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Unterstützung und das Korrekturlesen. Außerdem bedanke ich mich bei meinen weit-
eren Korrekturlesern und Freunden Simon Gottschalk, Thomas Jung, Matthias Andres,
Marco Recktenwald und Fabian Fürchow.
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Abstract

The core of this thesis lies in the task of structural optimization of periodic perforated
cylindrical shells under a given point load. The analysis of the problem shows that it
can be divided into three subcategories: Asymptotic analysis, macroscopic model and
optimization.

First, we want to replace the heterogeneous shell with an equivalent and homogeneous
2D problem. This homogenization step together with dimensional reduction has already
been considered for plates in the literature. However, there are no known papers that
apply this complete analysis to a linear elastic shell. Most of them deal with either
homogenization or dimensional reduction only. If a joint analysis takes place, then re-
sults are obtained as energy estimates. In this work we show a qualitative derivation,
together with an algorithm for calculating the effective properties. We start with a de-
composition of the applied displacements into a deformation of the middle surface and
the corresponding rotation of the line segments, which are orthogonal to our middle sur-
face. Using the Unfolding-Rescaling operator we can decouple the two small parameters,
thickness and size of the periodicity cell. After that we utilize the beam-like structure
of the perforated shell to calculate the effective properties. This algorithm is not only
executed numerically, but also symbolically. The resulting solutions are therefore func-
tions with respect to the parametrization of the periodicity cell. This symbolic approach
requires special caution and has hardly been used in the case of homogenization. The
solutions are to be regarded as exact.

In the next step we calculate the analytical solution of the derived limit equation. Here
we use classical approaches from the PDE theory. The strategy is to separate the two
variables of our 2D domain. The obtained functions depend either on the longitudinal
coordinate or on the arc length. In the next step, we express the solution regarding
the Fourier transformation and a Fourier series. Moreover, this function depends on
the effective properties that we calculate with our symbolic algorithm. Therefore, it is
possible to represent the displacements of our shell with respect to the design variables.

This allows us to approach optimization with simple methods. Since the function is
given for the symbolic variables, we can perform the differentiation completely auto-
matically with MATLAB’s diff operator. We use the obtained gradient in a steepest
descent procedure to find the minimum given certain objective functionals. This allows
us to describe the optimal configuration with respect to our admissible design space.

Applied industrial problems can thus be effectively solved.



ii

Zusammenfassung

Der Kern dieser Arbeit liegt in der Aufgabe einer Strukturoptimierung von periodisch
perforierten zylindrischen Schalen unter einer gebenen Punktlast. Bei der Analyse des
Problems stellt man fest, dass es sich in drei Unterkategorien aufteilen lässt: Asympto-
tische Analyse, Makroskopisches Modell und Optimierung.

Als Erstes wollen wir die heterogene Schale durch ein äquivalentes und homogenes 2D
Problem ersetzen. Dieser Homogenisierungsschritt zusammen mit der Dimensionsreduk-
tion wurde in der Literatur schon vielfach für Platten behandelt. Jedoch gibt es keine
uns bekannten Schriften, die diese vollständige Analyse bei einer linear elastischen Scha-
le anwenden. Die meisten beschäftigen sich entweder nur mit der Homogenisierung oder
Dimensionsreduktion. Aber falls doch eine gemeinsame Betrachtung stattfindet, dann
erhält man die Ergebnisse nur in Bezug auf Energieabschätzungen. Wir zeigen hier eine
qualitative Herleitung, zusammen mit einem Algorithmus zur Berechnung der effektiven
Eigenschaften. Dabei starten wir mit einer Zerlegung der angewandten Verschiebungen
in eine Verformung der Mittelfläche und der dazugehörigen Rotation der Liniensegmente,
die orthogonal zu unserer Mittelfläche stehen. Mittels des Unfolding-Rescaling (Entfal-
tung und Umskalierung) Operators können wir die beiden kleinen Parameter, Dicke der
Schale und Größe der Periodizitätszelle, entkoppelt betrachten. Danach nutzen wir die
balkenähnliche Struktur der perforierten Schale aus, um die effektiven Eigenschaften
computergestützt zu berechnen. Dieser Algorithmus wird nicht nur numerisch sondern
auch symbolisch ausgeführt. Die dabei erhaltenen Lösungen sind deshalb Funktionen
bezüglich der Parametrisierung der Periodizitätszelle. Diese symbolische Betrachtungs-
weise erfordert besondere Vorsicht und wurde im Fall der Homogenisierung bisher kaum
eingesetzt. Die erhaltenen Ausdrücke sind dabei als exakt zu betrachten.

Anschließend berechnen wir die analytische Lösung der Limitgleichung. Wir nutzen hier
klassische Herangehensweisen aus der Theorie der partiellen Differenzialgleichungen. Die
Strategie besteht darin, die beiden Variablen des 2D Gebietes zu separieren. Die dadurch
erhaltenen Funktionen hängen entweder von der längsverlaufenden Koordinate oder der
Bogenlänge ab. Im nächsten Schritt stellen wir die Funktion bezüglich der Fouriertrans-
formation und einer Fourierreihe dar. Die hergeleitete Lösung ist wiederum abhängig
von den effektiven Eigenschaften, die wir mit unserem symbolischen Algorithmus be-
rechnet haben. Deshalb ist es möglich, die Verschiebungen unserer Schale bezüglich der
Designvariablen darzustellen.

Durch die vorher beschriebene Betrachtungsweise können wir die Optimierung mit ein-
fachen Methoden angehen. Weil die Funktion bezüglich der symbolischen Variablen ge-
geben ist, können wir das Differenzieren vollkommen automatisch mit MATLABs diff

Operator durchführen. Den erhaltenen Gradienten nutzen wir in einem Verfahren des
steilsten Abstiegs, um das Minimum hinsichtlich gegebener Zielfunktionen zu finden.
Dadurch gelingt es uns die optimale Konfiguration bezüglich unseres zulässigen Desi-
gnraums zu beschreiben.

Angewandte Industrieprobleme können damit effektiv gelöst werden.
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Notations

Abbreviations

PDE partial differential equation

FE finite element

a.e. almost everywhere

w.r.t. with respect to

w.l.o.g without loss of generality

s.t. subject to

1D one dimensional

2D two dimensional

3D three dimensional

4D four dimensional

GSM global stiffness matrix

BC boundary conditions

I/O input/output
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Symbols

Symbol Unit Explanation
ε small parameter; size of periodicity cell
δ small parameter; thickness of the shell
ω the reference domain
s1 [m] variable in the reference domain; shell’s arc length
s2 [m] variable in the reference domain; shell’s longitudinal direction
a [m] the shell’s radius
l [m] the shell’s length
h [m] fixed shell’s thickness
E [ N

m2 ] Young’s modulus
G [ N

m2 ] shear modulus
λ,μ [ N

m2 ] Lamé parameters, μ “ G

ν12, ν21 [1] orthotropic Poisson’s ratio
aαβα1β1 [ N

m ] homogenized in-plane coefficients, α, β, α1, β1 P t1, 2u
cαβα1β1 [Nm] homogenized bending coefficients, α, β, α1, β1 P t1, 2u
H ratio of effective orthotropic Young’s moduli E1{E2

r [m] radius of a beam in lattice structure
A [m2] area of the beam’s cross-section
Iy,z [m4] area moments of inertia of beam elements
q [ N

m2 ] load
P [N] point/pinching load
x symbolic variable
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Operators

Scalar product

Given a Hilbert space X, we denote its scalar product with the bracket notation

x¨, ¨yX : X ˆ X ÞÑ R.

Cross product

Given two vectors a, b P R3 we define the cross product c as

c “ a ^ b “
¨̋
a2b3 ´ a3b2
a3b1 ´ a1b3
a1b2 ´ a2b1

‚̨.

We then have the relation xc, ayR3 “ xc, byR3 “ 0, w.r.t to the underlying scalar product
x¨, ¨yR3 in R3.

Gradient ∇

Given a smooth function u : Rm ÞÑ R and cartesian coordinate system peiqi“1,...,m, where
ei is the i-th unit vector we define the gradient as

∇u “
mÿ
i“1

Bu
Bxi ei.

Frobenius scalar product

Given two matrices A,B P Rmˆm we denote the Frobenius scalar product as

A : B “
mÿ
i“1

mÿ
j“1

AijBij .

Strain tensor

Given a smooth function u : R3 ÞÑ R3 we define the strain tensor

epuq “ ∇u ` ∇uT

2
.
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1 Introduction

In this thesis we want to investigate the effects of point loads on periodic perforated
cylindrical shells. Such problems arise in various different industrial applications. For
example in the case of clogged filter media, where the fluid goes through a small hole,
which can be approximated by point loads. Another example can be found in the area
of cosmetic applications. There we can observe that deflections of cylindrical shells have
an immediate consequence on the quality.
The considered shell structures have all in common, that they consist of a certain pe-
riodic pattern of size ε. Moreover, we assume that the shells thickness is given by δ,
which is much smaller compared to its width and length. We are particularly interested
in changing the design of these minimal cells in order to optimize their performance.
Of course it is in general possible to derive the solutions on the full heterogeneous
domain. This computation can be quite time consuming and hence we want to fol-
low a different strategy and simplify the underlying problem. Following the frame-
work presented in figure 1.1 we have to consider three different steps in our analysis.

P P

Figure 1.1: Description of Steps

• Homogenization and dimension reduction

• Macroscopic Model

• Optimization

Each step builds upon the previous one. We shortly want to discuss the mathematical
backgrounds and give an outline.

Homogenization and Dimension Reduction

We have mentioned that the investigated heterogeneous shells are assumed to be thin
compared to their length and width scale, and periodically perforated. This perfora-
tion can be considered as a beam network spreading the shell’s domain. In general
we can identify the two small parameters δ, for the shell’s thickness, and ε, the size
of the smallest periodicity cell. Starting from 3D linear elasticity we want to study
the limit behavior of ε Ñ 0, which we call homogenization, and δ Ñ 0, the dimension
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reduction to obtain a 2D formulation. We want to emphasize that in this thesis the
homogenization and dimension reduction will be performed simultaneously. Both prob-
lems have been investigated independently from each other in various different works.
A complete study of 3D linear and non-linear elastic problems for homogeneous struc-
tures are given in [12, 13, 14]. In this series about mathematical elasticity the author
starts with a general framework and applies his results first on the context of plates and
then for shells. For a more mechanical perspective on this kind of problems we refer to
[59], for the isotropic cases, and to [37], for anisotropic structures. It is important to
note that the obtained limit models highly depend on the scaling of the linear elastic
energy

}epuq}L2pQδq ď Cδρ,

where C is a constant independent of δ, Qδ is the full shell domain and epuq is the
strain tensor of the deformation u. We refer here to [23], where a formal derivation of
plate models from non-linear elasticity is presented. In this work we only consider the
case ρ “ 3

2 . Especially, for homogeneous shells we want to mention that the dimension
reduction was analyzed in [11],[42] and [6]. For non-linear shells a membrane model was
derived in [36].
There are various different techniques for the homogenization, as for example an asymp-
totic expansion ansatz presented in [4, 54] or via Gamma-convergence in [18]. Another
variant is the so called two-scale convergence introduced in [47]. For non-linear behavior
it was shown in [45] that homogenization and linearization commute. In general we note
that the combined investigation of dimension reduction and homogenization for plates
has already been studied in great detail in [50] and [16]. In our subsequent analysis we
want to investigate the limit behavior via applying the rescaling and unfolding operator
as applied in [15] or in the case of contact problems in [30]. This technique applied
to linear elastic shells is new. We want to mention here, that the homogenization for
piezoelectric perforated shells without dimension reduction was presented in [25]. More-
over, the dimension reduction and homogenization of a shell for the diffusion problem
in the sense of two-scale convergence was presented in [46], where it was shown that the
curvature does not enter the homogenized model. We show that the homogenization
of a linear elastic shell is not affected by the curvature and is reduced to the one of a
plate.

Macroscopic Model

The obtained limit model from chapter 2 is then used to describe the effects of having
a point load on the shell. There are already different shell models available, see [44],
which have been solved numerically. However, our task is to get an analytic solution to
this problem. For that reason we have to transform our weak formulation back to its
strong form. Given the so obtained PDEs we can reduce them further to a single 8th
order PDE. We further simplify this equation by asymptotic argumentations. We obtain
our analytical solution by using Fourier transform and series. For some general remarks
on PDEs we refer here to [21]. The Fourier series ansatz is important for capturing
the boundary conditions. Hence, we also need to approximate the point load by some
general loading on a small strip. Without the restrictions of the boundary conditions
one can follow the results in [35]. The derived solution then depends on the homoge-
nized coefficients and consequently on the respective design of the periodicity cells. In
general we closely follow the approach presented in [33] for orthotropic shells. Later on
we also provide a numerical solution to the full homogenized limit equation. We want
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to investigate, which effects are missing in our approximate solution. We see that the
maximal deflection is preserved, while the shell’s arc length is diminished.
The next step is then to calculate the homogenized coefficients symbolically such that we
can express the analytic solution w.r.t. our design variables.

Optimization

The optimization via homogenization has already been considered for textile-like struc-
tures in [58] and for the optimization of dispersive coefficients in the wave equations in
[1]. In both cases one obtains an optimization problem constrained by PDEs.
Anyhow, due to our efforts in getting an analytic solution and having symbolic expres-
sions for our effective properties, which depend on the design parameters x P Rm, we
are left with a classical optimization task

min
x

fpxq
s.t. x P G Ă Rm,

where G is compact. To obtain a solution for this problem, we utilize the analytic ex-
pression given by the symbolic parameters. Using symbolic differentiation yields the
gradient, which we use in a steepest descent approach.

With the presented steps we are able to fully analyze the periodic perforated shell and
give qualitative answers to optimization problems in industrial applications. We want
to highlight that such a combination of homogenization, analytic macroscopic solution
and symbolic calculation has hardly been considered yet. The importance of this thesis
lies in the drastic model reduction for a complex multi-scale problem of linear elasticity.
Moreover, this yields a semi-analytic optimization problem and the practical usage of the
underlying theoretical derivation. We underline that the homogenization and dimension
reduction of a shell with holes and the analytic solution to the corresponding macroscopic
problem are new.
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2 Homogenization of Shells

2.1 Introduction to shells and displacements

In this section we consider a thin heterogeneous half-cylindrical shell with an in-plane
periodic porous structure, where ε denotes the size of the periodicity cell and 2δ the
shell’s thickness. Both are of the same order. The parameters are small compared to
its in-plane surface size. In the following we provide an analysis for homogenization and
dimension reduction of the linear elastic shell. We want to point out that both tasks are
performed simultaneously, where

lim
pε,δqÑp0,0q

δ

ε
Ñ κ P p0,8q.

This is necessary since homogenization and dimension reduction usually do not commute
as it was shown in [9]. The presented approach via the rescaling-unfolding operator is
closely related to the one given in [16, Chapter 11] for plates and for heterogeneous
beams in [29], but new in the context of linear elastic shells.
In the analysis, we begin with a general extension technique (based on results developed
in [27]) for displacements acting on a perforated shell, which is made up of a network
of thin cylinders, to the full shell domain (see Proposition 2.1.1). The result is crucial
for the subsequent analysis. We assume that the shell is fixed along the lateral bound-
ary and continue with a decomposition approach for thin structures introduced in [27].
This allows us to represent any H1-function in the thin domain through the one-to-one
and onto map of the displacements and rotations of its middle surface together with a
warping term, which takes into account the deformation of these small segments. With
that approach we obtain Korn inequalities and estimates for each displacement field of
the decomposition.
In section 2.2 - 2.4, the rescaling and unfolding operators are introduced and the strain
tensor is considered on a reference domain. Furthermore, we decompose the shell’s dis-
placement fields into the two orthogonal complements of extensional and inextensional
deformations, introduced in section 2.5. Such an approach has been considered for ho-
mogeneous thin shells in [6]. Section 2.6.1 presents assumptions on the forces and the
detailed rescaling of the right-hand side.
At the end, the limit problem is discussed. Especially section 2.8.1 is important for
applications, where the variational problem for an anisotropic homogenized shell is pre-
sented. Moreover, an analytic formula to compute its effective coefficients is shown,
using the six auxiliary periodic problems on a rectangular parallelotop intersecting our
structure with given perturbations. We highlight, that the anisotropic coefficient tensors
coincide with those obtained in the homogenization of a plate in [16, Chapter 11]. In
section 2.9 we focus on the important effects of the boundary conditions in our model.
In particular, if we fix the shell’s curved ends the limit problem is membrane domi-
nated. In that case clamping the lateral boundary does not change the model. Those
effects have been studied in [52] and [53], where the authors provide energy estimates
for a homogeneous shell. All classical results mentioned in the following analysis are
summarized in appendix A.



6 Chapter 2 Homogenization of Shells

2.1.1 Geometrical setting

We start with describing the geometric properties of the perforated shell. We consider
a cylindrical half-shell with a constant radius a. We assume that the shell consists of a
periodic structure with a periodicity cell of size ε and thickness δ “ κε P p0, δ0s, with
δ0 “ a{3 and κ is a strictly positive fixed constant. We want to mention here that the
limiting behavior of δ

ε influences the resulting limit problem. The other two cases with
lim

pε,δqÑp0,0q
δ
ε P t0,8u are not considered in this thesis.

Let Y 1 be a bounded domain in R2 having the paving property with respect to an
additive subgroup G .“ p1Z ‘ p2Z of R2 of dimension 2 and let T be an open set
such that T Ă Y 1 (see Figure 2.1). We assume the boundary of T to be Lipschitz. For
simplicity we also assume that T is connected. We define

Y
.“ Y 1 ˆ p´κ, κq, Y

1˚ .“ Y 1zT , Y ˚ .“ Y
1˚ ˆ p´κ, κq.

Y 1 Y 1

TY 1˚

Figure 2.1: Cell Y 1 and the perforated domain Y 1˚

The asterisk denotes the material filled part of the periodicity cell. We introduce the
reference domain with ω

.“ p0, aπq ˆ p0, lq. In the periodic setting s1 P R2 can be
decomposed a.e. as

s1 “ ε
”s1
ε

ı
Y 1 ` ε

!s1
ε

)
Y 1 , (2.1.1)

where r¨sY 1 belongs to G and t¨uY 1 to Y 1.
Set

Ξε “ �
ξ P G | εξ ` εY 1 Ă ω

(
, pωε “ interior

! ď
ξPΞε

`
εξ ` εY 1˘)

, Λε “ ωzpωε,

where the set Λε contains the parts of the cells intersecting the boundary Bω. Let us
also introduce the notations for the unions of all holes, the hole boundaries in pωε and
for the remaining structure of pωε,

Tε
.“

!
x P pωε

ˇ̌̌ !x

ε

)
Y 1 P T

)
, BTε

.“
!
x P pωε

ˇ̌̌ !x

ε

)
Y 1 P BT

)
,

ωε̊ “ ωzT ε, pωε̊ “ pωεzTε.

In figure 2.2 we illustrate the underlying structure for the plane domain. There we see
the perforated domain ω˚ with the blue cell being the reference periodicity cell. Given
a point s1, represented by the black dot, we can decompose it into the position in the
macroscopic domain ε

“
s1
ε

‰
Y 1 , the green dot, and the location in the reference periodicity

cell ε
�
s1
ε uY 1 , the red dot.
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εp1

εp2

ε
”s1

ε

ı
Y 1ε

”s1

ε

ı
Y 1

ε
!s1

ε

)
Y 1ε

!s1

ε

)
Y 1

s1s1

ω˚

Figure 2.2: Perforated plane domain

Consider now the injective mapping φ : ω Ñ R3 defined as

φps1, s2q “

¨̊
˚̋̊ s2

a cos
´s1
a

¯
a sin

´s1
a

¯‹̨‹‹‚, ps1, s2q P ω, (2.1.2)

and denote by S “ φpωq the mid-surface of the whole shell (without the holes). Fur-
thermore, we introduce the vectors

t1 “

¨̊
˚̋̊ 0

´ sin
´s1
a

¯
cos

´s1
a

¯ ‹̨‹‹‚, t2 “
¨̋
1
0
0

‚̨, n “ t1 ^ t2
}t1 ^ t2}2 “

¨̊
˚̋̊ 0

cos
´s1
a

¯
sin

´s1
a

¯‹̨‹‹‚. (2.1.3)

Obviously, t1 and t2 are linearly independent and are tangential vectors to the surface
S.
We denote

• Ωε “ ω ˆ p´κε, κεq, Ωε̊ “ ωε̊ ˆ p´κε, κεq,
• Qε̊ “ ΦpΩε̊ q the perforated shell,

• Qε “ ΦpΩεq the shell without the holes,

where Φ : Ωε Ă R3 Ñ R3 is given by

Φpsq “ φps1, s2q ` s3nps1, s2q, s “ ps1, s2, s3q P Ωε. (2.1.4)

In figure 2.3 the transformation of the plane domain to the cylindrical shell is depicted.
On the figure’s left side we have the initial perforated domain and on the right side the
cylindrical shell with holes. It is easy to check that for δ “ κε P p0, δ0s the map Φ from
Ωε onto Qε is a C1-diffeomorphism. That means we have

c0 ď }∇sΦ}L8pΩεq3ˆ3 ď c1 and c0 ď }∇xΦ
´1}L8pQεq3ˆ3 ď c1, (2.1.5)
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(a) Plane domain Ωε̊ with periodic
hexagonal holes

(b) Shell Qε̊ with periodic holes

Figure 2.3: Periodic perforated plane domain transformed to a periodic shell

for some constants c0, c1 P R`, which do not depend on ε.
We denote by x the running point of the shell while s is the running point in the reference
domain, s.t. Φpsq “ x.

Proposition 2.1.1 There exists an extension operator Pε from H1pQε̊ q3 into H1pQεq3
satisfying for all u P H1pQε̊ q3

Pεpuq|Qε̊
“ u,››e`

Pεpuq˘››
L2pQεq3ˆ3 ď C

››epuq››
L2pQε̊ q3ˆ3 .

(2.1.6)

The constant does not depend on ε.

Proof. The proof of Proposition 2.1.1 has been moved to the Appendix B.1.

We omit from now on the explicit notation of the corresponding dimensions in the norms,
if they can be concluded from the context.
Due to the properties of Φ, we have for every u P H1pQεq (resp. H1pQε̊ q)

c}u}L2pQεq ď }u ˝ Φ}L2pΩεq ď C}u}L2pQεq, (2.1.7)

c}∇xu}L2pQεq ď }∇su}L2pΩεq ď C}∇xu}L2pQεq. (2.1.8)

Thus, we write henceforth indifferently u in place of u ˝ Φ P H1pΩεq (resp H1pΩε̊ q ). In
the next step we discuss the boundary conditions. Therefore, we set γ0 “ t0u ˆ r0, ls Y
taπu ˆ r0, ls Ă Bω. The part Γ0,ε “ Φpγ0 ˆ p´κε, κεqq of the shell’s lateral boundary
is clamped. The complementary of Γ0,ε, i.e., the shell’s top and bottom part, is a free
boundary. We will discuss in section 2.9 how a different choice of boundary conditions
affects the resulting model.

Remark 2.1.1 From now on, any displacement u belonging to H1pQε̊ q3 will be extended
to a displacement belonging to H1pQεq3. We will always denote by u the extended dis-
placement, which satisfies (2.1.6).

2.1.2 Decomposition of shell displacements

In the following part we introduce a decomposition for every displacement u of the shell
Qε as it was shown in [27, section 4]. This part is important to capture the effects of the
thin domain. We want to decouple the mid-surface displacements from the effects caused
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in the s3 direction. With that technique we can easily obtain Korn’s type inequalities
and study the convergence behavior for ε Ñ 0.

Definition 2.1.1 An elementary displacement Ue associated to u P H1pΩε;R
3q is given

by
Ue “ Ups1, s2q ` s3Rps1, s2q, (2.1.9)

where (α P t1, 2u)

U “ 1

2κε

ż κε

´κε
up¨, s3qds3, Rα “ 3

2pκεq3
ż κε

´κε
s3up¨, s3q ¨ tα ds3,

R3 “ 0, a.e. in ω.

(2.1.10)

Moreover, we have that U “ pU1,U2,U3q P H1pωq3 and R “ pR1,R2q P H1pωq2. Every
displacement u is then decomposed as

u “ Ue ` u, (2.1.11)

where u P H1pΩεq3 is a residual displacement called warping.

U
R

Figure 2.4: Decomposition of displacements.

Denote

Vε
.“ tv P H1pQεq3 | v “ 0 on Γ0,ε

(
, Vε̊

.“ tv P H1pQε̊ q3 | v “ 0 on Γ0,ε

(
,

H1
Γ0

pωq .“ tΦ P H1pωq | Φ “ 0 on Γ0

(
.

Moreover, we have

U P H1
Γ0

pωq3, R P H1
Γ0

pωq2, u P Vε,

due to the properties of u and the boundary conditions introduced in the previous
section.

Remark 2.1.2 The warping u fulfills the following propertiesż κε

´κε
up¨, s3qds3 “ 0,

ż κε

´κε
s3up¨, s3q ¨ tα ds3 “ 0. (2.1.12)

Remark 2.1.3 Given an elementary displacement Ue we have that U describes the
displacement of the red middle plane, as shown in figure 2.4. The field R specifies the
rotations of the segments Φptps1, s2quˆr´κε, κεsq perpendicular to the middle line, given
in blue. The warping can be seen as a deformation of those perpendicular segments.
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For the functions U and R holds

U “ U1t1 ` U2t2 ` U3n,
R “ R1t1 ` R2t2.

In the next step we establish the strain tensor in the cylindrical coordinates. For that,
the following identities are of great use:

Bt1
Bs1 “ ´1

a
n, Bt2

Bs1 “ 0,
Bn
Bs1 “ 1

a
t1,

Bt1
Bs2 “ Bt2

Bs2 “ Bn
Bs2 “ 0.

The derivatives of the elementary displacement Ue are calculated using

BU
Bs1 “ BU1

Bs1 t1 ´ 1

a
U1n ` BU2

Bs1 t2 ` BU3

Bs1 n ` 1

a
U3t1,

BU
Bs2 “ BU1

Bs2 t1 ` BU2

Bs2 t2 ` BU3

Bs2 n,
(2.1.13)

and BR
Bs1 “ BR1

Bs1 t1 ´ 1

a
R1n ` BR2

Bs1 t2,

BR
Bs2 “ BR1

Bs2 t1 ` BR2

Bs2 t2.
(2.1.14)

The strain tensor for a shell displacement u P H1pQεq is given by

expuq “ ∇xu ` p∇xuqT
2

. (2.1.15)

A small computation yields, that ∇su in the coordinates of the reference domain is given
by

∇su “ ∇xu∇Φ. (2.1.16)

Note that expuq is in the shell configuration. Therefore, we consider the transformation
matrix pt1|t2|nq and express our strain tensor in the reference domain by

pt1|t2|nqT expuqpt1|t2|nq. (2.1.17)

Definition 2.1.2 We define by epuq the strain tensor in the coordinates of the reference
domain by

epuq “ pt1|t2|nqT ∇sup∇Φq´1 ` p∇sup∇Φq´1qT
2

pt1|t2|nq. (2.1.18)

Hence, we obtain for the gradients

pt1|t2|nqT∇sup∇Φq´1pt1|t2|nq “ pt1|t2|nqT∇su

¨̊
˝

a

a ` s3
0 0

0 1 0
0 0 1

‹̨‚

“

¨̊
˚̊̊̊
˚̋

a

a ` s3

Bu
Bs1 t1

Bu
Bs2 t1

Bu
Bs3 t1

a

a ` s3

Bu
Bs1 t2

Bu
Bs2 t2

Bu
Bs3 t2

a

a ` s3

Bu
Bs1n Bu

Bs2n Bu
Bs3n

‹̨‹‹‹‹‹‚,

(2.1.19)
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where
Bu
Bs1 “

´BU1

Bs1 ` s3
BR1

Bs1 ` Bu1
Bs1 ` 1

a

`
U3 ` u3

˘¯
t1 `

´BU2

Bs1 ` s3
BR2

Bs1 ` Bu2
Bs1

¯
t2

`
´BU3

Bs1 ` Bu3
Bs1 ´ 1

a

`
U1 ` s3R1 ` u1

˘¯
n,

Bu
Bs2 “

´BU1

Bs2 ` s3
BR1

Bs2 ` Bu1
Bs2

¯
t1 `

´BU2

Bs2 ` s3
BR2

Bs2 ` Bu2
Bs2

¯
t2 `

´BU3

Bs2 ` Bu3
Bs2

¯
n,

Bu
Bs3 “

´
R1 ` Bu1

Bs3
¯

t1 `
´
R2 ` Bu2

Bs3
¯

t2 ` Bu3
Bs3 n.

Then we get for the strain tensor epuq of a displacement u P Vε the following compo-
nents:

e11puq “ a

a ` s3

Bu
Bs1 t1 “ a

a ` s3

”´BU1

Bs1 ` 1

a
U3

¯
` s3

BR1

Bs1 ` Bu1
Bs1 ` 1

a
u3

ı
,

e22puq “ Bu
Bs2 t2 “ BU2

Bs2 ` s3
BR2

Bs2 ` Bu2
Bs2 ,

e12puq “1

2

! a

a ` s3

Bu
Bs1 t2 ` Bu

Bs2 t1
)
,

“1

2

a

a ` s3

”´BU2

Bs1 ` BU1

Bs2
¯

` s3

´BR2

Bs1 ` BR1

Bs2
¯

` s3
a

BU1

Bs2 ` s23
a

BR1

Bs2
` Bu2

Bs1 ` `
1 ` s3

a

˘Bu1
Bs2

ı
,

e13puq “1

2

! a

a ` s3

Bu
Bs1n ` Bu

Bs3 t1
)

“1

2

a

a ` s3

”´BU3

Bs1 ´ 1

a
U1 ` R1

¯
´ 1

a
u1 ` Bu3

Bs1 ` `
1 ` s3

a

˘Bu1
Bs3

ı
,

e23puq “1

2

! Bu
Bs2n ` Bu

Bs3 t2
)

“ 1

2

”´BU3

Bs2 ` R2

¯
` Bu3

Bs2 ` Bu2
Bs3

ı
,

e33puq “ Bu
Bs3n “ Bu3

Bs3 .

Theorem 2.1.1 Let u P H1pΩεq3, pU ,R, uq be its decomposition, then the following
inequalities are satisfied:

}epUeq}L2pΩεq ď C}epuq}L2pΩε̊ q , (2.1.20)

}u}L2pΩεq3 ď Cε}epuq}L2pΩε̊ q , (2.1.21)

}∇u}L2pΩεq ď C}epuq}L2pΩε̊ q . (2.1.22)

Proof. The proof is given in [27, Theorem 4.1].

From [27], we also obtain the full estimates of u and the components of the elementary
displacement Ue.

Proposition 2.1.2 For every u P Vε̊

}u}H1pΩεq3 ď C

ε
}epuq}L2pΩε̊ q , (2.1.23)

}R}H1pωq2 ` }U}H1pωq3 ď C

ε3{2 }epuq}L2pΩε̊ q . (2.1.24)

The constants do not depend on ε.
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Remark 2.1.4 Proposition 2.1.2 are the Korn inequalities for our shell domain. For a
summary of the classical Korn inequalities we refer to [48, chapter 1, §2].

From the expression of the strain tensor epuq one derives the following estimates.

Lemma 2.1.1 One has also the following estimates (pα, βq P t1, 2u2):ˇ̌̌̌ˇ̌̌̌ BU
Bsα ¨ tβ ` BU

Bsβ ¨ tα
ˇ̌̌̌ˇ̌̌̌
L2pωq

ď C

ε1{2
}epuq}L2pΩε̊ q ,ˇ̌̌̌ˇ̌̌̌ BU

Bsα ¨ n ` R ¨ tα
ˇ̌̌̌ˇ̌̌̌
L2pωq

ď C

ε1{2
}epuq}L2pΩε̊ q .

(2.1.25)

The constant does not depend on ε.

Proof. We will only show thatˇ̌̌̌ˇ̌̌̌BU2

Bs1 ` BU1

Bs2
ˇ̌̌̌ˇ̌̌̌
L2pωq

ď C

ε1{2 }epuq}L2pΩε̊ q , (2.1.26)

since the other inequalities follow in the same way.
First observe that a{a`s3 is uniformly bounded. Then, we start with the expression of
e12puq given by (2.1.20). Due to (2.1.21) and (2.1.22) we obtainż

Ωε

”´BU2

Bs1 ` BU1

Bs2
¯

` s3

´BR2

Bs1 ` BR1

Bs2
¯

` s3
a

BU1

Bs2 ` s23
a

BR1

Bs2
ı2
ds ď C}epuq}2L2pΩε̊ q .

