

Towards increased reliability of power converters in wind turbines

Dr.-Ing. Katharina Fischer

4th International Conference E/E Systems for Wind Turbines

Bremen, 21 May 2014

Short profile of Fraunhofer IWES Northwest

Head of the institute:Prof. Dr. Andreas ReuterResearch spectrum:Wind energy from material development to grid integrationOverall budget 2013:around 14 million €Staff:150 employees

Previous investments in the establishment of the institute:

€ 50 million

Forschungsverbund Windenergie

Strategic Association with ForWind and the German Aerospace Center (DLR)

Reliability is key

Operation and Maintenance (O&M) cost sums up to ~1/3 of the wind turbine life cycle cost (LCC)

Reliability is among the key factors for a further COE reduction

Challenge: Power-converter reliability

- High failure rates of power converters cause considerable maintenance cost and production loss
- Impact on turbine availability offshore more severe than onshore
- Problem concerns virtually all OEMs and wind-turbine topologies
- Failure causes are presently mostly unknown
- ✓ Urgent need for solutions

Project "Investigation of converter failure in wind turbines" (CONFAIL)

✓ Participants:

- -T. Thiringer, R. Karlsson, Chalmers Univ. of Techn., Göteborg
- ✓ T. Stalin, Vattenfall Wind Power, Stockholm
- J. Wenske, Fraunhofer IWES, Bremerhaven
- H. Zelaya, ABB Corporate Research, Västerås
- H. Ramberg, Volvo Car Corporation, Göteborg
- -< G. Wetter, Swerea IVF, Göteborg
- ✓ Project leader: K. Fischer (Chalmers, now Fraunhofer IWES)
- ✓ Funding: Swedish Energy Agency / Vindforsk III
- Focus on two different wind-turbine models (type 1: DFIG, type 2: IG with full power converter) at offshore and onshore sites, in total ~150 turbines, up to 4 years of data, LV converters

IWES

CONFAIL: Considered generator/converter topologies

IGBT-based converters in back-to-back configuration

DFIG with partially rated converter IG with full power converter (ca. 30% of P_{WT}): 6 power modules (WT1) (100% of P_{WT}): 18 power modules (WT2) Generator-side converter DC link Grid-side converter Generator-side converter **DC** link Grid-side converter U V W Module Converter unit Module 🗾 Fraunhofer © Fraunhofer 6 **IWES**

Converter module used in wind turbines

Exterior view

Disassembled module

AC terminals

Heat sink (water-cooled)

DCB with IGBTs and diodes, covered with potting compound

Root-cause analysis for power converters: Multi-track approach

Literature: Focus on DFIG / thermomechanical failure

Generator-side converter in DFIG considered most critical, due to high currents at low frequencies

 \Rightarrow severe load and thermal cycling \Rightarrow thermomechanical stress

 \Rightarrow bond-wire and solder fatigue

Figures: Simulated junction temperature and power dissipation characteristics of a 1200V/50A-IGBTin inverter operation for different fundamental output frequencies [Konrad (1997)]

IWES

CONFAIL: Power-converter failure rates, seasonal impact

IWES

CONFAIL: Effect of generator/converter topology and site

Average converter failure rates for the turbine models and sites of interest

	Wind park	Turbine model	Site	Avg. failure event rate [1/turbine/yr]	Avg. failure event rate [1/module/yr]
DFIG -	Site A	WT1	Offshore	0.13	0.020
	Site B	WT1	Onshore	n.a.	n.a.
	Site C	WT1 WT1*	Onshore	0.15	0.025
IG with - FPC	Site D	WT2	Offshore	0.39	0.021
	Site E	WT2	Onshore	n.a.	n.a.
	Site F	WT2	Onshore	n.a.	n.a.
	Site G	WT2	Onshore	n.a.	n.a.

Similar failure rates per module in spite of different turbine topologies and sites

Correlation of converter failure with external factors

Correlation of monthly number of failures with average T, RH and vwind ?

[Source: CONFAIL project (2012); Climate data: Danish Metereological Institute]

Correlation of converter failure with external factors

Source: CONFAIL project (2012)]

13

Field measurements inside converter cabinets

(a) Temperature and humidity loggers, (b) thermo-sensitive tape, (c,d) tape positions on modules

Operating environment inside converter cabinets

© Fraunhofer

Main findings:

- ✓ No problematic temperature levels found
- Kisk of condensation failure during start-up after long standstill confirmed

Forensic analysis of damaged power modules

Evidence of high-voltage sparkover between PCB cooling fin and a screw (heat sink)

Possible explanations e.g. electrical overstress due to lightning event,

air gap reduction by foreign object

Forensic analysis

Degraded thermal grease between DCB and heat sink

Possible causes: ageing, dry-out, pumping effects,

Spots on DCB and aluminium heat sink: Mechanisms of "fretting corrosion" (due to thermo-mechanically induced relative movements in combination with mechanical pressure)

 \Rightarrow Overheating due to increased thermal resistance to heat sink?

Analysis of converter driver-boards

Contamination with salt and corrosion products found on one driver-board

Microscopy inspection of the bond wires and die attach

No indications of the "classical" converter reliability issues, (bond-wire or solder damage) found

Outlook

CONFAIL pre-study:

- Classical converter reliability issues (solder degradation, bond-wire damage) seem to play a minor role in wind turbines at present
- ✓ Indications for insufficient protection (salt, condensation, foreign objects)
- ✓ Indications for electrical overstress (correlation with lightning events)
- ✓ Next step: from indications towards clear evidence & solutions
 - Clarify converter-failure causes and mechanisms based on extended failure-data analysis, directed field measurements and hardware analysis

 \Rightarrow extend the scope to further wind-turbine models, additional topologies, MV technology, sites with different climatic conditions, ...

Outlook: R&D cluster on reliable power electronics for wind turbines (in preparation)

Project focus and objectives:

- Improving reliability and availability of frequency converters in wind turbines
- Root-cause analysis, solutions for existing and new turbines
- -< System behaviour in dynamic operation
- \prec Condition monitoring for electronics
- ≺ Fault-tolerant generator/converter concepts

Project partners:

- ✓ Fraunhofer IWES, Fraunhofer ISIT
- ✓ 4 universities
- ✓ 22 industry partners

Duration: 2013 – 2016 Budget: 8 M€

THANK YOU FOR YOUR ATTENTION

Contact: Katharina.Fischer@iwes.fraunhofer.de

