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Abstract

The core of this thesis lies in the task of structural optimization of periodic perforated
cylindrical shells under a given point load. The analysis of the problem shows that it
can be divided into three subcategories: Asymptotic analysis, macroscopic model and
optimization.

First, we want to replace the heterogeneous shell with an equivalent and homogeneous
2D problem. This homogenization step together with dimensional reduction has already
been considered for plates in the literature. However, there are no known papers that
apply this complete analysis to a linear elastic shell. Most of them deal with either
homogenization or dimensional reduction only. If a joint analysis takes place, then re-
sults are obtained as energy estimates. In this work we show a qualitative derivation,
together with an algorithm for calculating the effective properties. We start with a de-
composition of the applied displacements into a deformation of the middle surface and
the corresponding rotation of the line segments, which are orthogonal to our middle sur-
face. Using the Unfolding-Rescaling operator we can decouple the two small parameters,
thickness and size of the periodicity cell. After that we utilize the beam-like structure
of the perforated shell to calculate the effective properties. This algorithm is not only
executed numerically, but also symbolically. The resulting solutions are therefore func-
tions with respect to the parametrization of the periodicity cell. This symbolic approach
requires special caution and has hardly been used in the case of homogenization. The
solutions are to be regarded as exact.

In the next step we calculate the analytical solution of the derived limit equation. Here
we use classical approaches from the PDE theory. The strategy is to separate the two
variables of our 2D domain. The obtained functions depend either on the longitudinal
coordinate or on the arc length. In the next step, we express the solution regarding
the Fourier transformation and a Fourier series. Moreover, this function depends on
the effective properties that we calculate with our symbolic algorithm. Therefore, it is
possible to represent the displacements of our shell with respect to the design variables.

This allows us to approach optimization with simple methods. Since the function is
given for the symbolic variables, we can perform the differentiation completely auto-
matically with MATLAB’s diff operator. We use the obtained gradient in a steepest
descent procedure to find the minimum given certain objective functionals. This allows
us to describe the optimal configuration with respect to our admissible design space.

Applied industrial problems can thus be effectively solved.
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Zusammenfassung

Der Kern dieser Arbeit liegt in der Aufgabe einer Strukturoptimierung von periodisch
perforierten zylindrischen Schalen unter einer gebenen Punktlast. Bei der Analyse des
Problems stellt man fest, dass es sich in drei Unterkategorien aufteilen lasst: Asympto-
tische Analyse, Makroskopisches Modell und Optimierung.

Als Erstes wollen wir die heterogene Schale durch ein dquivalentes und homogenes 2D
Problem ersetzen. Dieser Homogenisierungsschritt zusammen mit der Dimensionsreduk-
tion wurde in der Literatur schon vielfach fiir Platten behandelt. Jedoch gibt es keine
uns bekannten Schriften, die diese vollstandige Analyse bei einer linear elastischen Scha-
le anwenden. Die meisten beschéftigen sich entweder nur mit der Homogenisierung oder
Dimensionsreduktion. Aber falls doch eine gemeinsame Betrachtung stattfindet, dann
erhélt man die Ergebnisse nur in Bezug auf Energieabschéatzungen. Wir zeigen hier eine
qualitative Herleitung, zusammen mit einem Algorithmus zur Berechnung der effektiven
FEigenschaften. Dabei starten wir mit einer Zerlegung der angewandten Verschiebungen
in eine Verformung der Mittelfliche und der dazugehérigen Rotation der Liniensegmente,
die orthogonal zu unserer Mittelfliche stehen. Mittels des Unfolding-Rescaling (Entfal-
tung und Umskalierung) Operators konnen wir die beiden kleinen Parameter, Dicke der
Schale und Grofle der Periodizitéatszelle, entkoppelt betrachten. Danach nutzen wir die
balkenéhnliche Struktur der perforierten Schale aus, um die effektiven Eigenschaften
computergestiitzt zu berechnen. Dieser Algorithmus wird nicht nur numerisch sondern
auch symbolisch ausgefiihrt. Die dabei erhaltenen Lésungen sind deshalb Funktionen
beziiglich der Parametrisierung der Periodizitétszelle. Diese symbolische Betrachtungs-
weise erfordert besondere Vorsicht und wurde im Fall der Homogenisierung bisher kaum
eingesetzt. Die erhaltenen Ausdriicke sind dabei als exakt zu betrachten.