Hence, using the estimates (2.1.24)

ε

ż
ω

´BU2

Bs1 ` BU1

Bs2
¯2

ds ď C}epuq}2L2pΩε̊ q ,

which proves the inequality (2.1.26).

2.2 The rescaling operator Tε

In this section we introduce an operator which transforms the initial domain such that
the scaling of the thickness is no longer intrinsically given by s3 P Opεq. More precisely,
we consider a variable y3 P Op1q with the relation s3 “ εy3. Therefore, consider now the
reference domain

Ω “ ω ˆ p´κ, κq (2.2.1)

and rescale the shell in its s3 direction via the rescaling operator Tε.

Definition 2.2.1 Given a measurable function Ψ over Ωε, we define the measurable
function TεpΨq over Ω as

TεpΨqps1, s2, y3q “ Ψps1, s2, εy3q, for a.e. ps1, s2, y3q P Ω. (2.2.2)
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2κ

2κε

TεpΨq

Ψ

y3

ps1, s2q
Figure 2.5: Rescaling operator mapping Ψ onto the reference domain.

Lemma 2.2.1 One has for every Ψ P L2pΩεq and for the warping uε

}TεpΨq}L2pΩq ď ε´1{2}Ψ}L2pΩεq,
}Tεpuεq}L2pΩq3 ď Cε1{2}epuεq}L2pΩεq ,ˇ̌̌̌ˇ̌̌̌BTεpuεq

Bsα
ˇ̌̌̌ˇ̌̌̌
L2pΩq3

ď Cε´1{2}epuεq}L2pΩεq ,ˇ̌̌̌ˇ̌̌̌BTεpuεq
By3

ˇ̌̌̌ˇ̌̌̌
L2pΩq3

ď Cε1{2}epuεq}L2pΩεq .

(2.2.3)

Proof. All estimates are obtained by using the transformation Theorem for integrals and
especially for (2.2.3)2,3,4 using the estimates (2.1.21) and (2.1.22).

With this technique we can study in the subsequent section the asymptotics when the
thickness tends to zero.

2.3 Asymptotic behavior of the strain tensor

Lemma 2.3.1 Let tuεuε be a sequence of displacements belonging to Vε̊ and satisfying

}epuεq}L2pΩε̊ q ď Cε3{2, or equivalently

}epuεq}L2pΩεq ď Cε3{2

with a constant independent of ε.
There exists a subsequence of {ε} (still denoted ε) and U P H1

Γ0
pωq3, R P H1

Γ0
pωq2,

Zαβ P L2pωq, Zα3 P L2pωq and u P L2pω;H1p´κ, κqq3 satisfyingż κ

´κ
up¨, y3qdy3 “ 0,

ż κ

´κ
y3 uαp¨, y3q dy3 “ 0, a.e. in ω, (2.3.1)
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such that

Uε ÝÑ U strongly in H1
Γ0

pωq3,
Rε,α á Rα weakly in H1

Γ0
pωq,

1

ε

´BUε

Bsα ¨ tβ ` BUε

Bsβ ¨ tα
¯

á Zαβ weakly in L2pωq,
1

ε

´BUε

Bsα ¨ n ` Rε ¨ tα
¯

á Zα3 weakly in L2pωq,
1

ε2
Tεpuεq á u weakly in L2pω;H1p´κ, κqq3,

1

ε
Tε

´ Buε
Bsα

¯
“ 1

ε

B
BsαTεpuεq á 0 weakly in L2pω ˆ p´κ, κqq3,

1

ε
Tε

`
epuεq˘ á EpU ,Z, uq weakly in L2pωq3ˆ3.

(2.3.2)

Moreover, one has

BU3

Bs1 ´ 1

a
U1 ` R1 “ 0,

BU3

Bs2 ` R2 “ 0.

Proof. We start with the weak limits. As a consequence of (2.1.24) we get that

Uε á U weakly in H1
Γ0

pωq3,
Rε á R weakly in H1

Γ0
pωq2. (2.3.3)

The results in (2.3.2)5,6 follow from Lemma 2.2.1 and equation (2.1.21). Both conver-
gences (2.3.2)3,4 follow directly from Lemma 2.1.1.
Now we prove

Uε,3 ÝÑ U3 strongly in H1
Γ0

pωq. (2.3.4)

By the Sobolev embedding and the convergences (2.3.3), one has

Uε ÝÑ U strongly in L2pωq3,
Rε ÝÑ R strongly in L2pωq2. (2.3.5)

Besides, from estimate (2.1.25)2, one obtains

BUε,3

Bs1 ´ 1

a
Uε,1 ` Rε,1 ÝÑ 0 strongly in L2pωq,

BUε,3

Bs2 ` Rε,2 ÝÑ 0 strongly in L2pωq.

Hence, ∇Uε,3 strongly converges to its limit in L2pωq2, which ends the proof of (2.3.4).
That also proves the last equalities of the Lemma.

Now, we want to prove the strong convergences

Uε,α ÝÑ Uα strongly in H1
Γ0

pωq, α “ 1, 2.

By estimates (2.1.25)1 one immediately has

BUε,1

Bs1 ` 1

a
Uε,3 ÝÑ 0 strongly in L2pωq,

BUε,2

Bs2 ÝÑ 0 strongly in L2pωq,
BUε,1

Bs2 ` BUε,2

Bs1 ÝÑ 0 strongly in L2pωq.
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Furthermore, from (2.3.5) and the above strong convergences, one obtains the strong
convergence of the strain tensor of the displacement

`
Uε,1,Uε,2

˘
in L2pωq2. Since ω is

a Lipschitz domain, this displacement strongly converges to its limit in H1
Γ0

pωq2. The
elements of the limit strain tensor E are then particularly given by

1

ε
Tεpe11q á Z11 ` y3

BR1

Bs1 ,

1

ε
Tεpe22q á Z22 ` y3

BR2

Bs2 ,

1

ε
Tεpe12q á 1

2

!
Z12 ` y3

a

BU1

Bs2 ` y3
BR2

Bs1 ` y3
BR1

Bs2
)
,

1

ε
Tεpe13q á 1

2

!
Z13 ` Bu1

By3
)
,

1

ε
Tεpe23q á 1

2

!
Z23 ` Bu2

By3
)
,

1

ε
Tεpe33q á Bu3

By3 .

Putting everything together yields the symmetric tensor

EpU ,Z, uq “

¨̊
˚̊̊̊
˚̋
Z11 ` y3

a

BU1

Bs1 ´ y3
B2U3

Bs21
1

2
Z12 ` y3

a

BU1

Bs2 ´ y3
B2U3

Bs1Bs2
1

2

´
Z13 ` Bu1

By3
¯

˚ Z22 ´ y3
B2U3

Bs22
1

2

´
Z23 ` Bu2

By3
¯

˚ ˚ Bu3
By3

‹̨‹‹‹‹‹‚,

which ends the proof of the Lemma.

As a consequence of the estimates in Lemma 2.1.1 and the above Lemma, one has a.e.
in ω

BU
Bsα ¨ tβ ` BU

Bsβ ¨ tα “ 0, Ui P H1
Γ0

pωq, (2.3.6)

BU
Bsα ¨ n ` R ¨ tα “ 0, Rα P H1

Γ0
pωq. (2.3.7)

From the equation (2.3.6) we obtain for α “ β “ 2 that

BU2

Bs2 “ 0.

Hence, U2 does not depend on s2 and we get that U2 “ U2ps1q and due to the boundary
conditions, one has U2 P H1

0 p0, aπq.
With that we conclude for α “ 1 and β “ 2 that

dU2ps1q
ds1

` BU1ps1, s2q
Bs2 “ 0 ðñ U1ps1, s2q “ ´s2

dU2

ds1
ps1q ` U1ps1q.

Since U1 belongs to H1
Γ0

pωq, this yields U2 P H2
0 p0, aπq and U1 P H1

0 p0, aπq.
For the last case, α “ β “ 1, then follows that

BU1

Bs1 ` 1

a
U3 “ 0 ðñ ´ d

ds1

´
´ s2

dU2

ds1
ps1q ` U1ps1q

¯
“ 1

a
U3

ðñ U3ps1, s2q “ as2
d2U2

ds21
´ a

dU1

ds1
ps1q.
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Since U3 belongs to H1
Γ0

pωq, this implies

U2 P H3
0 p0, aπq, U1 P H2

0 p0, aπq, and

Ups1, s2q “
´

´ s2
dU2

ds1
ps1q ` U1ps1q, U2ps1q, as2d

2U2

ds21
´ a

dU1

ds1
ps1q

¯T
.

(2.3.8)

Now focus on the equality given by (2.3.7). For the case α “ 1 we obtain with our
expression for U

BU3

Bs1 ´ 1

a
U1 ` R1 “ 0 ðñ

R1ps1, s2q “ ´s2

´1

a

dU2

ds1
ps1q ` a

d3U2

ds31
ps1q

¯
` 1

a
U1ps1q ` a

d2U1

ds21
ps1q.

Moreover, we get for α “ 2

BU3

Bs2 ` R2 “ 0 ðñ R2ps1, s2q “ ´a
d2U2

ds21
ps1q.

Observe that due to the above conditions on U2, R2 belongs to H1
Γ0

pωq. Now, since R1

also belongs to H1
Γ0

pωq, we finally obtain

U2 P H4
0 p0, aπq, U1 P H3

0 p0, aπq.
Thus,

R1 P H1
Γ0

pωq, R2 P H2pωq X H1
Γ0

pωq,
U1 P H3pωq X H1

Γ0
pωq, U2 P H4pωq X H1

Γ0
pωq, U3 P H2pωq X H1

Γ0
pωq

and
R1 “ ´s2

´1

a

dU2

ds1
ps1q ` a

d3U2

ds31
ps1q

¯
` 1

a
U1ps1q ` a

d2U1

ds21
ps1q,

R2 “ ´a
d2U2

ds21
ps1q.

2.4 Unfolding of the rescaled shell

With the rescaling operator we could successfully analyze the limit behavior, where
the thickness tends to zero. However, there is a second small parameter describing
the microscopic periodic pattern of our structure. For that reason we need to intro-
duce the unfolding operator. This operator decouples the macroscopic and microscopic
scales and introduces a new set of variables solely acting in the reference periodicity
cell.

Definition 2.4.1 The unfolding Tεpψ1q presp. Tεpψqq of a measurable function ψ1 presp. ψq
defined on ω (resp. Ω) is measurable on ω ˆ Y 1 (resp. Ω ˆ Y 1) and given by

Tεpψ1qps1, y1q “ ψ1
´
ε
”s1
ε

ı
` εy1

¯
, for a.e. ps1, y1q P ω̂ε ˆ Y 1,

Tεpψqps1, y1q “ 0, for a.e. ps1, y1q P Λε ˆ Y 1,

and

Tεpψqps1, y1, y3q “ ψ
´
ε
”s1
ε

ı
` εy1, y3

¯
, for a.e. ps1, y1, y3q P ω̂ε ˆ Y,

Tεpψqps1, y1, y3q “ 0, for a.e. ps1, y1, y3q P Λε ˆ Y.
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As shown in r15s, for every ψ1 P L2pωq we have

}Tεpψ1q}L2pωˆY 1q ď }ψ1}L2pωq. (2.4.1)

Remark 2.4.1 We consider the function fεpxq “ 1

4
sinp2πx

ε
q ` x, with ε “ 1

6
as pre-

sented in [15]. In figure 2.6 we have plotted the original function on the top. On the
bottom we can find the unfolded function Tεpfεq.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

Original Function

Figure 2.6: Original and unfolded function from remark 2.4.1.

Definition 2.4.2 The rescaling-unfolding operator is defined by

Πε “ Tε ˝ Tε.

Given a measurable function ψ over Ωε then Πεpψq is a measurable function on ω ˆ Y .

Lemma 2.4.1 We obtain the following estimate for the warping:

}Πεpuεq}L2pω;H1pY qq ď Cε1{2}epuεq}L2pΩε̊ q. (2.4.2)

We denote by H1
perpY 1q (respectively H1

perpY q) the subspace of H1
locpR2q (respectively

H1
loc

`
R2ˆp´κ, κq˘XH1pY q) containing the G periodic functions and

xW .“
!pπ P H1

perpY q3 |
ż κ

´κ

pπp¨, y3qdy3 “ 0,

ż κ

´κ
y3 pπαp¨, y3q dy3 “ 0 a.e. in ω ˆ Y 1

)
.
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Theorem 2.4.1 There exists a subsequence of tεu (still denoted tεu) andpU P L2pω;H1
perpY 1qq3, pR P L2pω;H1

perpY 1qq2 and pu P L2pω; xWq such that

TεpUεq ÝÑ U strongly in L2pω;H1pY 1qq3,
TεpRεq ÝÑ R strongly in L2pω;H1pY 1qq2,
Tε

´BUε

Bsα
¯

ÝÑ BU
Bsα strongly in L2pω ˆ Y 1q3,

Tε
´BRε

Bsα
¯

á BR
Bsα ` B pR

Byα weakly in L2pω ˆ Y 1q2,
1

ε2
Πεpuεq á pu weakly in L2pω;H1pY qq3.

(2.4.3)

One has

ups1, s2, y3q “ 1

|Y 1|
ż
Y 1

pups1, s2, y1, y2, y3qdy1dy2, for a.e. ps1, s2, y3q P Ω.

Moreover,

1

ε
Tε

´BUε

Bsα ¨ n ` Rε ¨ tα
¯

á Zα3 ` pZα3 weakly in L2pω;H1pY 1qq,
1

ε
Tε

´BUε

Bsα ¨ tβ ` BUε

Bsβ ¨ tα
¯

á Zαβ ` pZαβ weakly in L2pω;H1pY 1qq,
(2.4.4)

where pZ13 “ B pU3

By1 ` pR1, pZ23 “ B pU3

By2 ` pR2, pZαβ “ ey,αβp pUq. (2.4.5)

Proof. The strong convergences of (2.4.3)1,2,3 follow from (2.3.2)1,2 and [15, Propostion
3.4]. Convergences (2.4.3)4 and (2.4.3)5 are the consequence of [15, Theorem 3.5] and
[15, Corollary 3.2], respectively.
The convergences of (2.4.4)1,2 follow from Lemma 2.3.1 and [15, Theorem 3.5]. With

Lemma B.2.1 we then obtain the expressions for pZα3 in (2.4.5) and Lemma B.2.2 yields
the expressions pZαβ .
Indeed, we first need to identify the different fields appearing in Lemma B.2.1 with

uε ÐÑ Uε,3, vε ÐÑ
ˆ´ 1

aUε,1 ` Rε,1

Rε,2

˙
.

From (2.3.2)1,4, one has

1

ε

˜
∇Uε,3 `

ˆ´ 1
aUε,1 ` Rε,1

Rε,2

˙ ¸
á

ˆ
Z13

Z23

˙
weakly in L2pωq2,

Tε
”
∇

ˆ´ 1
aUε,1 ` Rε,1

Rε,2

˙ ı
á ∇

ˆ´ 1
aU1 ` R1

R2

˙
` ∇y

˜ pR1pR2

¸
weakly in L2pω ˆ Y 1q2.

Moreover, we set

v “
ˆ´ 1

aU1 ` R1

R2

˙
, pv “

˜ pR1pR2

¸
.
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Then, one can apply Lemma B.2.1. The function u is in the following defined as pU3.
To determine the pZαβ , let us identify

uε ÐÑ
ˆ
Uε,1

Uε,2

˙
, vε ÐÑ

¨̋
1

a
Uε,3 0

0 0
‚̨.

Together with

eαβpuεq “ 1

2

ˆBuβ,ε
Bsα ` Buα,ε

Bsβ
˙

we then obtain

epuεq “

¨̊
˚̋ BUε,1

Bs1
1

2

´BUε,1

Bs2 ` BUε,2

Bs1
¯

1

2

`BUε,1

Bs2 ` BUε,2

Bs1
¯ BUε,2

Bs2

‹̨‹‚.

Hence, by (2.3.2)1,3
1

ε
pepuεq ` vεq á X ,

and

Tεp∇vεq á ∇v ` ∇ypv.
In our case we have that pv “ 0. The field pu1, u2q given by Lemma B.2.2 is denoted
p pU1, pU2q.

2.4.1 Limit of the rescaled-unfolded strain tensor

Proposition 2.4.1 Under the assumptions and the results of Theorem 2.4.1 we obtain
the following weak convergences in L2pω ˆ Y q:

1

ε
Πεpe11puεqq á Z11 ` ey,11p pUq ` y3

´BR1

Bs1 ` B pR1

By1
¯

` Bpu1
By1 ,

1

ε
Πεpe22puεqq á Z22 ` ey,22p pUq ` y3

´BR2

Bs2 ` B pR2

By2
¯

` Bpu2
By2 ,

1

ε
Πεpe12puεqq á 1

2

´
Z12 ` 2ey,22p pUq ` y3

´BR1

Bs2 ` B pR1

By2 ` BR2

Bs1 ` B pR2

By1
¯

` Bpu1
By2 ` Bpu2

By1
¯
,

1

ε
Πεpe13puεqq á 1

2

´
Z13 ` B pU3

By1 ` pR1 ` Bpu1
By3 ` Bpu3

By1
¯
,

1

ε
Πεpe23puεqq á 1

2

´
Z23 ` B pU3

By2 ` pR2 ` Bpu2
By3 ` Bpu3

By2
¯
,

1

ε
Πεpe33puεqq á Bpu3

By3 .

Proof. First, note that the function y3 ÝÑ a

a ` εy3
converges uniformly to 1 in ω ˆ Y .

Below, we give the limits for 1
εΠεpe11puεqq and 1

εΠεpe13puεqq, since the other cases follow
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analogously. For the calculation we combine the results obtained in Lemma 2.3.1 and
Theorem 2.4.1. We have,

1

ε
Πεpe11puεqq “ 1

ε

a

a ` εy3

”
Tε

´BUε,1

Bs1 ` 1

a
Uε,3

¯
` εy3Tε

´BRε,1

Bs1
¯

` Πε

´Buε,1
Bs1

¯
` 1

a
Πεpuε,3q

ı
.

Therefore, we get for each term in the limit

1

ε
Tε

´BUε,1

Bsε,1 ` 1

a
Uε,3

¯
á Z11 ` ey,11p pUq weakly in L2pω ˆ Y 1q,

Tε
´BRε,1

Bs1
¯

á BR1

Bs1 ` B pR1

By1 weakly in L2pω ˆ Y 1q,
1

ε
Πε

´Buε,1
Bs1

¯
“ 1

ε2
BΠεpuε,1q

By1 á Bpu1
By1 weakly in L2pω ˆ Y q,

1

ε
Πεpuε,3q á 0 weakly in L2pω ˆ Y q,

and hence

1

ε
Πεpe11puεqq á Z11 ` ey,11p pUq ` y3

´BR1

Bs1 ` B pR1

By1
¯

` Bpu1
By1 weakly in L2pω ˆ Y q.

Now consider

1

ε
Πεpe13puεqq “ 1

ε

a

2pa ` εy3q
”
Tε

´BUε,3

Bs1 ´ 1

a
Uε,1 ` Rε,1

¯
´ 1

a
Πεpuε,1q ` Πε

´Buε,3
Bs1

¯
` `

1 ` εy3
a

˘
Πε

´Buε,1
Bs3

¯ı
.

Similar to the previous case we investigate the limits of each component, obtaining

1

ε
Tε

´BUε,3

Bs1 ´ 1

a
Uε,1 ` Rε,1

¯
á Z13 ` B pU3

By1 ` pR1 weakly in L2pω ˆ Y 1q,
1

ε
Πεpuε,1q á 0 weakly in L2pω ˆ Y q,

1

ε
Πε

´Buε,3
Bs1

¯
“ 1

ε2
BΠεpu3q

By1 á Bpu3
By1 weakly in L2pω ˆ Y q,

1

ε2
BΠεpuε,1q

By3 á Bpu1
By3 weakly in L2pω ˆ Y q.

Therefore,

1

ε
Πεpe13puεqq á 1

2

´
Z13 ` B pU3

By1 ` pR1 ` Bpu3
By1 ` Bpu1

By3
¯

weakly in L2pω ˆ Y q.

Define the displacement pu belonging to L2pω;H1
perpY qq3 by

pup¨, yq “ pUp¨, y1, y2q ` y3 pRp¨, y1, y2q ` `
y3pZ13t1 ` Z23t2q ` pup¨, yq˘

,

for a.e. y P Y ˚ and a.e. in ω.
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Hence, one obtains

1

ε
Πεpepuεqq á

¨̊
˚̋̊̊Z11 ` y3

a

BU1

Bs1 ´ y3
B2U3

Bs21
1

2
Z12 ` y3

a

BU1

Bs2 ´ y3
B2U3

Bs1Bs2 0

˚ Z22 ´ y3
B2U3

Bs22
0

˚ ˚ 0

‹̨‹‹‹‚
` Eyppuq weakly in L2pω ˆ Y q3ˆ3,

where Eyppuq is the symmetric tensor whose components are the ey,ijppuq’s. We want to
note here that we obtain the same kind of result as in [29].

Remark 2.4.2 If we compare our results with [16, Proposition 11.13], we see that

Eyppuq “ Ew p̊uq ` E1
y ppuq,

where the terms on the right hand side follow from the given definitions in [16].

The aim of the following section is to determine the Zαβ by decomposing the displace-
ments into two disjoint sets.

2.5 Inextensional and extensional displacements

2.5.1 Inextensional displacements

Denote H .“ rH1
Γ0

pωqs2ˆL2pωq. We equip H with the scalar product

ă U ,V ąH“
ż
ω

”1
2

´BU1

Bs1 ` 1

a
U3

¯´BV1

Bs1 ` 1

a
V3

¯
` BU2

Bs2
BV2

Bs2
` 1

2

´BU1

Bs2 ` BU2

Bs1
¯´BV1

Bs2 ` BV2

Bs1
¯

` U3V3

ı
ds1ds2.

The associated norm is equivalent to the usual product norm of rH1
Γ0

pωqs2 ˆ L2pωq .
Denote DI the space of inextensional displacements

DI
.“

!
Φ P H | BΦ1

Bs1 ` 1

a
Φ3 “ 0,

BΦ2

Bs2 “ 0,
BΦ1

Bs2 ` BΦ2

Bs1 “ 0
)
.

We define the spaces

H1
0 p0, aπq “ tψ P H1pr0, aπs,Rq|ψp0q “ ψpaπq “ 0u

and H2
0 p0, aπq, respectively. Moreover, we set

sc1 “ s1 ´ aπ

2
, sc2 “ s2 ´ l

2
.

A displacement V belongs to DI if and only if there exists pV1, V2q P H1
0 p0, aπqˆH2

0 p0, aπq
such that for a.e. ps1, s2q P ω

V1ps1, s2q “ ´sc2V
1
2ps1q ` V1ps1q,

V2ps1, s2q “ V2ps1q,
V3ps1, s2q “ a

`
sc2V

2
2 ps1q ´ V 1

1ps1q˘
,

(2.5.1)



22 Chapter 2 Homogenization of Shells

where the prime denotes the differentiation w.r.t. s1. The map V P DI ÞÝÑ pV1, V2q P
H1

0 p0, aπq ˆ H2
0 p0, aπq is one to one and onto.

Denote
DI “ DI X `rH1

Γ0
pωqs2 ˆ H2

Γ0
pωq˘

.

Note that the limit of the mid-surface displacement of the shell U belongs to DI .
We equip DI (resp. DI) with the semi-norm

}V}DI
“ }V3}L2pωq, (resp. }V}DI

“ }V3}H2pωq).

Lemma 2.5.1 The semi-norm } ¨ }DI
(resp. } ¨ }DI

) is a norm equivalent to the norm
of the product space rH1pωqs2 ˆ L2pωq (resp. rH1pωqs2 ˆ H2pωq).
Moreover, there exist two constants c, C such that for every V P DI (resp. V P DI) one
has

c
`}V1}2H1

0 p0,aπq ` }V2}2H2
0 p0,aπq

˘ ď }V}2DI
ď C

`}V1}2H1
0 p0,aπq ` }V2}2H2

0 p0,aπq
˘
,´

c
`}V1}2H3

0 p0,aπq ` }V2}2H4
0 p0,aπq

˘ ď }V}2DI
ď C

`}V1}2H3
0 p0,aπq ` }V2}2H4

0 p0,aπq
˘¯ (2.5.2)

where pV1, V2q are associated to V by expression (2.5.1).

Proof. Step 1. We start by showing the norm equivalences.

Take V P DI (resp. DI), then one has

e11pVq “ ´1

a
V3, e12pVq “ e22pVq “ 0.

Now, the 2D-Korn inequality gives (recall that V1 “ V2 “ 0 on Γ0)

}V1}2H1pωq ` }V2}2H1pωq ď C}V3}2L2pωq.

Hence, we obtain

}V}2rH1pωqs2ˆL2pωq “ }V1}2H1pωq ` }V2}2H1pωq ` }V3}2L2pωq ď C}V3}2L2pωq “ C}V}2DI
.

On the contrary, to estimate } ¨ }DI
by } ¨ }rH1pωqs2ˆL2pωq from above, we can use Young’s

inequality such that

}V}2DI
“ }V3}2L2pωq “

ż
ω
V2
3 ds1

“
ż
ω

”1
2

´BV1

Bs1 ` 1

a
V3

¯2 `
´BV2

Bs2
¯2 ` 1

2

´BV1

Bs2 ` BV2

Bs1
¯2 ` V2

3

ı
ds1

ď
ż
ω

”´BV1

Bs1
¯2 ` 1

a2
V2
3 `

´BV2

Bs2
¯2 `

´BV1

Bs2
¯2 `

´BV2

Bs1
¯2 ` V2

3

ı
ds1

ď C
´

}V1}2H1pωq ` }V2}2H1pωq ` }V3}2L2pωq
¯

“ C}V}2rH1pωqs2ˆL2pωq.

For the equivalence of the norm } ¨ }DI
we use the same argumentation as above. The

2D-Korn inequality yields

}V}2rH1pωqs2ˆH2pωq “ }V1}2H1pωq`}V2}2H1pωq`}V3}2H2pωq ď C 1}V3}2L2pωq`}V3}2H2pωq ď C}V}2DI
.
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For the other direction we obtain

}V}2DI
“}V3}2H2pωq “ xV3,V3yL2pωq ` x∇V3,∇V3yL2pωq ` xD2V3, D

2V3yL2pωq

“
ż
ω

”1
2

´BV1

Bs1 ` 1

a
V3

¯2 `
´BV2

Bs2
¯2 ` 1

2

´BV1

Bs2 ` BV2

Bs1
¯2 ` V2

3

ı
ds1

` x∇V3,∇V3yL2pωq ` xD2V3, D
2V3yL2pωq

ďC
´

}V1}2H1pωq ` }V2}2H1pωq ` }V3}2H2pωq
¯

“C}V}2rH1pωqs2ˆH2pωq.

Step 2. We prove the inequalities (2.5.2). With expression (2.5.1)3 we obtain

}V}2DI
“ }V3}2L2pωq “

ż
ω
V2
3ds1ds2

“
ż
ω
a2

`
sc2V

2
2 ps1q ´ V

1
1ps1q˘2

ds1ds2

“ a2
ż aπ

0

ż l

0

“psc2V 2
2 ps1qq2 ´ 2sc2V

2
2 ps1qV 1

1ps1q ` pV 1
1ps1qq2‰

ds2ds1

“ a2
ż aπ

0

” l3

12
pV 2

2 ps1qq2 ` lpV 1
1ps1qq2

ı
ds1

ď C
`}V 2

2 }2L2p0,aπq ` }V 1
1}2L2p0,aπq

˘
ď C

`}V2}2H2p0,aπq ` }V1}2H1p0,aπq
˘
.

First, note that V2ps1q “ V
1
2ps1q “ 0 for s1 P t0, aπu, which follows by the expressions in

(2.5.1) and since V1p0, s2q “ V1paπ, s2q “ V2p0, s2q “ V2paπ, s2q “ 0 for a.e. s2 P p0, lq.
Moreover, the Poincaré inequality in H1

0 p0, aπq and H2
0 p0, aπq yields

}V2}2H2p0,aπq ` }V1}2H1p0,aπq ď C
`}V 2

2 }2L2p0,aπq ` }V 1
1}2L2p0,aπq

˘
ď C

´12

l3

ż aπ

0

l3

12
pV 2

2 q2ds1 ` 1

l

ż aπ

0
l pV 1

1q2ds1
¯

ď C
´ ż aπ

0

ż l

0
psc2V 2

2 q2ds2ds1 `
ż aπ

0

ż l

0
pV 1

1q2ds2ds1
¯

ď C

ż
ω

`psc2V 2
2 q2 ´ 2sc2V

2
2 V

1
1 ` pV 1

1q2˘
ds1

ď C

ż
ω
a2psc2V 2

2 ´ V
1
1q2ds1

“ C}V3}2L2pωq “ C}V}2DI
.

For the inequality (2.5.2)2 we achieve again with the expressions for V3 in (2.5.1)3 that

}V}2DI
“}V3}2H2pωq “

ż
ω
V2
3ds1ds2 `

ż
ω

”´BV3

Bs1
¯2 `

´BV3

Bs2
¯2ı

ds1ds2

`
ż
ω

”´B2V3

Bs21
¯2 ` 2

´ B2V3

Bs1Bs2
¯2 `

´B2V3

Bs22
¯2ı

ds1ds2

“
ż
ω

“
a2

`
sc2V

2
2 ps1q ´ V

1
1ps1q˘2 ` a2

`
sc2V

3
2 ps1q ´ V

2
1 ps1q˘2 ` paV 2

2 ps1qq2

` a2
`
sc2V

4
2 ps1q ´ V

3
1 ps1q˘2 ` 2paV 3

2 q2‰
ds1ds2

ďC

ż aπ

0

“pV 2
2 q2 ` pV 1

1q2 ` pV 3
2 q2 ` pV 2

1 q2 ` pV 2
2 q2 ` pV 4

2 q2 ` pV 3
1 q2 ` pV 3

2 q2‰
ds1

ďC
`}V2}2H4p0,aπq ` }V1}2H3p0,aπq

˘
.
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For the other direction we note that we can use the Poincaré inequality as described
above such that we obtain

}V2}2H4p0,aπq ` }V1}2H3p0,aπq ď C
´

}V 2
2 }2H2p0,aπq ` }V 1

1}2H2p0,aπq
¯

Hence, we get

}V 2
2 }2H2p0,aπq ` }V 1

1}2H2p0,aπq ď
ż aπ

0

“pV 2
2 ps1qq2 ` pV 3

2 ps1qq2 ` pV 4
2 ps1qq2

` pV 1
1ps1qq2 ` pV 2

1 ps1qq2 ` pV 4
1 ps1qq2‰

ds1

ďC

ż
ω

“
a2

`
sc2V

2
2 ps1q ´ V

1
1ps1q˘2 ` a2

`
sc2V

3
2 ps1q ´ V

2
1 ps1q˘2

` paV 2
2 ps1qq2 ` a2

`
sc2V

4
2 ps1q ´ V

3
1 ps1q˘2 ` 2paV 3

2 q2‰
ds1ds2

“C}V3}2H2pωq “ C}V}2DI
,

which concludes the proof.

2.5.2 Extensional displacements

Denote with DE the orthogonal complement of DI in H w.r.t. the scalar product of H.
For every φ in L2pωq, set

M2pφqps1q “ 1

l

ż l

0
φps1, s2qds2, for a.e. s1 P p0, aπq,

Mc
2pφqps1q “ 1

l

ż l

0
φps1, s2qsc2ds2, for a.e. s1 P p0, aπq.

Note that for every U P DE , one has M2pUαq, Mc
2pUαq P H1

0 p0, aπq while M2pU3q,
Mc

2pU3q P L2p0, aπq (α P t1, 2u).
Let U be in DE , then it satisfies

ă U ,V ą“
ż
ω
U3V3 ds1ds2, @V P DI .

Thus, we have to fulfillż
ω
U3ps1, s2q`

sc2V
2
2 ps1q ´ V

1
1ps1q˘

ds1ds2 “ 0, @V1 P H1
0 p0, aπq, @V2 P H2

0 p0, aπq,

where we used the expression for V3 from (2.5.1)3. This yields the two conditions
that ż aπ

0
Mc

2pU3qps1qV 2
2 ds1 “ 0, @V2 P H2

0 p0, aπq,ż aπ

0
M2pU3qps1qV 1

1ds1 “ 0, @V1 P H1
0 p0, aπq.

