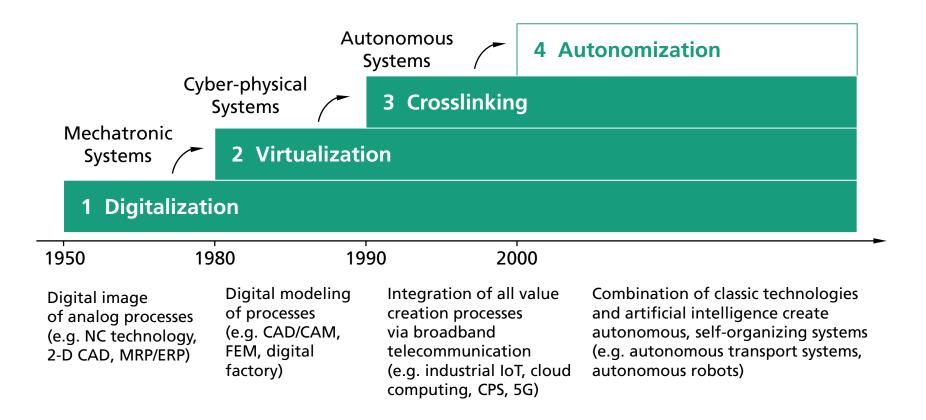
AUTOMOBILINDUSTRIE 4.0 – PERSONALISIERT UND SMART

Prof. Dr.-Ing. Thomas Bauernhansl 6. Februar 2018



University of Stuttgart

Development Stages of the Digital Transformation From digital image to autonomous system

Quelle: Fraunhofer IPA

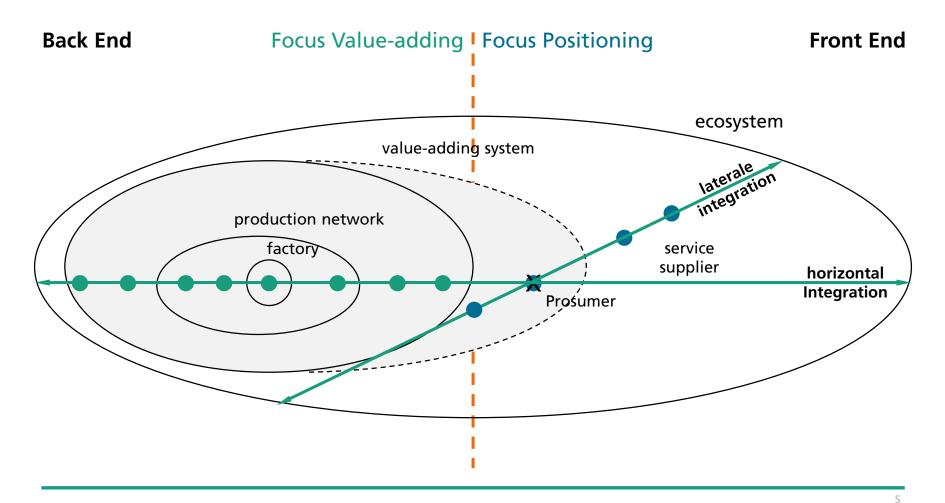
University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Vertical Integration Core elements of the fourth industrial Revolution

Infrastructure (physical, digital)	
Cyber-physical System	
Product Life Cycle (valuable = personalized + sustainable)	
Interaction	
Physical Systems (act, sense, communication)	Human Beings (decide, create, communicate)
Reflection	
Digital Shadow (real-time model of everything)	
Transaction	
Software Service (machine skills, Apps for humans, platform services)	
Interoperation	
Cloud-based Platforms (private, community, public)	
Prescription	
Analytics (Big Data/machine learning)	
Communication	
Internet of Everything (human beings, services, things)	

All Objects in a Factory will be Mobile as Far as Possible Example: Audi R8 – freely navigating AGV (navigation as a service)