Anschlielend berechnen wir die analytische Losung der Limitgleichung. Wir nutzen hier
klassische Herangehensweisen aus der Theorie der partiellen Differenzialgleichungen. Die
Strategie besteht darin, die beiden Variablen des 2D Gebietes zu separieren. Die dadurch
erhaltenen Funktionen héngen entweder von der langsverlaufenden Koordinate oder der
Bogenldnge ab. Im néchsten Schritt stellen wir die Funktion beziiglich der Fouriertrans-
formation und einer Fourierreihe dar. Die hergeleitete Losung ist wiederum abhéngig
von den effektiven Eigenschaften, die wir mit unserem symbolischen Algorithmus be-
rechnet haben. Deshalb ist es moglich, die Verschiebungen unserer Schale beziiglich der
Designvariablen darzustellen.

Durch die vorher beschriebene Betrachtungsweise kénnen wir die Optimierung mit ein-
fachen Methoden angehen. Weil die Funktion beziiglich der symbolischen Variablen ge-
geben ist, konnen wir das Differenzieren vollkommen automatisch mit MATLABs diff
Operator durchfithren. Den erhaltenen Gradienten nutzen wir in einem Verfahren des
steilsten Abstiegs, um das Minimum hinsichtlich gegebener Zielfunktionen zu finden.
Dadurch gelingt es uns die optimale Konfiguration beziiglich unseres zuléssigen Desi-
gnraums zu beschreiben.

Angewandte Industrieprobleme kénnen damit effektiv gelost werden.
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Notations

Abbreviations
PDE partial differential equation
FE finite element
a.e. almost everywhere
w.r.t. with respect to
w.l.o.g without loss of generality
s.t. subject to
1D one dimensional
2D two dimensional
3D three dimensional
4D four dimensional
GSM global stiffness matrix
BC boundary conditions

1/0

input /output
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Symbols
Symbol Unit Explanation
€ small parameter; size of periodicity cell
0 small parameter; thickness of the shell
w the reference domain
s1 [m] variable in the reference domain; shell’s arc length
59 [m] variable in the reference domain; shell’s longitudinal direction
a [m] the shell’s radius
l [m] the shell’s length
h [m] fixed shell’s thickness
E [%] Young’s modulus
G [%] shear modulus
W) [%] Lamé parameters, = G
V12, V91 1] orthotropic Poisson’s ratio
Aol B [%] homogenized in-plane coefficients, o, 8,a/, 5" € {1, 2}
CaBo/ B! [Nm)] homogenized bending coefficients, «, 3,/, 8’ € {1, 2}
H ratio of effective orthotropic Young’s moduli £1/E,
T [m] radius of a beam in lattice structure
A [m?] area of the beam’s cross-section
I, . [m?] area moments of inertia of beam elements
q (] load
P [N] point /pinching load
X symbolic variable



Operators

Scalar product

Given a Hilbert space X, we denote its scalar product with the bracket notation

(oox X x X - R

Cross product

Given two vectors a, b € R? we define the cross product c as

agbg — agbg
c=anb=|asb; —arbs
arby — asby

We then have the relation (¢, a)ps = {¢,b)ps = 0, w.r.t to the underlying scalar product
<‘, '>R3 in Rg.

Gradient V

Given a smooth function u : R™ — R and cartesian coordinate system (e;)i—1,... m, where
e; is the i-th unit vector we define the gradient as

Vu = i auhei.

Frobenius scalar product

Given two matrices A, B € R™*™ we denote the Frobenius scalar product as

Strain tensor

Given a smooth function u : R3 — R3 we define the strain tensor

B Vu+ Vul

e(u) =
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1 Introduction

In this thesis we want to investigate the effects of point loads on periodic perforated
cylindrical shells. Such problems arise in various different industrial applications. For
example in the case of clogged filter media, where the fluid goes through a small hole,
which can be approximated by point loads. Another example can be found in the area
of cosmetic applications. There we can observe that deflections of cylindrical shells have
an immediate consequence on the quality.

The considered shell structures have all in common, that they consist of a certain pe-
riodic pattern of size e. Moreover, we assume that the shells thickness is given by 9,
which is much smaller compared to its width and length. We are particularly interested
in changing the design of these minimal cells in order to optimize their performance.
Of course it is in general possible to derive the solutions on the full heterogeneous
domain. This computation can be quite time consuming and hence we want to fol-
low a different strategy and simplify the underlying problem. Following the frame-
work presented in figure 1.1 we have to consider three different steps in our analysis.