By partial integration and the properties of V1 and V2 we obtainż aπ

0

d2Mc
2pU3qps1q
ds21

V2ds1 “ 0, @V2 P H2
0 p0, aπq,

ż aπ

0

dM2pU3qps1q
ds1

V1ds1 “ 0, @V1 P H1
0 p0, aπq.
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Therefore,
M2pU3qps1q “ C1, Mc

2pU3qps1q “ C2s
c
1 ` C3,

pC1, C2, C3q P R3, for a.e. s1 P p0, aπq. (2.5.3)

Hence,

DE “
!
U P H | dM2pU3q

ds1
“ d2Mc

2pU3q
ds21

“ 0 in p0, aπq
)
.

We equip DE with the norm

}Φ}E “
gffeż

ω

«
1

2

ˇ̌̌̌BΦ1

Bs1 ` 1

a
Φ3

ˇ̌̌̌2
`

ˇ̌̌̌BΦ2

Bs2
ˇ̌̌̌2

` 1

2

ˇ̌̌̌BΦ1

Bs2 ` BΦ2

Bs1
ˇ̌̌̌2ff

ds1ds2 .

Note, that DE is not a Hilbert space with this norm. DE denotes the completion of DE

w.r.t. this norm.

Lemma 2.5.2 For every U in DE, one has

}U2}H1p0,l;L2p0,aπqq ` }U1}H1p0,l;pH1p0,aπqq1q ` }U3}L2p0,l;pH2p0,aπqq1q ď C}U}E . (2.5.4)

Proof. Since DE is the completion of DE for the norm } ¨ }E , we can prove the estimates
of the Lemma for U P DE , then by density they will be satisfied for every element in
DE .
Let U be in DE , recall that›››BU1

Bs1 ` 1

a
U3

›››
L2pωq

ď }U}E ,
›››BU2

Bs2
›››
L2pωq

ď }U}E ,›››BU1

Bs2 ` BU2

Bs1
›››
L2pωq

ď }U}E .
(2.5.5)

Moreover, we also have that U3 fulfills the properties from (2.5.3).
S tep 1. In this step we prove

}M2pU1q}H1p0,aπq ` }Mc
2pU1q}H1p0,aπq ` }M2pU2q}L2p0,aπq

` |M2pU3q| ` }Mc
2pU3q}L2p0,aπq ď C}U}E . (2.5.6)

Set

ĂMc
2pU3qps1q “ C2

s1ps1 ´ aπq
2

,

M22pU2qps1q “ 1

l

ż l

0
U2ps1, s2qs2ps2 ´ lq

2
ds2,

for a.e. s1 P p0, aπq. (2.5.7)

Hence, one has ĂMc
2pU3q, M22pU2q P H1

0 p0, aπq.
We first show that ˇ̌̌̌ˇ̌̌̌

dM2pU1q
ds1

` 1

a
M2pU3q

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď 1?
l
}U}E .

By plugging in the definition for M2pUiq we getˇ̌̌̌ˇ̌̌̌
1

l

d

ds1

ż l

0
U1ps1, s2qds2 ` 1

al

ż l

0
U3ps1, s2qds2

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

.
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We interchange differentiation and integration, such that with Jensen and (2.5.5)1 we
obtain ˇ̌̌̌ˇ̌̌̌

1

l

ż l

0

´BU1

Bs1 ` 1

a
U3

¯
ds2

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď 1?
l

ˇ̌̌̌ˇ̌̌̌BU1

Bs1 ` 1

a
U3

ˇ̌̌̌ˇ̌̌̌
L2pωq

ď 1?
l
}U}E .

Moreover, we haveˇ̌̌̌ˇ̌̌̌
dM2pU1q

ds1

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

`
ˇ̌̌̌ˇ̌̌̌
1

a
M2pU3q

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

“
ż aπ

0

”´dM2pU1q
ds1

¯2 `
´1

a
M2pU3q

¯2ı
ds1

“
ż aπ

0

´dM2pU1q
ds1

` 1

a
M2pU3q

¯2
ds1

“
ˇ̌̌̌ˇ̌̌̌
dM2pU1q

ds1
` 1

a
M2pU3q

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

,

where we use for the second inequality the partial integrationż aπ

0

dM2pU1q
ds1

M2pU3qds1

“
”
M2pU1qM2pU3q

ıaπ
0loooooooooooomoooooooooooon

“0, because M2pU1qPH1
0 p0,aπq

´
ż aπ

0
M2pU1q dM2pU3q

ds1loooomoooon
“0

ds1 “ 0.

Therefore, we obtainˇ̌̌̌ˇ̌̌̌
dM2pU1q

ds1

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

`
ˇ̌̌̌ˇ̌̌̌
1

a
M2pU3q

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

ď C}U}2E .

The Poincaré inequality in H1
0 p0, aπq and the previous results lead to

}M2pU1q}H1p0,aπq ď C

ˇ̌̌̌ˇ̌̌̌
dM2pU1q

ds1

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď C}U}E ,

and since M2pU3q is independent of s1 we get

|M2pU3q| ď C}U}E .
Below we show the inequalityˇ̌̌̌ˇ̌̌̌

dMc
2pU1q
ds1

` 1

a

d ĂMc
2pU3q
ds1

` C3

a

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď C}U}E . (2.5.8)

Plugging in the definition for Mc
2 and ĂMc

2 we get with Jensen and for sc2 P p´l{2, l{2qˇ̌̌̌ˇ̌̌̌
dMc

2pU1q
ds1

` 1

a

d ĂMc
2pU3q
ds1

` C3

a

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌

d

ds1

1

l

ż l

0
U1s

c
2ds2 ` 1

a

d

ds1

´
C2

s1ps1 ´ aπq
2

¯
` C3

a

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌
1

l

ż l

0

BU1

Bs1 s
c
2ds2 ` 1

a

´
C2

´
s1 ´ aπ

2

¯
` C3looooooooooomooooooooooon

Mc
2pU3q

¯ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌
1

l

ż l

0

´BU1

Bs1 ` 1

a
U3

¯
sc2ds2

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď
ˇ̌̌̌ˇ̌̌̌
1?
l

´BU1

Bs1 ` 1

a
U3

¯
sc2

ˇ̌̌̌ˇ̌̌̌
L2pωq

ď C}U}E .
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Now, we prove the inequality›››Mc
2pU1q ` 1

a
ĂMc

2pU3q
›››2
L2p0,aπq

` |C3|2 ď C}U}2E . (2.5.9)

With the Poincaré inequality, C3 P R and since Mc
2pU1q, ĂMc

2pU3q P H1
0 p0, aπq we obtain›››Mc

2pU1q ` 1

a
ĂMc

2pU3q
›››2
L2p0,aπq

` |C3|2

ď C

˜ˇ̌̌̌ˇ̌̌̌
d

ds1
Mc

2pU1q ` 1

a

d

ds1
ĂMc

2pU3q
ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

`
ˇ̌̌̌ˇ̌̌̌
C3

a

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

¸

“ C

ˇ̌̌̌ˇ̌̌̌
d

ds1
Mc

2pU1q ` 1

a

d

ds1
ĂMc

2pU3q ` C3

a

ˇ̌̌̌ˇ̌̌̌2
L2p0,aπq

ď C}U}E ,
using ż aπ

0

´ d

ds1
Mc

2pU1q ` 1

a

d

ds1
ĂMc

2pU3q
¯ C3

a
ds1 “ 0.

In the following we prove the inequalityˇ̌̌̌ˇ̌̌̌
dM22pU2q

ds1
` 1

a
ĂMc

2pU3q
ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď C}U}E . (2.5.10)

With the previous result, partial integration and (2.5.5) we getˇ̌̌̌ˇ̌̌̌
dM22pU2q

ds1
` 1

a
ĂMc

2pU3q
ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌
dM22pU2q

ds1
´ Mc

2pU1q ` Mc
2pU1q ` 1

a
ĂMc

2pU3q
ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď
ˇ̌̌̌ˇ̌̌̌
dM22pU2q

ds1
´ Mc

2pU1q
ˇ̌̌̌ˇ̌̌̌

`
ˇ̌̌̌ˇ̌̌̌
Mc

2pU1q ` 1

a
ĂMc

2pU3q
ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

,

where we estimate the first term by plugging in the definition and swapping integration
with differentiation together with Jensenˇ̌̌̌ˇ̌̌̌

1

l

ż l

0

BU2

Bs1
s2ps2 ´ lq

2
ds2 ´ 1

l

ż l

0
U1p¨, s2qps2 ´ l

2
qds2

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌
1

l

ż l

0

BU2

Bs1
s2ps2 ´ lq

2
ds2 ´ 1

l

´”
U1

s2ps2 ´ lq
2

ıl
0

´
ż l

0

BU1

Bs2
s2ps2 ´ lq

2
ds2

¯ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

“
ˇ̌̌̌ˇ̌̌̌
1

l

ż l

0

´BU2

Bs1 ` BU1

Bs2
¯s2ps2 ´ lq

2
ds2

ˇ̌̌̌ˇ̌̌̌
L2p0,aπq

ď C

ˇ̌̌̌ˇ̌̌̌BU2

Bs1 ` BU1

Bs2
ˇ̌̌̌ˇ̌̌̌
L2pωq

ď C}U}E .

Integrating
dM22pU2q

ds1
` 1

a
ĂMc

2pU3q over p0, aπq and due to the above estimate (2.5.10),

one obtains

|C2| ď C}U}E
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and then with again with (2.5.10) and (2.5.8)-(2.5.9)

} ĂMc
2pU3q}L2p0,aπq ` }Mc

2pU3q}L2p0,aπq ` }Mc
2pU1q}H1p0,aπq ď C}U}E ,›››dM22pU2q

ds1

›››
L2p0,aπq

ď C}U}E .

Since M22pU2q P H1
0 p0, aπq we get

››M22pU2q››
L2p0,aπq ď C

›››dM22pU2q
ds1

›››
L2p0,aπq

ď C}U}E .

The Poincaré-Wirtinger inequality gives together with (2.5.5)2

}U2 ´ M2pU2q}L2pωq ď C}U}E . (2.5.11)

Multiplying U2 ´ M2pU2q with
s2ps2 ´ lq

2
and then integrate with respect to s2 yields

›››M22pU2q ` l2

12
M2pU2q

›››
L2p0,aπq

ď C}U}E .

Therefore,

}M2pU2q}L2p0,aπq ď C}U}E . (2.5.12)

S tep 2. We show the 3 inequalities in equation (2.5.4) by using the Poincaré-Wirtinger
inequality. We start with

}U2}L2pωq ď C}U}E .
With the inequalities in (2.5.11)-(2.5.12) we get

}U2}L2pωq ď }U2 ´ M2pU2q}L2pωq ` }M2pU2q}L2pωq ď C}U}E . (2.5.13)

Recall that if X is a separable Hilbert space, then the Poincaré-Wirtinger inequality is
valid in W 1,pp0, l;Xq (p P r1,`8s). From (2.5.13) and (2.5.5)3 we obtain›››BU2

Bs1
›››
L2p0,l;pH1p0,aπqq1q

`
›››BU1

Bs2
›››
L2p0,l;pH1p0,aπqq1q

ď C}U}E .

Then the Poincaré-Wirtinger inequality and estimate (2.5.6)1 in H1p0, l; pH1p0, aπqq1q
gives

}U1}L2p0,l;pH1p0,aπqq1q ď }U1 ´ M2pU1q}L2p0,l;pH1p0,aπqq1q ` }M2pU1q}L2p0,l;pH1p0,aπqq1q
ď C}U}E .

The above inequality leads to›››BU1

Bs1
›››
L2p0,l;pH2p0,aπqq1q

ď C}U}E ,

which together with (2.5.5)1 yields

}U3}L2p0,l;pH2p0,aπqq1q ď C}U}E .
This ends the proof of the Lemma.
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Now, consider the field Uε, the mid-surface displacement associated to uε, which belongs
to H. We decompose it as the sum of an inextensional displacement UI,ε and an exten-
sional one UE,ε. By the definition of }¨}E and Lemma 2.1.1 we obtain

}UE,ε}E ď
2ÿ

α,β“1

ˇ̌̌̌ˇ̌̌̌BUε

Bsα ¨ tβ ` BUε

Bsβ ¨ tα
ˇ̌̌̌ˇ̌̌̌
L2pωq

ď Cε.

Lemma 2.5.3 There exists a subsequence of tεu (still denoted tεu) and UE P DE such
that

1

ε
UE,ε,1 á UE,1 weakly in H1p0, l; pH1p0, aπqq1q

1

ε
UE,ε,2 á UE,2 weakly in H1p0, l;L2p0, aπqq

1

ε
UE,ε,3 á UE,3 weakly in L2p0, l; pH2p0, aπqq1q.

Proof. From Lemma 2.5.2, one has

}UE,ε,1}H1p0,l;pH1p0,aπqq1q ` }UE,ε,2}H1p0,l;L2p0,aπqq ` }UE,ε,3}L2p0,l;pH2p0,aπqq1q ď Cε,

which yields the claim.

Going back to the expressions for Zαβ introduced in Lemma 2.3.1 and Proposition 2.4.1
we get with Lemma 2.5.3 that

Zαβ “ 1

2

”BUE

Bsα tβ ` BUE

Bsβ tα
ı
.

2.6 The linear elasticity problem

Let aijkl P L8pY q, i, j, k, l P t1, 2, 3u and it should satisfy both the symmetry condi-
tion

aijklpyq “ ajiklpyq “ aklijpyq, for a.e. y P Y (2.6.1)

and the coercivity condition (c0 ą 0)

aijklpyqτijτkl ě c0τijτij , for a.e. y P Y, (2.6.2)

where τ is any 3 ˆ 3 symmetric real matrix. The coefficients aεijkl of the Hooke’s tensor
for the shell with x “ Φpsq are given by

aεijklpxq “ aijkl

´!s1
ε

)
,
s3
ε

¯
, for a.e. x P Ωε. (2.6.3)

The stress tensor is defined as

σε
ijpvq “ aεijkleklpvq, @v P Vε. (2.6.4)

For a given applied force fε the displacement uε of a shell is the solution to the linear
elasticity problem

´∇x ¨ pσε
xpuεqq “ fε in Qε̊

uε “ 0 on Γ0,ε,
(2.6.5)
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in the strong form. The corresponding weak formulation is given byż
Qε̊

σε
xpuεq : expvqdx “

ż
Qε̊

fεpxqvpxqdx, (2.6.6)

where we can transform it to the reference domain obtainingż
Ωε̊

σεpuεq : epvqdetpt1 ` s3
a

t1|t2|nqds

“
ż
Ωε̊

fεpsqvpsqdetpt1 ` s3
a

t1|t2|nqds.
(2.6.7)

The :-operator denotes the Frobenius scalar product.

2.6.1 Assumptions on the forces

We assume that the force is given by

fεps1, s2, s3q “ ε2fps1, s2q ` εF ps1, s2q ` s3gps1, s2q, for a.e. ps1, s2q P ω,

where f “ f1t1 ` f2t2 ` f3n, pf1, f2, f3q P L2pωq3 and g “ g1t1 ` g2t2, pg1, g2q P L2pωq2.
The force F is chosen such that it only interacts with extensional displacements. First,
in view of Lemma 2.5.2, we take

F1 P L2p0, l;H1p0, aπqq, F2 P L2pωq, F3 P L2p0, l;H2p0, aπqq.
Then let VE P DE and consider

xF, VEy “
ż l

0
xF1, VE,1yH1p0,aπq,pH1p0,aπqq1qds2 `

ż
ω
F2 VE,2 ds1ds2

`
ż l

0
xF3, VE,3yH2p0,aπq,pH2p0,aπqq1qds2.

Due to Lemma 2.5.2, one has for all VE P DE the inequality

|xF, VEy| ď `}F1}L2p0,L;H1p0,aπqq ` }F2}L2pωq ` }F3}L2p0,L;H2p0,aπqq
˘}VE}E . (2.6.8)

Now recall that this field has to satisfy for all V P DI thatż
ω
F ps1, s2q ¨ Vps1, s2qds “ 0.

Hence, for all pV1, V2q P H1
0 p0, aπq ˆ H2

0 p0, aπqż
ω

¨̋
F1ps1, s2q
F2ps1, s2q
F3ps1, s2q

‚̨¨
¨̋ ´sc2V

1
2ps1q ` V1ps1q
V2ps1q

apsc2V 2
2 ps1q ´ V

1
1ps1qq

‚̨ds “ 0.

With partial integration and the boundary conditions for V1 and V2 we getż
ω

”´BF1

Bs1 s
c
2 ` F2 ` a

B2F3

Bs21
sc2

¯
V2 `

´
F1 ` a

BF3

Bs1
¯
V1

ı
ds1ds2 “ 0,

holds for all V1 P H1
0 p0, aπq and V2 P H2

0 p0, aπq. Therefore, the field F P L2pωq3 has to
satisfy

and
M2pF1q ` a

dM2pF3q
ds1

“ 0

dMc
2pF1q
ds1

` M2pF2q ` a
d2Mc

2pF3q
ds21

“ 0.

(2.6.9)
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Remark 2.6.1 For instance take pF2,F3q P L2p0, aπq ˆ H2p0, aπq and set

F ps1, s2q “ sc2

´
´ a

dF3

ds1
ps1qt1 ` F2ps1qt2 ` F3ps1qn

¯
, for a.e. ps1, s2q P ω.

In Lemma 2.9.2 we show that there exists a field F P L2pωq3, with F “ pF11,F12,F22q
such that

xF, V y “
ż
ω

`
F11e11pV q ` F12e12pV q ` F22e22pV q˘

ds1ds2.

Taking the holes into account, we need an additional assumption on the forces F . We
will check this in the proof of the Lemma below.
From now on, we assume that F satisfies (2.6.9) and moreover F P H1pωq3.
Lemma 2.6.1 One hasˇ̌̌ 1

2κ

ż
Qε̊

fε ¨ u dx ´ ε3
´ ż

ωε̊

f ¨ U ds1ds2 ` 1

ε

ż
ωε̊

F ¨ UE ds1ds2

` κ2

3a

ż
ωε̊

gα Uα ds1ds2 ` κ2

3

ż
ωε̊

gα Rα ds1ds2

¯ˇ̌̌
ď Cε5{2`}f}L2pωq ` }g}L2pωq ` }F }L2pωq

˘}epuq}L2pΩε̊ q.

(2.6.10)

Furthermoreˇ̌̌ ż
Qε̊

fε ¨u dx
ˇ̌̌

ď Cε3{2`}f}L2pωq ` }g}L2pωq ` }F3}L2p0,L;H2p0,aπqq ` }F }H1pωq
˘}epuq}L2pΩε̊ q.

(2.6.11)
The constants do not depend on ε.

Proof. Using the decomposition of u we can write (see Remark 2.1.2)ż
Qε̊

fε ¨ u dx “
ż
Ωε̊

fε ¨ u det `
t1 ` s3

a
t1|t2|n˘

ds

“ε32κ

ż
ωε̊

f ¨ U ds1ds2 ` 2κε2
ż
ωε̊

F ¨ UE ds1ds2 ` 2ε3κ3

3a

ż
ωε̊

gα Uα ds1ds2

` 2ε3κ3

3

ż
ωε̊

gα Rα ds1ds2 ` 2ε4κ3

3a

ż
ωε̊

F ¨ R ds1ds2 ` 2ε5κ3

3a

ż
ωε̊

fα Rα ds1ds2

`
ż
Ωε̊

s23
a

g ¨ u ds `
ż
Ωε̊

ε

a
s3F ¨ u ds `

ż
Ωε̊

s3
a
ε2 f3 u ¨ n ds.

(2.6.12)
First, using the estimates (2.1.21)2 and (2.1.24)2 one getsˇ̌̌ ż

Ωε̊

εs23 g ¨ u ds
ˇ̌̌

ď Cε9{2}g}L2pωq}epuq}L2pQε̊ q,ˇ̌̌ ż
Ωε̊

εs3F ¨ u ds
ˇ̌̌

ď Cε7{2}F }L2pωq}epuq}L2pQε̊ q,ˇ̌̌ ż
Ωε̊

ε2s3 f3 u ¨ n ds
ˇ̌̌

ď Cε9{2}f}L2pωq}epuq}L2pQε̊ q,ˇ̌̌ ż
ωε̊

ε4F ¨ R ds1ds2

ˇ̌̌
ď Cε5{2}F }L2pωq}epuq}L2pQε̊ q,ˇ̌̌ ż

ωε̊

ε5fα Rα ds1ds2

ˇ̌̌
ď Cε7{2}F }L2pωq}epuq}L2pQε̊ q.
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Hence, (2.6.10) is proved. For (2.6.11) note that (2.1.24)2 also leads toˇ̌̌
ε32κ

ż
ωε̊

f ¨ U ds1ds2 ` 2ε3κ3

3a

ż
ωε̊

gα Uα ds1ds2 ` 2ε3κ3

3

ż
ωε̊

gα Rα ds1ds2

ˇ̌̌
ď Cε3{2p}f}L2pωq ` }g}L2pωqq}epuq}L2pQε̊ q.

Now, it remains to estimate

ż
ωε̊

F ¨UE ds1ds2. For every function φ in L1pωq, we denote

Mεpφqps1q “ 1

ε2|Y 1|
ż
Y 1

φ
´
ε
”s1
ε

ı
Y 1 ` εz

¯
dz1dz2, for a.e. s1 P pωε.

The function Mεpφq belongs to L1ppωεq (see [15, 16] for the properties of the operator
Mε).
Recall that by (2.1.25), (2.1.24)2, Lemma 2.5.1 and the estimate (2.5.4) one has

}U}E ď C

ε1{2
}epuq}L2pΩε̊ q, }UE}H1pωq ď C

ε3{2 }epuq}L2pΩε̊ q.

Moreover, we get with [16, Proposition 1.38 ]ˇ̌̌ ż
pωε̊

F ¨ UE ds1ds2 ´
ż

pωε̊

F ¨ MεpUEq ds1ds2
ˇ̌̌

ď Cε}∇UE}L2pωq}F }L2pωq,ˇ̌̌ ż
pωε̊

F ¨ MεpUEq ds1ds2 ´
ż

pωε̊

MεpF q ¨ MεpUEq ds1ds2
ˇ̌̌

ď Cε}UE}L2pωq}∇F }L2pωq.

Hence,ˇ̌̌ ż
pωε̊

F ¨ UE ds1ds2 ´
ż

pωε̊

MεpF q ¨ MεpUEq ds1ds2
ˇ̌̌

ď Cε}UE}H1pωq}F }H1pΩq

ď C

ε1{2 }F }H1pωq}epuq}L2pQε̊ q.

Since MεpF q ¨ MεpUEq is constant on every ε-cell, we haveż
pωε̊

MεpF q ¨ MεpUEq ds1ds2 “ |Y 1˚|
|Y 1|

ż
pωε

MεpF q ¨ MεpUEq ds1ds2.

Proceeding as above, one shows thatˇ̌̌ ż
pωε

F ¨ UE ds1ds2 ´
ż

pωε

MεpF q ¨ MεpUEq ds1ds2
ˇ̌̌

ď C

ε1{2 }F }H1pωq}epuq}L2pQε̊ q.

Summarizing the above estimates and using (2.6.8) gives (recall that there are no holes
in Λε) ˇ̌̌ ż

ωε̊

F ¨ UE ds1ds2 ´ |Y 1˚|
|Y 1|

ż
ω
F ¨ UE ds1ds2

ˇ̌̌
ď C

ε1{2 }F }H1pωq}epuq}L2pΩε̊ q,ˇ̌̌ ż
ω
F ¨ UE ds1ds2

ˇ̌̌
ď C

ε1{2
`}F3}L2p0,L;H2p0,aπqq ` }F }H1pωq

˘}epuq}L2pΩε̊ q,

which leads to (2.6.11).

Eventually, using u “ uε as test function in 2.6.6 we obtain

}epuεq}L2pΩεq ď Cε3{2p}f}L2pωq ` }g}L2pωqq.
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2.7 Unfolded limit problems

For every pVE ,Vq in DEˆDI we define the symmetric tensor EpVE ,Vq by

EpVE ,Vq “

¨̊
˚̋̊Z11pVEq ´ y3Λ11pVq Z12pVEq ´ y3Λ12pVq 0

Z12pVEq ´ y3Λ12pVq Z22pVEq ´ y3Λ22pVq 0

0 0 0

‹̨‹‹‚
with

ZαβpVEq “ 1

2

”BVE

Bsα tβ ` BVE

Bsβ tα
ı

and

Λ11pVq “ B2V3

Bs21
´ 1

a

BV1

Bs1 “ B
Bs1

´ BV
Bs1n

¯
, Λ22pVq “ B2V3

Bs22
“ B

Bs2
´ BV

Bs2n
¯
,

Λ12pVq “ B2V3

Bs1Bs2 ´ 1

a

BV1

Bs2 “ B
Bs2

´ BV
Bs1n

¯
.

Denote H1
perpY ˚q the subspace of H1pY ˚q containing the functions, which are G periodic

and
D

.“ DI ˆ DE ˆ L2pΩ;H1
perpY ˚qq3.

For every v “ pVE ,V, pvq P D we consider the symmetric tensor

EpVE ,Vq ` Eyppvq
and the semi-norm

}v}D “ }EpVE ,Vq ` Eyppvq}L2pωˆY ˚q.

Lemma 2.7.1 Given the expressions (2.3.8) for V P DI , there exist c, C P R` such that

c}V}2DI
ď

2ÿ
α,β“1

}ΛαβpVq}2L2pωq ď C}V}2DI
.

Proof. First, one has

2ÿ
α,β“1

}ΛαβpVq}2L2pωq ď C
`}D2V3}L2pωq ` }∇V1}L2pωq

˘
.

This inequality and Lemma 2.5.1 give the inequality on the right-hand side.
We prove the left-hand side of the inequality by contradiction. We assume that there
exists a sequence pVnqnPN in DI , such that

}Vn}DI
“ 1,

2ÿ
α,β“1

}ΛαβpVnq}2L2pωq ÝÑ 0 as n Ñ 8.

By Lemma 2.5.1 and the expressions introduced in (2.5.1), we can also consider a se-
quence pV1,n, V2,nqnPN in H3

0 p0, aπq ˆ H4
0 p0, aπq with

}V1,n}2H3
0 p0,aπq ` }V2,n}2H4

0 p0,aπq “ 1
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and the components Λαβ can be expressed as

Λ11pVnq “ 1

a
psc2V 2

2,nps1q ´ V
1
1,nps1qq ` apsc2V 4

2,nps1q ´ V
3
1,nq,

Λ12pVnq “ 1

a
V

1
2,nps1q ` aV

3
2,nps1q,

Λ22pVnq “ 0.

(2.7.1)

Furthermore, there exists pV1, V2q P H3
0 p0, aπq ˆ H4

0 p0, aπq such that

pV1,n, V2,nq á pV1, V2q weakly in H3
0 p0, aπq ˆ H4

0 p0, aπq.

By Sobolev embedding we get

pV1,n, V2,nq ÝÑ pV1, V2q strongly in H2
0 p0, aπq ˆ H3

0 p0, aπq.

Moreover, since }ΛαβpVnq} ÝÑ 0 for pα, βq P tp1, 1q, p1, 2q, p2, 2qu, we have that

1

a
psc2V 2

2 ps1q ´ V
1
1ps1qq ` apsc2V 4

2 ps1q ´ V
3
1 q “ 0,

1

a
V

1
2ps1q ` aV

3
2 ps1q “ 0.

(2.7.2)

Solving the differential equations with the respective boundary conditions we obtain for
(2.7.2)2 that

V2 “ c3 ` c2 sinps1
a

q ` c1 cosps1
a

q.

Together with V2p0q “ V
1
2p0q “ V

2
2 p0q “ 0 we conclude that V2 “ 0. Plugging that result

into (2.7.2)1, gives
1

a
V

1
1ps1q ` aV

3
1 ps1q “ 0.

With the corresponding boundary condition this yields V1 “ 0 and therefore that
pV1,n, V2,nq converges strongly to p0, 0q in H2

0 p0, aπq ˆ H3
0 p0, aπq.

Considering again equation (2.7.1) with our assumption that }Λ11pVnq}L2pωq ÝÑ 0, we

also get pV 3
1,n, V

4
2,nq ÝÑ p0, 0q strongly in L2p0, aπq ˆ L2p0, aπq.

Then the convergence pV1,n, V2,nq ÝÑ p0, 0q strongly in H3
0 p0, aπq ˆ H4

0 p0, aπq, which
contradicts the fact that }V1}2

H3
0 p0,aπq ` }V2}2

H4
0 p0,aπq “ 1, coming from the assumption

}V1,n}2
H3

0 p0,aπq ` }V2,n}2
H4

0 p0,aπq “ 1 for all n P N.

We define
H1

per,0pY ˚q3 “ tψ P H1
perpY ˚q3|ψ “ 0 on BY ˚u.

Lemma 2.7.2 Consider the space S
.“ R3 ˆ R3 ˆ H1

per,0pY ˚q3. Then

}pτA, τB, pwq}2S “
2ÿ

α,β“1
αďβ

}ταβA ` y3τ
αβ
B ` eαβ,yp pwq}2L2pY ˚q

` }e13,yp pwq}2L2pY ˚q ` }e23,yp pwq}2L2pY ˚q ` }e33,yp pwq}2L2pY ˚q.

defines a norm on S equivalent to the product-norm.
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Proof. We introduce the field Φ P H1pR3q3 given by

Φ1pyq “ y1

´
τ11A ` y3τ

11
B

¯
` y2

´
τ12A ` y3τ

12
B

¯
Φ2pyq “ y2

´
τ22A ` y3τ

22
B

¯
` y1

´
τ12A ` y3τ

12
B

¯
Φ3pyq “ ´

”py1q2
2

τ11B ` py2q2
2

τ22B ` y2y1τ
12
B

ı
.

Hence, we have
}pτA, τB, pwq}S “ }EypΦ ` pwq}L2pY ˚q3ˆ3 .

We will show now that }EypΦ ` pwq}L2pY ˚q3ˆ3 “ 0 implies that Φ “ 0 and pw “ 0.
Consider the case EypΦ` pwq “ 0, which yields that Φ` pw is a rigid displacement. Hence,
there exist a, b P R3 such that

Φ ` pw “ r, with rpyq “
¨̋
a1 ` b2y3 ´ b3y2
a2 ` b3y1 ´ b1y3
a3 ` b1y2 ´ b2y1

‚̨.

Since, pw is a periodic function with periods p1, p2, one has pΦ´ rqpy `piq “ pΦ´ rqpyq
for a.e. y P `

R2z Ť
ξPGpξ ` Sq˘ ˆ p´κ, κq. The two first components yield the equations

τ11A ` y3τ
11
B “ 0, τ12A ` y3τ

12
B “ ´b3,

τ22A ` y3τ
22
B “ 0, τ12A ` y3τ

12
B “ b3,

for a.e. y3 P p´κ, κq.

Therefore, we obtain τ11A “ τ11B “ τ22A “ τ22B “ τ12A “ τ12B “ 0 and b3 “ 0. Now, the
equality of the third component gives b1 “ b2 “ 0. Hence, we conclude that Φ “ 0 and
that r is a constant displacement. Moreover, since pw P H1

per,0pY ˚q3 the displacement
r “ 0 and therefore pw “ 0, which proves that } ¨ }S is a norm.
The proof that there exists a constant C ą 0 such that

C
`|τA| ` |τB| ` } pw}H1pY ˚q

˘ ď }pτA, τB, pwq}S, @pτA, τB, pwqq P S,

is easily done by contradiction.

Lemma 2.7.3 The semi-norm } ¨ }D is a norm equivalent to the product-norm of
DI ˆ DE ˆ L2pΩ;H1

perpY ˚qq3.

Proof. By the definition of } ¨ }DI
, we get that

}v}2D “
2ÿ

α,β“1

}ZαβpVEq ´ y3ΛαβpVq ` eαβ,yppvq}2L2pωˆY ˚q

` 2}e13,yppvq}2L2pωˆY ˚q ` 2}e23,yppvq}2L2pωˆY ˚q ` 2}e33,yppvq}2L2pωˆY ˚q.

Furthermore, note that we have

}EpVE ,Vq}2L2pΩq “
2ÿ

α,β“1

ż
Ω

pZαβpVEq ` y3ΛαβpVqq2ds

“
2ÿ

α,β“1

ż
Ω
ZαβpVEq2 ` py3ΛαβpVqq2ds

“ 2κ
2ÿ

α,β“1

}ZαβpVEq}2L2pωq ` 2κ3

3

2ÿ
α,β“1

}ΛαβpVq}2L2pωq.
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With Lemma 2.7.2 and the equivalence of norms we obtain that

cp
2ÿ

α,β“1

}ZαβpVEq}L2pωq `
2ÿ

α,β“1

}ΛαβpVq}L2pωq ` }pv}L2pωˆY ˚qq ď }V}DI

ď Cp
2ÿ

α,β“1

}ZαβpVEq}L2pωq `
2ÿ

α,β“1

}ΛαβpVq}L2pωq ` }pv}L2pωˆY ˚qq.