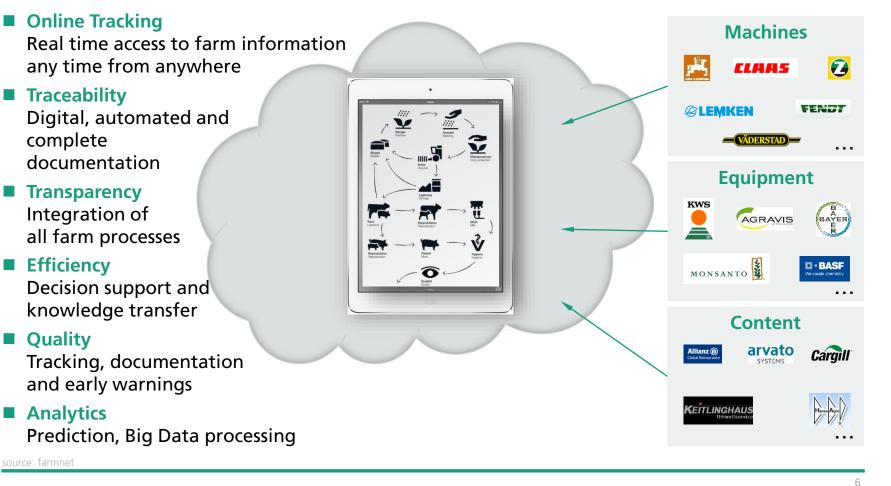
source: audi-mediaservices.com



University of Stuttgart

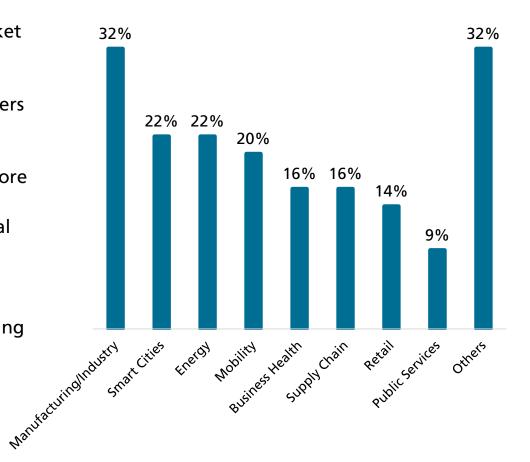
Institute of Industrial Manufacturing and Management IFF

Horizontal and lateral Integration From B2B and B2C to Business to User (B2U)


University of Stuttgart Institute of Industrial Manufacturing

Business Ecosystems

»Farmnet 365« – an agricultural machinery initiative

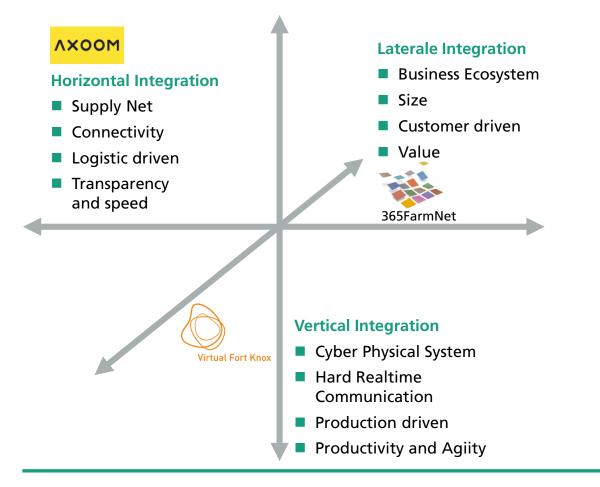

University of Stuttgart

IIOT Platforms Increase Massively

IT-backbone for new business models and ultra-efficient value-adding

- With more than 450 providers, the market of IoT-platforms remains highly fragmented.
- In 2016 half of the IoT-platform providers generated a turnover of less than 1 Mio. USD.«
- The top providers record a growth of more than 50 %.
- Most platforms concentrate on industrial application areas (32 %).
- With 17 deals in 2016 alone the M&Aactivity has notably increased.
- Compared to other branches the financing of startups play a rather minor role (2016: 330 Mio. USD).

