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ABSTRACT 

Automatic knowledge-based recognition of landmarks in aerial images for UAV navigation is an 
alternative to GNSS navigation. It provides absolute position estimates thus complementing INS 
navigation. Relying on knowledge instead of template images or training samples is advantageous 
because the first may be out-of-date and the latter not representative. The robustness and precision of the 
method can be assessed using internet-based virtual globe systems such as Google Earth as camera 
simulator. This provides an almost open-world test-bed, in which the recognition system can be operated 
in a perception/action loop. The system proposed here has been elaborated for simulated flights over 
Germany using mainly highway bridges as landmarks. But its behaviour is also investigated over quite 
different regions. Of course also other landmarks such as churches or mosques can be used as landmarks.  

1.0 INTRODUCTION 

In the early days of aviation navigation was done exclusively using visual perception. With growing range 
of aircrafts this visual navigation was regarded as a challenge demanding high cognitive capabilities. 
Often a specialist officer was placed in a transparent nose cupola with good nadir and forward view. His 
main task was to understand where the aircraft was, by identifying landmarks on the ground. Since the 
advent of electronic navigation devices this specialist has lost his importance and he and his cupola 
vanished in contemporary designs. Also modern unmanned aerial vehicles (UAVs) – though they often 
have nadir looking cameras mounted – usually lack automatic understanding of landmarks. Their main 
information sources for navigation are dead reckoning on gyroscope evidence (INS) and global navigation 
satellite systems (GNSS) for absolute positions. But GNSS can easily be jammed today using cheap 
devices anybody may get hand on.  

1.1 Automatic Visual Recognition for Aerial Navigation 
The role of machine vision in the state-of-the-art aerial navigation is rather marginal. It is obvious that 
vision cannot be an option over the open sea or unstructured desert. This contribution focusses on 
populated areas with salient, large, and man-made structures. There, quite high precision can be expected 
already from rather primitive template matching. But this is only applicable when up-to-date templates are 
at hand precisely predicting the actual appearance of the objects in the moment they are used. In an 
uncontrolled outdoor environment under changing lighting, with changing seasons etc. there is doubt 
whether the templates resemble the appearance. Out-of-date aerial images or satellite data make a risky 
template. Another option is to use line templates from maps. These can be matched with contours 
extracted from the image. This is less appearance dependent, demanding no particular colours or grey-
values. Careful path planning with manual choice of auspicious line sets from the map for each waypoint 
is required. The human navigator in his transparent cupola looked at the scene in a different manner.   

Thus, automatic understanding of salient landmarks beneath the aircraft by cognitive approaches is of 
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interest. Preferred are objects with a clear, self-evident reference location – such as bridges, and 
crossroads where the intersection of the mid-axes makes a good reference. Also large representative or 
institutional buildings like churches or mosques are an option. They most often exhibit symmetric 
outlines, where the intersection of main symmetry axes constructs a good reference location. Less suited 
are objects with possibly repetitive structures such as large industrial plants. Though they may be quite 
salient in the perceptive sense, they provide no self-evident reference location and thus no clear set-
position.   

By automatic understanding we do not mean to mimic the whole cognitive reasoning of a human being. 
Instead we are more interested in (1) the perceptive capabilities, e.g., Gestalt grouping according to 
principles like symmetry, proximity, parallelism, repetition and similarity; (2) part-of reasoning that tends 
to see aggregates of simpler parts on many levels of scale; (3) concretization, i.e., knowledge on how 
certain simple 3D objects often appear in aerial images; and (4) simple logical abductive inferences 
following is-a hierarchies. The reader may imagine a navigator looking down and thinking “I see contours 
grouped nicely in good continuation; two of these run parallel forming a stripe; this stripe may well be a 
part of the road I am looking for; there is another such stripe; it runs parallel to yet a third one quite close; 
these two may well be the highway I am looking for; they end at the road-stripe maybe because of 
occlusion; that should be the bridge-over-highway that is supposed to be around here somewhere!” It is 
clear that such reasoning does not follow the rules of deductive logic. In particular, if the navigator knows 
that roads – like many other objects in a scene – appear as stripes, he may not infer logically that the stripe 
he perceives is a road, or even more specifically “the” road he is looking for. In fact the modelled road 
may even have no sufficient contrast to its surrounding and thus be invisible. Instead of producing plane 
truth, such reasoning is searching for plausible explanations of data, based on expectations or hypotheses. 
That does not mean that it cannot be performed by a machine using quite similar mechanisms as are 
appropriate for automatic theorem proving. Only the results have to be interpreted differently. Abductive 
reasoning produces plausible though uncertain explanations not plane truth. This paper discusses means to 
investigate the robustness of such knowledge-based landmark recognition.  