Moreover, we get that
2ÿ

α,β“1

}ZαβpVEq}2L2pωq “ }VE}2E .
Besides, Lemma 2.7.1 yields

c}V}2DI
ď

2ÿ
α,β“1

}ΛαβpVq}2L2pωq ď C}V}2DI
.

Finally, we conclude

c
´

}VE}E ` }V}DI
` }pv}L2pωˆY ˚q

¯
ď }v}D ď C

´
}VE}E ` }V}DI

` }pv}L2pωˆY ˚q
¯
.

Theorem 2.7.1 Let uε be the solution of the elasticity problem (2.6.6). Then the fol-
lowing convergence holds:

1

ε
Πε

`
epuεq˘ Ñ EpUE ,Uq ` Eyppuq strongly in L2pω ˆ Y ˚q9, (2.7.3)

where pUE ,U , puq P D is the unique solution of the rescaled and unfolded problem

1

2κ

ż
ωˆY ˚

aijkl

´
EijpUE ,Uq ` Ey,ijppuq

¯ ´
EklpVE ,Vq ` Ey,klppvq

¯
ds1dy

“ |Y 1˚|
ż
ω

´
f ¨ V ` κ2

3a
gαVα ´ κ2

3
gα

BV
Bsαn

¯
ds1, @pVE ,V, pvq P D.

(2.7.4)

Proof. Take v “ pVE ,V, pvq such that

VE P C1pωq3 X DE , V P C2pωq3 X DI ,

and consider the test function vε “ v1ε ` v2ε , where

v1εpsq “ Vps1q ` εVEps1q ´ s3

”BpV ` εVEq
Bsα ps1q ¨ nps1q

ı
tαps1q,

v2εpsq “ ε2pv´
s1,

!s

ε

)¯
,

for a.e. s P Ωε,

with pv P C1pω;H1
perpY ˚q3q satisfying pvp0, s2, yq “ pvpaπ, s2, yq for a.e. ps2, yq P p0, LqˆY ˚.

We only calculate the elements e12pv1εq and e13pv1εq, since the rest follows in a similar
way. We obtain

e12pv1εq “1

2

” a

a ` s3

Bv1ε
Bs1 t2 ` Bv1ε

Bs2 t1
ı

“ 1

2

a

a ` s3

”Bv1ε
Bs1 t2 ` p1 ` s3

a
qBv1ε

Bs2 t1
ı

“1

2

a

a ` s3

„BV2

Bs1 ` ε
BVE,2

Bs1 ´ s3

´ B2V3

Bs1Bs2 ` ε
B2VE,3

Bs1Bs2
¯

` `
1 ` s3

a

˘´BV1

Bs2 ` ε
BVE,1

Bs2
¯

´ `
s3 ` s23

a

˘´ B2V3

Bs1Bs2 ´ 1

a

BV1

Bs2 ` ε
´B2VE,3

Bs1Bs2 ´ 1

a

BVE,1

Bs2
¯¯j

.
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Applying the rescaling-unfolding operator Πε and dividing by ε yields together with the
properties for DI that

1

ε
Πεpe12pv1εqq “1

2

a

a ` εy3

„´BVE,2

Bs1 ` BVE,1

Bs2
¯

´ 2y3
B2V3

Bs1Bs2 ` 2
y3
a

BV1

Bs2 ` εy3
a

BVE,1

Bs2
´ εy3

a

B2V3

Bs1Bs2 ` εy3
a

BV1

Bs2 ´ εy3
B2VE,3

Bs1Bs2 ´ pε ` ε2

a
qpB2VE,3

Bs1Bs2 ´ 1

a

BVE,1

Bs2 q
j

ÝÑ 1

2
Z12pVEq ´ y3

´ B2V3

Bs1Bs2 ´ BV1

Bs2
¯

strongly in L2pω ˆ Y ˚q.

For e13pv1εq we then obtain

e13pv1εq “1

2

” a

a ` s3

Bv1ε
Bs1n ` Bv1ε

Bs3 t1
ı

“ 1

2

a

a ` s3

”Bv1ε
Bs1n ` p1 ` s3

a
qBv1ε

Bs3 t1
ı

“1

2

a

a ` s3

«´BV3

Bs1 ´ 1

a
V1

¯
` ε

´BVE,3

Bs1 ´ 1

a
V1

¯
` s3

a

´BV3

Bs1 ´ 1

a
V1

¯
` s3ε

a

´BVE,3

Bs1 ´ 1

a
V1

¯
` p1 ` s3

a
q
ˆ

´
´BV3

Bs1 ´ 1

a
V1

¯
´ ε

´BVE,3

Bs1 ´ 1

a
V1

¯˙ff
“ 0,

by summing up all the terms in the square bracket. In conclusion we get that

1

ε
Πεpepv1εqq ÝÑ EpVE ,Vq strongly in L2pω ˆ Y ˚q9.

In the next step we consider eijpv2εq, where we again just examine e12 and e13. One has

e12pv2εqpsq “ε2

2

´ a

a ` s3

Bpv
Bs1 t2 ` Bpv

Bs2 t1
¯´

s1,
!s

ε

)¯
` ε

2

´ a

a ` s3

Bpv
By1 t2 ` Bpv

By2 t1
¯´

s1,
!s

ε

)¯
and

e13pv2εqpsq “ε2

2

´ a

a ` s3

Bpv
Bs1n ` Bpv

Bs3 t1
¯´

s1,
!s

ε

)¯
` ε

2

´ a

a ` s3

Bpv
By1n ` Bpv

By3 t1
¯´

s1,
!s

ε

)¯
.

Considering now
1

ε
Πεpe12pv2εqq and

1

ε
Πεpe13pv2εqq, we obtain

1

ε
Πεpe12pv2εqq ÝÑ ey,12ppvq strongly in L2pω ˆ Y ˚q,

1

ε
Πεpe13pv2εqq ÝÑ ey,13ppvq strongly in L2pω ˆ Y ˚q,

which then yields

1

ε
Πεpepv2εqq ÝÑ Eyppvq strongly in L2pω ˆ Y ˚q9.

Therefore,

1

ε
Πεpepvεqq ÝÑ EpVE ,Vq ` Eyppvq strongly in L2pω ˆ Y ˚q9.
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We plug in our test function vε into the weak formulation (2.6.6), apply the rescaling-
unfolding operator on both sides, divide by 2κε3 and pass to the limit. We then obtain
the formulation (2.7.4) with respect to the chosen test function (regarding the right-hand
side, we use the results from Lemma 2.6.1 and [16, Proposition 4.8] to represent it as
an integral over the whole domain ω in the limit). Then, by density of C1pωq3 X DE in
DE , C2pωq3 X DI in DI and C1pω;H1

perpY ˚q3q in L2pω;H1
perpY ˚q3q, this yields (2.7.4) for

every pVE ,V, pvq P D.
The existence and uniqueness is a consequence of the coercivity of aijkl, Lemma 2.7.3
and the Lax-Milgram Lemma.

2.8 Homogenization of the shell

In this section we want to express the warping-microscopic displacement pu with respect
to the macroscopic UE and U . Therefore, we choose V “ 0 in equation (2.7.4), which
leads to ż

Y ˚
aijkl

´
EijpUE ,Uq ` Ey,ijppuq

¯
Ey,klppvqdy “ 0, @pv P H1

perpY ˚q3.

Hence, we rewrite pu in terms of pUE ,Uq. Thus, we define the 3 matrices

M11 “
¨̋
1 0 0
0 0 0
0 0 0

‚̨, M12 “ M21 “
¨̋
0 1 0
1 0 0
0 0 0

‚̨, M22 “
¨̋
0 0 0
0 1 0
0 0 0

‚̨,

and introduce the 6 distinct correctors (pα, βq P t1, 2u2)

Ą
χαβ
E P H1

perpY ˚q3, Ą
χαβ
I P H1

perpY ˚q3, where Ąχ12
E “ Ąχ21

E , Ąχ12
I “ Ąχ21

I ,

which are defined by

ż
Y ˚

aijkl

´
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

¯
Ey,klp rψqdy “ 0,ż

Y ˚
aijkl

´
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

¯
Ey,klp rψqdy “ 0,

@ rψ P H1
perpY ˚q3. (2.8.1)

Hence, we are able to express pu as

pups1, yq “ eαβpUEqps1qĄ
χαβ
E pyq ` ΛαβpUqps1qĄ

χαβ
I pyq, for a.e. ps1, yq P ω ˆ Y ˚.

Remark 2.8.1 The cell problems defined in (2.8.1) are uniquely solvable up to an ad-
ditive constant and unique in H1

per,r0spY ˚q, see e.g. [48, chapter 6]. Here,

H1
per,r0spY ˚q “

!
ψ P H1

perpY ˚q|
ż
Y ˚

ψ dy “ 0
)
.
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2.8.1 The limit problems in the shell’s mid surface

Theorem 2.8.1 The limit displacement pUE ,Uq P DE ˆ DI solves the homogenized
problemż

ω

”
ahomαβα1β1eαβpUEqeα1β1pVEq ` bhomαβα1β1

´
eαβpUEqΛα1β1pVq

` ΛαβpUqeα1β1pVEq
¯

` chomαβα1β1ΛαβpUqΛαβpVq
ı
ds1

“|Y 1˚|
|Y 1|

´ ż
ω

´
f ¨ V ` κ2

3a
gαVα ´ κ2

3
gα

BV
Bsαn

¯
ds1 ` xF,VEy

¯
,

@pVE ,Vq P DE ˆ DI ,

(2.8.2)

where

ahomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

ı
Mα1β1

kl dy,

bhomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

ı
Mα1β1

kl dy,

chomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

ı
y3M

α1β1
kl dy.

Proof. Consider equation (2.7.4) and choose the test function such that pVE ,Vq P DE ˆ
DI and pv “ 0. Moreover, with the expression for pu we obtain for the left-hand side in
(2.7.4)

1

2κ

ż
ωˆY

aijklpyq
´
EijpUE ,Uq ` Ey,ijppuq

¯
EklpVE ,Vqds1dy.

Hence,ż
ωˆY ˚

aijklpyq
”
eαβpUEqps1qpMαβ

ij ` Ey,ijpĄ
χαβ
E qpyqq ` ΛαβpUqps1qpy3Mαβ

ij ` Ey,ijpĄ
χαβ
I qpyqq

ı
ˆ Mα1β1

kl

”
eα1β1pVM qps1q ` y3Λα1β1pVqps1q

ı
ds1dy

“|Y ˚|
´ ż

ω

´
f ¨ V ` κ2

3a
gαVα ´ κ2

3
gα

BV
Bsαn

¯
ds1 ` xF,VEy

¯
.

Computing the expressions yields,

1

|Y ˚|
ż
ωˆY ˚

aijklpyqeαβpUEq
´
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

¯
Mα1β1

kl eα1β1pVEq

`aijklpyqΛαβpUq
´
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

¯
Mα1β1

kl eα1β1pVEq
`aijklpyqeαβpUEq

´
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

¯
y3M

α1β1
kl Λα1β1pVq

`aijklpyqΛαβpUq
´
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

¯
y3M

α1β1
kl Λα1β1pVq dy ds1

“|Y 1˚|
|Y 1|

´ ż
ω

´
f ¨ V ` κ2

3a
gαVα ´ κ2

3
gα

BV
Bsαn

¯
ds1 ` xF,VEy

¯
.

With the expression for the homogenized coefficients we end up with equation (2.8.2).

Remark 2.8.2 Given the Hooke’s tensor as aijklpyq “ aijklpy1, y2q, i.e., being indepen-
dent of y3, we can conclude that bαβα1β1 “ 0, for all α, β, α1, β1 P t1, 2u. In those cases
the model only consists of membrane and bending effects.
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Lemma 2.8.1 Let S2 bet the set of 2 ˆ 2 symmetric matrices. There exists a constant
C ą 0 such that the homogenized coefficients satisfy for all pτE , τIq P S2 ˆ S2

ahomαβα1β1 τ
αβ
E τα

1β1
E ` bhomαβα1β1

`
ταβE τα

1β1
I `ταβI τα

1β1
E

˘ `chomαβα1β1τ
αβ
I τα

1β1
I ě C

`
ταβE ταβE `ταβI ταβI

˘
.

Proof. First, we note that with the variational formulation (2.8.1) the homogenized
coefficients read as

ahomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

ı”
Mα1β1

kl ` Ey,klpĆ
χα1β1
E q

ı
dy,

bhomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

ı”
Mα1β1

kl ` Ey,klpĆ
χα1β1
E q

ı
dy

“ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
Mαβ

ij ` Ey,ijpĄ
χαβ
E q

ı”
y3M

α1β1
kl ` Ey,klpĆ

χα1β1
I q

ı
dy,

chomαβα1β1 “ 1

|Y ˚|
ż
Y ˚

aijklpyq
”
y3M

αβ
ij ` Ey,ijpĄ

χαβ
I q

ı”
y3M

α1β1
kl ` Ey,klpĆ

χα1β1
I q

ı
dy.

For every pτE , τIq P S2 ˆ S2, one has

ahomαβα1β1τ
αβ
E τα

1β1
E ` bhomαβα1β1pταβE τα

1β1
I ` ταβI τα

1β1
E q ` chomαβα1β1τ

αβ
I τα

1β1
I

“ 1

|Y ˚|
ż
Y ˚

aijkl

”
Mij ` Ey,ijpΨq

ı”
Mkl ` Ey,klpΨq

ı
dy,

with

M “ pταβE ` y3τ
αβ
I qMαβ and Ψ “ ταβE

Ą
χαβ
E ` ταβI

Ą
χαβ
I .

By the coercivity of aijkl, see (2.6.2), we obtainż
Y ˚

aijklpyq
”
Mij ` Ey,ijpΨq

ı”
Mkl ` Ey,klpΨq

ı
dy

ě c0

ż
Y ˚

”
Mij ` Ey,ijpΨq

ı”
Mij ` Ey,ijpΨq

ı
dy.

Then Lemma 2.7.2 yields together with the equivalence of the norms that for all pτE , τIq P
S2 ˆ S2 ż

Y ˚

”
Mij ` Eij,ypΨq

ı”
Mij ` Eij,ypΨq

ı
dy ě Cp|τE |2 ` |τI |2 ` }Ψ}2L2pY ˚qq

ě C
`
ταβE ταβE ` ταβI ταβI

˘
.

With that Lemma we conclude that the left-hand side of (2.8.2) is a coercive and bounded
bilinear form. Hence, we obtain with the Lax-Milgram Lemma that it is uniquely solv-
able.

2.9 Different boundary conditions

In this section we want to emphasize on a change of the boundary conditions, such that
the previously free part is clamped, i.e., Γ0 “ φpr0, aπs ˆ t0u Y r0, aπs ˆ tluq. We may
note, that all presented estimates and resulting limits are not affected by the change of
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boundary conditions until we consider the split of U “ UI ` UE . As in (2.5.1), we first
obtain that UI can be presented as

U1ps1, s2q “ ´sc2U
1
2ps1q ` U1ps1q,

U2ps1, s2q “ U2ps1q,
U3ps1, s2q “ a

`
sc2U

2
2 ps1q ´ U 1

1ps1q˘
,

U1 P H1
0 p0, aπq, U2 P H2

0 p0, aπq.

With respect to our new boundary conditions we need that

U2ps1, 0q “ U2ps1, lq “ 0, for a.e. s1.

Hence, we obtain
U2ps1q “ 0, for a.e. s1.

With the same reasoning we conclude that

U1ps1q “ 0, for a.e. s1,

and therefore we see that DI “ DI “ t0u.

Remark 2.9.1 In the applied forces we consider F such that

F1 P L2p0, l;H1p0, aπqq,
F2 P L2pωq,
F3 P L2p0, l;H2p0, aπqq.

(2.9.1)

In the case of a fully clamped shell along Bω the assumptions on the forces do not change
and we obtain DI “ DI “ 0. Hence, we immediately get equation (2.9.2).

Lemma 2.9.1 For every U in DE, where Γ0 “ Bω, one has

}U2}H1p0,l;L2p0,aπqq ` }U1}H1p0,l;pH1p0,aπqq1q ` }U3}L2p0,l;pH2p0,aπqq1q ď C}U}E .

Proof. This estimate is an immediate consequence of Lemma 2.5.2 and the fact that
DE “ H1

0 pωq ˆ H1
0 pωq ˆ L2pωq.

If we consider the linear elasticity problem presented in section 2.6 and passing to
the limit, as presented earlier, we obtain that the limit homogenized equation is given
by ż

ω
ahomαβα1β1eαβpUEqeα1β1pVEqds1 “ xF,VEy, @VE P DE . (2.9.2)

Now, we show that xF,VEy can be expressed in terms of eα1β1pVEq for every V P DE .
Denote with F and rF the fields, which are defined by

Fp¨, 0q “ 0,
BF
Bs2 “ F,

rFp¨, 0q “ 0,
B rF
Bs2 “ F .

Recall that the components of F are given by (2.9.1).
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Lemma 2.9.2 For every V P DE one has

xF,VEy “
ż
ω

`
F11e11pV q ` F12e12pV q ` F22e22pV q˘

ds1ds2,

where

F11 “ aF3, F12 “ ´2pF1 ` aB1F3q, F22 “ ´F2 ` B1 rF1 ` aB11 rF3.

Proof. Consider V P DE . We get thatż
ω
F3 V3 ds1ds2 “a

ż
ω
F3 e11pV q ds1ds2 ´ a

ż
ω
F3 B1V1 ds1ds2,

“a

ż
ω
F3 e11pV q ds1ds2 ` a

ż
ω

B1F3 V1 ds1ds2.

Then ż
ω

pF1 ` aB1F3qV1 ds1ds2 “ ´
ż
ω

`
F1 ` aB1F3

˘ B2V1 ds1ds2

“ ´ 2

ż
ω

`
F1 ` aB1F3

˘
e12pV q ds1ds2

`
ż
ω

`
F1 ` aB1F3

˘ B1V2 ds1ds2

“ ´ 2

ż
ω

`
F1 ` aB1F3

˘
e12pV q ds1ds2

´
ż
ω

`B1F1 ` aB11F3

˘
V2 ds1ds2

and finallyż
ω

`
F2 ´ B1F1 ´ aB11F3

˘
V2 ds1ds2 “ ´

ż
ω

`
F2 ´ B1 rF1 ´ aB11 rF3

˘ B2V2 ds1ds2

With those calculations we obtain for every V in DEż
ω
F ¨ V ds1ds2

“
ż
ω

`
F1V1 ` F2V2 ` F3V3

˘
ds1ds2

“
ż
ω

`pF1 ` aB1F3qV1 ` F2V2 ` aF3e11pV q˘
ds1ds2

“
ż
ω

` ´ 2pF1 ` aB1F3qe12pV q ` pF2 ´ B1F1 ´ aB11F3qV2 ` aF3e11pV q˘
ds1ds2

“
ż
ω

` ´ 2pF1 ` aB1F3qe12pV q ` p´F2 ` B1 rF1 ` aB11 rF3qe22pV q ` aF3e11pV q˘
ds1ds2.

We conclude the proof by the density of DE in DE .
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3 Analytic Solution to Pinching a
Homogeneous Shell

In the previous chapter we have started with the full 3D linear elasticity problem for a
heterogeneous shell and reduced it to an equivalent homogeneous 2D formulation, where
the effective properties are obtained by six auxiliary cell experiments. Our goal in this
chapter is to derive an analytic solution to the homogenized problem for a point load,
which we call in the following a pinching load, acting on the shell. Usually, this kind
of load is Dirac type and does not fit to the derivation in chapter 2. We overcome this
problem by substituting the pinching with an approximated load on a small rectangular
strip later defined in the chapter. Then we transform the weak formulation back into
its strong form. This yields a system of three differential equations, which have to be
solved simultaneously. Next step is to use Airy’s stress function ansatz, see for example
[37] and [43], such that we get a single 8th order PDE, which describes the effects of
bending w.r.t. the described pinching load. After that we closely follow the procedure
presented in [62], where the author considers an isotropic shell, and most importantly
[33], where a full cylindrical orthotropic shell with opposite pinching loads is considered.
We will see that one can easily implement the presented Fourier transform and series
ansatz to get the solution for our half-cylindrical shell, where we clamp the lateral
boundary. After that we investigate the general structure of the analytic solution by
considering different parameters and locations of the load. In the end we solve the weak
formulation numerically via the finite element solver FEniCS, [2], and compare both
solutions with each other. Moreover, we verify with ANSYS the derivation from section
2.9. The analytic solution is used in chapter 5 as the objective functional, which should
be minimized with respect to the underlying design space.

3.1 Deriving the strong formulation

We proceed with the homogenized equation for shells having bhomαβα1β1 “ 0, i.e., where the
Hooke’s tensor is constant in the y3 direction as mentioned in remark 2.8.2. This yields
the weak formulation of the formż

ω

”
ahomαβα1β1eαβpUEqeα1β1pVEq ` chomαβα1β1ΛαβpUqΛαβpVq

ı
ds1

“
ż
ω

´
f ¨ V ` κ2

3a
gαVα ´ κ2

3
gα

BV
Bsαn

¯
ds1 ` xF,VEy,

@pVE ,Vq P DE ˆ DI .

(3.1.1)

The effective properties are obtained as presented in the previous chapter. Moreover,
we have seen that it is necessary in our analysis to decompose the displacements into
an inextensional and an extensional one. For simplicity, we introduce the complete
displacement U “ UE `UI . Since we want to study the effects of a pinching load, which
only acts in the shell’s normal direction, we set the surface force g “ 0. The volumetric
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forces f and F are put together to a single load still denoted as f . Hence, given some
q P L2pωq we take f “ q ¨ n. Therefore, (3.1.1) reduces toż

ω

”
ahomαβα1β1eαβpUqeα1β1pVq ` chomαβα1β1ΛαβpUqΛαβpVq

ı
ds1 “

ż
ω
q ¨ V3 ds

1,

@V P rH1
Γ0

pωqs2 ˆ H2
Γ0

pωq.
(3.1.2)

Remark 3.1.1 In the following we compare the obtained limit model with the Koiter
shell equation. Hence, throughout this chapter we assume that the shell’s thickness is
denoted by h ą 0 and fixed.

Remark 3.1.2 In the derivation of the homogenized 2D limit problem (2.8.2), we ini-
tially scaled the forces such that we have no dependencies on ε in the limit. If we consider
the forces without the scaling assumptions, therefore being of order Op1q, we obtain an
ε dependency in our left-hand side. Consequently, due to the estimates (2.1.24) and for
the extensional displacements (2.5.4) we get after applying the rescaling-unfolding oper-
ator Πε, that the membrane part is scaled with ε, while the bending part is of order ε3.
Thus, the so received weak formulation coincides in the isotropic case with the Koiter
shell equation as shown in [14, chapter 7] applied to the geometry of a cylindrical half
shell. There the effective properties are calculated with respect to the Lamé constants λ
and μ by

aαβστ “ 2
λμ

λ ` 2μ
aαβaστ ` μpaασaβτ ` aατaβσq

and the full equation is given by

U P V “ tη P H1pωq ˆ H1pωq ˆ H2pωq|η “ 0 on γ0uż
ω

´
haαβστ γστ pUqγαβpVq ` h3

12
aαβστ ρστ pUqραβpVqds1 “

ż
ω
fVds1, @V P V.

The appearing operators are derived for general shells as

γαβpUq “ 1

2

ˆBUα

Bsβ ` BUβ

Bsα
˙

´ Γσ
αβUσ ´ bαβU3,

ραβpUq “ B2U3

BsαBsβ ´ Γσ
αβ

BU3

Bsσ ´ bσαbσβU3 ` bσα

ˆBUσ

Bsβ ´ Γτ
βσUτ

˙
` bτβ

ˆBUτ

Bsα ´ Γσ
ατUσ

˙
`

ˆ Bbτβ
Bsα ` Γτ

ασb
σ
β ´ Γσ

αβb
τ
σ

˙
Uτ ,

where Γσ
αβ are the Christoffel symbols, aαβ the contravariant components of the metric

tensor, bαβ the covariant components of the curvature tensor and bβα the mixed compo-
nents of the curvature tensor. Considering now the cylindrical shell geometry we obtain
that

Γσ
αβ “ 0, bαβ “ 0, aαβ “ δαβ for all α, β, σ P t1, 2u,

b11 “ ´1

a
, b21 “ b12 “ b22 “ 0.

Here δαβ denotes the Kronecker delta. Due to the equivalence of the derived model in
chapter 2 to the Koiter shell we can continue to transform the weak formulation (3.1.2)
back into its corresponding strong form. Moreover, we want to mention that a general
derivation together with error estimates is presented in [34]. It is worth noting that the
bending part coincides with the energy formulation in [37, chapter 9] for pure bending.
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Lemma 3.1.1 Given the weak formulation (3.1.2) for an orthotropic homogeneous half-
cylindrical shell we obtain the strong formulation as a system of the three PDEs

E2

1 ´ ν12ν21

B2U2

Bs22
` G

B2U2

Bs21
`

´ E1ν21
1 ´ ν12ν21

` G
¯ B2U1

Bs1Bs2 ` E1ν21
1 ´ ν12ν21

1

a

BU3

Bs2 “ 0,

E1

1 ´ ν12ν21

´B2U1

Bs21
` 1

a

BU3

Bs1
¯

` E1ν21
1 ´ ν12ν21

B2U2

Bs1Bs2 ` G
´B2U1

Bs22
` B2U2

Bs1Bs2
¯

` E1h
2

12p1 ´ ν12ν21q
´

´ 1

a

B3U3

Bs31
` 1

a2
B2U1

Bs21
¯

´ E1h
2ν21

12p1 ´ ν2q
1

a

B3U3

Bs1Bs22
`4Gh2

12

´
´ 1

a

B3U3

Bs1Bs22
` 1

a2
B2U1

Bs22
¯

“ 0,

E1

1 ´ ν12ν21

´1

a

BU1

Bs1 ` 1

a2
U3

¯
` E1ν21

1 ´ ν12ν21

1

a

BU2

Bs2 ` E1h
2

12

´B4U3

Bs41
´ 1

a

B3U1

Bs31
¯

`E1ν21h
2

12

´ B4U3

Bs21Bs22
´ 1

a

B3U1

Bs1Bs22
¯

` E1ν21h
2

12

B4U3

Bs21Bs22
`E2h

2

12

B4U3

Bs42
` 4Gh2

12

´ B4U3

Bs21Bs22
´ 1

a

B3U1

Bs1Bs22
¯

“ q

h
,

(3.1.3)

where E1, E2 are the orthotropic Young’s moduli, corresponding to the directions s1 and
s2, ν12, ν21 the Poisson’s ratio and G is the shear modulus.

Proof. Since we have for orthotropic materials that ahom1211 “ ahom1222 “ chom1211 “ chom1222 “ 0 we
consider the expressions ΛαβpUqΛα1β1pVq and ZαβpUqZα1β1pVq with non-zero coefficients
and perform partial integrations, such that we get rid of the derivatives for V P C8

0 pRq3.
Due to the properties of V we obtainż

ω
Z11pUqZ11pVqds1 “

ż
ω

´B2U1

Bs21
V1 ´ 1

a

BU3

Bs1 V1 ` 1

a

BU1

Bs1 V3 ` 1

a2
U3V3ds

1,ż
ω
Z11pUqZ22pVqds1 “

ż
ω

´ B2U1

Bs1Bs2V2 ´ 1

a

BU3

Bs2 V2ds
1,ż

ω
Z22pUqZ11pVqds1 “

ż
ω

´ B2U2

Bs1Bs2V1 ` 1

a

BU2

Bs2 V3ds
1,ż

ω
Z22pUqZ22pVqds1 “

ż
ω

´B2U2

Bs22
V2ds

1,ż
ω
Z12pUqZ12pVqds1 “ 1

4

ż
ω

´B2U1

Bs22
V1 ´ B2U2

Bs1Bs2V1 ´ B2U1

Bs1Bs2V2 ´ B2U2

Bs21
V2ds

1,ż
ω
Λ11pUqΛ11pVqds1 “

ż
ω

B4U3

Bs41
V3 ´ 1

a

B3U1

Bs31
V3 ` 1

a

B3U3

Bs31
V1 ´ 1

a2
B2U1

Bs21
V1ds

1,ż
ω
Λ11pUqΛ22pVqds1 “

ż
ω

B4U3

Bs21Bs22
V3 ´ 1

a

B3U1

Bs1Bs22
V3ds

1,ż
ω
Λ22pUqΛ11pVqds1 “

ż
ω

B4U3

Bs21Bs22
V3 ` 1

a

B3U3

Bs1Bs22
V1ds

1,ż
ω
Λ22pUqΛ22pVqds1 “

ż
ω

B4U3

Bs42
V3ds

1,ż
ω
Λ12pUqΛ12pVqds1 “

ż
ω

B4U3

Bs21Bs22
V3 ´ 1

a

B3U1

Bs1Bs22
V3 ` 1

a

B3U3

Bs1Bs22
V1 ´ 1

a2
B2U1

Bs22
V1ds

1.

(3.1.4)
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Due to the symmetry condition we have ahom1212 “ ahom2112 “ ahom1221 “ ahom2121 and chom1212 “
chom2112 “ chom1221 “ chom2121. In the next step we collect the terms appearing with each Vi,
which then yields the system of three equations. We start with terms involving V2,
where we only have membrane effects and obtain the equation

ahom1122

´
´ B2U1

Bs1Bs2 ´ 1

a

BU3

Bs2
¯

` ahom2222 ´ B2U2

Bs22
` ahom1212

´
´ B2U1

Bs1Bs2 ´ B2U2

Bs21
¯

“ 0.

We can express the coefficients ahomαβα1β1 in terms of the orthotropic Young’s moduli E1,
E2 and Poisson’s ratio ν12, ν21 together with the shear modulus G. Thus, having from
[50, section 3.3] that

ahom1122 “ ν21E1h

p1 ´ ν12ν21q ,

ahom2222 “ E2h

p1 ´ ν12ν21q ,
ahom1212 “ Gh,

the equation can be written as

ν21E1h

1 ´ ν12ν21

´ B2U1

Bs1Bs2 ` 1

a

BU3

Bs2
¯

` E2h

1 ´ ν12ν21

B2U2

Bs22
` Gh

´ B2U1

Bs1Bs2 ` B2U2

Bs21
¯

“ 0,

which yields by some simplifications

E2

1 ´ ν12ν21

B2U2

Bs22
` G

B2U2

Bs21
`

´ E1ν21
1 ´ ν12ν21

` G
¯ B2U1

Bs1Bs2 ` E1ν21
1 ´ ν12ν21

1

a

BU3

Bs2 “ 0. (3.1.5)

This concludes the first equation in (3.1.3). We continue with the terms involving V1,
where we do not only have membrane effects, but also bending terms. Going through
all expressions in (3.1.4) we obtain

ahom1111

´
´ B2U1

Bs21
´ 1

a

BU3

Bs1
¯

´ ahom2211

B2U2

Bs1Bs2 ` ahom1212

´
´ B2U1

Bs22
´ B2U2

Bs1Bs2
¯

` chom1111

´1

a

B3U3

Bs31
´ 1

a2
B2U1

Bs21
¯

` chom2211

1

a

B3U3

Bs1Bs22
` 4chom1212

´1

a

B3U3

Bs1Bs22
´ 1

a2
B2U1

Bs22
¯

“ 0.

Again from [50] we have that

ahom1111 “ E1h

12p1 ´ ν12ν21q , ahom2211 “ ν21E1h

12p1 ´ ν12ν21q ,

chom1111 “ E1h
3

12p1 ´ ν12ν21q , chom2211 “ E1ν21h
3

12p1 ´ ν12ν21q , chom1212 “ Gh3

12
,

and plugging these results into the previous equation while dividing it by h yields

E1

1 ´ ν12ν21

´B2U1

Bs21
` 1

a

BU3

Bs1
¯

` ν21E1

1 ´ ν12ν21

B2U2

Bs1Bs2 ` G
´B2U1

Bs22
` B2U2

Bs1Bs2
¯

` E1h
2

12p1 ´ ν12ν21q
´

´ 1

a

B3U3

Bs31
` 1

a2
B2U1

Bs21
¯

´ ν21E1h
2

12p1 ´ ν12ν21q
1

a

B3U3

Bs1Bs22
`4Gh2

12

´
´ 1

a

B3U3

Bs1Bs22
` 1

a2
B2U1

Bs22
¯

“ 0.