source: Cisco, 2014, IoT Analytics 2017


University of Stuttgart Institute of Industrial Manufacturing

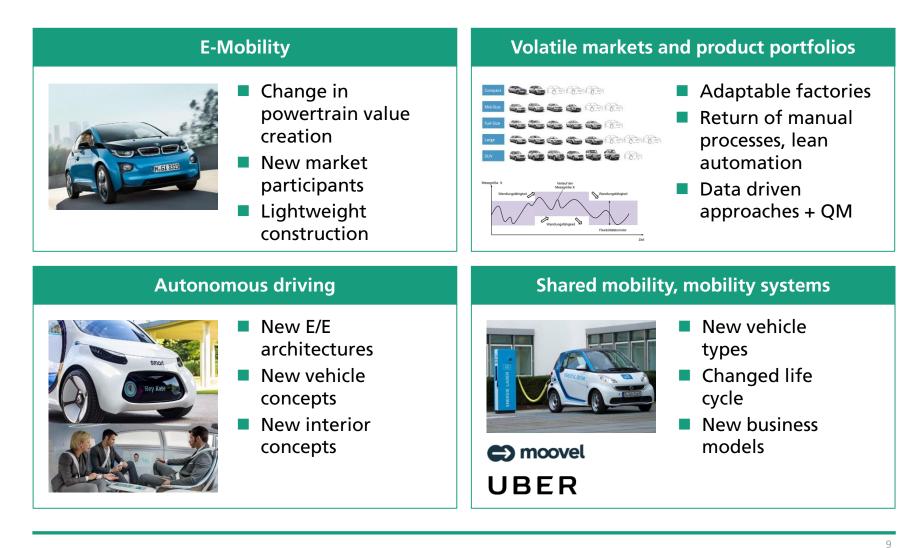
and Management IFF

🖉 Fraunhofer

IPA

Platforms as Core Element of Total Business Integration Is one platform enough?

General Requirements


- Openess
- Safety, Security and Privacy
- XaaS
- Innovation
- Scalability

University of Stuttgart

Trends in Automotive Industry

University of Stuttgart

ARENA2036 – Stuttgart Research Campus Active Research Environment for the Next Generation of Automobiles

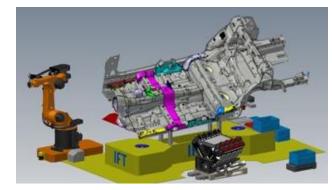
University of Stuttgart

10 Guidelines for the Value-Adding System of the Future How Industrie 4.0 will change automotive production

- Guideline 1: Merge production and logistics system into one value-adding system. Production and logistics systems act as integrated entity for reaching the enterprise goals.
- Guideline 2: Dissolve line and cycle-time depending on product variety and workflow complexity. Granularity of structures and processes is adapted to the complexity of the product programs and frame conditions.
- Guideline 3: Setup processes and structures mobile and scalable. Value-adding structures can be redesigned dynamically and economically when needed.
- Guideline 4: Design intelligent systems. Self-regulated subsystems contribute with their self-healing abilities to a robust overall system.
- Guideline 5: Make support processes value-adding. All support process (i.e. logistics) are either transformed into adding-value support processes or eliminated.
- Guideline 6: Replace material flow with information flow. Information is used effectively to reduce waste and stock and to support a downstream customization.
- Guideline 7: Shift process complexity to where it can be handled most efficiently. The value-adding system boundaries are flexible, integrating customers and suppliers as value-add partners in the value-adding system.
- Guideline 8: Represent system elements and processes continuously in a digital shadow. Accurate prediction and evaluation of upcoming events is made possible.
- Guideline 9: Optimize production, based on data analytics. In complex systems correlation is more important than causality.
- Guideline 10: Focus the human role on design and optimization. Humans use their skills to enhance value-adding and thus optimize the overall system.

University of Stuttgart

Guideline 1: Merge Production and Logistics System into one Value-adding System.

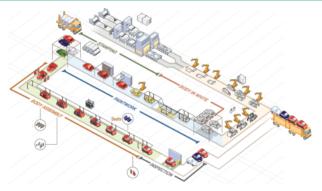

Production and logistics systems act as integrated entity for reaching the enterprise goals.