P

Figure 1.1: Description of Steps

o Homogenization and dimension reduction
e Macroscopic Model
e Optimization

Each step builds upon the previous one. We shortly want to discuss the mathematical
backgrounds and give an outline.

Homogenization and Dimension Reduction

We have mentioned that the investigated heterogeneous shells are assumed to be thin
compared to their length and width scale, and periodically perforated. This perfora-
tion can be considered as a beam network spreading the shell’s domain. In general
we can identify the two small parameters §, for the shell’s thickness, and e, the size
of the smallest periodicity cell. Starting from 3D linear elasticity we want to study
the limit behavior of ¢ — 0, which we call homogenization, and 6 — 0, the dimension



2 Chapter 1 Introduction

reduction to obtain a 2D formulation. We want to emphasize that in this thesis the
homogenization and dimension reduction will be performed simultaneously. Both prob-
lems have been investigated independently from each other in various different works.
A complete study of 3D linear and non-linear elastic problems for homogeneous struc-
tures are given in [12, 13, 14]. In this series about mathematical elasticity the author
starts with a general framework and applies his results first on the context of plates and
then for shells. For a more mechanical perspective on this kind of problems we refer to
[59], for the isotropic cases, and to [37], for anisotropic structures. It is important to
note that the obtained limit models highly depend on the scaling of the linear elastic
energy
le(u)]z2(gq) < €67,

where C' is a constant independent of §, Qs is the full shell domain and e(u) is the
strain tensor of the deformation u. We refer here to [23], where a formal derivation of
plate models from non-linear elasticity is presented. In this work we only consider the
case p = % Especially, for homogeneous shells we want to mention that the dimension
reduction was analyzed in [11],[42] and [6]. For non-linear shells a membrane model was
derived in [36].

There are various different techniques for the homogenization, as for example an asymp-
totic expansion ansatz presented in [4, 54] or via Gamma-convergence in [18]. Another
variant is the so called two-scale convergence introduced in [47]. For non-linear behavior
it was shown in [45] that homogenization and linearization commute. In general we note
that the combined investigation of dimension reduction and homogenization for plates
has already been studied in great detail in [50] and [16]. In our subsequent analysis we
want to investigate the limit behavior via applying the rescaling and unfolding operator
as applied in [15] or in the case of contact problems in [30]. This technique applied
to linear elastic shells is new. We want to mention here, that the homogenization for
piezoelectric perforated shells without dimension reduction was presented in [25]. More-
over, the dimension reduction and homogenization of a shell for the diffusion problem
in the sense of two-scale convergence was presented in [46], where it was shown that the
curvature does not enter the homogenized model. We show that the homogenization
of a linear elastic shell is not affected by the curvature and is reduced to the one of a
plate.

Macroscopic Model

The obtained limit model from chapter 2 is then used to describe the effects of having
a point load on the shell. There are already different shell models available, see [44],
which have been solved numerically. However, our task is to get an analytic solution to
this problem. For that reason we have to transform our weak formulation back to its
strong form. Given the so obtained PDEs we can reduce them further to a single 8th
order PDE. We further simplify this equation by asymptotic argumentations. We obtain
our analytical solution by using Fourier transform and series. For some general remarks
on PDEs we refer here to [21]. The Fourier series ansatz is important for capturing
the boundary conditions. Hence, we also need to approximate the point load by some
general loading on a small strip. Without the restrictions of the boundary conditions
one can follow the results in [35]. The derived solution then depends on the homoge-
nized coefficients and consequently on the respective design of the periodicity cells. In
general we closely follow the approach presented in [33] for orthotropic shells. Later on
we also provide a numerical solution to the full homogenized limit equation. We want



to investigate, which effects are missing in our approximate solution. We see that the
maximal deflection is preserved, while the shell’s arc length is diminished.

The next step is then to calculate the homogenized coefficients symbolically such that we
can express the analytic solution w.r.t. our design variables.

Optimization

The optimization via homogenization has already been considered for textile-like struc-
tures in [58] and for the optimization of dispersive coefficients in the wave equations in
[1]. In both cases one obtains an optimization problem constrained by PDEs.