(3.1.6)
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For the last part we collect the remaining terms with V3 and together with the non-zero
right-hand side we obtain

ahom1111

´1

a

BU1

Bs1 ` 1

a2
U3

¯
`ahom2211

1

a

BU2

Bs2 `chom1111

´B4U3

Bs41
´ 1

a

B3U1

Bs31
¯

`chom1122

´ B4U3

Bs21Bs22
´ 1

a

B3U1

Bs1Bs22
¯

` chom2211

B4U3

Bs21Bs22
` chom2222

B4U3

Bs42
` 4chom1212

´ B4U3

Bs21Bs22
´ 1

a

B3U3

Bs1Bs22
¯

“ q.

We insert the expressions for the effective properties and divide both sides by h, such
that we get

E1

1 ´ ν12ν21

´1

a

BU1

Bs1 ` 1

a2
U3

¯
` ν21E1

1 ´ ν12ν21

1

a

BU2

Bs2 ` E1h
2

12

´B4U3

Bs41
´ 1

a

B3U1

Bs31
¯

`ν21E1h
2

12

´ B4U3

Bs21Bs22
´ 1

a

B3U1

Bs1Bs22
¯

` ν21E1h
2

12

B4U3

Bs21Bs22
`E2h

2

12

B4U3

Bs42
` 4Gh2

12

´ B4U3

Bs21Bs22
´ 1

a

B3U3

Bs1Bs22
¯

“ q

h
,

(3.1.7)

which concludes our claim.

Remark 3.1.3 At this point we have a model similar to the one presented in [56].
Anyhow, we want to further simplify it as in [59, Art. 121] and [62] for a better symbolic
treatment in chapter 5.

By the remarks given in [62] and [59, p. 513] we have that U1 and U2 are of the orderb
hU3
a . Therefore, we can neglect the last three terms in the second equation of (3.1.3),

which arose from the bending effects, and the third order terms in the third equation of
(3.1.3). Hence, we can simplify the system to

E2

1 ´ ν12ν21

B2U2

Bs22
` G

B2U2

Bs21
`

ˆ
ν21E1

1 ´ ν12ν21
` G

˙ B2U1

Bs1Bs2 ` ν21E1

1 ´ ν12ν21

1

a

BU3

Bs2 “ 0

E1

1 ´ ν12ν21

ˆB2U1

Bs21
` 1

a

BU3

Bs1
˙

` ν21E1

1 ´ ν12ν21

B2U2

Bs1Bs2 ` G

ˆB2U1

Bs22
` B2U2

Bs1Bs2
˙

“ 0

E1

1 ´ ν12ν21

ˆ
1

a

BU1

Bs1 ` 1

a2
U3

˙
` ν21E1

1 ´ ν12ν21

1

a

BU2

Bs2 ` E1h
2

12p1 ´ ν12ν21q
B4U3

Bs41
` 2ν21E1h

2

12p1 ´ ν12ν21q
B4U3

Bs21Bs22
` E2h

2

12p1 ´ ν12ν21q
B4U3

Bs42
` 4Gh2

12

B4U3

Bs21Bs22
“ q

h
.

(3.1.8)
Note that by using the approximation for the shear modulus

G «
?
E1E2

2p1 ` ?
ν21ν12 q

and introducing the parameters H “ E1{E2, ν “ ?
ν12ν21 and chom2222, the flexural rigidity

in the s2 direction, we obtain the Donnell type formulation, see [20]. We can now follow
the Airy stress function ansatz, as presented in [43, chapter 5]. This procedure can be
seen as finding a potential for the stress distribution in the material. It is for example
widely used in the investigation of stresses around holes as in [55]. Via this method it
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is then possible to express U1 and U2 in terms of U3 as presented in [56] and [59]. We
then obtain the 8th order PDE˜

B2

Bs22
` H2 B2

Bs21

¸4

U3 ` 12p1 ´ νq
a2h2

H4 B4U3

Bs42
´ 1

chom2222

˜
B2

Bs22
` H2 B2

Bs21

¸2

q “ 0, (3.1.9)

describing the bending effect U3.

Remark 3.1.4 We want to mention here that in the isotropic case, i.e., E1 “ E2 “ E,

ν21 “ ν12 “ ν and G “ E

2p1 ` νq , equation (3.1.8) corresponds to [59, equation (304)].

Remark 3.1.5 It is mentioned in [10] that the pinched cylindrical shell is analog to a
plate/beam on elastic foundation. This problem has been considered for example in [31].

3.2 Analytic solution to the pinched cylinder problem

In this section we want to derive the solution of (3.1.9) in terms of a Fourier series in
the circumferential direction and Fourier transform in the longitudinal one. Therefore,
we assume that the half-cylinder is infinitely long. This assumption is an adequate
simplification, due to the free boundary conditions as described in chapter 2. As a
preliminary step we want to recall the definitions of Fourier series and transform as well
as a corollary to the residual theorem, which allows us to calculate integrals over the
real axis.

Lemma 3.2.1 Let Z and Q be two polynomials, such that degZ ` 1 ď degQ. Assume
that Q has no real roots and define

L “ tz P C|Impzq ą 0, Qpzq “ 0u.

Then we have that

8ż
´8

Zpξq
Qpξq exppixξqdξ “ 2πi

ÿ
ϑPL

Resϑ
Zpξq
Qpξq exppixξq,

where Resϑ f denotes the residual of f in ϑ.

Proof. We refer for a proof of this classical result to [8, Theorem 7.11].

Definition 3.2.1 The Fourier transform rw of a function w P L1pRnq is defined as

F rwspξq “
ż
Rn

wpxqe´iξ¨xdx, (3.2.1)

where x “ px1, x2, . . . , xnqT , ξ “ pξ1, ξ2, . . . , ξnqT and ξ ¨ x is the dot product.
The inverse Fourier transform is then defined as

F ´1r rwspxq “ 1

p2πqn
ż
Rn

rwpξqeiξ¨xdξ. (3.2.2)
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Definition 3.2.2 A function f P L2pp0, aπq;Rq can be expressed by its Fourier series
given as

fpsq “ a0
2

`
8ÿ

n“1

´
an cos

´ns

a

¯
` bn sin

´ns

a

¯¯
,

where

an “ 2

aπ

aπż
0

fpsq ¨ cos
´ns

a

¯
ds for n ě 0, bn “ 2

aπ

aπż
0

fpsq ¨ sin
´ns

a

¯
ds for n ě 1.

In our subsequent analysis we do not need to go any deeper into the theory. For some
more references on this topic we refer to [3, Lemma 7.11, Lemma 7.12] for a functional
analytic point of view and [21, chapter 4] for the applications in partial differential
equations.
Now we use the classical ansatz of separation of variables and consider the function
U3ps1, s2q “ w1ps1qw2ps2q. Moreover, we want to follow the ideas presented in [33].
Note that in our case we consider a half shell with clamping conditions along the lateral
boundaries. In [33] a full shell with symmetric loading is considered. The importance
in our analysis is to capture the effects of different pinching locations. We assume that
a pinching load is applied at paϕ0, 0q, ϕ0 P p0, π2 s. The choice s2 “ 0 is w.l.o.g. possible,
since we can always shift the cylinder along the s2-axis. In order to solve for U3 we
calculate the Fourier transformation of w2 in the longitudinal direction while we take
the Fourier series of w1 in the circumferential direction s1. We can non-dimensionalize
the equation by substituting s2 with

s2
a

. This yields the representation of the deflection
as

U3ps1, s2q “
´ 1

2π

ż 8

´8
rw2pξqe´i

s2ξ
a dξ

¯´a0
2

`
8ÿ

n“1

an cos
´ns1

a

¯
` bn sin

´ns1
a

¯¯
. (3.2.3)

The crucial part is to ensure that U3 satisfies the conditions U3p0, s2q “ U3paπ, s2q “ 0.
Besides, we assume that U3 also satisfies the six additional boundary conditions given
as U2

3 p0, s2q “ U2
3 paπ, s2q “ UIV

3 p0, s2q “ UIV
3 paπ, s2q “ UV I

3 p0, s2q “ UV I
3 paπ, s2q “ 0.

Thus, we can take an “ 0 for all n P N and have that the series only consists ofř8
n“1 bn sinpnsa q. A similar strategy was used in [37, section 72]. Furthermore, we can

simplify the Fourier transform along the longitudinal direction by using the symmetry
condition U3ps1, s2q “ U3ps1,´s2q. Since the integral over uneven functions is zero we
obtain the representation

U3ps1, s2q “
8ÿ

n“1

bn sin
´ns1

a

¯ ż 8

0

1

π
rw2pξq cos

´ξs2
a

¯
dξ. (3.2.4)

It is easy to see that U3 satisfies our initial boundary conditions, since

U3p0, s2q “ 1

π

8ÿ
n“1

bn sinp0q
ż 8

0
rw2pξq cos

´ξs2
a

¯
dξ “ 0,

U3paπ, s2q “ 1

π

8ÿ
n“1

bn sinpnπq
ż 8

0
rw2pξq cos

´ξs2
a

¯
dξ “ 0.

For the further analysis we introduce the coefficients rwn “ rw2¨bn. Hence, we get

U3ps1, s2q “ 1

π

8ÿ
n“1

sin
´ns1

a

¯ ż 8

0
rwnpξq cos

´ξs2
a

¯
dξ. (3.2.5)
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Moreover, we need that the load q has to be expressed in the same way as

qps1, s2q “
8ÿ

n“1

qn sin
´ns1

a

¯ ż 8

0

1

π
rqpξq cos

´ξs1
a

¯
dξ. (3.2.6)

Remark 3.2.1 Given a pinching load, represented by expression (3.2.6), applied to a
full shell, we obtain a setup with two opposing pinches at p0, aϕ0q and p0,´aϕ0q as shown
in figure 3.1. The consequence of that choice is that the resulting displacements cancel
each other out at p0, s2q and paπ, s2q.

U3 “ 0
ϕ0

´ϕ0

P

P

Figure 3.1: Full cylindrical shell with opposing force on each half circle.

Inserting the expressions (3.2.3) and (3.2.6) into (3.1.9) yields the equation

8ÿ
n“1

ż 8

0

«ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙4

` 12p1 ´ νq
a2h2

H4
´ ξ

a

¯4
ff rwnpξq sin

´ns1
a

¯
cos

´ξs2
a

¯
dξ “

8ÿ
n“1

ż 8

0

«
1

chom2222

ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙2

ffrqpξqqn sin
´ns1

a

¯
cos

´ξs2
a

¯
dξ.

By comparison of the coefficients we have to ensure that«ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙4

` 12p1 ´ νq
a2h2

H4
´ ξ

a

¯4
ff rwnpξq “«

1

chom2222

ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙2

ffrqpξqqn,

is fulfilled for all n P N. This equation implies that the Fourier transform rwn has to be
chosen such that

rwnpξq “

«
1

chom2222

ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙4

ffrqpξq qn«ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙2

` 12p1 ´ νq
a2h2

H4
´ ξ

a

¯4
ff , (3.2.7)

where rq is the Fourier transform of q along the s2-axis and the qn are the coefficients
of the Fourier series along the circumferential direction s1. In our analysis we actually
want to study the effects of a point load qpinchps1, s2q at paϕ0, 0q. In general this leads
to problems in the calculation of rq and qn, hence we consider an approximation given as
qps1, s2q.
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Definition 3.2.3 Take c, θ, P P R, such that both 0 ă c ! 1 and 0 ă θ ! 1. We
consider a pinching load

qpinchps1, s2q “ PδDps1 ´ aϕ0qδDps2q,

where δDp¨q denotes the Dirac distribution.
The approximate pinching load is defined as

qps1, s2q “
# rP , if aϕ0 ´ c ď s1 ď aϕ0 ` c, ´θ ď s2 ď θ

0 , else
. (3.2.8)

We can split qps1, s2q “ pqps1q ¨ q˚ps2q, where

pqps1q “
# rP , if aϕ0 ´ c ď s1 ď aϕ0 ` c,

0 , else
q˚ps2q “

#
1 , if ´ θ ď s2 ď θ,

0 , else

and rP can be chosen as P
4cθ .

Remark 3.2.2 In general one has qpinch P H´2pωq, while for the approximation we
obtain q P L2pωq. The results on qpinch are presented in [31].

In figure 3.2 we illustrate the mentioned approximated load to qpinch.

s2

θ

1

s1
a

c rP

Figure 3.2: Approximate pinching load on the shell.

The Fourier transformation and the Fourier series coefficients are straight forward to
calculate and summarized in the following Lemma.

Lemma 3.2.2 Given the load q as defined above we can express it as in (3.2.6), where

rqpξq “ 2

ξ
sin

´
ξ
θ

a

¯
,

qn “ ´4 rP
nπ

sin
´nc

a

¯
sinpnϕ0q.
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Proof. We start with the Fourier transform of q in the longitudinal direction. For this
step we may identify q only with q˚. Thus, we obtain

rqpξq “
ż 8

´8
q˚ps2q cos

´ξs2
a

¯
d

´s2
a

¯
“

θż
´θ

cos
´ξs2

a

¯
d

´s2
a

¯
“ 2

ξ
sin

´
ξ
θ

a

¯
.

(3.2.9)

For the Fourier series coefficients we take pq and consider the integrals of the form

qn “ 2

aπ

aπż
0

pqps1q sin
´ns1

a

¯
ds1. (3.2.10)

This has to be calculated for all n P N. By the properties of pq we get

2

aπ

aπż
0

pqps1q sin
´ns1

a

¯
ds1 “ 2 rP

aπ

aϕ0`cż
aϕ0´c

sin
´ns1

a

¯
ds1.

With the linear transformation z “ s1 ´ aϕ0 and employing the well-known addition
theorem for cosine we obtain

aϕ0`cż
aϕ0´c

sin
´ns

a

¯
ds “

cż
´c

sin
´n

a
pz ` aϕ0q

¯
dz “

cż
´c

sin
´nz

a
` nϕ0

¯
dz

“ ´a

n

”
cos

´nc

a
` nϕ0

¯
´ cos

´nc

a
´ nϕ0

¯ı
“ ´a

n

”
cos

´nc

a

¯
cospnϕ0q ´ sin

´nc

a

¯
sinpnϕ0q

´ cos
´nc

a

¯
cospnϕ0q ´ sin

´nc

a

¯
sinpnϕ0q

ı
“ ´2a

n
sin

´nc

a

¯
sinpnϕ0q.

Plugging this back into expression (3.2.10) yields

qn “ ´4 rP
nπ

sin
`nc
a

˘
sin

`
nϕ0

˘
. (3.2.11)

Remark 3.2.3 It holds that θ ! 1 and c ! 1. Hence, we can use the approximations

2

ξ
sin

´
ξ
θ

a

¯
« 2θ

a
,

´4 rP
nπ

sin
`nc
a

˘
sin

`
nϕ0

˘ « ´4 rPc

aπ
sin

`
nϕ0

˘
.

(3.2.12)

Inserting now the approximate formulas (3.2.12) back into equation (3.2.7) yields the
relation

rwnpξq “ ´8 rPθc

πa2
sinpnϕ0q

«
1

chom2222

ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙2

ff
«ˆ´ ξ

a

¯2 ` H2
´n

a

¯2
˙4

` 12p1 ´ νq
a2h2

H4
´ ξ

a

¯4
ff .
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Using now that P “ 4 rPθc and with k “ p3p1´ν2qpa{hq2q 1
4 we can express the deflection

U3 as

U3ps1, s2q “ ´ 2Pa2

π2chom2222

8ÿ
n“1

sin
´ns1

a

¯
sinpnϕ0q

ż 8

0

´
ξ2 ` H2n2

¯2

´
ξ2 ` H2n2

¯4 ` 4k4H4ξ4
cos

´ξs1
a

¯
dξ,

(3.2.13)

where we are left with the calculation of the integral. By applying the corollary to
the residue theorem shown in Lemma 3.2.1 we are able to derive each integral with
respect to n P N. This was actually already shown in [33] for the case of an orthotropic
full cylindrical shell with a symmetrical pinching load, where the identical integral ex-
pressions are obtained. The isotropic case was shown in full detail in [62]. Since the
derivation in [33] is rather condensed we want to present some details in the following
Lemma.

Lemma 3.2.3 Given the expression (3.2.13) for U3, we obtain with Lemma 3.2.1 that

U3ps1, s2q “ 2Pk4

πE2hH3

8ÿ
n“1,2,3,4¨¨¨

sinpnϕ0q
R2n2

sin
´ns1

a

¯
ˆ

#„´
ζC ` ηG

¯
cos

´HA|s2|
a

¯
`

´
ζG ´ ηC

¯
sin

´HA|s2|
a

¯j
exp

ˆ
´ HB|s2|

a

˙

`
„´

ζA ´ ηB
¯
cos

´HC|s2|
a

¯
`

´
ηA ` ζB

¯
sin

´HC|s2|
a

¯j
exp

ˆ
´ HG|s2|

a

˙+
,

(3.2.14)

where the parameters appearing in the formula are given as

k “ p3p1 ´ ν12ν21qpa{hq2q 1
4 , H “ chom1111

chom2222

,

J “ 2k2, R2 “ n2J
a
1 ` pJ{4n2q2 ,

ζ “
c

1

2
pR2 ` 1

4
J2q , η “

c
1

2
pR2 ´ 1

4
J2q ,

A “ 1?
2

”c
p´n2 ` ηq2 ` ` ´ J

2
` ζ

˘2 ´ pn2 ´ ηq
ı1
2 ,

B “ 1?
2

”c
p´n2 ` ηq2 ` ` ´ J

2
` ζ

˘2 ` pn2 ´ ηq
ı1
2 ,

C “ 1?
2

”c
pn2 ` ηq2 ` `J

2
` ζ

˘2 ´ pn2 ` ηq
ı1
2 ,

G “ 1?
2

”c
pn2 ` ηq2 ` `J

2
` ζ

˘2 ` pn2 ` ηq
ı1
2 .
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Proof. We are mainly interested in the evaluation ofż 8

0

´
ξ2 ` H2n2

¯2

´
ξ2 ` H2n2

¯4 ` 4k4H4ξ4loooooooooooooooomoooooooooooooooon
“fpξq

cos
´ξs1

a

¯
dξ. (3.2.15)

We first note that fpξq can be represented by fpξq “ Zpξq
Qpξq , where Z,Q are polynomials

given as

Zpξq “
´
ξ2 ` H2n2

¯2
, Qpξq “

´
ξ2 ` H2n2

¯4 ` 4k4H4ξ4.

We can easily see that degpZq ` 1 “ 5 ď 8 “ degpQq. Moreover, we conclude that Qpξq
does not have real roots, since Qpξq ě H8n8, for all n P N. Hence, the requirements of
Lemma 3.2.1 are fulfilled and it is applicable. In the next step we explicitly calculate
the roots of Q by solving ´

ξ2 ` H2n2
¯4 ` 4k4H4ξ4 “ 0.

Introducing rλ “ ξ

H
, we get the equation´rλ2 ` n2

¯4 ` J2rλ4 “ 0

or equivalently written asˆ ´rλ2 ` n2
¯2 ` iJrλ2looooooooooomooooooooooon
I

˙
¨
ˆ ´rλ2 ` n2

¯2 ´ iJrλ2looooooooooomooooooooooon
II

˙
“ 0.

By introducing x “ rλ2 we obtain for I

px ` n2q2 ` iJx “ x2 ` p2n2 ` iJqx ` n4 “ 0.

Solving for x yields

x1,2 “ ´p2n2 ` iJq
2

˘
dˆ

2n2 ` iJ

2

˙2

´ n4

“ ´n2 ´ i
J

2
˘

c
´J2

4
` iJn2loooooooomoooooooon

p˚q

.

It can be easily shown that for z P C, with z “ c ` di, we have that

?
z “ 1?

2

ba
c2 ` d2 ` c ` i sgnpdq?

2

1?
2

ba
c2 ` d2 ´ c

is a root of z. With that result we can simplify p˚q to

1?
2

dc
J4

16
` J2n4 ´ J2

4
` i?

2

dc
J4

16
` J2n4 ` J2

4

“ 1?
2

c
R2 ´ J2

4
` i?

2

c
R2 ` J2

4
“ η ` iζ.
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Going back to the equation x “ rλ2 we need that

rλ2 “ ´pn2 ¯ ηq ` ip´J

2
˘ ζq.

Thus, we obtain

rλ1,2 “ ˘
c

´pn2 ´ ηq ` ip´J

2
` ζq

“ ˘ 1?
2

dc
pn2 ´ ηq2 ` p´J

2
` ζq2 ´ pn2 ´ ηq

˘ i?
2

dc
pn2 ´ ηq2 ` p´J

2
` ζq2 ` pn2 ´ ηq

“ ˘A ˘ Bi.

Moreover, we have that rλ3,4 “ rλ1,2, where the bar denotes the complex conjugation.
These are the 4 roots given by I. In the same way we get the other 4 roots from II
expressed as rλ5,6 “ rλ7,8 “ ˘C ¯ iG.

Therefore, we get the 8 roots ξi, i “ 1, . . . , 8, of Qpξq with ξ1,2 “ ξ3,4 “ ˘HpA˘Biq and
ξ5,6 “ ξ7,8 “ ˘HpC ¯ Giq. In the next step we want to apply Lemma 3.2.1 to evaluate
the integral. We note that the function fpξq is even and therefore satisfies thatż 8

´8
fpξq sin

´ξs1
a

¯
dξ “ 0.

Hence, we can calculate the integral (3.2.15) asż 8

0
fpξq cos

´ξs1
a

¯
dξ “ 1

2

ż 8

´8
fpξq exp

´ iξs1
a

¯
dξ “ πi

ÿ
ϑPL

Resϑfpξq exp
´ iξs1

a

¯
,

where we have by [8, remark 6.4 (2)] that

Resϑfpξq exp
´ iξs1

a

¯
“

´
ϑ2 ` H2n2

¯2
exp

´ iϑs1
a

¯
8ϑ

`
ϑ2 ` H2n2

˘3 ` 16k4H4ϑ3
.

We observe that |L| “ 4 and calculate Resϑfpξq exp
´ iξs1

a

¯
for ϑ1 “ HpA`Biq “ H pϑ1.

The other cases follow in the same way. Moreover, we focus on the calculation of the
expression ´

ϑ2
1 ` H2n2

¯2

8ϑ1

`
ϑ2
1 ` H2n2

˘3 ` 16k4H4ϑ3
1

. (3.2.16)

For the evaluation we need the identities

pA ` Biq2 “ ´n2 ` η `
´J

2
` ζ

¯
i,pϑ1

pϑ5 “ ´n2,

(3.2.17)

which are easily verified. Moreover, we conclude that pϑ satisfies the equation

ppϑ2
1 ` n2q2 ` iJ pϑ2

1 “ 0. (3.2.18)
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Then we simplify expression (3.2.16) to

1

8H3

´pϑ2
1 ` n2

¯2

pϑ1

`pϑ2
1 ` n2

˘3 ` J2

2
pϑ3
1

.

With the property (3.2.18) this reduces to

1

8H3

´iJ pϑ2
1pϑ3

1

ˆ
´ iJppϑ2

1 ` n2q ` J2

2

˙ .

Together with (3.2.17)1 and then using (3.2.17)2 we obtain

1

8H3

1pϑ1pη ` ζiq “ 1

8H3

pϑ5pη ´ ζiqpϑ5
pϑ1 pη2 ` ζ2qloooomoooon

“R2

“ ´ 1

8H3R2n2
pC ´ Giqpη ` ζiq.

Altogether, this yieldsż 8

0
fpξq cos

´ξs1
a

¯
dξ “

´ πi

8H3R2n2

«
pC ´ Giqpη ´ ζiq exp

ˆ
ipA ` Biqs1

a

˙
` p´C ´ Giqpη ´ iζq exp

ˆ
ip´A ` Biqs1

a

˙
´ pA ` Biqpη ´ iζq exp

ˆ
ipC ´ Giqs1

a

˙
´ p´A ` Biqpη ´ iζq exp

ˆ
ip´C ´ Giqs1

a

˙ff
,

which can then, by a small computation, be further simplified to our equation (3.2.14).

It is crucial to note, that the applicability of this model highly depends on the ratio
a{h and the magnitude of the corresponding Young’s moduli. Such an investigation is
provided in [62].

3.2.1 Examples

In the following part we want to investigate the function, which we have derived in
the previous calculation by visualizing different parameter settings. Since we can-
not calculate the complete Fourier series we restrict ourselves to the first 30 series
elements and check their impact on the complete solution, by plotting the respec-
tive percentage for the maximal deflection and checking the convergence of the partial
sums

Sn “
nÿ

i“1

rwn.
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From that we can deduce up to which element rwn one should derive the series before
the values get negligible. These observations are crucial for chapter 5, because in the
symbolic calculation we do not want to add unnecessary elements. Moreover, we fix
throughout our examples the applied force, such that P “ ´0.8 N as well as the thickness
h “ 0.1 cm and radius a “ 2 cm. The shell’s length is equal to 20 cm. In the following
we start with an isotropic shell and apply the load at ϕ0 P

!π

2
,
π

4
,
π

6
,
π

8

)
. After that we

consider an orthotropic one with the same configurations. In the end we conclude the
section by comparing our model with the numerical solution to the full weak formulation
(3.1.2).

Isotropic Shell

In the first example we deal with an isotropic homogeneous shell, where we assume that
the Young’s modulus is given by E1 “ E2 “ 200 MPa and the Poisson’s ratio is ν “ 0.27.
In figure 3.3 we have plotted the deflected shell given the described load at ϕ “ π

2
. The

underlying colormap represents the absolute values of U3. We can see that the maximal
deflection is indeed attained at

π

2
and the effects of the prescribed boundary conditions

are clearly visible. While at the lateral boundary the deflection is U3 “ 0, we have some
small displacements at the free boundaries s2 “ ˘10. Moreover, we compare in figure
3.4 the original configuration with the deflected shell at s2 “ 0. There we can see that
even for small loads the shell deforms in a way, such that the deflected shell is always
smaller than the original one.

In the next step we want to investigate the elements rwn of the Fourier series. We

Figure 3.3: Isotropic shell with load at ϕ0 “ π

2
.

have summarized the values for the first 12 elements in table 3.1 calculated at paπ
2 , 0q.

Note that we obviously have rwn “ 0 for n even, since our formula depends on the
coefficient sinpnϕ0q “ sinpnπ

2 q. We can see that the values get smaller rather quickly.
For example is rw11 almost 200 times smaller than the first one. In figure 3.5 we have
plotted the impact of each element by calculating what percentage they contribute to
the maximal deflection at ϕ0 “ π

2
. We see that the first four non-zero elements have the

biggest effects. This observation is verified by looking at figure 3.6. The partial sums
are already for n “ 11 at ´0.06, where the value for S30 is ´0.061. This means, that
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Figure 3.4: Deflected shell at s2 “ 0.

for the isotropic case with the loading at aπ
2 we can terminate the Fourier series earlier

at around n “ 11.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

n

Im
p
a
ct

o
f

rw n

Impact of each element in Fourier series.

Figure 3.5: Respective impact of each element

n 1 3 5 7 9 11rwn -0.050455 -0.0062096 -0.0019784 -0.0007928 -0.0003826 -0.0002114

Table 3.1: Fourier series elements for isotropic shell.

We keep the current shell configuration, but change the location of the applied load
to ϕ0 “ π

4
. We should then be able to observe the boundary effects more clearly.

For this setup we plot again the full deflected shell in figure 3.7 and analyze the role
of each Fourier series element. The first important difference we want to mention,
caused by changing the applied load’s location, is that the maximal deflection gets
smaller compared to the previous case. In the current setup the maximal deflection is
approximately ´0.045. Moreover, we have that the areas of larger deflections occur on
the line from paπ

4 , 0q to paπ
2 ,˘10q. We see later on that moving the load even closer to

the boundary reduces the maximal deflection further. Next up we want to investigate
the Fourier series elements. In figure 3.8 we show both the convergence of the partial
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Figure 3.6: Convergence of the partial sums Sn.

Figure 3.7: Isotropic shell with load at ϕ0 “ π

4
.

sums and the effective impact of each element. We can see that due to the factor sinpnπ
4 q

we get that rwn “ 0, if n ” 0 pmod 4q. Hence, we have less non-zero elements than in the
previous case. Anyhow, we note that the first four non-zero elements still have the biggest
impact on the Fourier series. For n ą 10 we are already in the range of the maximal
deflection. Therefore, we can conclude that for this example it is reasonable to break
the series before n “ 30, too. In figure 3.9 we give examples for a better understanding
of the effects when we change the location of the load. In the figure we show the loads
at ϕ0 P tπ

6 ,
π
8 u. As we have mentioned before, the maximal deflection gets smaller,

if we move to the boundary. Moreover, we can also see that the deflection at the free
boundaries is reduced. As far as we consider figure 3.10 for the convergence of the partial
sums we do not get any additional information. Even though, we have in both cases more
non-zero elements than previously, we observe that we do not have any significant effects
for n ą 10. We close here the discussion on isotropic shells and move forward to an
orthotropic material. For such kind of structures we have initially derived the function in
Lemma 3.2.3. For now we can constitute that regarding an isotropic shell the calculation
up to S30 is too extensive. Moreover, we saw that a load near the boundary causes a
smaller deflection than applied in the shell’s middle. Those observations are essential
for an efficient optimization as we see in chapter 5.
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Figure 3.9: Isotropic shell with load at
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8
.
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Orthotropic Shell

In the following section we keep the shell’s geometry, i.e., having a “ 2 cm and l “ 20
cm, as well as the applied loads, starting with P “ ´0.8 N at paπ

2 , 0q, such that we are
able to compare the effects of changing the effective properties. Therefore, we consider
two different materials given by
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1. E1 “ 250 MPa, E2 “ 200 MPa, ν21 “ 0.27, ν12 “ 0.3375,

2. E1 “ 200 MPa, E2 “ 250 MPa, ν21 “ 0.27, ν12 “ 0.216.

It is easy to check that we fulfill in both cases

E2

E1
“ ν21

ν12
,

which is the condition for orthotropic materials. We start with the first configuration.
With these values we have increased the stiffness in the circumferential direction. We
have plotted the result in figure 3.11. An immediate difference to the isotropic shell
is the smaller deflection for U3paπ

2 , 0q “ ´0.0305 and the general smaller deflections
near the free boundaries. The solution’s behavior approaching the boundary is still the
same. We may also have a look at the series elements in particular. In table 3.2 we have

Figure 3.11: Orthotropic shell with load at ϕ0 “ π

2
.

summarized the first 6 non-zero elements as well as the diagrams in figure 3.12 showing
the convergence of the partial sums and the impact of each element. From the table
we can clearly see that rw11 is again about 200 times smaller than the first element. In
accordance with the left picture in figure 3.12 we can conclude that the elements for
n ą 10 are getting rather marginal. Looking at the convergence we are already with
S9 “ ´0.0302 close to the limit. After that we just obtain small improvements. We can
deduce that breaking the series earlier would be sufficient. The conclusion we can draw
from those results are the same as in the isotropic case.

n 1 3 5 7 9 11rwn -0.0254578 -0.0031327 -0.0009952 -0.0003983 -0.0001921 -0.0001061

Table 3.2: Fourier series elements for orthotropic shell.

In the next step we focus on the second configuration, where the Young’s modulus E2

is given bigger than E1. In figure 3.13 we can have a look on the solution. Surprisingly,
we observe that the maximal deflection increases in this case. More precisely, we obtain
that U3paπ

2 , 0q “ ´0.0955. Actually, one would assume that the deflection decreases if
any of the Young’s moduli increase. To explain that result we should note here, that
we have neglected some terms from the original system of PDEs in Lemma 3.2.3 to
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Figure 3.12: Convergence of Fourier elements for orthotropic shell.

Figure 3.13: Isotropic shell with load at ϕ0 “ π

2
.

get our analytical solution. Those parts are probably missing in this case. Evaluating
the function at paπ

2 , 0q yields that the deflection is of the same order as E2
2{E3

1 , where
we assume that the shell’s geometry stays unchanged. This means that in general it is
favorable to have a structure, which is stiffer in the circumferential direction than in the
longitudinal one. Next up, we want to investigate the convergence of the Fourier series
and check if we run in any trouble there. In table 3.3 we have summarized again the
first six non-zero elements in the series. These values confirm the conclusions we have
drawn from the previous simulations. We can also take a look at the convergence results
in figure 3.14. Both plots give the same qualitative results as before. Only the valuesrwn for n ă 10 have a high impact on the total solution.

n 1 3 5 7 9 11rwn -0.0797477 -0.0098157 -0.0031343 -0.0012575 -0.0006071 -0.0003354

Table 3.3: Fourier series elements for orthotropic shell.

To close this section we shortly have a look on the solution when the load is moved to
the boundary. We restrict ourselves on the cases where the load is applied at π

4 and
π
8 . The results are presented in figure 3.15. As in the isotropic case we can see that a
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Figure 3.14: Convergence of Fourier elements for orthotropic shell.