Fixed production today

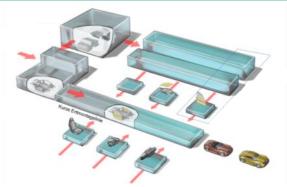
- decoupled optimization of production and logistics
- competing target systems
- optimization of production results in higher complexity and higher costs in the logistics
- Separated production and logistics functions to ensure transparency

Changeable production tomorrow

- global optimum instead of individual optimization
- transparency by self-descriptive systems
- no separation of productive and logistics areas
- changeable productive and logistics structures



Guideline 2: Dissolve Line and Cycle-time depending on Product Variety and Workflow Complexity.


Granularity of structures and processes is adapted to the complexity of the product programs and frame conditions.

Fixed production today

- fixed chain of singular plant technology
- strict organizational split of section, lines and line sections
- fixed line balance
- fixed just-in-time sequence
- high efforts in control
- Iow possibility to adapt during product lifecycle
- changes interrupt the whole production

Changeable production tomorrow

- universal process modules
- interconnection of modules adapted to the situation
- routing flexibility inherent in the system
- self-similar systems-of-systems architectures
- dynamic reconfiguration subsystems
- no separation of body, paintwork, interior assembly
- no dissection of the overall organization

University of Stuttgart Institute of Industrial Manufacturing

and Management IFF

On the Way to Fluid Production

Example: SEW Eurodrive – merging of fluid logistics and partially automated U-Shape value-added cells

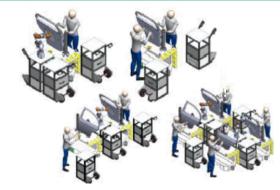
source: SEW Eurodrive

University of Stuttgart Institute of Industrial Manufacturing

and Management IFF

Fraunhofer

Guideline 3: Setup Processes and Structures Mobile and Scalable.

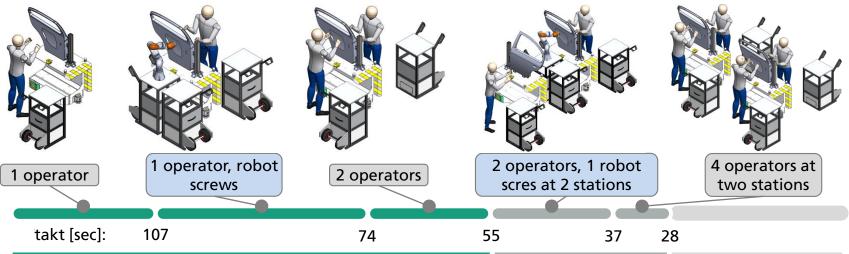

Value-adding structures can be redesigned dynamically and economically when needed.

Fixed production today

- fixed allocation of products to resources and to production tasks
- fixed layout
- safety fences between humans and machines
- fixed and investment-intensive automation
- resources dedicated to one specific operation

Changeable production tomorrow

- individual coordination of sequence and operation
- scalable automation
- human-robot-cooperation
- scaling and flow-orientated layout adjustment to daily production schedule
- system adjustment according to availability of resources



University of Stuttgart Institute of Industrial Manufacturing

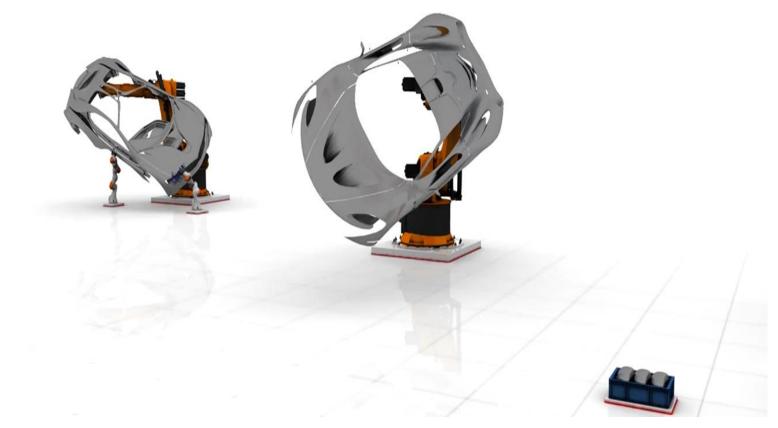
and Management IFF

Output-oriented Configuration of Process Modules Example: Assembly of a door module with HRC in ARENA2036

1 station

2 stations

more than 2 stations



University of Stuttgart

Institute of Industrial Manufacturing and Management IFF

Fluid Production – Everything is Mobile and Scalable Example: Active floor of Benjamin Logistics (start up company)

source: Benjamin Logistics

University of Stuttgart

Guideline 4: Design Intelligent Systems.