1.2 Related Work 
Automatic image understanding has a long history in particular for remote sensing applications [11]. 
Abduction as logic model next to approximate solving and plausibility is discussed in [12] for a system 
recognizing buildings using a layered model mimicking human vision.  Sophisticated production systems 
have been proposed e.g. in [2, 6]. More contemporary work unifies statistical approaches with such 
syntactical or structural approaches [3]. It is difficult to achieve the low fault rates and high precision 
demanded by e.g., map update tasks in an open world where unknown objects will appear that have not 
been modelled yet. In a navigation control loop and fusion setting the requirements for error rates and 
precision can be set much lower without jeopardizing the overall robustness.  

Some military UAVs and missiles already have automatic vision components included in their flight 
control. Emphasis is on real-time fusion of all available information sources – such as radar, GNSS, INS, 
star trackers, GIS-data, altimeters, and – at last – also vision [1]. Vision is regarded as valuable alternative 
drift-less source in case of GNSS failure [4].  

Our own approach dates back more than 20 years [5, 13]. A recent renewal of this work assesses the 
structural approach for landmark-based UAV navigation, by closing a simulated control loop using 
Google Earth as camera simulator and image source [10]. There are two keys to swift any-time 
performance and robustness of such systems: 1) the inclusion of clustering or accumulating productions 
[7] and 2) top down search rationales in addition to the quality driven interpretation included in the 
interpretation mechanism [8]. The production system approach can also be used for different recognition 
purposes such as finding building outlines for GIS-update based on gestalt relations [9]. 
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2.0 DECLARATIVE CODING USING PRODUCTION SYSTEMS 

In this technical part of the work the proposed recognition method is explained in more detail.  

2.1 Object Oriented Landmark Description 
The regions of the world differ deeply in the kind of salient objects encountered there and in their 
frequency. An object-oriented system has to be flexible enough to load specific knowledge, e.g., from 
ontologies about the area, where the UAV will be operating in. This is more promising than the use of 
machine learning recognition techniques such as Support Vector Machines or statistical recognition based 
on image features which have been trained with non-representative data. 

Object recognition classes of our system are inherited from CImageObject as can be seen from the two 
example class diagrams in Figure 1. For each class, that has no decomposition link, a constructor is 
required that can segment such object from the image – most often this is a filter operation followed by a 
threshold. We call these classes primitive. Here we only have one primitive CLine, which results from a 
gradient filter. So these are small contour segments. 

 

 

Figure 1: UML Class-diagrams displaying part-of links and is-a links 

2.2 Instantiation as Search Administrating Hypotheses 
The declarative description of parts and aggregates and concretizations as given above does not define a 
procedure of recognition. We may understand it as a particular kind of grammar. In [5] the BPI system is 
proposed as user-independent solution for accumulative interpretation of such production systems 
following the blackboard rationale. Such systems use a dispatcher assigning working hypotheses to 
computational resources. Such a hypothesis is called WorkingElement in Figure 2. It consists of a 
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triggering object instance (called ImageObject) and entries from a corresponding production rule (namely 
left-hand side, i.e. HypoType, partners in the right-hand side PartnerType – and, optionally, context). The 
dispatcher module gets the production system as input. Thus, if a WorkingElement has no hypothesis 
attached yet it will form admissible clones, else it will call the appropriate methods that test constraints, 
and if those hold new ImageObject instances will be produced. From each newly produced instance (and 
from primitives segmented from the input image) new WorkingElement instances are formed with no 
hypothesis attached yet.   