Anyhow, due to our efforts in getting an analytic solution and having symbolic expres-
sions for our effective properties, which depend on the design parameters x € R™, we
are left with a classical optimization task

min - f(x)

st. xeGcR™,

where G is compact. To obtain a solution for this problem, we utilize the analytic ex-
pression given by the symbolic parameters. Using symbolic differentiation yields the
gradient, which we use in a steepest descent approach.

With the presented steps we are able to fully analyze the periodic perforated shell and
give qualitative answers to optimization problems in industrial applications. We want
to highlight that such a combination of homogenization, analytic macroscopic solution
and symbolic calculation has hardly been considered yet. The importance of this thesis
lies in the drastic model reduction for a complex multi-scale problem of linear elasticity.
Moreover, this yields a semi-analytic optimization problem and the practical usage of the
underlying theoretical derivation. We underline that the homogenization and dimension
reduction of a shell with holes and the analytic solution to the corresponding macroscopic
problem are new.






2 Homogenization of Shells

2.1 Introduction to shells and displacements

In this section we consider a thin heterogeneous half-cylindrical shell with an in-plane
periodic porous structure, where £ denotes the size of the periodicity cell and 20 the
shell’s thickness. Both are of the same order. The parameters are small compared to
its in-plane surface size. In the following we provide an analysis for homogenization and
dimension reduction of the linear elastic shell. We want to point out that both tasks are
performed simultaneously, where

lim é—wae(o,oo).

(g,6)—(0,0) €
This is necessary since homogenization and dimension reduction usually do not commute
as it was shown in [9]. The presented approach via the rescaling-unfolding operator is
closely related to the one given in [16, Chapter 11] for plates and for heterogeneous
beams in [29], but new in the context of linear elastic shells.
In the analysis, we begin with a general extension technique (based on results developed
in [27]) for displacements acting on a perforated shell, which is made up of a network
of thin cylinders, to the full shell domain (see Proposition 2.1.1). The result is crucial
for the subsequent analysis. We assume that the shell is fixed along the lateral bound-
ary and continue with a decomposition approach for thin structures introduced in [27].
This allows us to represent any H'-function in the thin domain through the one-to-one
and onto map of the displacements and rotations of its middle surface together with a
warping term, which takes into account the deformation of these small segments. With
that approach we obtain Korn inequalities and estimates for each displacement field of
the decomposition.
In section 2.2 - 2.4, the rescaling and unfolding operators are introduced and the strain
tensor is considered on a reference domain. Furthermore, we decompose the shell’s dis-
placement fields into the two orthogonal complements of extensional and inextensional
deformations, introduced in section 2.5. Such an approach has been considered for ho-
mogeneous thin shells in [6]. Section 2.6.1 presents assumptions on the forces and the
detailed rescaling of the right-hand side.
At the end, the limit problem is discussed. Especially section 2.8.1 is important for
applications, where the variational problem for an anisotropic homogenized shell is pre-
sented. Moreover, an analytic formula to compute its effective coefficients is shown,
using the six auxiliary periodic problems on a rectangular parallelotop intersecting our
structure with given perturbations. We highlight, that the anisotropic coefficient tensors
coincide with those obtained in the homogenization of a plate in [16, Chapter 11]. In
section 2.9 we focus on the important effects of the boundary conditions in our model.
In particular, if we fix the shell’s curved ends the limit problem is membrane domi-
nated. In that case clamping the lateral boundary does not change the model. Those
effects have been studied in [52] and [53], where the authors provide energy estimates
for a homogeneous shell. All classical results mentioned in the following analysis are
summarized in appendix A.
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2.1.1 Geometrical setting

We start with describing the geometric properties of the perforated shell. We consider
a cylindrical half-shell with a constant radius a. We assume that the shell consists of a
periodic structure with a periodicity cell of size € and thickness § = ke € (0, dp], with
do = a/3 and k is a strictly positive fixed constant. We want to mention here that the
limiting behavior of g influences the resulting limit problem. The other two cases with

lim g € {0, 00} are not considered in this thesis.
(£,6)—(0,0)

Let Y’ be a bounded domain in R? having the paving property with respect to an
additive subgroup G = p;Z@ p,Z of R? of dimension 2 and let 7' be an open set
such that T < Y’ (see Figure 2.1). We assume the boundary of T to be Lipschitz. For
simplicity we also assume that 7" is connected. We define

’

Y =Y x (=k,k), Y*ZY\T, Y*=Y"*x(=k, k).