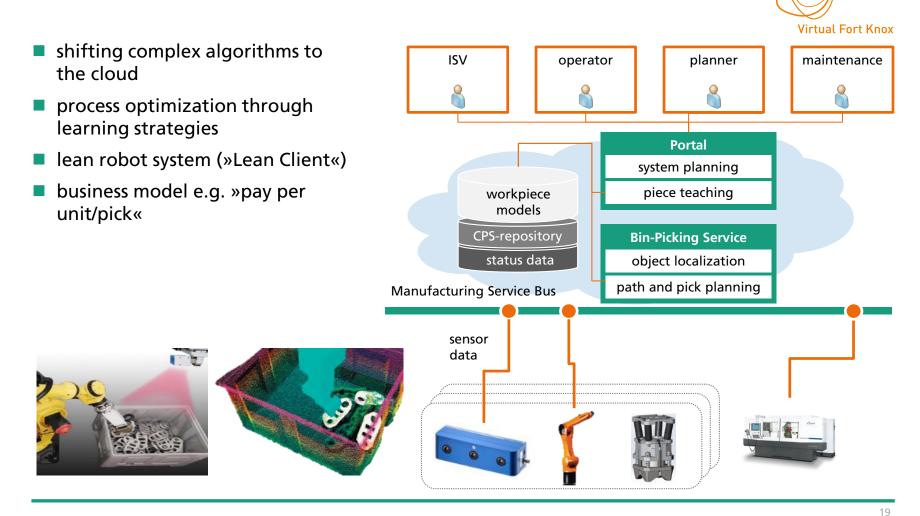
Self-regulated subsystems contribute with their self-healing abilities to a robust overall system.

Fixed production today

- centralized planning, controlling and optimization
- incorrect master data
- selective operating data recording
- manual commissioning, programming and optimization
- uncertain planning data
- planning, based on experience

Changeable production tomorrow

- intelligence shifted to decentralized entities
- plug-and-produce of system elements into systems of higher complexity
- self-description of CPS: always up-to-date information base
- cloud-based self-control
- changeable functional range of system elements
- virtual commissioning
- automated, self-optimizing operation planning



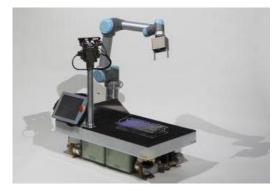
University of Stuttgart

© Fraunhofer IPA, IFF University of Stuttgart

»Bin Picking« as Industrie 4.0 Application Cloud Picking

University of Stuttgart

Guideline 5: Make Support Processes Value-adding.


All support process (i.e. logistics) are either transformed into value-adding support processes or eliminated.

Fixed production today

- fix installation of massive material flow systems
- complex supply chain network
- long-lasting planning horizon (forecast)
- high safety stock level
- material staging area is the bottleneck
- low time-share of value-add activities in total throughput time

Changeable production tomorrow

- innovative parallelization of assembly and logistics
- flexibility enabled by flexible material staging
- no material areas in production
- commissioning on tour
- assembly on AGV
- »best-fit« to avoid adjusting processes