(a) E1 “ 250MPa

(b) E2 “ 250MPa

Figure 3.15: Orthotropic Shells with load applied at π
4 and π

8 .

load near the boundary has a lower effect on the deflection than applied in the middle
of the shell. Moreover, we can see that a shell, which is stiffer in the circumferential
is preferable to a shell with higher values for E2. We can establish for chapter 5 that
it is sufficient to consider only the first four series elements and minimize the function
S4. On the other hand, we have seen that our reduced model does not capture all
important effects. Anyhow, it is necessary to take this model for the sake of having
symbolic expressions, which we introduce in the next chapter 4. For now we continue
with investigating the full weak formulation in equation (3.1.2). For that reason we
solve the problem numerically via a finite element ansatz and compare it to our analytic
solution for small loads. After that we verify the result from 2.9 by considering different
BCs in ANSYS.



64 Chapter 3 Analytic Solution to Pinching a Homogeneous Shell

3.3 Numerical models for pinching a cylinder

3.3.1 Solving Koiter equation with FEniCS

To derive our analytical solution we had to simplify the strong formulation of the Koiter
equation by neglecting some terms due to asymptotic arguments. The following part is
dedicated to achieve a numerical solution for the weak formulation (3.1.2). There are
various different techniques for this goal, but we focus on a finite element ansatz with
FEniCS, see [2]. In order to obtain a solution with this program we need to consider
the following steps:

• Construct triangulation of the domain ω.

• Define a suitable function space for the test functions, Galerkin method.

• Implement the weak formulation with boundary conditions.

For the triangulation we use the mesh generator Gmsh [24]. Since ω is a rectangular
domain the mesh is easy to implement and we obtain 102940 cells with 51869 vertices. As
our test function space we use polynomials of degree 2, since the operators Λαβ defined
in section 2.7 are of the same order. For further information we refer to [32]. For our
left-hand side we identify the membrane effects given by

a1pU ,Vq “
ż
ω
ahomαβα1β1eαβpUqeα1β1pVqds1

and the bending effects with

a2pU ,Vq “
ż
ω
chomαβα1β1ΛαβpUqΛα1β1pVqds1.

We want to mention here, that the presented approach is very basic and we do not
address the problem of shear locking in shells. For a more in-depth numerical analysis
of shells we refer to [41] and [7]. Our right-hand side will be chosen such that it fits to the
pinching load qpinch of -1 N. For a better implementation we consider the approximated
load q on a disk with radius 0.001 cm. The right-hand side is described together with
f “ q ¨ n by the functional

lpVq “
ż
ω
f ¨ Vds1.

We consider a shell with radius a “ 5 cm and plot it along the middle line for s2 “ 0.
With that approach we immediately see the difference between our analytic solution
and the full model. The corresponding results together with the initial undeflected
shell are presented in figure 3.16. We first note that the deflections at the point where
the pinching load is applied are roughly the same. We obtain here a relative error
of |Unum

3,max ´ Uana
3,max|

|Uana
3,max| “ 0.0271.

The values for the maximal deflections are Unum
3,max “ ´0.2038 and Uana

3,max “ ´0.1984.
We can investigate some different effects, if we move closer to the boundaries. Due
to the neglected third order terms, the analytic solution is always beneath the original
shell and does not preserve the arc length. However, the numerical solution bulges at
around s1 “ aπ

4 and s1 “ 3aπ
4 . Hence, the full model preserves the shell’s arc length. For

the optimization it is important to note, that the maximal deflections are of the some
order.
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Figure 3.16: Comparison of analytic and numerical solution.

3.3.2 Numerical study of different boundary conditions

In this chapter’s last section we want to investigate the numerical behavior, if we change
the boundary conditions according to section 2.9. Therefore, we consider an orthotropic
shell with radius a “ 3 mm, length l “ 40 mm and thickness h “ 0.06 mm. We assume
that the shell has Young’s moduli E1 “ 17.518 GPa, E2 “ 17.536 GPa and Poisson’s
ratio ν12 “ 0.00636. Since we obtain the ratio E1{E2 “ 0.999, it is reasonable to take
ν21 “ ν12. All the simulations have been computed with ANSYS, where we consider
shell finite elements with eight nodes and six degrees of freedom each. The total number
of elements is 11040 with 33579 nodes. Next, we define the boundary conditions. We
distinguish them into four different groups. The first group consists of the weakest
kind of support as shown in figure 3.17. In this case we clamp the shell’s four corner
points and restrict gradually spatial displacements along the longitudinal boundary.
Note, that the first group corresponds to the initial boundary conditions presented in

Figure 3.17: Shell with boundary conditions BC0 from group one.

our analysis. The other three groups all have a fixed circumferential boundary. In the
second group we summarize all experiments, where we consider the boundary condition
described in section 2.9. See for example figure 3.18. In this particular case we limit the
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displacements at the circumferential boundary, i.e., Up¨,˘l{2q “ 0. This condition varies
with the examples. We consider shells, where we only fix the displacements U1 and U3 at
the curved boundary to check the impact of additionally fixing U2. Other cases within
this group also restrict some rotational degrees of freedom along the circumferential
boundary. The last two groups only consist of one case each. In group three we examine

Figure 3.18: Shell with boundary conditions BC3 from group two.

the boundary conditions presented in figure 3.19. Here, we consider a fully clamped shell
along its curved boundary, i.e., we also restrict the rotational degrees of freedom. In

Figure 3.19: Shell with boundary conditions BC7 from group three.

the last case we have a fully clamped shell, where we limit all degrees of freedom along
the complete boundary Bω. This setup is shown in figure 3.20. On all of these shells

Figure 3.20: Shell with boundary conditions BC8 from group four.

we now apply a successively increasing pinching load of at most P “ 10 N. We consider
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the normalized deflections U3{h, which are summarized in figure 3.21. We can see that

Figure 3.21: Normalized deflections w.r.t. pinching load.

the shells with boundary conditions from group one have the biggest deflections w.r.t.
the pinching load. On the contrary, all other shells, where the circumferential boundary
conditions are somehow fixated, have smaller displacements. This is in correspondence to
our theoretical result. We proved in section 2.9 that in those cases the weak formulation
reduces to a membrane model and the bending effects are neglected. If we closer examine
the examples from group two, we conclude that if the displacements U1 and U3 are fixed
along the curved boundaries then it does not change the result if we additionally set U2 to
zero. Moreover, we observe that the groups two to four are quite similar. This means that
clamping the whole boundary Bω is equivalent to a fixation of the curved boundary Γ0 “
φpr0, aπsˆt0uYr0, aπsˆtluq as mentioned in remark 2.9.1.
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4 Calculating Effective Properties with
Symbolic Parameters

In this chapter we want to explain how the homogenization of shells can be practically
implemented. Our focus lies on methods that utilize the network structure of the peri-
odicity cells. Therefore, we present a reduction of the variational problems (2.8.1) to 1D
beam FE. In general the presented algorithm is performed numerically, but our goal in
this thesis is to obtain qualitative results, which give a direct insight on how a change
of the design variables affects the homogenized model. Hence, we want to modify the
algorithm such it can be executed symbolically. We start with a summary of the results
presented in [49], where the homogenization and optimization of textile-like structures
with respect to their in-plane properties were analyzed, and [50]. In our case we adapt
it to the calculation of the effective bending properties as shown in [31]. We will see that
the homogenization process can be split into three parts

• Assembling of the global stiffness matrix (GSM) w.r.t. beam finite elements.

• Solving the linear equation.

• Calculation of the effective properties from the obtained displacement field.

For our analysis we implement everything with MATLAB. We will see that solving
the symbolic linear equation is in general a non trivial task and should be handled
carefully. There are different possibilities to deal with this problem and we consider
some preprocessing techniques to reduce the complexity as well as outsourcing the linear
equation to Singular, see [19].

4.1 Algorithm for calculation of effective properties

In regard of the theoretical derivation in chapter 2 we now want to establish in this
section an algorithm for the calculation of the effective properties presented in equation
(2.8.2). We mainly focus on the implementation of the effective bending properties,
since the in-plane coefficients ahomijkl are discussed in great detail in [49, 58] and applied for
optimization. In general, we follow the Homogenization approach that was shown in [50],
where the cell-problems are reduced to a 1D beam model on the lattice structure. The
presented procedure yields the effective plate coefficients, which we have seen in remark
2.4.2 are equivalent to our effective shell coefficients.

Remark 4.1.1 We want to mention here that in [50] the derivation of the cell problems
is done by an asymptotic expansion method on the plate domain, where we consider the
displacement as

uεpsq “ ups, s
ε

q “ u0psq ` εχpqpyqBu0qpsq
Bsp |y“ s

ε
` Opε2q, s P Ω, (4.1.1)

where χpq P H1
perpY q3, with p, q P t1, 2, 3u and Y is the periodicity cell.
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The homogenized bending coefficients chomαβα1β1 , according to [50, p. 154-157], are equiva-
lently calculated as

chomαβα1β1 “ ´ 1

|Y |
ż
Y
aijklpyq

”
Eij,ypĄ

χαβ
I q ´ y3M

αβ
ij

ı
y3M

α1β1
kl dy (4.1.2)

and the Ą
χαβ
I , α, β P t1, 2u are the Y -periodic solutions to the cell problems

ż
Y ˚

aijkl

´
Eij,ypĄ

χαβ
I q ´ y3M

αβ
ij

¯
Ekl,yp rψqdy “ 0. (4.1.3)

Remark 4.1.2 It is shown in [50], that the limiting equation of bending an equivalent
homogeneous orthotropic plate can be determined as,

chom1111

B4w0
3

Bs41
` 2chom1122

B4w0
3

Bs21Bs22
` chom2222

B4w0
3

Bs42
“ f3ps1, s2q, ps1, s2q P ω. (4.1.4)

The aim is now to derive the solutions to formula (4.1.3). We achieve this by using beam
finite elements, related to [39, chapter 6], having six degrees of freedom, three spatial
and three rotational, at each end. We also have to implement the periodic boundary
conditions, respectively.

4.1.1 Reduction to 1D beam problems and stress interpolation

We want to exploit the fact, that the solid pieces of the plate structure are beam-like.
Therefore, we introduce a reduction of our periodic cell-problem to an Euler-Bernoulli
beam model and compute the effective properties. The derivation of those has been
presented earlier and we follow the techniques in [50], which have been applied in [49].
The following lines are a quick summary from mentioned works, where we especially
focus on the derivation of the bending coefficients. We assume that the periodicity cell
can be represented by a graph network ΓY of nodes and edges. E denotes the set of
all edges in ΓY . We consider such an one-dimensional geometry of some cell ΓY and
take a node n of ΓY . For one of its adjacent edges e P Epnq define γpe, nq P R3 to
be the directional vector of the edge pointing to n. We introduce with le “ }γpe, nq}2
the edge’s length. For each edge e let z1 be its longitudinal component. Furthermore,
we denote with pg1, g2, g3q the global basis for each edge e, and ple1, le2, le3q defines the
local basis. The matrix Ce P R3ˆ3 is the transformation matrix, such that ple1, le2, le3q “
pg1, g2, g3qCe. According to the derived homogenization technique the effective bending
coefficients are obtained from the solutions to the cell problems with periodic boundary
conditions on ΓY . Given the two indices α, β P t1, 2u we can formulate our problems as
follows: find the periodic displacement fields uαβ P ΓY Ñ R1ˆ6, such that the auxiliary
vector field mαβ “ uαβ ` Mαβ˚ , which was shifted by the unit perturbations of the
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periodicity cell, corresponding to the bending experiments, solves the following set of
equations.

At each edge e define me
αβ P r0; les Ñ R1ˆ4,“

me
αβ

‰
1

P H1pr0; lesq, “
me

αβ

‰
2

P H2pr0; lesq, “
me

αβ

‰
3

P H2pr0; lesq, “
me

αβ

‰
4

P H1pr0; lesq,
equilibrium conditions on edges hold:
EeAe B2

Bz21
“
me

αβ

‰
1

“ 0,

EeIe2
B4

Bz41
“
me

αβ

‰
2

“ 0,

EeIe3
B4

Bz41
“
me

αβ

‰
3

“ 0,

GeJe B2

Bz21
“
me

αβ

‰
4

“ 0,

force balance conditions in nodes hold:ř
ePEpnq EeCe

ˆ
Ae

´“
me

αβ

‰
1

¯1
z1

Ie2

´“
me

αβ

‰
2

¯3
z1

Ie3

´“
me

αβ

‰
3

¯3
z1

˙T

“ 0,

moment balance conditions in nodes hold:ř
ePEpnq Ce

ˆ
GeJe

´“
me

αβ

‰
4

¯1
z1

´EeIe2

´“
me

αβ

‰
3

¯2
z1

EeIe3

´“
me

αβ

‰
2

¯2
z1

˙T

“ 0,

and the periodic boundary conditions hold:

ruαβs1:3 ” Ce
´

rmαβs1:3 ´ Mαβ˚
¯

and ruαβs4:6 ” Ce

¨̊
˝

¨̊
˝

“
me

αβ

‰
4

´ B
Bz1

“
me

αβ

‰
3B

Bz1
“
me

αβ

‰
2

‹̨‚´ F pMαβ˚ q‹̨‚
are periodic.

+ Dirichlet condition: at one node all six degrees of freedom are fixed
or at two nodes six in total.

.

(4.1.5)

The constants appearing in this equation are properties of the underlying beams. We
express the area of each cross section with Ae, the area moments w.r.t. the second and
third axis with Ie2 , Ie3 and the polar moment Je of the element. For a circular beam
with radius r those are determined as Ae “ πr2, Ie2 “ Ie3 “ πr4{4 and Je “ πr4{2. The
last two missing constants are the Young’s modulus Ee and the shear moduli Ge of the
element. By the square bracket notation r¨si:j we denote the i-th to j-th component of
the vector. We should also specify how the perturbations Mij˚ for the cell-experiments
look like. They are described by the vectors

M11˚ “
¨̋´y1y3

0
0

‚̨, M12˚ “
¨̋´y2y3

0
0

‚̨, M21˚ “
¨̋

0
´y1y3

0

‚̨, M22˚ “
¨̋

0
´y2y3

0

‚̨.

Remark 4.1.3 We note here, that we introduce four corrector problems instead of the
mentioned three. In the presented case Mαα˚ corresponds to Mαα, while we obtain the
third corrector for M12 by M12˚ ` M21˚ . This is important for the calculation of the
effective properties.
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This yields the three conditions for the spatial compenents. With the operator F we
can calculate the remaining three rotational conditions, depending on the given Mαβ˚ .
It is based on the formula found in [27] defined as

F pMαβ˚ q “
¨̋
θ1
θ2
θ3

‚̨, where

θ1 “ 4

πr4

ż
ωe

”
pz3le3 ` z2l

e
2q ˆ Mαβ˚ pzq

ı
le2 dz3 dz2,

θ2 “ 4

πr4

ż
ωe

”
pz3le3 ` z2l

e
2q ˆ Mαβ˚ pzq

ı
le1 dz3 dz2,

θ3 “ 2

πr4

ż
ωe

”
pz3le3 ` z2l

e
2q ˆ Mαβ˚ pzq

ı
le3 dz3 dz2,

(4.1.6)

with ωe being the cross section of the fictional beam connecting to periodical dependent
nodes. With z “ pz1, z2, z3q we describe the variables in the local beam coordinate
system, s.t.

z “ py ´ ylnqCe,

where yln denotes the left node of the edge in the global coordinate system. We can then
finally employ beam finite elements, as for example presented in [39], and express the
system (4.1.5) as a linear equation of the form Avαβ “ bαβ. The right-hand side depends
on the periodic boundary conditions and the applied perturbations Mαβ˚ . The assembly
of the GSM A is presented in [58]. Moreover, a complete discussion about the matrix’s
kernel structure is provided. In the case of symbolic design parameters x P Rm we obtain
then a linear equation Arxsvαβ “ bαβrxs, which we investigate in section 4.2. Given the
solution for these cell experiments we are able to calculate the effective properties of the
cell on a beam level. The corresponding results on an exemplary cell are presented in
figure 4.1.

(a) M11˚ (b) M12˚

(c) M21˚ (d) M22˚

Figure 4.1: Solution to the cell problems
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If we follow [50, chapter 5] further, we see that given the stress tensor σαβ P R3ˆ3,
depending on the displacement field obtained by applying Mαβ˚ , we can calculate the
bending coefficients as

chomααβ1β1 “
˜

´ 1

|Y |
ż
Y
y3σααpyqdy

¸
β1β1

,

chomαβα1β1 “
˜

´ 1

|Y |
ż
Y
y3pσαβpyq ` σβαpyqqdy

¸
α1β1

, for α ‰ β.

(4.1.7)

Hence, we need to find a way to calculate the stresses from our solution vectors. We
introduce a stress interpolation regarding our beam model. Given a single beam from
our network, it has in total 12 degrees of freedom. In [39], an approach to achieve from
this 12D field a 4D field and finally a 3D field is shown. If we take a beam with nodes
u and v and components

u “ pu1, u2, u3, θu1, θu2, θu3qT , (4.1.8)

v “ pv1, v2, v3, θv1, θv2, θv3qT , (4.1.9)

then the 4D field is obtained via a polynomial interpolation, as explained in [39, p. 92],
where we multiply our component vector with the interpolation matrix R P R4ˆ12, such
that

R “

¨̊
˚̋P1 0 0 0 0 0 P2 0 0 0 0 0

0 N1 0 0 0 N2 0 N3 0 0 0 N4

0 0 N1 0 ´N2 0 0 0 N3 0 ´N4 0
0 0 0 P1 0 0 0 0 0 P2 0 0

‹̨‹‚. (4.1.10)

For Pj , j “ 1, 2 see [39, p. 69] and the Ni, i “ 1, 2, 3, 4 are described in [39, p. 92]. We
then obtain our 4D field as

u4D “ R

ˆ
u
v

˙
.

Given this 4D field, we can follow [60] to reduce it even to a 3D field, where the compo-
nents are given by

u1 “ u4D1 ´ z2
Bu4D2
Bz1 ´ z3

Bu4D3
Bz1 ` w

Bu4D4
Bz1 ,

u2 “ u4D2 ´ z3u
4D
4 ´ νz2

Bu4D1
Bz1 ,

u3 “ u4D3 ` z2u
4D
4 ´ νz3

Bu4D1
Bz1 .

(4.1.11)

The parameter w is a warping constant. A higher order approximation may be obtained
if desired. This method was also used to obtain the visualizations of the cell-problems.
Furthermore, it is shown in [60] that using these interpolations and the initial 4D field
we can calculate the stresses in connection to Hooke’s law. We introduce the local stress
field for a single beam as

σlocpzq “

¨̊
˚̊̊̊
˚̋̊
E

`Bu4D1
Bz1 ´ z2

B2u4D2
Bz21

´ z3
B2u4D3

Bz21
˘ ´μz3

Bu4D4
Bz1 μz2

Bu4D4
Bz1

´μz3
Bu4D4
Bz1 0 0

μz2
Bu4D4
Bz1 0 0

‹̨‹‹‹‹‹‹‚
, (4.1.12)
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with μ being the second Lamé constant. Let us denote a beam in its local coordinate
systems by z P r´le{2, le{2s ˆ ωε. If we pass our beam and local stress field into global
coordinates and plug it in formula (4.1.7), this yields

chomααβ1β1 “˜
´ 1

|Y |
ÿ
ePE

ż
r´ le

2
, l
e

2
sˆωε

pyln,3,e ` Ce
13z1 ` Ce

23z2 ` Ce
33z3q`

Ceσloc
ααpzqqpCeqT ˘

dz

¸
β1β1

and

chomαβα1β1 “
˜

´ 1

|Y |
ÿ
ePE

ż
r´ le

2
, l
e

2
sˆωε

pyln,3,e ` Ce
13z1 ` Ce

23z2 ` Ce
33z3qˆ

`
Cepσloc

αβpzq ` σloc
βαpzqqpCeqT ˘

dz

¸
α1β1

.

Here, yln,3,e is the third component of the beam’s left node. It is then easy to calculate
the integrals w.r.t. to the given cross sections. In the case of MATLAB one can use the
int function to perform the integration symbolically. We want to mention here that for
orthotropic materials holds the equality chom1122 “ chom2211.

Remark 4.1.4 We note that we can calculate the orthotropic material properties E1,
E2, ν21 and ν12 according to [50] as

ν12 “ chom1122

chom1111

, ν21 “ chom2211

chom2222

,

E1 “ 12chom1111p1 ´ ν21ν12q
h3

, E2 “ 12chom2222p1 ´ ν21ν12q
h3

,

with h the thickness of the shell.

With this procedure we have a fast way to calculate the effective properties for our
limit equation. We observe that the whole problem can be split into two crucial
steps

• Obtain the displacement field via beam FE,

• Integrate over the interpolated stress fields.

In section 4.2 we perform those tasks completely symbolically and obtain analytic solu-
tions for our effective properties.

4.2 Solving symbolic linear equations with Singular

In the previous section we have discussed the homogenization procedure for lattice struc-
tures presented in [50]. There we have seen that we can reduce the problem to 1D beam
finite elements. In this process we end up with solving a linear equation system denoted
by Av “ b with A P RNˆN , being symmetric and positive definite, and b P RN . Here, N
denotes the total number of free components in system (4.1.5). As we mentioned in the
introduction our goal is to obtain expressions for the effective properties with respect
to the underlying design parameters. Hence, the matrix and right-hand side not only
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consist of numerical values but also of the symbolic design variable x P G Ă Rm, where
G is compact. Then the linear equation is given as Arxsv “ brxs. This increases the
complexity of the problem. In general MATLAB’s backslash operator works for symbolic
matrices, still we will see that it struggles with more complicated designs. Therefore,
we need to process the linear equation in Singular, a computer algebra system, which
is more convenient for such problems. In the following we explain how the programs
are coupled and what preprocessing steps have to be made. These simplifications are
obligatory to obtain solutions in Singular and already help to reduce the computational
time in MATLAB.
Given Cij , rCi P R and functions f ijpxq, gijpxq, rf ipxq, rgipxq P C0pRm,Rq, with gijpxq,rgipxq ‰ 0, @x P G, we have that

Aijrxs “ Cij
f ijpxq
gijpxq , birxs “ rCi

rf ipxqrgipxq , 1 ď i, j ď N.

Since the matrix is sparse we get Cij “ 0 for a lot of entries. A closer look on the structure
of f ij and gij yields that there are polynomial expressions hijf , k

ij
f , h

ij
g , k

ij
g P Rrxs as well

as rational numbers pijf , p
ij
g P QzZ such that

f ij “ hijf pxq ` kijf pxqp
ij
f , gij “ hijg pxq ` kijg pxqp

ij
g .

The right-hand side brxs is similarly constructed. Our aim is now to replace those ex-
pressions, which have a rational exponent, and find the lowest common denominator in
the linear equation.

4.2.1 Preprocessing

We start with identifying the polynomials kijf pxq and kijg pxq. We have to iterate through
all entries Aij , where i ě j, and bi, to check them if they contain a rational exponent.
Therefore, we have to convert the symbolic expressions to a char. It is crucial to note
that all symbolic terms k with a rational exponent will be displayed as ’k^(p/q)’. Then
it is easy to check if the expression ’^(’ appears in the char array. We save the basis and
the exponent in two different lists. Repeated occurrences of the same expressions are
neglected. This does not include the case of same basis but different exponent. Once
we have finished with our iteration we obtain the two lists basis and exponent. In the
next step we identify the unique elements of basis together with their corresponding
exponents. Thus, we are left with a new list basisunique and non-empty sets of exponents
exponentlunique for each element basisuniquerls. We introduce n new symbolic variables
wl, l “ 1, . . . , n, where n is the length of basisunique. In the next step we iterate
through each list exponentlunique and determine the lowest common denominator to the
respective entries, which we denote by ql. Hence we can substitute all entries in Arxs
which are given in basisuniquerls “ xl with wl “ x

1{ql
l .

Remark 4.2.1 As an example we assume that we find in our matrix A three polynomial
expressions given by x1{2, x3{2, y5{4. After the first step we obtain the lists basis = tx, x, yu
and exponent = t1{2, 3{2, 5{4u. We see that the expression x appears twice in basis, but
with different rational exponents. Hence, we get after eliminating the multiple entries the
lists basisunique “ tx, yu and exponentxunique “ t1{2, 3{2u, exponentyunique “ t5{4u. We
now introduce the symbolic variables wx,wy together with the numbers qx “ 2, qy “ 4.
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The substitution is then practically done by using subs(A,x1{qx ,wx) and subs(A,y1{qy ,wy)
in MATLAB.

With that technique, also applied to our right-hand side, we can replace Arxs with

Arx,w1, . . . ,wns “ Cij
f ijpx,w1, . . . ,wnq
gijpx,w1, . . . ,wnq , where f ij , gij P Rrx,w1, . . . ,wns

are polynomials without any rational exponents. Once we have substituted our initial
linear equation

Arxsv “ brxs, with Arx,w1, . . . ,wnsv “ brx,w1, . . . ,wns,
we have to get rid of all appearing denominators.
We go through the entries of A and b to find the least common multiplier of all gij

together with rgi denoted by
glcmpx,w1, . . . ,wnq.

Once we have found this candidate we replace Arx,w1, . . . ,wnsv “ brx,w1, . . . ,wns
with rArx,w1, . . . ,wnsv “ rbrx,w1, . . . ,wns, whererArx,w1, . . . ,wns “ Arx,w1, . . . ,wns ¨ glcm, rbrx,w1, . . . ,wns “ brx,w1, . . . ,wns ¨ glcm.

We have finally arrived with a linear equation, where all entries are given by

rAij , rbi P Rrx,w1, . . . ,wns.
Next, we have to discuss how to forward the linear equation, which was assembled and
preprocessed in MATLAB, to Singular.

4.2.2 Calling Singular

The most essential part is the discussion on how to save the matrix rA and vector rb, such
that it can be handled in Singular. Moreover, we have to clarify the structure of the
underlying ring. Since the matrix rA is sparse we declare it in Singular as a module M

and save only the non-zero entries. Therefore, we implement each row of the matrix in
the format

M[i] “ rAij* gen(j),

where gen(j) is the j-th generator. Anyhow, the right-hand side b will be declared as a
matrix of size N ˆ 1. This means we save the entries as

rhs[i,1] “ rbi.
Since the coefficients still depend on the design parameters x,w1, . . . ,wn and we want
to find the solution v P RrxsN we have to declare the ring r appropriately. It is defined
as

ring r “ (0,x,w1, . . . ,wn,pi),(v(1..N)),(c,dp);.

The first round bracket indicates the coefficients of the ring. In our example we consider
Q extended by our design parameters and a placeholder pi for π. We want to mention
here that π will appear, if we calculate effective properties of structures consisting of
one or more elliptical beam elements. The second bracket defines the variables of our



4.3 Examples 77

solution vector. And the last part specifies the ordering. For further details we may
refer to [26].
After this setup we invoke the liftstd function in Singular. This yields the stan-
dard basis X and transformation matrix T to our module M. For a deeper understand-
ing we refer to [38] or [51]. From that point on we can replace our linear equation
with

Mv “ rhs ô XTv “ TTrhs.

The final solution is then obtained by defining the ideal

I “ XTv ´ TTrhs

and solve for its linear part. We are now left with a solution vector v which will then
be transfered back to MATLAB, where we reconstruct the stresses and calculate the
effective properties as we have shown in section 4.1.1. We also want to refer to [40],
where the author presents other practical examples for using Singular.
At first this whole process looks a bit tedious, but it is inevitable to obtain analytic
expressions for arbitrary beam like structures. In the next section we establish some
examples with increasing difficulties, where we want to compare the resulting solutions
as well as the running time. The linear equations are solved both with Singular and
MATLAB’s backslash operator. All presented examples are calculated on a Fujitsu
Esprimo P920 desktop PC with 8 Intel Core i7-4790 CPU @ 3.60GHz proces-
sors.

4.3 Examples

With the preprocessing technique, that we have developed in the previous section we
want to calculate the effective properties of some real life examples. For each case we
consider a different parametrization and obtain the respective solutions in terms of the
symbolic variables. Moreover, we have to restrict the choice of each symbolic variable x
to some given compact interval G Ă Rm. This is necessary to guarantee that our linear
equation is solvable for each choice of x. Since our matrix is derived from beam FE, we
do not want to consider values for x such that we get singular networks with arbitrary
small beams. These precautionary measures yield a GSM, which is symmetric positive
definite at any time. We start with a rather simple example, where an analytical solution
can be calculated by hand. Next up we focus on the case of hexagonal structures. Given
that particular network we consider both a change of geometry and for a fixed hexagon
we want to investigate how the choice of different beam structures changes the effective
properties. The change of geometry not only means varying the width and length but
also shifting some beams vertically to induce more stiffness. After that we also prepare
an auxetic structure.

Remark 4.3.1 Regarding the indexes we note that we consider everything in the local
coordinate system of the periodicity cell given by ei. With respect to the global coordinate
system, we have that e1 corresponds to the s1 direction,i.e., p0, 1, 0qT and e2 is aligned
with s2, p1, 0, 0qT .

4.3.1 Open grid structure

In our first example we consider an open grid structure as presented in [61, section 7.2.3].
There we look at the pattern shown in figure 4.2, where the beams have a rectangular
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cross section of width bα, α P t1, 2u and height h. The distance between two parallel
beams is denoted by tα.

b2

h

b1

h

t1

t2

e1

e2

Figure 4.2: Open Grid Structure

This example is good for testing, since the flexural rigidities are analytically given
with

chom1111 “ Eb1h
3

12t1
, chom2222 “ Eb2h

3

12t2
,

where E denotes the Young’s modulus of the beam material. We see that increasing the
widths bα of the beams makes the whole structure stiffer, while widening the distance
between two parallel beams decreases the flexural rigidities. In our example we now
fix the cross sections and take h “ b1 “ b2 “ 0.2 cm. The area moments of inertia
are then given by Iz{y “ 0.24

12 cm4. Moreover, we assume that the beams are made of a
material with Young’s modulus E “ 2 GPa and Poisson’s ratio 0.3. Thus, we can only
vary the distances between parallel beams. In order to calculate the effective properties
with the algorithm presented in section 4.1, we need to identify the periodicity cell Y .
In figure 4.3 we see that taking the red cell as Y yields by periodical continuation the
whole structure. This choice is even the smallest possible periodicity cell that we can
take. In the next step we introduce the two symbolic variables x and y, and assume
that the periodicity cell can be in the e2 direction at most 4cm long and in the e1
direction 2 cm long. Furthermore, the cell should be at least bigger than 0.4 cm in
both directions. Otherwise the beams would penetrate each other. Concerning those
constraints we introduce the parametrization as shown in figure 4.4 with x P r0, 1.8s
and y P r0, 0.8s. The full structure is then obtained by repeating the periodicity cell at
the red lines. This yields the relation t1 “ 2p2 ´ xq and t2 “ 2p1 ´ yq. Plugging in all
parameters into the analytic formulas we can conclude that the flexural rigidities are
calculated as

chom1111 “ 320

24p2 ´ xq , chom2222 “ 320

24p1 ´ yq . (4.3.1)

On the basis of that structure we want to check, if the symbolic solution matches
the analytical results. After that we want to investigate, whether solving the linear
equation in Singular yields the same results as MATLAB’s backslash operator and which
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Y

Figure 4.3: Periodicity cell for open grid structure.

2 ´ x

1 ´ y

x “ 0

y “ 0
e1

e2

Figure 4.4: Parametrization of periodicity cell for an open grid structure.

method performs better. In figure 4.5 we can see the results that we obtain in the
symbolic calculation over the given domain defined by the constraints. For both cell
experiments we observe that the symbolic solution corresponds to the results presented
in [61]. Therefore, our algorithm performed symbolically yields the exact results. As we
have discussed in section 4.2 we can make use of Singular to calculate the solution of the
linear equation. In figure 4.6 we can look at the results obtained with both methods. In
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Analytical Solution

(a) chom1111

0 0.2 0.4 0.6 0.8
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y
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2
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Symbolic Calculation
Analytical Solution

(b) chom2222

Figure 4.5: Comparison of analytic and symbolic solution.

our case only for the chom2222 experiment. Since both procedures return the same solution,
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we want to compare the time consumptions. We want to remind here that for stopping
the time in the Singular part, we not only account for solving the linear equation itself,
but also add the time for the I/O process to save the GSM and the right-hand side in
their respective format. The cumulated times for all four experiments in the case of the
open grid structure are presented in figure 4.7. We immediately see that both methods

Figure 4.6: Comparison of the solutions.

need less than a second. Note that the y-axis is in logarithmic scale. However, in all
cases MATLAB is faster. We want to mention here, that this is mostly because of the
I/O process and since the problem is rather easy. For a complete overview of the other

M11˚ M22˚ M21˚ M12˚
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Time Comparison for Symbolic Problem

Matlab
Singular

Figure 4.7: Time Comparison for solving the open grid structure.

effective properties we show them in figure 4.8. Here, we can see that chom1122 “ chom2211 “ 0.
This means that our structure is indeed orthotropic. Moreover, we get that the Poisson’s
ratio of an equivalent homogeneous shell is zero.