Y’ Y’

Figure 2.1: Cell Y’ and the perforated domain Y'*

The asterisk denotes the material filled part of the periodicity cell. We introduce the
reference domain with w = (0,an) x (0,1). In the periodic setting s’ € R? can be

decomposed a.e. as
/ /

s = a[%]y} +€{E}w’ (2.1.1)

where [-]ys belongs to G and {-}y to Y.
Set

E.={¢eG|e+eY cuw}, We = interior{ U (e€ + 5?)}, Ae = W\De,

eE,

where the set Ao contains the parts of the cells intersecting the boundary dw. Let us
also introduce the notations for the unions of all holes, the hole boundaries in &, and
for the remaining structure of (.,
x
{—} € 6T},
elyr

{g}y e T}, oT. = {x €.

= &\)é‘\Tz’:‘

Tsi{xe W

% o\ A~
wl =w\Tk, w2

In figure 2.2 we illustrate the underlying structure for the plane domain. There we see
the perforated domain w* with the blue cell being the reference periodicity cell. Given
a point s, represented by the black dot, we can decompose it into the position in the
macroscopic domain e[%/] the green dot, and the location in the reference periodicity

cell 6{%,}3//, the red dot.

Y’
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€Pp1

Figure 2.2: Perforated plane domain

Consider now the injective mapping ¢ : @ — R? defined as

52

o(s1,82) = | @ €08 (%1) , (s1,52) € W, (2.1.2)
a sin (S—1>
a

and denote by S = ¢(w) the mid-surface of the whole shell (without the holes). Fur-
thermore, we introduce the vectors

0 0
. (51 t1 At 51
t; = | —sin (—) 7 to = , = = = COS( ) . 2.1.3
' ¢ ? "7 T A taz & (21.3)

(%) ° n (%)

cos | — sin [ —

a a

Obviously, t; and ty are linearly independent and are tangential vectors to the surface

S.
We denote

o

o Q. =w x (—kKe,ke), OF = w! x (—ke, ke),
o QF = O(0QF) the perforated shell,
o Q. = ®(Q.) the shell without the holes,

where ® : Q. c R3 - R3 is given by
(s) = ¢(s1,s2) + s3n(s1, s2), s = (s1,52,83) € Q. (2.1.4)

In figure 2.3 the transformation of the plane domain to the cylindrical shell is depicted.
On the figure’s left side we have the initial perforated domain and on the right side the
cylindrical shell with holes. It is easy to check that for ¢ = ke € (0, dp] the map ® from
Q. onto Q. is a C'-diffeomorphism. That means we have

co < ||V5(I)||Loo(95)3x3 < and co < ”vw(b_:lHLoo(Qs)Sxii < cq, (2.1.5)
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(a) Plane domain Q¥ with periodic (b) Shell Q¥ with periodic holes
hexagonal holes

Figure 2.3: Periodic perforated plane domain transformed to a periodic shell

for some constants cg, c1 € Ry, which do not depend on .
We denote by x the running point of the shell while s is the running point in the reference
domain, s.t. ®(s) = z.

Proposition 2.1.1 There exists an extension operator P. from H'(QF)3 into H'(Q.)3
satisfying for all u e H'(Q¥)3

Po(u)ox = u,
e (2.1.6)
He(Pe(u)) HL2(QE)3x3 < CHB(U)HLZ(Q?)ng-
The constant does not depend on .
Proof. The proof of Proposition 2.1.1 has been moved to the Appendix B.1. Ol

We omit from now on the explicit notation of the corresponding dimensions in the norms,
if they can be concluded from the context.

Due to the properties of ®, we have for every u € H'(Q.) (resp. H'(Q¥))

luo @20, < Cllufr2(g.) (2.1.7)
‘V.SUHLQ(QE) < C|’V$UHL2(QE) (218)

clulr2(g.) <
c|Vayullpz2o.) < |
Thus, we write henceforth indifferently u in place of uo ® € H(Q.) (resp H'(2¥) ). In
the next step we discuss the boundary conditions. Therefore, we set o = {0} x [0,{] U
{am} x [0,1] € dw. The part I'g. = ®(yo x (—ke, ke)) of the shell’s lateral boundary
is clamped. The complementary of I'g ., i.e., the shell’s top and bottom part, is a free
boundary. We will discuss in section 2.9 how a different choice of boundary conditions
affects the resulting model.