University of Stuttgart Institute of Industrial Manufacturing

and Management IFF

Fraunhofer **IPA**

Robots will be Mobile, Flexible and Safe Example: SEW Eurodrive – freely navigating DTS (carries the robot for bin picking)

source: IPA

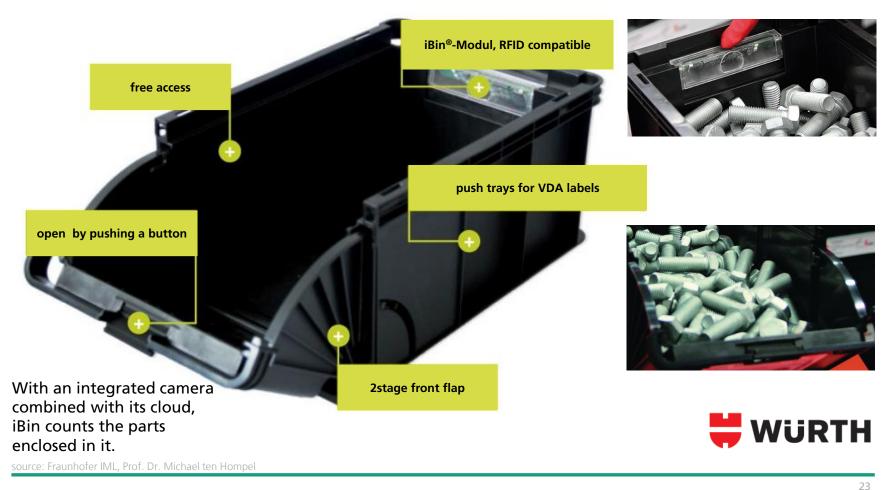
University of Stuttgart


Guideline 6: Replace Material Flow with Information Flow.

Information is used effectively to reduce waste and stock and to support a downstream customization.

- Information flow is inflexibly linked to material flow
- lagged information flows
- information Overflow
- high level of buffer inventories to cope with insufficiencies

Changeable production tomorrow


- real-time information access
- information flow adapted to actual needs
- intelligent integration of information
- simulation based on real time-data
- product differentiation through software variants

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

All Objects in a Factory will be Smart iBin – Intelligent bins order their filling autonomously

University of Stuttgart

Replace Material Flow by Flow of Information Example for personalized and urban production: Adidas Speed Factory

source: adidas

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Guideline 7: Shift Process Complexity to Where it Can Be Handled Most Efficiently.

The value-adding systems boundaries are flexible, integrating customers and suppliers as value-add partners in the value-adding system.

Fixed production today

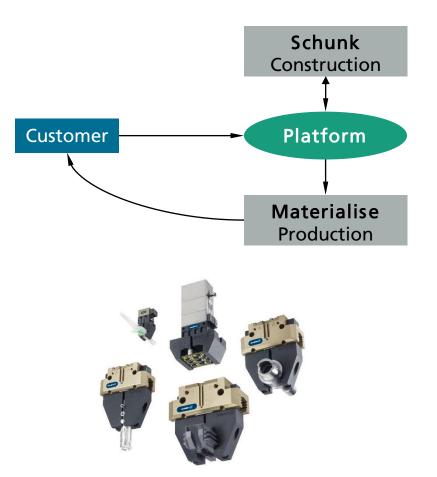
- predefined products with plenty of variants
- complexity of business processes and production must mainly be handled by OEM
- market risks and coordination efforts at introduction of new product designs
- system integration limited to core partners, due to cost and efforts
- many interfaces, partly standardized
- big networks of many small JIS-plants

Changeable production tomorrow

- active complexity management
- ad hoc configuration of value chains (MaaS)
- complexity of individualization managed by the customer as »Pro-Sumer«
- open source, open innovation and co-creation
- integration of additive manufacturing
- everything as a service
- just in realtime (JIR) delivery

and Management IFF

University of Stuttgart Institute of Industrial Manufacturing


Business Model Innovation

Example Schunk eGRIP

Since 2015 suitable grippers can be ordered at Schunk, based on the CAD-Files of the parts that are transported.

- Reduction of order time and guarantee of high benefit for customers through integration of customers in the development process
- Communication via online platform
- The partner company Materialise takes over the 3D printing

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Open Source Communities as Enabler Example: ROS for Industrial Robotics

Why Open Source?

- more than two million free open source software packages (FOSS) available
- robotics research available as bundled software components brings technology push
- increase of critical mass, quality, transferability etc.
- supports business models, especially for SME
- »rapid prototyping« of technologies
- cost advantage 33 % compared to new development¹

source: 1N. Blümlein: Function-based System Engineering for Service Robot Prototypes (Diss Uni Stuttgart, 2013); 22014 Black Duck Software, Inc

University of Stuttgart

and Management IFF

Institute of Industrial Manufacturing

Fraunhofer

Guideline 8: Represent System Elements and Processes Continuously in a Digital Shadow.

