TLM structures [3] by varying Al concentrations and annealing conditions to investigate their influence on the ohmic behavior
- Developing a TCAD model in order to get a better understanding of Ti₃SiC₂ based ohmic contacts on Al implanted regions
- Three different high-temperature anneal plateaus in Ar atmosphere
 - 30 min @ 1700 °C; 30 min @ 1800 °C; 1 min @ 1900 °C
- Depositing 450 nm LPCVD passivation oxide
- Removing oxide in ohmic contact pad area, sputtering TiAl metal stack (60 nm/300 nm) and structuring via a lift-off process
- Forming ohmic contact via RTA (2 min; 980 °C)
- Depositing Al pads (500 nm) by sputtering and structuring via a lift-off process

Electrical characterization

- Measurement setup
 - Four wire (Kelvin) I-V measurement (voltage range: -10 V to 10 V (step: 0.1 V))
 - Measurement temperature: 300 K
- Measured resistance R_{meas} of all TLM structures showed ohmic behavior
- Fig. 1 shows the specific contact resistances ρ_c
 - ρ_c decreases with increasing implanted doping concentration
 - Lowest ρ_c for implantation annealing temperature of 1800 °C
- Fig. 2 shows the corresponding sheet resistance R_{sh} of the implanted region
 - R_{sh} decreases with increasing doping concentration and increasing implantation annealing temperature

Simulation model

- TCAD simulation model (Sentaurus)
- Three layer stack (SiC with Al implantation, Ti₃SiC₂, Al)
- Ti₃SiC₂–Al interface is modelled as an ideal ohmic contact
- Simulation results are exemplarily shown for three different samples A-C (highlighted in Fig. 1 and Fig. 2; see Tab. 1 for process parameters; see Tab.2 for simulation parameters)

Simulation results

- Determination of R_{sim} by using the simulated I-V curves
- Ti₃SiC₂-SiC interface is modelled as a Schottky contact
- Ti₃SiC₂ parameters
 - electrical conductivity (300 K): 4.6·10⁶ (Ωm)⁻¹ [4]
 - Bandgap (300 K): 0.12eV [5]
- Introduction of three simulation parameters to take account of:
 - Carrier compensation: Al implantation scaling factor f_{imp}
 - Tunneling parameters: effective density of states for holes N_V (Ti₃SiC₂) and hole tunneling mass m_{t,h} (SiC)

- Deviation between R_{sim} and R_{meas} sufficiently low (max. deviation: approx. ±5.5 %; see Tab. 3)
- Sample C showed that even for a hole concentration as low as 2.6·10¹⁷ cm⁻³ ohmic contact behavior (see Tab. 2)
- N_v is independent of the carrier concentration, while m_{t,h} strongly depends on the carrier concentration
- Fig. 3a) and Fig. 4a) show the simulated band diagram of samples A and C (magnification to the right of each figure)
 - Both semiconductors (SiC and Ti₃SiC₂) show band bending at the Ti₃SiC₂-SiC interface
 - Ti₃SiC₂ degenerates to a metallic-like behavior and accumulates holes at the Ti₃SiC₂-SiC interface

Table 1: Process parameters									
Parameter	unit	sample A	sample B	sample C					
Impl. Al conc. N _{imp}	10 ¹⁹ cm ⁻³	5.0	5.0	0.33					
Impl. annealing		30 min @	30 min @	30 min @					
		1700 °C	1800 °C	1700 °C					
Table 2: Determined simulation parameters									
parameter	unit	sample A	sample B	sample C					
f _{imp}	%	6.2	9.4	7.9					
f _{imp} · N _{imp}	10 ¹⁷ cm ⁻³	31	47	2.6					
N _V	10 ¹⁸ cm ⁻³	8.5	8.5	8.5					
m _{t,h}	10 ⁻³⁴ kg	63.8	63.8	2.46					

Table 3: Comparison of measured and simulated resistances								
		d1	d2	d3	d4			
sample A	R_{meas} [k Ω]	9.70	21.3	44.1	88.7			
	R _{sim} [kΩ]	9.69	20.9	43.4	88.4			
	deviation [%]	-0.08	-1.98	-1.65	-0.35			
sample B	R_{meas} [k Ω]	7.12	15.9	33.5	68.3			
	R _{sim} [kΩ]	6.78	15.5	33.0	68.1			
	deviation [%]	-4.91	-2.49	-1.26	-0.40			
sample C	R_{meas} [k Ω]	76.2	159	334	690			
	R _{sim} [kΩ]	80.4	161	333	681			
	deviation [%]	5.47	1.01	-0.14	-1.33			

 Formation of low ohmic contacts is possible on Al implanted layers, with a net doping as low as 3.10¹⁷ cm⁻³

- \rightarrow Ti₃SiC₂ is a high potential material to form low ohmic contacts on Al implanted SiC layers
- A first model to simulate Ti₃SiC₂ contacts on Al implanted regions was implemented and verified on processed samples
- Tunneling parameters of Ti₃SiC₂ contacts were determined
- Further simulations with different Al concentrations and annealing conditions have to be done in order to improve the simulation parameters
- Further investigations have to be done in order to reduce the carrier compensation and thus improve the ohmic behavior

References

- [1] T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: Growth, characterization, devices and applications. Singapore: Wiley IEEE, 2014.
- [2] Z. Wang et al., "Ohmic contacts on silicon carbide: The first monolayer and its electronic effect," Phys. Rev. B, vol. 80, no. 24, p. 245303, 2009.
- [3] D. K. Schroder, Semiconductor material and device characterization, 3rd ed. [Piscataway, NJ], Hoboken, N.J.: IEEE Press; Wiley, 2006.
- [4] T. Abi-Tannous et al., "A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti₃SiC₂ Phase," IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2462–2468, 2016.
- [5] H. Yu et al., "Thermal stability of Ni/Ti/Al ohmic contacts to p- type 4H-SiC," Journal of Applied Physics, vol. 117, no. 2, p. 25703, 2015.