Remark 2.1.1 From now on, any displacement u belonging to H'(Q¥)3 will be extended
to a displacement belonging to H'(Q.)3. We will always denote by u the extended dis-
placement, which satisfies (2.1.6).

2.1.2 Decomposition of shell displacements

In the following part we introduce a decomposition for every displacement u of the shell
Q. as it was shown in [27, section 4. This part is important to capture the effects of the
thin domain. We want to decouple the mid-surface displacements from the effects caused
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in the sz direction. With that technique we can easily obtain Korn’s type inequalities
and study the convergence behavior for ¢ — 0.

Definition 2.1.1 An elementary displacement U, associated to u € H'(Q;R3) is given
by
U. = U(s1, 82) + s3R(s1, s2), (2.1.9)

where (o€ {1,2})

1 RE 3 RE
= — u(+, s3)dss, Ra = J ssu(-, s3) « ty dss,
e ). “ T 2ke)? ) e ¢ (2.1.10)

R3 =0, a.e. in w.

Moreover, we have that U = (Uy,Us,Us) € H (w)? and R = (R1,R2) € H'(w)?. Every
displacement u is then decomposed as

u= U, +1, (2.1.11)

where we HY(Q.)? is a residual displacement called warping.

Figure 2.4: Decomposition of displacements.

Denote
V.={ve H(Q.)? |lv=00nTy.}, VF = {ve H'(Q*? |v=0o0nTy.},
Hi (w) ={®e H'(w) | ®=0onTy}.
Moreover, we have
Ue H (w)?,  ReHp (w)?  uwels,

due to the properties of v and the boundary conditions introduced in the previous
section.

Remark 2.1.2 The warping u fulfills the following properties

KE KE

f ﬂ(-, 83)d83 =0, J. S3ﬂ(-, 83) -ty dsg = 0. (2.1.12)
—RKE —RKE

Remark 2.1.3 Given an elementary displacement U, we have that U describes the

displacement of the red middle plane, as shown in figure 2.4. The field R specifies the

rotations of the segments ®({(s1, s2)} x [—ke, ke]) perpendicular to the middle line, given

in blue. The warping can be seen as a deformation of those perpendicular segments.
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For the functions ¢/ and R holds
U = Uit + Usto + Usn,
R =Rit1 + Rats.

In the next step we establish the strain tensor in the cylindrical coordinates. For that,
the following identities are of great use:

1 M 1
081 a os1 ds1 a b
oty o _
0sy  0soy  0sy
The derivatives of the elementary displacement U, are calculated using
ou U 1 ou ou 1
— = —ltl — —Uin + —2t2 + —311 + —Ustq,
081 081 a 081 081 a (2.1.13)
6_1/{ B (%llt N 8M2t N (%lgn o
(982 B (982 ! 582 2 (982 ’
and R Ry, 1 oR
— = —1t1 — —Rin+ —2132,
081 081 a 081 (2.1.14)
6_R_8R1t +0R2t o
882 B 582 ! 582 2
The strain tensor for a shell displacement u € H'(Q.) is given by
V. Vu)T
e(u) = Yzt (Vo) (2.1.15)

2

A small computation yields, that Vu in the coordinates of the reference domain is given
by
Vsu = VuVao. (2.1.16)

Note that e, (u) is in the shell configuration. Therefore, we consider the transformation
matrix (t1]t2|n) and express our strain tensor in the reference domain by

(t1[t2]n) e, (w) (t1]to|n). (2.1.17)

Definition 2.1.2 We define by e(u) the strain tensor in the coordinates of the reference
domain by

7+ Vu(VO) ™t + (Veu(Ve)~H)T

e(u) = (t1|t2|n) B (t1|t2|n). (2118)
Hence, we obtain for the gradients
f 00
_ a+s
(tlltzln)Tvsu(Vq)) l(tlltgln) = (tl\tg\n)TVSu 0 3 1 0
0 0 1

a ou ou ou
t

. (9_31 1 ﬁ_sztl (9_831:1 (2.1.19)
|y, o
a+ 5308, ° 0sg 2 0s3 2|
a Ou ou ou

—n
a+ s3 081 089 083
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where

ou (61/{1 OR1 | duy

Lo (e R T

o1 \os1 | B3%s ' os1 P51 s | s
+<g—i?+g—;?——(u1+33721+u1)>

R e R Co s LR G R

jsi (R1+g—3)t1+(722+g—§)t2 gz;jn

Then we get for the strain tensor e(u) of a displacement u € V. the following compo-
nents:

a ou a oy R4 oy 1
enw) =t = [ (G gt) et o |
du, Ry om
6‘82 882 3 682 082 ’
a Ou 6u
e12(u) 2{a—|—83 (931 85 1}