Accurate prediction and evaluation of upcoming events is made possible.

As-is situation IT-tool-support within COP BRE ERP CAx MES

Fixed production today

- unidirectional information flow from planning to »physical« operation level
- production planning and control as sequential processes
- inconsistent and incorrect data
- simulation with historic data
- high planning effort of planning in different phases

Changeable production tomorrow

- real-time system model for value-adding
- automated maintaining of master and dynamic data
- Iocalization, supervision and forecast, based on live data
- production planning control based on real order situation
- transparency on current state makes prediction of future easier

University of Stuttgart Institute of Industrial Manufacturing

and Management IFF

Networked Mobile Navigation in Industrie 4.0 Context Cloud navigation

Cloud navigation for mobile robots in intralogistics applications

source: https://www.youtube.com/watch?v=r7KjHMeic2I

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

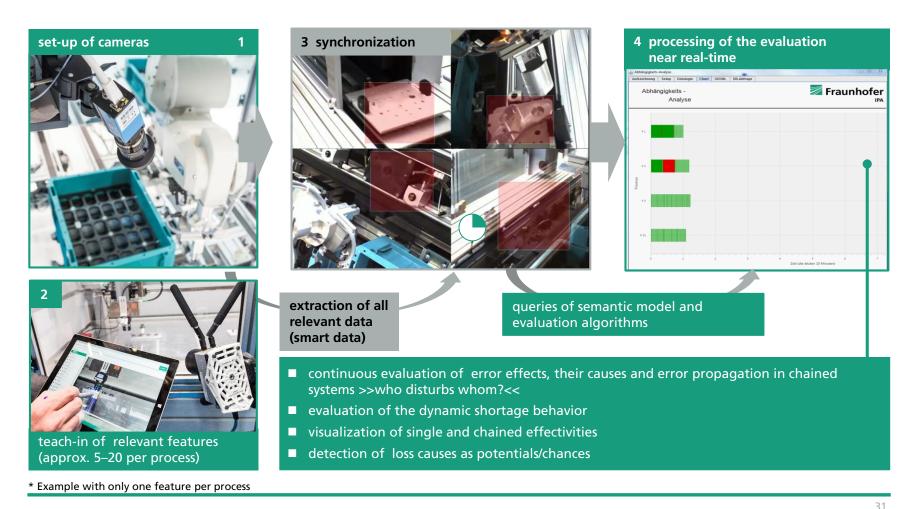
Guideline 9: Optimize Production, Based on Data Analytics.

In complex systems correlation is more important than causality.

Fixed production today

- Iean optimization (Six Sigma) of complicated systems
- search for root cause (Causality)
- problem solving by experts
- main question: WHY?

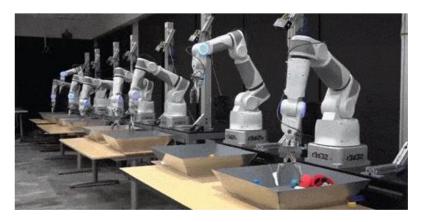
Changeable production tomorrow


- utilization of structured and unstructured data
- analytics with Big Data algorithms
- automated pattern recognition
- search for recipes (Correlation)
- main question: WHAT?

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Detection of Anomalies: Smart System Optimization through Simultaneous Monitoring of all In-line Processes

© Fraunhofer IPA, IFF University of Stuttgart


University of Stuttgart

»Bin Picking« as Use Case for Industrie 4.0 Cloud Picking

Hand-Eye-Coordination with Robots (Google)