4.3.2 Varying hexagon

In this section we want to consider a more elaborate example, where we vary the width
and length of a hexagon. Such hexagonal structures appear also in real life applications
as for example in filter systems and in foils for cosmetic applications. In the next
chapter we can then use the symbolic expressions for the flexural rigidities to find the
optimal design. As in the previous case we want to determine the minimal periodicity
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Figure 4.8: Other effective properties for open grid

cell Y , which we can parametrize. Moreover, we want to specify certain constraints to
get realistic solutions. After that we run our symbolic homogenization procedure to
express the chomαβα1β1 with respect to these variables. In figure 4.9 we have indicated the
smallest periodic cell with the red box. The full structure is then received by periodic
continuation of the red box in both directions.
The goal now is to parametrize the structure such that we need as few symbolic variables

Y

Figure 4.9: Periodicity cell of the hexagon

as possible. In general each newly introduced variable increases the complexity. We look
at figure 4.10, where we cut out a quarter of a hexagon, consisting of three beams, as we
can see in the left part. We introduce two symbolic variables gx and gy, which we denote
as g “ pgx, gyq. This g is shown as the red dot in the figure and the underlying red box
indicates the constraints, which we enforce on the choices for our design parameter. In
our structure we fix one point at p0, 0.5q, the green dot, which is independent of the
design parameters and we connect the dots with a beam element. Next we add a beam
which is perpendicular to the orange line and connect it with the red dot. Hence, this
beam is given by the two nodes pgx, 0q and pgx, gyq, where we denote by lpgq “ gy the
beam’s length. In the end we have to describe the third beam starting at the green
node. This one should be parallel to the e2 axis and have the length lpgq, which is
necessary to generate a proper periodicity cell. We connect the two points p0, 0.5q and
p0, 0.5`gyq. After that we reflect the beam structure along the orange and green line to
obtain a hexagon. In the right part of the picture we can see two examples, where one
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is the extreme case of having a rectangle instead of a hexagon. The beams itself have a
circular cross section with r “ 0.03 mm, Young’s modulus E “ 200 GPa and Poisson’s
ratio ν “ 0.3. We can now set up the mesh to calculate the effective properties with

g “ pgx, gyq

Design Variationlpgq

lpgq
p0, 0q

e2

e1

Figure 4.10: Variation of the hexagonal geometry

respect to the given parametrization, where we assume that g P r0.1, 0.4s ˆ r0.2, 0.5s. In
figure 4.11 we can see the values for chom1111 plotted over the constraint domain. Once again
we have used both MATLAB’s backslash operator and the Singular computation. We
notice that both methods yield the same results, where the difference for this example
in L2-norm is 2.0543 ¨10´15. Likewise to the open grid structure we want to compare the

Figure 4.11: Effective chom1111 for the varying hexagon

time needed with both variants. We immediately see that it takes longer to compute this
problem. Especially, the difference between MATLAB and Singular is getting smaller.
In all four experiments it takes around 10 s to invoke both the I/O operations and
solving the linear system by calling Singular.
In figure 4.13 we can have a look at the other results. Moreover, we have summarized

some selected analytic expressions in the appendix C. Another important investigation
is that we satisfy the orthotropy condition chom1122 “ chom2211. This means we can calculate a
pinching load on the equivalent homogeneous shell with our function derived in section
3. Hence, we can directly plug in the polynomial expressions and see how the design
choice affects the result. We also want to emphasize on the values of chom1122 for gy “ 0.5.
This is the setup, where we obtain a rectangle instead of a hexagon. We observe that
at this point we always obtain the value chom1122p¨, 0.5q “ 0, for all gx P r0.1, 0.4s. This is
in correspondence to the open grid examples, where all beams are parallel either to the
e1 or e2 axis.
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Figure 4.12: Time Comparison Matlab and Singular for varying hexagon

Figure 4.13: Other effectve properties for the varying hexagon calculated with Singular.

4.3.3 Varying cross sections

In the next example we want to consider the case, where the hexagon’s size is fixed, but
we are allowed the vary the design of the beams. Thus, we consider a structure as shown
in figure 4.14, where the length is 1.8 mm and the width 0.6 mm. There we assume that
the hexagon consists of two types of beams, where both are given in the first part with
a quadratic cross section and after that with a circular one. We assume that the beams
parallel to the e1 axis have the green cross sections on the right, while the oblique beams
have the blue ones. The mechanical properties are the same as in the previous example.
We introduce the symbolic variables x and y which control the size of the cross sections.
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A simple calculation of the area moments of inertia for both cases, the quadratic cross
section on top and the circular one on the bottom, yields

Igreeny{z, “ x4

12
, Ibluey{z, “ y4

12
,

Igreeny{z,‚ “ x4π

64
, Ibluey{z,‚ “ y4π

64
.

x

x

y

y

e2

e1

1)

x y

2)

Figure 4.14: Change in cross section

Furthermore, we assume that x, y P r0.03, 0.1s for both instances. When we set up the
global stiffness matrix we can introduce the area moments of inertia as presented and
take them through the whole process. We note that the thickness h is not constant in
this experiment. It is actually given as maxpx, yq. In figure 4.15 we show the results
of the first case for the effective chom2222 in the top layer and chom1122 on the bottom. A
small calculation of the difference for chom2211 in L2-norm, which is 4.8986 ¨ 10´18, confirms
that both methods yield the same result. We note, that in this case the structure is
again orthotropic for all combinations of px, yq. We provide the exact polynomials in the
Appendix C. In the next step we want to check the second case. A closer investigation

Figure 4.15: Comparison of effective properties for varying quadratic cross sections.

of our parametrization reveals that we are for px, yq “ p0.06, 0.06q in the configuration
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of our example in section 4.3.2. Hence, we should obtain the same value as for choosing
g “ p0.3, 0.4q in the previous calculation. In figure 4.16 we present the effective properties
for our structures. We focus on the values for chom2222 and chom1212. We first note that the
plots look similar to the quadratic cross section, but the current design is less stiff
than the other. This corresponds to the classical Euler-Bernoulli beam theory, where
a rectangular cross section has a bigger flexural rigidity than a circular one. Moreover,
we can calculate the value of chom2222 at px, yq “ p0.06, 0.06q and obtain 0.217. The same
result is indeed attained for the example in section 4.3.2.
Principally, we can conclude for this example that increasing the width of the beam
elements also increases the stiffness. Given this structure we will examine in chapter
5 what the best choice for minimizing the deflection is. Moreover, we also want to
investigate how the Poisson’s ratio in both cases behave. For now we continue with the

Figure 4.16: Comparison of effective properties for varying circular cross sections.

comparison of the time used for each experiment in MATLAB and Singular. The results
are presented in figure 4.17. As we can see in the diagram, the computation time needed
for both cross sections, is less than for the varying hexagon. It takes here slightly more
than 1 s for each experiment. We still see that it is faster to stay in MATLAB, even
though the difference between both methods is rather marginal. Note, that the plot is
still in log-scale. We close this example for now and move on to a problem, which uses
just one symbolic variable. This example will demonstrate why it is more reasonable to
use Singular instead of MATLAB and it shows why one should always be careful, when
calculating with symbolic variables.

4.3.4 Shifted beams

In this section we consider a parametrization with just one symbolic variable. This
particular example shows that one should be really careful with the parametrizations.
Even though it seems easier than the previous ones it is so far the most difficult. We
consider a hexagon with fixed width, 0.6 mm, and length, 1.8 mm, but we assume that
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Figure 4.17: Time comparison for varying cross sections.

the green beams can be shifted vertically. Hence, we parametrize the distance between
the green and blue beams as shown in figure 4.18 by some variable z. Moreover, we
note that the area moments of inertia of each beam are constant, where we assume that
the beams are circular with radius r “ 0.03 mm. We consider again the same material
properties as before and assume that z P r0, 0.03s. After calculating all experiments,

z
e2

e1

Figure 4.18: Variation in z direction.

both with Singular and Matlab, the first observation one can make is that the solutions
from both methods again coincide. The differences are always of the order 10´16. We
want to have a closer look on the flexural rigidities in the e2-direction, given as chom2222.
As we can see in figure 4.19, we have for the case with z “ 0 that chom2222 “ 0.217.
This result is the same as the corresponding value from the example in section 4.3.2
with pgx, gyq “ p0.3, 0.4q. Moreover, we can deduce from the plot that shifting in the z
direction makes the construction stiffer in the e2 direction. If we compare the maximal
with the minimal value, we have an improvement of about 0.04. Therefore, compared
to other design approaches the shifts do not induce that much stiffness. It is important
to note that this example actually attains configurations, which are not orthotropic.
Anyhow, the differences between chom1122 and chom2211 are small. Moreover, due to the shifts
we have that bhomαβα1β1 ‰ 0. We assume in chapter 5 that this structure is orthotropic and
perform the minimization of the maximal deflection. A look at the time comparison
in figure 4.20 reveals that in this case Singular outperforms MATLAB. While it takes
for the backslash operator between 10-20 minutes, Singular needs together with the
I/O operation just about 10 seconds. This result is rather surprising, if we consider
that there are actually fewer variables. On the contrary, it shows us that we cannot
determine a priori which method should be chosen. We close now this example with the
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Figure 4.19: Shift in z direction with contact condition.
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Figure 4.20: Time comparison shift in z direction.

observation that Singular should indeed be chosen in favor of MATLAB. Even though in
most examples MATLAB was slightly faster, we can run into a lot of trouble for special
parametrizations as seen in this case.
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4.3.5 Auxetic structure

As a last example for periodic structures we want to discuss a periodicity cell which
inherits an auxetic behavior, i.e., having negative Poisson’s ratio for all configurations.
Such materials are of interest in different engineering applications, as shown in [22] and
in the framework of optimization in [57]. For that case we consider the beam structure
given in figure 4.21. We first need to identify the minimal periodicity cell Y of the
structure and introduce a suitable parametrization in figure 4.22. We assume that the
beam in the middle, which is parallel to the e2-axis and starting at the green dot, has
a fixed length laux. Moreover, the oblique beams connected with the green dot have
the same length and their direction is given by the angle γ. This parameter will be our
symbolic design variable in the homogenization process. The distance from the green
dot to the origin is laux. The full cell Y is then obtained by reflecting the described
parametrization along the e1-axis, which is drawn in orange. In the following example
we choose the parameter laux “ 0.6 mm. This means that the periodicity cell’s length
is constant with 4 ¨ laux, while the width is dependent on the angle γ by 2laux ¨ sinpγq.
The beams are assumed to be circular with radius r “ 0.03 mm and Young’s modulus
E “ 200 GPa.

Y

Figure 4.21: Periodic structure of an auxetic material.

p0, 0q γ

laux

e2

e1

Figure 4.22: The auxetic cell

For this special structure we include two pictures demonstrating the M22˚ experiment in
figure 4.23, which yields the values for chom2222 and chom2211. Next up we want to verify that our
structure is indeed auxetic for all choices of γ. To investigate that we show the obtained
effective properties chom2222 and chom2211 calculated both with MATLAB and Singular. The
results are presented in the figures 4.24 and 4.25. We can not only observe that both
methods yield again the same result, but also that the values chom2222 are always bigger than
0, while the chom2211 are always negative for all γ P rπ8 , π2 s. Hence, calculating the Poisson’s
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Figure 4.23: Cell Experiment M22˚ for auxetic material.

ratio ν12 gives the result on the right side of figure 4.26. For the sake of completion, we
also show the values for ν21, which is not as interesting as the other case. For ν12 we
can see that increasing the angle γ makes the Poisson’s ratio smaller. Moreover, we can
conclude that

lim
γÑπ

2

ν21pγq “ 0.

This configuration coincides with the geometry of an open grid structure or to the case
that gy “ 0.5 in example 4.3.2. The corresponding result are in accordance with the
analytic solution for the open grid structure given in [61]. Another interesting task is
finding the minimal Poisson’s ratio. We will consider this problem in the next chapter,
where we implement optimization techniques to find this value. To finish this section
we want to check the time needed to solve the linear equation system. The bar diagram
in figure 4.27 presents the total processing times. For this example we can only deduce
that the I/O procedures are rather time-consuming.
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Figure 4.24: chom2222 for auxetic materials.

4.3.6 Summary

In the five presented examples we have shown the advantages of calculating effective
properties with symbolic expressions. The greatest improvement we have achieved with
this method is obtaining analytic expressions for the flexural rigidities, shear modulus,
Poisson’s ratio and Young’s moduli depending on our parametrization. In the sense of
example 4.3.1, the open grid structure, one does not have to calculate the values by hand,
instead it reduces to defining a reasonable parametrization and progress the mesh with
our algorithm. We are also able to calculate the analytic expressions for more elaborate
examples, 4.3.2-4.3.5. Moreover, we have developed a way to solve the problem with
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Figure 4.25: chom2211 for auxetic materials.
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Figure 4.26: Poisson’s ratio for auxetic materials.
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Figure 4.27: Time comparison for the auxetic material.

an efficient computer algebra system. In most cases the I/O procedures are tedious but
for meshes, where one considers shifting elements in the outer plane direction, we can
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reduce the computation time by using Singular and therefore it is preferable to use this
procedure. Regarding the time consumption we should discuss one more question: What
are the benefits of the symbolic calculation compared to a numerical parameter study?
In the next section we will solve two examples via a parameter study in contrast to our
described method.

4.4 Comparison symbolical and numerical homogenization

Of course the presented algorithm can be implemented numerically. To obtain the ef-
fective properties of one particular setup this variant is incredibly faster. Anyhow, if we
want to study the behavior of different variations in the mesh it can also get computa-
tionally costly. For those cases it may be of advantage to calculate the symbolic effective
properties. Therefore, we want to investigate two questions

• Do both procedures yield the same results?

• When is the symbolic calculation faster than the parameter study?

We restrict ourselves to the examples of the open grid structure and the varying hexagon.
Beginning with the open grid parametrization we first compare the results. For that rea-
son we discretize the intervals r0, 1.8s and r0, 0.8s both with 10 points and calculate the
L2-norm of the difference between the symbolical and numerical solution. The values
are summarized in table 4.1. Since chom1122 and chom2211 should be 0 anyway by the theoretical
results in [61], it is not surprising to see that the difference is exactly 0. For the other
two bending experiments we see that both values are of the order 10´6. Moreover, we
can check in figure 4.28 the convergence of the numerical solution to the symbolical one.
We see that for refined meshes the difference gets smaller up to around 5 ¨ 10´7. We
should keep in mind that we introduce two numerical errors in the comparison. The
first one lies in the numerical solution itself and the second one in the conversion of
symbolic parameters to numerical values. We can conclude for this example that the
numerical method yields the same values as the symbolic calculation. Introducing more
discretizations points will then decrease the difference. We now want to compare the

chom1111 chom1122 chom2211 chom2222

Difference 2.662 ¨ 10´6 0 0 3.611 ¨ 10´6

Table 4.1: Difference in L2 for open grid.

time consumption. In order to make reasonable conclusions we measure the complete
processes. This involves the setup of the global stiffness matrix, solving the linear equa-
tion and calculating the effective properties.
Since we obtain in our presented variant the symbolic expressions, which can be later
converted to functions, we get a discretization independent time. Once we have calcu-
lated the effective properties the evaluation of certain points is done instantaneously. For
the numerical method we will successively increase the number of discretization points
in the intervals and take track of the time for evaluating all points. We start with 100
points and go up to 3600. In figure 4.29 we present the results. Obviously, the time for
the numerical method increases linearly. It is interesting to see that solving the symbolic
problem is as fast as a parameter study with „900 discretization points. Considering
that the analytical expressions are more meaningful, it is important to underline that
in this example the presented approach is as efficient as the numerical one.
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Figure 4.28: Convergence of numerical solution to symbolic.
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Figure 4.29: Time consumption for numerical and symbolical calculation of open grid.

We continue with the same comparisons for the varying hexagons. Of course this
parametrization is a bit more complex. In table 4.2 we show the calculated differ-
ences again on a grid with 100 points. The values are sufficiently small. It may surprise
that the differences for chom1122 and chom2211 are the same. Anyhow, since the hexagon is an
orthotropic structure we have to get chom1122 “ chom2211 and therefore we end up with the same
numbers. The convergence of the numerical solution to the symbolic one, in the case of
a hexagon, is shown in figure 4.30. Also for the second mesh we can conclude that both
methods yield the same results.

chom1111 chom1122 chom2211 chom2222

Difference 1.585 ¨ 10´4 1.252 ¨ 10´5 1.252 ¨ 10´5 3.484 ¨ 10´4

Table 4.2: Difference in L2 for hexagon.
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Figure 4.30: Convergence of numerical solution to symbolic.

Next, we take a look on the time consumptions in figure 4.31. We have the identical
setup as in the previous case, where we now discretize the interval r0.1, 0.4s ˆ r0.2, 0.5s
first with 100 points and then up to 3600. We can observe that the symbolical method
needs almost a minute. We see that for a study over the complete domain the numerical
treatment is still faster. Hence, for more complex geometries the numerical method
outperforms the symbolic one.
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Figure 4.31: Time consumption for numerical and symbolical calculation of hexagon.

In conclusion we should keep in mind that it is in general computationally more expensive
to get analytic expressions with the symbolic calculation than performing a numerical
parameter study. However, the time factor is mostly relevant for complex structures and
the benefit of having analytic expressions is more valuable.
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5 Optimization

In this chapter we want to combine all the obtained results and use them to opti-
mize structures given certain objective functions. All of this should be done within
the structures’ mechanical possible range. We consider here both the minimization of
displacements due to pinching loads and the Poisson’s ratio optimization. In each case
we investigate the equivalent homogenized shells, where we use the results derived in
chapter 2. Since each periodicity cell can be parametrized via symbolic design variables
we perform the calculations symbolically as presented in 4. Especially, for the case of
minimizing the maximal deflection we use the analytic formulation of the pinched cylin-
der problem, discussed in chapter 3. We see that the design choice affects the coefficients
in the Fourier series. In the following section we focus on the setup of our optimization
algorithm and after that we reconsider the examples from section 4.3 and optimize them
w.r.t. the underlying constraints.

Remark 5.0.1 We want to recall here that the local e1 direction of the periodicity cell
corresponds to the global p0, 1, 0qT direction for the full shell. Hence, it is aligned with
the direction of the curvature. Consequently, the local vector e2 is aligned with p1, 0, 0qT
the shell’s longitudinal direction.

5.1 Objective functionals

In this section we present the derivation of the objective functionals. We start with
minimizing the maximal absolute deflection caused by a pinching load. Therefore, we
take the analytic function, which we have derived for homogeneous orthotropic shells,
given by

U3ps1, s2q “ 2Pk4

πE2hH3

8ÿ
n“1,2,3,4¨¨¨

sinpnϕ0q
R2n2

sin
´ns1

a

¯
ˆ

#«`
ζC ` ηG

˘
cos

ˆ
HA|s2|

a

˙
` `

ζG ´ ηC
˘
sin

ˆ
HA|s2|

a

˙ff
e´HB|s2|

a

`
«`

ζA ´ ηB
˘
cos

ˆ
HC|s2|

a

˙
` `

ηA ` ζB
˘
sin

ˆ
HC|s2|

a

˙ff
e´HG|s2|

a

+
,

where we refer to Lemma 3.2.3 for details on the parameters and how they are obtained.
Since we have considered a pinching load, we know that the maximal absolute deflection
will occur at the same point as the load itself. Hence, we need to insert paϕ0, 0q into our
formula to obtain

}U3ps1, s2q}L8pωq “
ˇ̌̌̌
ˇ 2Pk4

πE2hH3

8ÿ
n“1

1

R2n2
sinpnϕ0q2 ¨

”
pζC ` ηGq ` pζA ´ ηBq

ıˇ̌̌̌
ˇ

“ U3,max.

(5.1.1)
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We note here that all parameters in the formula are bigger than 0, except the applied
force P . Therefore, we can also consider

U3,max “ 2|P |k4
πE2hH3

8ÿ
n“1

1

R2n2
sinpnϕ0q2 ¨

”
pζC ` ηGq ` pζA ´ ηBq

ı
. (5.1.2)

From that point on we assume that P is positive. We concluded in section 3.2.1
that we can terminate the series with n ă 10, since the partial sums converge rather
fast. In this part we proceed with S8 to simplify the calculations. Hence, we continue
with

U3,max “ 2Pk4

πE2hH3

8ÿ
n“1

1

R2n2
sinpnϕ0q2 ¨

”`
ζC ` ηG

˘ ` `
ζA ´ ηB

˘ı
. (5.1.3)

Furthermore, we saw in that section that the maximal deflection gets smaller the closer
the pinching load is applied to the boundary. Thus, we will get the biggest deflection if
we apply the load at paϕ0, s2q “ paπ2 , 0q. Due to the expression sinpnϕ0q we have only 4
non-zero elements in the series and we can simplify it to

U3,max “ 2Pk4

πE2hH3

3ÿ
n“0

1

R2p2n ` 1q2 ¨
”`
ζC ` ηG

˘ ` `
ζA ´ ηB

˘ı
. (5.1.4)

This yields our objective functional, where all the parameters in the sum also depend
on 2n ` 1. We know that they rely on the shell’s effective properties, too. We can plug
in the symbolic expressions of our effective properties into this function. This means,
that given our design variables x P Rm, the expression U3,max can be identified as a
function

U3,max : Rm ÞÑ R,

U3,maxpxq “ 2Pkpxq4
πE2pxqhpxqHpxq3

3ÿ
n“0

1

R2pxqp2n ` 1q2
”
pζpxqCpxq ` ηpxqGpxqq

` pζpxqApxq ´ ηpxqBpxqq
ı
.

(5.1.5)
Moreover, we impose constraints on each design variable xi. There are ai, bi P R such
that xi P rai, bis. With that we can formulate our optimization problem as

min
x

}U3ps1, s2,xq}L8pωq “ U3,maxpxq
s.t. ai ď xi ď bi.

(5.1.6)

The optimization problem for the Poisson’s ratio is then obtained in a similar way. We
know from remark 4.1.4 that we can calculate the expressions from the effective bending
properties as

ν21 “ chom1122

chom1111

, ν12 “ chom2211

chom2222

.

Since both parameters depend on the design variable x we can formulate the Poisson’s
ratio optimization as

max {min
x

ν21pxq “ chom1122pxq
chom1111pxq

s.t. ai ď xi ď bi,
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where the formulation for ν12 follows respectively.
There are various different methods for solving such a constrained optimization problem.
We focus on the projected gradient method as discussed in [5, section 2.3]. There we
consider a steepest descent approach, where we choose the length of the step size via
the Armijo rule along the projection arc. Moreover, if the current iteration xi violates
one or more constraint we project the value back into the admissible set. We define the
projection

P : Rm ÞÑ Rm

Ppxq “
´
maxpminpx, biq, aiq

¯
i“1,¨¨¨ ,m

.

We have summarized the procedure in algorithm 1.

Remark 5.1.1 Since our homogenization process has been done completely symbolically
we can calculate the gradients with MATLAB’s diff operator. This can be used to obtain
the search direction in the projected gradient method.

Algorithm 1 Projected Gradient Method

1: procedure Projected Gradient(f,∇f,P, x0) Ź Calculate the minimum of f
2: x0 “ Ppx0q
3: tol “ 10´12

4: σ P p0, 1q, α “ 1
5: while k ă M do Ź M is maximal number of allowed iterations
6: d “ ´∇fpxkq
7: xk`1 “ Ppxk ` αdq
8: while fpxkq ´ fpxk`1q ă ´σdT pxk ´ xk`1q do
9: α “ α ¨ 1

2
10: xk`1 “ Ppxk ` αdq
11: end while
12: if }fpxk`1q ´ fpxkqq}2 ă tol then
13: break
14: end if
15: α “ 1
16: end while
17: return xk`1

18: end procedure

We want to emphasize here again that the effort we put into the setup of our sym-
bolic homogenization procedure benefits the optimization process. It is not only pos-
sible to directly analyze the analytic formulation for the partial sum Sn and see how
they depend on the underlying parametrization, but also the gradients are easily ob-
tained.

5.2 Examples for minimization

We revisit the examples presented in chapter 4 and plug the effective properties, which
have been calculated symbolically, into our function U3,max or the Poisson’s ratio ν12, ν21.
We use then the projected gradient method to obtain the optimal designs with respect
to the given constraints. Since the coefficients P and a do not affect the choice of xmin
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Figure 5.1: Maximal Displacement for open grid structure normalized.

in the minimization of the deflection, we fix those values with P “ 1, a “ 2 and consider
the normalized displacements.

5.2.1 Optimize: Open grid structure

We consider the parametrization of the open grid structure as presented in section 4.3.1
and assume that a shell with this periodic structure is under the pinching load P . With
the formula (4.3.1) in section 4.3.1 we can easily calculate that

E1 “ 20000

2 ´ x
, E2 “ 20000

1 ´ y

and consequently our parameter H in the functional simplifies to

H “ 1 ´ y

2 ´ x
.

Since we have ν12 “ ν21 “ 0, we deduce that in the functional (5.1.5) only E2 and H de-
pend on the choice of the design variables. This simplifies the function to

U3,maxpx, yq “
3ÿ

n“0

Cn
p2 ´ xq3
p1 ´ yq2 ,

where Cn are some coefficients in R. The gradient is then given as

∇U3,maxpx, yq “
3ÿ

n“0

Cn

¨̊
˚̋´3

p2 ´ xq2
p1 ´ yq2

2
p2 ´ xq3
p1 ´ yq3

‹̨‹‚.

We have plotted the function U3,max over the domain in figure 5.1, where the results
are normalized with the maximal value being 1. We can see how the figure resembles
the theoretically derived function U3,max. As we move closer to the singularity y “ 1,
our deflection explodes. Furthermore, plugging the function and its gradient into the
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(a) x “ p1.8 0q (b) x “ p0 0.8q

Figure 5.2: The best and worst shape w.r.t. our design space compared.

optimization method yields that the minimal deflection is obtained for px, yq “ r1.8 0s.
In order to qualitatively discuss the result we take a look on the shells with the best and
the worst choice of design parameters given in figure 5.2. We can see that in order to
minimize the deflection we have to stabilize the shell along the circumferential direction.
As we can observe in the left picture of figure 5.2, the shell has a lot of beams in this
direction, while the configuration on the right just has a few.
In the next step we will keep the open grid structure, but consider a different parametriza-
tion.

Different design space

Here we investigate the example presented in [31] to demonstrate that the design vari-
ables can be chosen freely. We take again an open grid structure, but the choice of the
design space is different. Especially, we do not only vary the spatial properties of the
length, but we also want to change the thickness of some beam elements. Therefore, we
need to specify the area moments of inertia as symbolic variables. We consider the setup
in figure 4.2 and make the following assumptions that

b1 ` b2 “ 1,

t1 “ 2 ¨ t2.
We take x “ pt2, b1q, together with the requirement that t2 P r2, 3s and b1 P r0.5, 0.9s.
Furthermore, we assume that all beam elements still have the properties E “ 2 GPa
and Poisson’s ratio ν “ 0.3.

Remark 5.2.1 We want to mention here that the example presented in [31] was a
heterogeneous plate on an elastic foundation.

Once we have implemented this mesh structure we can run it through our algorithm,
which yields pt2, b1q “ p2.0 0.9q as the optimal solution. This means that the distance
between two parallel beams should be as small as possible, as we have seen in the
previous example. Moreover, the condition b1 “ 0.9 can be understood as making the
beams in the circumferential direction as big as possible to increase E1, even if this
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means to get smaller beams in the longitudinal direction. In figure 5.3 we have plotted
the normalized deflection over the given constraints. We can see how marginal the choice
of t2 is compared to b1. This is mostly due to the coupling of t1 and t2 in this experiment.

Figure 5.3: Normalized Displacments for the second parametrization of an open grid
structure

5.2.2 Optimize: Varying hexagon

We now continue with the example of a varying hexagonal structure. We remind that
for the following analysis we consider circular beams with radius 0.03 mm, which have
a Young’s modulus of 200 GPa. We want to vary the length and the width of the
periodicity cell according to section 4.3.2. In figure 5.4 we show the normalized deflection
for the current example. We can immediately see that the function explodes, if we choose
the hexagon as small and narrow as possible. We are able to calculate the optimal
solution with pgx, gyq “ p0.4, 0.4209q. In figure 5.5 we present the best and worst set of
design parameters. Similar to the open grid structure, we need a configuration which
increases the Young’s modulus E1 in the circumferential direction. We note here that
the best solution on the left side is almost the extreme case of having a rectangle instead
of a hexagon. Apparently, it is beneficial to still keep a hexagonal structure. Also the cell
should be as big as possible. We can conclude the discussion of the spatial optimization
for hexagons. We have seen that the best solution for this case is non-trivial. We later
on see that the Poisson’s ratio optimization is closely related to the one of the auxetic
structure.

5.2.3 Optimize: Varying cross sections

We move on with our next example, where we consider the different design approach for a
fixed hexagon, where we let our cross section either be circular or quadratical and control
the size of the beam elements. We have seen that both cases yield similar results. There-
fore, we focus on the quadratical cross section. We consider both the minimization prob-
lem and Poisson’s ration optimization. We take x and y as the design variables described
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Figure 5.4: Normalized deflection for varying hexagon problem.

(a) Best (b) Worst

Figure 5.5: Best and worst choice for the varying hexagon problem.

in section 4.3.3, and assume that px, yq P r0.03, 0.1s2. By plugging the effective properties
into 5.1.2 we obtain the result shown in figure 5.6.

It is easy to see from the plot that the beams parallel to the longitudinal direction should
be chosen rather thin, while the oblique beams are very wide. A small computation of
the optimum confirms our suspicion that the optimal choice is px, yq “ p0.03, 0.1q.
In figure 5.7 we present the optimal solution and relatively show the scales between
the green beam and the blue beam. We can see that the choice of y has a higher
impact than x. This is similar to the previous examples, where we have seen that the
effective stiffness in the circumferential direction should be chosen as large as possible.
For this example we also want to find the design choice, which maximizes, respectively
minimizes, the values of ν21. We start with the minimum for ν21, which is attained
at px, yq “ p0.03, 0.1q. Our gradient method can also be easily adapted to find the
maximum, which we obtain at p0.1, 0.03q. The corresponding plot of ν21 is in figure
5.8. This parametrization is a great example to show the impact of our method, since
actually any geometrical or mechanical property could be introduced as a variable and
optimization can be performed w.r.t. these designs.
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Figure 5.6: Normalized Deflection w.r.t. change of cross section

e2

e1

Figure 5.7: Change in cross section

5.2.4 Optimize: Shifted beams

In this section we want to study the 1D optimization problem, where the beams par-
allel to the longitudinal axis are shifted into the vertical direction. We have seen that
especially this problem can be rather time consuming. For the optimization it is inter-
esting to see if such shifts introduce a certain stiffness, which minimizes the deflection
caused by pinching loads. Remember, that we have fixed the in-plane geometry of the
hexagon and take circular beam elements with radius r “ 0.03 mm, E “ 200 GPa and
ν “ 0.3. Our shift is bounded by r “ 0.03. In figure 5.9 we have plotted the maximal
deflection given this parametrization. As we can see, increasing the shift yields at first
a bigger deflection. The maximal deflection is then attained for z “ 0.0034. It is easy
to see from the plot that the minimal deflection is reached for the biggest shift z “ 0.03.
Moreover, we can also consider for this case the Poisson’s ratio maximization of ν12.
In figure 5.10 we show the corresponding plot. For the presented function we can con-
clude that the maximal Poisson’s ratio is reached at z “ 0, while the minimal one is at
z “ 0.03.

5.2.5 Optimize: Auxetic structure

In our last example we investigate the auxetic periodicity cell. For those structures it
is particularly interesting to optimize the Poisson’s ratio. As we have described in the
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Figure 5.8: Poisson’s ratio ν21
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The maximal deflection of a cylinder with hexagonal periodicity.