1 a [(aL{Q 8U1> <8R2 6R1>+5_3%+§&

T 2a+ s3L\ 0s1 + 059 0s1 089 a 089 a 089
8uz S3 6u1
+ F +(1+ ) 652]
1 a Ou ou
) =3 w5t
1 a oU: 1 ot S3\ 0U
:§a+33[(£f“”1 Ri) = m gt (0 )5,
1 ou ou B oUs 6u3 0o
c23(v) _2{832n+ 8331:2} [(6 S9 R2> 632 * 833]’
ou 6ﬂ3
633(u) :a_sgn = 8_33

Theorem 2.1.1 Let v € HY ()3, (U, R, 1) be its decomposition, then the following
inequalities are satisfied:

le(Uell 2.y < Clle®)lrzos), (2.1.20)

[@ll20.ys < Celle(u)l 2s), (2.1.21)

IValLz ) < Cle(w)l 2oz (2.1.22)

Proof. The proof is given in [27, Theorem 4.1]. O

From [27], we also obtain the full estimates of v and the components of the elementary
displacement U..

Proposition 2.1.2 For every u e V*

lull 1. —H (W) 20 (2.1.23)
C
IR 1 (wyz + U rrys < mH@(U)HLZ(Q?)- (2.1.24)

The constants do not depend on €.
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Remark 2.1.4 Proposition 2.1.2 are the Korn inequalities for our shell domain. For a
summary of the classical Korn inequalities we refer to [48, chapter 1, §2].

From the expression of the strain tensor e(u) one derives the following estimates.

Lemma 2.1.1 One has also the following estimates ((o, 3) € {1,2}?):

ou . ou ‘ _ C le(u)]
0S¢, o 0sg ¢ L2(w) e L2(QF)» 0.15)
MRt <& le(w)]| N
Osa ¢ L2(w) S gplelz @)
The constant does not depend on ¢.
Proof. We will only show that
oUs U C
1 < — , 2.1.2
‘ 681 + (982 L2(w) 81/2 HG(U)HLQ(Qg‘) ( 6)

since the other inequalities follow in the same way.
First observe that @/a+s; is uniformly bounded. Then, we start with the expression of
e12(u) given by (2.1.20). Due to (2.1.21) and (2.1.22) we obtain

Ls Kﬁ% aUI) * S?’(aRQ @) + 53 O n 53 0R1

2
o T3 - —= < 2 .
Js1 | 0s2 o5 om) T adm 852] ds < Cle(w)[72(qz)

Hence, using the estimates (2.1.24)
o], (Gor + ) < Cletw) oy

which proves the inequality (2.1.26). O

2.2 The rescaling operator T.

In this section we introduce an operator which transforms the initial domain such that
the scaling of the thickness is no longer intrinsically given by s3 € O(e). More precisely,
we consider a variable y3 € O(1) with the relation s3 = y3. Therefore, consider now the
reference domain

N =wx (—kK,K) (2.2.1)
and rescale the shell in its s3 direction via the rescaling operator ..

Definition 2.2.1 Given a measurable function ¥ over Q, we define the measurable
function T (V) over 2 as

T (W) (51, 82,y3) = ¥(s1, S2,€Y3), for a.e. (s1,82,y3) € Q. (2.2.2)
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13

‘Sg(\I/) 2K

Y3

(s1,52)

Figure 2.5: Rescaling operator mapping ¥ onto the reference domain.

Lemma 2.2.1 One has for every ¥ € L?(€.) and for the warping .

IFe(®) |2 @) < &9 20
|%e (ﬂe)HLQ(Q)B < Cele(us) 2o

< Ce2e(ue) |12

H 95a L2(0)3

< CeV2e(ue) | 20

H 993 L2(Q)3

(2.2.3)

Proof. All estimates are obtained by using the transformation Theorem for integrals and

especially for (2.2.3), 5 4 using the estimates (2.1.21) and (2.1.22).

O

With this technique we can study in the subsequent section the asymptotics when the

thickness tends to zero.