 

Figure 2: UML Activity-diagram for hypotheses administration 

This cycle can be repeated until, either all hypotheses have been processed, or the object of interest has 
been instantiated, or other stop criteria (such as maximal admissible time) are meat. The set of 
WorkingElement instances is organized as Queue which is ordered according to an assessment value. Such 
value is by default given through a quality measure for the corresponding image object (data-driven 
search). Many systems have an additional assessment component – the importance. This is achieved by 
weight factors on the quality. Given a particular state of the search WorkingElement instances gain 
different importance for the task at hand – particular HypoTypes will be of more interest, instances in 
particular image regions may be of higher or lower relevance. Such use of top-down importance for 
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focusing the search is described in detail in [8]. Both assessment components (quality and importance) 
have to be provided by the user. 

3.0 VIRTUAL GLOBE SYSTEMS AS TEST-BED 

Any recognition system has to be assessed with respect to the requirements of the task it is intended for. 
Accordingly, for vision based UAV navigation the gold-standard would be flying a real vehicle over the 
intended terrain and counting how often it runs astray. Since this may currently be hazardous, prohibited 
or quite expensive it should be simulated in an appropriate way. Internet-based virtual globe systems 
(VGS) such as Google Earth provide an almost open world and a camera simulator which yields a picture 
for any given geo-coordinate. This provides a very valuable data source which was not available thirty 
years ago when we first proposed such production systems. 

1)Flight Simulator
2)VGS System

3)Recognizer

 

Figure 3: Simulated perception-action loop featuring knowledge-based recognition and VGS 

Figure 3 shows the simulation principle: The set-flight-path is given as polygon of set-points. Each such 
set point is attributed with a geo-coordinate. At all these locations there is a salient landmark object. The 
flight-navigation simulation system constructs successively the current-flight-path by following the set-
flight-path and adding a drift obtained from a random generator. Each time the current-position is 
transferred to the VGS system which takes a picture there. This picture is fed into the recognition system. 
After a certain amount of time the search for plausible landmarks is terminated. A decision is made for the 
most plausible location in the image. This is given again to the flight-navigation simulation system which 
subtracts the deviation from the current-flight-path thus correcting – hopefully – the drift error. With this 
closed loop automatically very many experiments located all over the world can be made (and repeated) 
limited only by the available computational resources and time. The robustness of such navigation 
approach can be assessed properly. In the following subsections each part of the test-bed is described in 
more detail.  
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3.1 Setting a Flight-path on the map-layer of a VGS 
In particular if the path is set by one of the recognition system developers he should not see the pictures 
that later in the experiments will be fed into it. Otherwise the results may be biased in favour of the 
system. It is recommended to use the map-layer (which usually is also provided with VGS systems). 

 

Figure 4: Screen-shot of HTML-script interface for set-path definition 

Figure 4 shows the interface usually used for defining a new set-flight-path using a HTML-script. This 
script calls the map-layer of the Google VGS. The second set-point of a path in Western Turkey is set on a 
bridge leading the Izmir-Cesme highway over a secondary road. Note that the flight height is set to zero in 
the KML file (KML is a XML variant for communicating such paths). 

3.2 Flight-navigation simulation 
Planet earth is often modelled using ellipsoid coordinates, where different organisations (and VGS 
providers) recommend and use different ellipsoids. For simplicity this work uses a simple spherical model 
and for each flight only one tangent space. Thus the latitude-angle is transformed into meters-north in a 
plane using the mid Earth-radius; and the longitude-angle is transformed into meters using the cosine of 
the latitude of the first set-point as additional global factor for the whole path. By this simplification all 
navigation is performed in a metric 2D plane. On the other hand, for paths going very far in South or 
North direction, we thus accept a considerable distortion due to the curvature of the planet. Our longest 
paths in Germany had e.g. about 600km size in that direction, but we could not observe any influence from 
this. Of course for experiments with longer paths a more appropriate mapping should be included. 