- 14 robots learned simultaneously within ~800.000 pick attempts to grasp varied objects from a bin; a monocular camera is used
- several robots exchange their experiences
- also unknown objects are being picked, deviations of camera position are being compensated due to the robustness of the used algorithms

source: https://i.ytimg.com/vi/H4V6NZLNu-c/hqdefault.jpg

University of Stuttgart

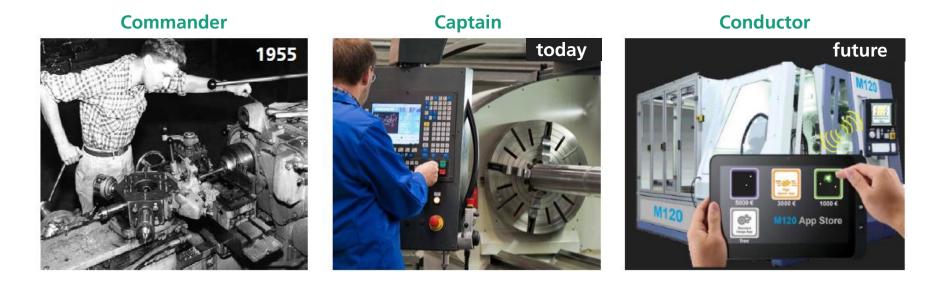
Guideline 10: Focus the Human Role on Design and Optimization.

Humans use their skills to enhance the value-adding and thus optimize the overall system.

Fixed production today

- separation of engineering and operations
- working cycle is forced by automated production system
- poor design and optimization autonomy of operators
- routine operations dominating human work

Changeable production tomorrow


- Reverse Taylor: merge engineering and operation
- automation of repetitive and standard work
- human intervenes when deviations occur
- design tasks and coordination are dominating human work

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Change in Relationship between Human and Work Environment

- Tasks of production workers and knowledge workers are merging (Revers Taylor)
- Routine tasks and simple technical and general work are taken over by machines
- New forms of cooperation and communication
- Increase of scope for decision-making and dispositive tasks
- New qualification demands: digital competence in all areas

source: Fraunhofer IAO

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

4 Archetypes of future Value-Adding Systems Design depends on customer requirements and availability of production factors

GLOBAL

Regional Manufacturing for Global Markets

- Regional network of manufacturers
- Complex products
- Trust between the partners
- High level of knowledge-sharing
- High transport volume

Globally Integrated Value Networks

- Global manufacturing value network
- Make use of all regional benefits worldwide
- Highly integration of physical and virtual worlds
- Supply net excellence
- Restricted flexibility and adaptability

REGIONAL

- Manufacturing of the product near or by the consumer, using worldwide components, customized locally
- Very user-centered manufacturing
- Reduced transport volume
- Highly flexible
- **Urban Manufacturing**

VALUE NETWORK

- Prosumer focus
- Short-term existence
- Extremely flexible
- Very focused and specialized
- Quality and security difficult to achieve and control

Virtual Value Networks

GLOBAL

University of Stuttgart

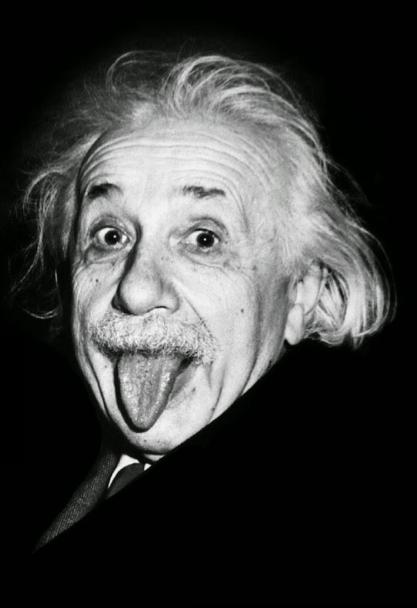
Business potential of Integrated Industry (Industrie 4.0) Specialists expect an increase in overall performance between 30 to 50 % in value creation

Estimation of potential benefits

source: IPA/Bauernhansl, Bosch

University of Stuttgart

Institute of Industrial Manufacturing and Management IFF


reduction

Pilot project at Bosch: Restructuring

tivity

The definition of insanity is doing the same thing over and over again and expecting different results.

Albert Einstein

AUTOMOBILINDUSTRIE 4.0 – PERSONALISIERT UND SMART

Prof. Dr.-Ing. Thomas Bauernhansl 6. Februar 2018

University of Stuttgart