Figure 5.9: Deflection w.r.t. to shifting beams along the z axis.

beginning of the chapter we minimize the value of ν12. Besides, one can notice that this
parametrization is certainly similar to the one of the hexagon and we want to check if
an auxetic setup is better than the hexagon, given the maximal deflection. But we first
proceed with the Poisson’s ratio optimization. In figure 5.11 we show the values of ν12.
We can see that increasing the angle γ makes ν12 smaller until we reach the minimum at
γ “ 0.9966. This point is then the solution to our optimization problem. We show the
pattern for this design choice in figure 5.12. Moreover, we want to emphasize again that
for γ “ π

2 we obtain ν12 “ 0, which coincides with the results given for the open grid
structure and the hexagon. Moreover, we compare the best solution for the Poisson’s
ratio optimization with the one for minimizing the deflection. Therefore, we also deal
with our objective functional U3,max. Here we obtain the deflection given in figure 5.13.
Similar to the varying hexagon we need to have beams that are almost parallel to the
e1 axis. We then receive that the best configuration is given for γ “ 1.5063. We have
plotted the shell with such a structure in figure 5.14. Finally, we want to conclude
this chapter with closing the gap between the auxetic material and the hexagon. As we
mentioned in the beginning of this subsection we can actually generate auxetic materials
via the parametrization of the hexagon. Therefore, we need to change the constraints on
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Figure 5.10: Poisson’s ratio for vertical shifts.
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Figure 5.11: ν12 w.r.t. γ

Figure 5.12: Auxetic material with optimal Poisson’s ratio.

gy, where we initially only allowed 0.2 ď gy ď 0.5. For the following example we assume
that gy ď 0.8. Then we obtain the deflection as shown in figure 5.15. One can clearly
see that the configurations with gy near 0.5 yield smaller deflections. But an extreme



5.2 Examples for minimization 105

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

α

D
efl

ec
ti
o
n

The maximal deflection of a cylinder with hexagonal auxetic periodicity

Figure 5.13: Normalized deflection for auxetic material.

Figure 5.14: Optimal shell with auxetic structure.

auxetic design choice gives a better result than the corresponding worst combination for
g as derived in section 5.2.2. Anyhow, we get with the optimization scheme that the
minimal deflection is still obtained for pgx, gyq “ p0.4, 0.4209q.
This finally closes the discussion on the optimization. With the given examples we have
not only shown that the symbolic homogenization process gives analytic formulations
for the effective properties, but also makes the optimization easier. Both objective func-
tionals are easily implemented and we obtain the gradients by using the diff operator.
With a projected gradient method we are able to get the optimal designs w.r.t. to the
underlying parametrization. Since the computation times are reasonable we can solve
industrial problems very efficiently.
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Figure 5.15: Deflection for hexagon to auxetic
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6 Conclusion

In the presented work we have successfully managed to analyze the pinched cylinder
problem, which arises in various different real life applications. We have started with
developing the homogenization procedure for cylindrical shells in chapter 2. This devel-
opment is new in the context of linear elastic shells, where we used classical decompo-
sition techniques for the displacements. After applying the rescaled-unfolding operator
Πε, we were able to pass to the limit and arrive with an equivalent homogeneous equa-
tion. Moreover, we could study the effects of the boundary conditions on our model.
Since the curvature does not affect the calculation of the effective properties we could use
an efficient plate homogenization algorithm for lattice structures, which uses a reduction
to 1D beam finite elements. The effective bending properties were then obtained by four
unit cell experiments.

Considering our weak formulation from chapter 2 we could formulate our problem in
the strong formulation given as a system of three PDEs as presented in chapter 3. To
simplify this PDE we used classical results to obtain an 8th order single PDE, which
describes the bending effects due to a given load. We henceforth assumed our load
to be a pinching load. By assuming the shell to be infinitely long we could employ
a Fourier transform in the longitudinal direction. In the circumferential direction we
introduced the Fourier series, which could then capture the clamping conditions. Us-
ing the residue theorem we finally derived an analytic function for the pinching problem.

Since we wanted to investigate the effects of design choices on our periodicity cell we
established the homogenization as a symbolic procedure in chapter 4. We focused on
solving linear equations of the type Arxsv “ brxs, where both A and b depend on
symbolic parameters. It was crucial to introduce a certain pre-processing routine to
decrease the complexity of the problem. Moreover, we were able to use the computer
algebra programming language Singular for our problem and got a robust method for
various different cases. After that we investigated a lot of different examples and com-
pared the symbolic calculation to classical numerical methods.

In chapter 5 we inserted the so obtained analytic expressions for the effective properties
into the solution of chapter 3. Due to the symbolic treatment it was easy to implement
the projected gradient method for the minimization of maximal deflections caused by
the point load. The optimal solutions for the presented examples were calculated and
discussed.

All in all we not only performed the asymptotic analysis for the periodic perforated shells
but also found qualitative answers to industrial problems.
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A Important Results

Korn’s inequality

The first Korn inequality:
Theorem A.0.1 Let Ω Ă Rm be bounded. Then every function u P H1

0 pΩq satisfies the
inequality

}∇u}2L2pΩq ď 2}epuq}2L2pΩq.

The second Korn inequality:
Theorem A.0.2 Let Ω Ă Rm be bounded and a Lipschitz domain. Then every function
u P H1pΩq satisfies the inequality

}u}H1pΩq ď C
´

}u}L2pΩq ` }epuq}L2pΩq
¯
.

Proof. The proofs for these classical results are summarized in [48, chapter 2].

Young’s inequality

Theorem A.0.3 Given a, b P R` and p, q ě 1, such that 1{p ` 1{q “ 1 the following
inequality holds:

ab ď 1

p
ap ` 1

q
bq.

Proof. A proof for this inequality can be found in [3, Lemma 1.18].

Jensen inequality

This inequality was initially derived for integrals w.r.t. to probability measures.

Theorem A.0.4 Let pS,B, μq, with S Ă Rm, be a probability space and ϕ : Rm ÞÑ R

convex function. Let f P L1pμ;Rmq then

ϕ

˜ ż
S
fdμ

¸
ď

ż
S
ϕ ˝ fdμ.

Proof. This theorem was proved in [3, p. 139].

Corollary A.0.1 If we take f : ra, bs ÞÑ R Lebesque-integrable we obtain

ϕ

˜
1

b ´ a

bż
a

fpxqdx
¸

ď 1

b ´ a

bż
a

pϕ ˝ fqpxqdx.

Proof. Due to the normalization 1
b´a we can use the previous classical version.
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Poincaré inequality

Theorem A.0.5 Let Ω Ă Rm be a bounded Lipschitz domain. Then all u P H1pΩq
satisfy

}u ´ uΩ}L2pΩq ď C}∇u}L2pΩq,

where uΩ “ 1
|Ω|

ş
Ω upxqdx.

If we consider u P H1
0 pΩq we get

}u}L2pΩq ď }∇u}L2pΩq.

In the latter case Ω does not have to be Lipschitz.

Proof. For a proof we refer to [17, section 4.2].

Lax-Milgram

Theorem A.0.6 Let X be a Hilbert space and consider a continuous bilinear form
a : X ˆ X ÞÑ R and take a linear functional l P X 1, where X 1 denotes the dual space. If
there are constants c, C such that a fulfills

1. apx, yq ď C}x}X}y}X , for all x, y P X (boundedness),

2. apx, xq ě c}x}X , for all x P X (coercivity),

then there exists a unique x˚ P X such that

apx˚, yq “ lpyq, for all y P X.

Proof. We refer to [17, Theorem 4.6] for a proof.

Sobolev embedding

Theorem A.0.7 Let m,n ě 0 and p, q ě 1 and Ω Ă Rn be a bounded Lipschitz domain.

If m ´ n

p
ě j ´ n

q
, then the embedding Wm,ppΩq ãÑ W j,qpΩq is continuous.

If m ´ n

p
ą j ´ n

q
, then the embedding Wm,ppΩq ãÑ W j,qpΩq is compact.

If m ´ n

p
ą j, then the embedding Wm,p ãÑ CjpΩq is compact.

Proof. This well-known theorem is proved in [3, section 8.9]

Transformation theorem for integrals

Theorem A.0.8 Let O,U Ă Rm be open and consider a diffeomorphism Φ : O ÞÑ U .
Then for every f : U ÞÑ R continuous and with compact support holdsż

U
fpyqdy “

ż
O
fpΦpxqq|detDΦpxq|dx.
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B Homogenization of Shell

T

Y 1˚
Y 1

Figure B.1: Cell Y 1 and the perforated domain Y 1˚

B.1 Proof of Proposition 2.1.1

There exists κ0 ą 0 such that

O1
κ0

“ �
s P R2zT | distps, T q ă κ0

( Ă Y
1˚.

Since the boundary of T is Lipschitz, there exist R1, R1
1 ą 0 and N ě 2 open sets O1

1,
. . ., O1

N such that

• O1
i is included in a ball of radius R1 and is star-shaped with respect to a ball of

radius R1
1, i P t1, . . . , Nu,

• O1
i X O1

i`1 ­“ H, i P t1, . . . , N ´ 1u, and O1
N X O1

1 ­“ H,

• O1
κ0

Ă ŤN
i“1O1

i Ă Y
1˚.

Set Oκ0 “ O1
κ0

ˆp´κ, κq, Oi “ O1
iˆp´κ, κq, i P t1, . . . , Nu. One has

• P1: Oi is included in a ball of radius R “ R1 ` κ and is star-shaped with respect
to a ball of radius R1 “ inftR1

1, κu, i P t1, . . . , Nu,

• P2: Oi X Oi`1 ­“ H, i P t1, . . . , N ´ 1u, and ON X O1 ­“ H,

• P3: Oκ0 Ă ŤN
i“1Oi Ă Y ˚.

Set Oκ̨0
“ Oκ0Y`

Tˆp´κ, κq˘
. Below, we will use the classical extension result

Lemma B.1.1 There exists an extension operator P from H1pOκ0q into H1pOκ̨0
q sat-

isfying for all φ P H1pOκ0q
Ppφq|Oκ0

“ φ,
››∇`

Ppφq˘››
L2pOκ̨0

q ď C
››∇φ

››
L2pOκ0 q

The constant only depends on BT 1.

1Note that if we transform the domain Oκ0 by a dilation, the constant does not change.
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Proof of Proposition 2.1.1. For every ξ P Ξε and Oi, i P t1, . . . , Nu, if ε s small enough,
the domain Φpεξ ` εOiq is included in a ball of radius 2Rε and is star-shaped with
respect to a ball of radius R1ε{4 (due to property P1 and Lemma A2 in [27]).

Now, let u be a displacement belonging to H1pQεq3. For every
`
ξ, i

˘ P Ξε ˆ t1, . . . , Nu
there exists a rigid displacement rξ,i such that

}∇xpu ´ rξ,iq}L2pΦpεξ`εOiqq ď C}epuq}L2pΦpεξ`εOiqq. (B.1.1)

The constant doe not depend on ε, ξ and Oi, it only depends on the ratio R{R1 (see
Theorem 2.3 in [27]). Then, step by step we compare the rigid displacements rξ,1, rξ,2,
. . ., rξ,N thanks to the properties P2 and P3. To do that, observe that there exist two
constants independent of ε and ξ such that

cε3|Oi X Oi`1| ď ˇ̌
Φ

`
εξ ` εOi X Oi`1

˘ˇ̌ ď Cε3|Oi X Oi`1|, i P t1, . . . , N ´ 1u,
cε3|ON X O1| ď ˇ̌

Φ
`
εξ ` εON X O1

˘ˇ̌ ď Cε3|ON X O1|.
As a consequence, there exists a rigid displacement rξ such that

}∇xpu ´ rξq}L2pΦpεξ`εY ˚qq ď C}epuq}L2pΦpεξ`εY ˚qq. (B.1.2)

The constant doe not depend on ε and ξ.

At this point, transform the domain Φpεξ ` εY ˚q by the inverse map z P Y ˚ ÞÝÑ
Φpεξ ` εzq, then apply Lemma B.1.1 in order to extend the function in the hole T
and finally transform by the map z P Y ÞÝÑ Φpεξ ` εzq and to the result add the
displacement rξ. The L2 norm of the strain tensor of the extended displacement (now
defined in Φpεξ ` εY q) is bounded by a constant (independent of ε and ξ) multiply by
}epuq}L2pΦpεξ`εY ˚qq.

We apply this process to every domain of εξ ` εY ˚, ξ P Ξε. Finally, we obtain an
extension of the displacement u satisfying (2.1.6).

B.2 Two lemmas

For the definitions and properties of the unfolding operators Tε, Mε we refer to [15, 16]
Lemma B.2.1 is proved in [16]. Let Ω be a bounded domain in RN with Lipschitz
boundary and Y “ ΠN

i“1p0, liq, li ą 0, i “ 1, . . . , N .

Lemma B.2.1 Suppose p P p1,`8q. Let tpuε,δ, vε,δquε,δ be a sequence in W 1,ppΩqN ˆ
W 1,ppΩqNˆN (with vε,δ a symmetric matrix) converging weakly to pu, vq in W 1,ppΩqN ˆ
W 1,ppΩqNˆN .
Assume furthermore that there exist X in LppΩqNˆN and pv in LppΩ;W 1,p

per,0pY qqNˆN

such that as pε, δq Ñ p0, 0q
1

δ

`
epuε,δq ` vε,δ

˘ á X weakly in LppΩqNˆN ,

Tε,δp∇vε,δq á ∇v ` ∇ypv weakly in LppΩ ˆ Y qNˆNˆN .
(B.2.1)

Then u belongs to W 2,ppΩqN and there exists u P LppΩ;W 1,p
per,0pY qqN such that, up to a

subsequence,

if
ε

δ
Ñ θ P r0,`8q, 1

δ
Tε,δ

`
epuε,δq ` vε,δ

˘ á X ` eypuq ` θ pv weakly in LppΩ ˆ Y qNˆN ,

if
ε

δ
Ñ `8, pv “ eypuq.

(B.2.2)
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Proof. First, from (B.2.1) one obtains that epuq ` v “ 0, then since Ω is a bounded
domain with Lipschitz boundary u belongs to W 2,ppΩqN . We also deduce from this
convergence and the Korn inequality that uε,δ strongly converges to u in W 1,ppΩqN .

Then, up to a subsequence, there exists pX P LppΩ ˆ Y qN such that

1

δ
Tε,δ

`
epuε,δq ` vε,δ

˘ á pX weakly in LppΩ ˆ Y qNˆN .

Step 1. In this first step we assume that
ε

δ
Ñ θ P r0,`8q.

Introduce the function Zε,δ belonging to LppΩ;W 1,ppY qqN , defined as

Zε,δ “ 1

ε
Tε

`
uε,δ ´ Mεpuε,δq˘ ´ Mε

`
∇uε,δ

˘ ¨ yc. (B.2.3)

Its gradient and symmetric gradient with respect to y are

∇yZε,δ “ Tε
`
∇uε,δ

˘ ´ Mε

`
∇uε,δ

˘
eypZε,δq “ Tε

`
epuε,δq˘ ´ Mε

`
epuε,δq˘

“ Tε
`
epuε,δq ` vε,δ

˘ ´ `
Tεpvε,δq ´ Mεpvε,δq˘ ´ Mε

`
epuε,δq ` vε,δ

˘
.

(B.2.4)

Convergence (B.2.1)1 on one side together with the fact that }∇vε,δ}LppΩq and
ε

δ
are

bounded, give
}eypZε,δq}LppΩˆY qN ď Cpδ ` εq ď Cδ.

The Korn inequality implies

}Zε,δ}LppΩ;W 1,ppY qq ď Cδ.

Consequently, up to a subsequence, there exists pZ in LppΩ;W 1,ppY qqN such that,

1

δ
Zε,δ á pZ weakly in LppΩ;W 1,ppY qqN . (B.2.5)

By (B.2.4) one has

1

δ
Tε

`
epuε,δq ` vε,δ

˘ “ 1

δ
eypZε,δq ` ε

δ

Tεpvε,δq ´ Mεpvε,δq
ε

` 1

δ
Mε

`
epuε,δq ` vε,δ

˘
.

Then going to the limit using(B.2.5) and [16, Proposition 1.25 and Theorem 1.41]

1

δ
Tε

`
∇uε,δ`vε,δ

˘ á pX “ eyppZq`θ
`
∇v yc`pv˘`X weakly in LppΩˆY qNˆN . (B.2.6)

Now, we prove that

u “ pZ ´ θ

2

Nÿ
j,k“1

B2u

BxjBxk
´
ycjy

c
k ´ MY pycjyckq

¯
is periodic (note that this function belongs to LppΩ;W 1,ppY qqN ).
We proceed as in the proof of [16, Theorem 1.36], one first evaluates the difference of
the traces of Zε,δ on the faces Y1 “ t0uˆp0, 1qN´1 and Y1 ` e1. For a.e. px, y1q P ΩˆY1,
one has

Zε,δpx, y1 ` eiq ´ Zε,δpx, y1q
“ 1

ε

`
Tεpuε,δqpx, y1 ` e1q ´ Tεpuε,δqpx, y1q˘ ´ Mε

´Buε,δ

Bx1
¯

pxq

“ 1

ε

`
Tεpuε,δqpx ` εe1, y

1q ´ Tεpuε,δqpx, y1q˘ ´ Mε

´Buε,δ

Bx1
¯

pxq.
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Let Φ be in DpΩˆY1qN , one has successivelyż
ΩˆY1

`
Zε,δpx, y1 ` eiq ´ Zε,δpx, y1q˘ ¨ Φpx, y1q dxdy1

“
ż
ΩˆY1

”1
ε

´
Tεpuε,δqpx ` εe1, y

1q ´ Tεpuε,δqpx, y1q
¯

´ Mε

´Buε,δ

Bx1
¯

pxq
ı

¨ Φpx, y1q dxdy1

“
ż
ΩˆY1

Tεpuε,δqpx, y1q ¨ Φpx ´ εe1, y
1q ´ Φpx, y1q
ε

dxdy1

´
ż
ΩˆY1

Mε

´Buε,δ

Bx1
¯

pxq ¨ Φpx, y1q dxdy1

“
ż
ΩˆY1̀

uε,δpxq ´ Tεpuε,δqpx, y1q˘ ¨ BΦ
Bx1 px, y1qdxdy1

`
ż
ΩˆY1

´Buε,δ

Bx1 ´ Mε

´Buε,δ

Bx1
¯¯

¨ Φpx, y1q dxdy1

`
ż
ΩˆY1

Tεpuε,δqpx, y1q ¨ Φpx ´ εe1, y
1q ´ Φpx, y1q ` εe1 ¨ ∇xΦpx, y1q

ε
dxdy1

then

“
ż
ΩˆY1̀

Mεpuε,δqpxq ´ Tεpuε,δqpx, y1q˘ ¨ BΦ
Bx1 px, y1qdxdy1

`
ż
ΩˆY1̀

uε,δpxq ´ Mεpuε,δqpxq ¨ BΦ
Bx1 px, y1qdxdy1

`
ż
ΩˆY1

´Buε,δ

Bx1 ´ Mε

´Buε,δ

Bx1
¯¯

¨ Φpx, y1q dxdy1

`
ż
ΩˆY1

Tεpuε,δqpx, y1q ¨ Φpx ´ εe1, y
1q ´ Φpx, y1q ` εe1 ¨ ∇xΦpx, y1q

ε
dxdy1.

The last right-hand side is equal to (see [16, Proposition 1.24])ż
ΩˆY1

`
Mεpuε,δqpxq ´ Tεpuε,δqpx, y1q˘ ¨ BΦ

Bx1 px, y1qdxdy1

`
ż
Ω
uε,δpxq ¨

´ ż
Y

BΦ
Bx1 px, y1qdy1 ´ Mε

´ ż
Y

BΦ
Bx1 px, y1qdy1

¯
dx

`
ż
Ω

Buε,δ

Bx1 pxq ¨
´ ż

Y
Φpx, y1qdy1 ´ Mε

´ ż
Y
Φpx, y1qdy1

¯
dx

`
ż
ΩˆY1

Tεpuε,δqpx, y1q ¨ Φpx ´ εe1, y
1q ´ Φpx, y1q ` εe1 ¨ ∇xΦpx, y1q

ε
dxdy1.

Divide by δ and then pass to the limit using [16, Propositions 1.38 and 1.39]. It yieldsż
ΩˆY1

Zε,δpx, y1 ` eiq ´ Zε,δpx, y1q
δ

¨ Φpx, yq dxdy1

ÝÑ
ż
ΩˆY1

´θ
`
∇upxq yc˘ ¨ BΦ

Bx1 px, y1qdxdy1 ` θ

2

ż
ΩˆY1

upxq ¨ B2Φ

Bx21
px, y1q dxdy1

“
ż
ΩˆY1

θ
Nÿ
k“2

B2u

Bx1Bxk pxqy1c
k ¨ Φpx, y1qdxdy1.
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Hence, for a.e. px, y1q P ΩˆY1, pZpx, y1 ` eiq ´ pZpx, y1q “ θ
Nÿ
k“2

B2u

Bx1Bxk pxqy1c
k . We obtain

similar equalities for the difference of the traces of pZ over the other faces of Y . That
proves the claim. Then, a straightforward calculation gives (using ∇epuq ` ∇v “ 0)

eypuq “ eyppZq ´ θ
Nÿ
k“1

Bepuq
Bxk yck “ eyppZq ` θ

Nÿ
k“1

Bv
Bxk yck.

With (B.2.6), that gives the convergence (B.2.2)1.

Step 2. In this step we assume that
ε

δ
Ñ `8.

Again we consider the function Zε,δ introduced in (B.2.3). Now, it satisfies

}Zε,δ}LppΩ;W 1,ppY qq ď Cε.

Hence, up to a subsequence, there exists pZ in LppΩ;W 1,ppY qqN such that,

1

ε
Zε,δ á pZ weakly in LppΩ;W 1,ppY qqN . (B.2.7)

Observe that

1

ε
Tε

`
epuε,δq ` vε,δ

˘ “ δ

ε

1

δ
Tε

`
epuε,δq ` vε,δ

˘ ÝÑ 0 strongly in LppΩ ˆ Y qNˆN ,

1

ε
Mε

`
epuε,δq ` vε,δ

˘ “ δ

ε

1

δ
Mε

`
epuε,δq ` vε,δ

˘ ÝÑ 0 strongly in LppΩqNˆN .

One has

1

ε
Tε

`
epuε,δq ` vε,δ

˘ “ 1

ε
eypZε,δq ` Tεpvε,δq ´ Mεpvε,δq

ε
` 1

ε
Mε

`
epuε,δq ` vε,δ

˘
.

Passing to the limit in the above equality gives

eyppZq ` ∇v yc ` pv “ 0.

Then, as in the previous step we prove that

v “ pZ ´ 1

2

Nÿ
j,k“1

B2u

BxjBxk
´
ycjy

c
k ´ MY pycjyckq

¯
is periodic. Thus (B.2.2)2 is proved with u “ ´v.

As a consequence of Lemma B.2.1 one has (see also [16, Lemma 11.11])

Lemma B.2.2 Suppose p P p1,`8q. Let tpuε,δ, vε,δquε,δ be a sequence in W 1,ppΩq ˆ
W 1,ppΩqN converging weakly to pu, vq in W 1,ppΩqˆW 1,ppΩqN . Assume furthermore that
there exist X in LppΩqN and pv in LppΩ;W 1,p

per,0pY qqN such that as pε, δq Ñ p0, 0q
1

δ

`
∇uε,δ ` vε,δ

˘ á X weakly in LppΩqN ,

Tε,δp∇vε,δq á ∇v ` ∇ypv weakly in LppΩ ˆ Y qNˆN .

Then u belongs to W 2,ppΩq and there exists u P LppΩ;W 1,p
per,0pY qq such that, up to a

subsequence,

if
ε

δ
Ñ θ P r0,`8q, 1

δ
Tε,δ

`
∇uε,δ ` vε,δ

˘ á X ` ∇yu ` θ pv weakly in LppΩ ˆ Y qN ,

if
ε

δ
Ñ `8, pv “ ∇yu.

(B.2.8)
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Proof. Consider the fields uε,δ P W 1,ppΩqN and the symmetric matrix vε,δ P W 1,ppΩqNˆN

defined by

uε,δ “ puε,δ, 0, . . . , 0q, pvε,δq11 “ v1,ε,

pvε,δq1i “ pvε,δqi1 “ 1

2
vi,ε, pvε,δqij “ 0 if pi, jq P t2, . . . , Nu2.

These fields satisfy the assumptions of Lemma B.2.1 and the convergences (B.2.1).
Therefore, the results in (B.2.2) give (B.2.8).
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C Analytic expressions of effective
properties

C.1 Varying Hexagon

Effective c2222 “
p81¨π2¨pp91¨p4¨y2´4¨y`4¨x2`1q3{2q{2´1938146465057258287¨y`5963527584791566024¨
y ¨ x2 ´ 3876292930114518212 ¨ y2 ` 7752585860229035332 ¨ y3 ` 2981763792395782400 ¨
x2 ` 969073232528629280qq{p3746994889972252672 ¨ p100 ¨ x ` 3q ¨ p78 ¨ y ` 13 ¨ p4 ¨ y2 ´
4 ¨ y ` 4 ¨ x2 ` 1q3{2 ` 240 ¨ y ¨ x2 ´ 312 ¨ y2 ` 312 ¨ y3qq

C.2 Varying cross section

For quadratic cross section we obtain for c2222 =
p9966688830111384174375 ¨ 101{2 ¨ π ¨ x4 ¨ y4q{p2251799813685248 ¨ p325 ¨ x4 ` 309 ¨ 101{2 ¨
y4q ¨ pp9 ¨ yq{5 ` 27{25qq
and for c1111 =
p10751552136042485625 ¨pi ¨y4 ¨ p127 ¨10p1{2q ¨x4 `1200 ¨y4qq{p2251799813685248 ¨ p325 ¨
x4 ` 309 ¨ 101{2 ¨ y4q ¨ pp9 ¨ yq{5 ` 27{25qq

C.3 Vertical shift of beams

The value for the shifted beams was simplified by vpa. c2222 “
p1.0¨pz`0.06q¨pp2.0¨p4.4066e31¨z2 ¨p2.7511e27¨z2`1.2332e31q´1.3935e32¨z2 ¨p3.6387e32¨
z2`1.7611e30qqq{p1.0¨p2.7511e27¨z2`1.2332e31q2´10.0¨p3.6387e32¨z2`1.7611e30q2q`
p8.8131e31¨z2¨p5.5022e27¨z2`2.4663e31q´2.787e32¨z2¨p7.2774e32¨z2`3.5223e30qq{p1.0¨
p5.5022e27 ¨ z2 `2.4663e31q2 ´10.0 ¨ p7.2774e32 ¨ z2 `3.5223e30q2q ´ p2.0 ¨ p1.4013e33 ¨ z2 ¨
p3.6387e34¨z2`1.7611e32q´4.4314e32¨z2¨p2.7511e29¨z2`1.2332e33qqq{p10.0¨p3.6387e34¨
z2 ` 1.7611e32q2 ´ 1.0 ¨ p2.7511e29 ¨ z2 ` 1.2332e33q2q ´ p2.8361e32 ¨ z2q{p3.6821e34 ¨ z2 `
5.7283e32q ` p2.4268e ´ 9 ¨ p3.6196e39 ¨ z2 ` 8.4513e37qq{p2.3013e32 ¨ z2 ` 3.5802e30q `
p2.8252e ´ 19 ¨ p3.1092e49 ¨ z2 ` 7.2596e47qq{p2.3013e32 ¨ z2 ` 3.5802e30q ` p0.50894 ¨
p1.3808e33 ¨ z2 ` 3.2239e31qq{p9.2053e33 ¨ z2 ` 1.4321e32q ´ p4.0 ¨ pp9.0003e44 ¨ z2 `
6.9894e42q ¨ p1.5001e41 ¨ z2 ` 6.724e44q ´ 3.1623 ¨ p9.0003e44 ¨ z2 ` 6.9894e42q ¨ p1.984e46 ¨
z2 ` 9.6028e43qqq{p10.0 ¨ p1.984e46 ¨ z2 ` 9.6028e43q2 ´ p1.5001e41 ¨ z2 ` 6.724e44q2q `
pp2.7511e27 ¨ z2 ` 1.2332e31q ¨ p´1.265e18 ¨ z4 ` 4.4066e31 ¨ z2q ´ 3.1623 ¨ p3.6387e32 ¨ z2 `
1.7611e30q ¨ p´1.265e18 ¨ z4 ` 4.4066e31 ¨ z2qq{p1.0 ¨ p2.7511e27 ¨ z2 ` 1.2332e31q2 ´ 10.0 ¨
p3.6387e32 ¨ z2 ` 1.7611e30q2qqq{p1.188 ¨ z ` 0.07128q
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C.4 Auxetic material

We present the solution, simplified by vpa(.,10), c1122 =
p1.0¨p4.34989752¨x4´p2.0¨p4.335445455e38¨x5´1.021926429e39¨x4`2.393165891e39¨x3´
4.220741956e39¨x2`2.473582211e39¨x´4.45244798e39qq{p3.042361441e37¨px2´0.36q2`
1.2676506e38 ¨ px2 ´0.36q3 ´1.25771222e39 ¨x2 ´1.213099031e39q´4.071504079 ¨x`2.0 ¨
x2 ¨p0.434989752 ¨p0.36´1.0 ¨x2q1{2 ¨p9.0´25.0 ¨x2q1{2´0.7829815537q`p24.42902447 ¨x ¨
p25.0¨x2´9.0qq{p125.0¨x3`225.0¨x2`150.0¨x`387.0q´p0.8699795041¨x2 ¨p774.0¨p0.36´
1.0¨x2q1{2 ¨p9.0´25.0¨x2q7{2´282123.0¨p0.36´1.0¨x2q1{2 ¨p9.0´25.0¨x2q1{2´196830.0¨x`
3641355.0¨x2`2022975.0¨x3´13122000.0¨x4´7290000.0¨x5`16706250.0¨x6`9281250.0¨
x7`4218750.0¨x8`2343750.0¨x9´17578125.0¨x10´9765625.0¨x11`2187000.0¨x2¨p0.36´
1.0¨x2q1{2¨p9.0´25.0¨x2q1{2`820125.0¨x3¨p0.36´1.0¨x2q1{2¨p9.0´25.0¨x2q1{2´5163750.0¨
x4 ¨ p0.36´ 1.0 ¨x2q1{2 ¨ p9.0´ 25.0 ¨x2q1{2 ´ 1771875.0 ¨x5 ¨ p0.36´ 1.0 ¨x2q1{2 ¨ p9.0´ 25.0 ¨
x2q1{2`2250000.0¨x6 ¨p0.36´1.0¨x2q1{2 ¨p9.0´25.0¨x2q1{2`234375.0¨x7 ¨p0.36´1.0¨x2q1{2 ¨
p9.0´25.0 ¨x2q1{2`450.0 ¨x2 ¨p0.36´1.0 ¨x2q1{2 ¨p9.0´25.0 ¨x2q7{2`3515625.0 ¨x8 ¨p0.36´
1.0 ¨x2q1{2 ¨p9.0´25.0 ¨x2q1{2`250.0 ¨x3 ¨p0.36´1.0 ¨x2q1{2 ¨p9.0´25.0 ¨x2q7{2`1953125.0 ¨
x9 ¨p0.36´1.0¨x2q1{2 ¨p9.0´25.0¨x2q1{2´109350.0¨x¨p0.36´1.0¨x2q1{2 ¨p9.0´25.0¨x2q1{2`
300.0 ¨x ¨ p0.36´1.0 ¨x2q1{2 ¨ p9.0´25.0 ¨x2q7{2 ´354294.0qq{pp25.0 ¨x2 ´9.0q3 ¨ p125.0 ¨x3 `
225.0 ¨x2 `150.0 ¨x`387.0qq`p8.143008158 ¨x ¨ p5.0 ¨x´3.0q ¨ p5.0 ¨x`3.0q2q{p125.0 ¨x3 `
225.0¨x2`150.0¨x`387.0q`7.328707342qq{p0.0082944¨p0.36´1.0¨x2q1{2`0.000248832q.
Here, x “ laux ¨ cospγq.
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The core of this thesis lies in the task of structural optimization of periodic perforated 
cylindrical shells under a given point load. The problem is divided into three 
subcategories: Asymptotic analysis, macroscopic model and optimization. In this 
work we show a qualitative derivation, together with an algorithm for calculating 
the effective properties. We start with a decomposition of the applied displacements. 
Using the Unfolding-Rescaling operator we can decouple the two small parameters. 
The homogenization on beam-like structures is executed numerically and symbo-
lically. The effective properties depend solely on the periodicity cell. We calculate the 
analytical solution of the limit equation. The solution is determined via a Fourier 
transformation and series. Moreover, this function depends on the effective 
properties. It is possible to represent the displacements w.r.t. certain design variables. 
This allows performing optimization with simple methods. We use a steepest descent 

w.r.t. our admissible design space. Applied industrial problems can thus be effectively 
solved.
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