The flight altitude is fixed at 660m and the relief modelling of the VGS disabled. Depending on the size of 
the VGS-window on the screen this yields a ground sampling distance of 0.7m for a pixel. This factor has 
to be roughly calibrated in advance. The screenshots of the VGS-window are larger than 512×512 pixels 
so that the images can be cropped out of the centre – in order to avoid influence from the logos.    
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Different INS-drift models can be included. Here a simple Gaussian drift error is used where bias and 
standard deviation are growing linearly with the path length since the last update. Our default setting is 
standard deviation 2‰ of the last path segment and a bias of 1‰ east. Thus a blind reckoning flight over 
200km distance is expected to be 200m off target with a circular 2σ disk of 1600m diameter. So the target 
would probably not be visible in an image taken there. But, if the distance between set-points is on 
average some 10km not even all landmarks must be found. The navigation can stay along the track even if 
two or three in a row are not found. It will, however, go astray if the navigation decides for wrong 
landmark detections far off the image centre.  

3.3 Decision 
The result of a recognition run is a set of more or less plausible landmark positions. Mutual consistent 
detections are clustered. Clusters farther away from each other are of course mutually contradicting. A 
navigation control loop needs a rationale on how to decide for one of these possibilities. Here we 
distinguish three different types of such decision: 

• Optimistic: The most dominant and thus most plausible cluster of consistent detections of a 
landmark is accepted as correct. This is a natural decision from the perspective of artificial 
intelligence because it follows the inferences the machine has done. Accordingly, the current drift 
is estimated to equal the difference vector between this clusters location and the image centre, 
transformed to world coordinates. This is used as course correction. 

• Pessimistic: This rationale has no confidence in the machine-vision system at all. It just continues 
dead reckoning. Thus a growing drift from the set-points is to be expected – see Figure 5 bottom 
left. 

• Heuristic: Common sense teaches that a detection should not be trusted if it is too far away from 
the image centre. At least one extra parameter weighting the distance from the image centre 
against the plausibility of the detection clusters is required. Knowing the combinatorics of the 
system, the sixth root of the number of detections in a cluster is set against the squared distance 
from the centre. The weight factor is chosen heuristically. This needs experience and knowledge – 
but no statistic.  

4.0 EXPERIMENTS AND DISCUSSION 

Set-up, debugging and parameterization of the system have been done using few paths over Germany 
along the highways. Mostly heuristic decision rationale was applied. Usually, the system will run 
satisfactory over rural areas; in particular if the highway’s concrete surface is old and thus bright. There 
are problems with 1) winter pictures (e.g., with stripes of snow that happen to fit the correct width); 2) 
urban, sub-urban or industrial regions (e.g., roofs may be mistaken for highway or road parts); 3) very new 
road surface sometimes giving a similar grey-tone as the surrounding so that contours are weak. Figure 5 
displays some typical error records. 
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Figure 5: Records of flight-errors (distance between set-point and current-point in m): Top row, 
examples with recovering from gross recognition error; lower left blind dead-reckoning 

example; lower right successful standard example 

Frequently, deviations of up to about 50m occur. It is observed that such behaviour results from mistaking 
structures close to and parallel to the highway for the real thing. But the flight usually returns to the set-
path again. Gross errors that intermittingly lead the flight astray also occur now and then. But the system 
exhibits a remarkable capability to recover from such gross mistakes. Compared to the pessimistic 
rationale, flying with the heuristic or even optimistic rationale gives a much higher chance to reach the 
target. A detailed quantitative analysis is under way and to be published. This will then also give way to 
decide according to the Bayes-rule using an empirically acquired likelihood – adding a forth rationale: The 
optimal decision. 

In conclusion a structural knowledge-based landmark navigation system may help providing absolute 
positions when GNSS fails. It may well be adapted to different geographical scenarios provided that the 
system is capable of easily including new knowledge in the form of new classes suiting the new scenario. 
It is evident that in populated regions where landmarks of known structure and measures such as major 
highways are missing large salient buildings formed according to known common principles –  such as 
mosques or churches –  can be used as persistent geographical landmarks. While a learning system would 
require a new representative data set, a knowledge-based system requires new scene specific descriptive 
knowledge. Since this evidence is from a complete different source – its fusion with the other known and 
used sources is promising. 
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