2.3 Asymptotic behavior of the strain tensor

Lemma 2.3.1 Let {u.}. be a sequence of displacements belonging to V* and satisfying

le(ue)l 20z < Ce 32, or equivalently
le(ue)r2q.) < Ce /2

with a constant independent of €.

There exists a subsequence of {e} (still denoted ¢) and U € H}: N )3, R e H%O(w)Q,

Zop € L*(w), Zaz € L*(w) and w e L*(w; HY(—k, k))? satisfying

K K
J u(-,y3)dys = 0, J Y3 Uq(+, ys3) dys = 0, a.e. in w,

—K —K

(2.3.1)
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such that
U — U strongly in H%O (w)3,
Rea — Ra weakly in Hp, (w),

10U ou .
g<6s§ “tg + 65; : ta> — 2,3 weakly in L*(w),
1 /oU. 9
s : : ~z L
. (6sa n+ R. ta> 3 weakly in (w), (2.3.2)
1 .
6—2‘18(@) — 7 weakly in L*(w; H (—k, k)3,
1 o, 1 0 _ :
gfg(g;> = EE‘}T&(U&) —0 weakly in L*(w x (=&, K))3,
1
E‘ZE (e(ue)) — EWU, Z, ) weakly in L*(w)3*3.
Moreover, one has
ous 1 ou
U+ R =0, 24 Ry=0.
0s1  a 052
Proof. We start with the weak limits. As a consequence of (2.1.24) we get that
Uu. — U weakly in Hp (w)3,
: ¥ in Hi, (w) (2.3.3)

R: —R weakly in H%O (w)?.

The results in (2.3.2)5 4 follow from Lemma 2.2.1 and equation (2.1.21). Both conver-
gences (2.3.2)3 4 follow directly from Lemma 2.1.1.

Now we prove
U.3 — Us  strongly in Hfy (w). (2.3.4)
By the Sobolev embedding and the convergences (2.3.3), one has
U — U strongly in L?(w)?,
i s 2( ) ; (2.3.5)
R: — R strongly in L (w)”.

Besides, from estimate (2.1.25)2, one obtains

U 3
881
U 3
dsy

1
— EUEJ +Re1 — 0 strongly in LQ(w),
+Re2— 0 strongly in L?(w).

Hence, VU 5 strongly converges to its limit in L?(w)?, which ends the proof of (2.3.4).
That also proves the last equalities of the Lemma.

Now, we want to prove the strong convergences
Ueoo — Uy strongly in Hllo (w), a=1,2.
By estimates (2.1.25); one immediately has

ou 1
el 4 U —-0 strongly in Lz(w)a

0s1

ou

2,0 strongly in L2(w),
089

aZ/{g,l au€,2

359 + 751 — 0 strongly in L?(w).
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Furthermore, from (2.3.5) and the above strong convergences, one obtains the strong
convergence of the strain tensor of the displacement (Z/[EJ,Z/{E,Q) in L? (w)z. Since w is
a Lipschitz domain, this displacement strongly converges to its limit in H%O (w)?. The
elements of the limit strain tensor £ are then particularly given by

0R1

1
-% — Z11 t+ys—,
- 5(611) 11 T Y3 £

1 0R>2
- .z Z2
555(622) 2+ Ysp s
1 1 Y3 82/{1 6732 8R1
L (o) — Mz 0 TRe OReY
555(612) 2{ 12+ 75 + 3 25 + 3 25
1 1 6’&1
Lo~ 3o+ 2.
c(e13) 51218+ s
1 1 0U9
.
c(e23) 5122+ s
1 Jus
-% — .
=(e33) 205
Putting everything together yields the symmetric tensor
Y3 oUy 521/{3 1 Y3 oy 621/{3 1 oy
Z == —ys— =Z = — = (Z —)
n+ a 081 Y3 63% =12 T, 089 y3631832 g\ 713 + 0ys
_ U 1 ou
U, Z,u) = * Z22 — Y3 23 —<323+ﬂ) ;
0s5 2 0ys3
ous
% % -
3
which ends the proof of the Lemma. ]

As a consequence of the estimates in Lemma 2.1.1 and the above Lemma, one has a.e.
inw

ou ou
5t 255 ta =0, U e Hf (w), (2.3.6)
ou
S DR ta=0,  Ree Hi, (w). (2.3.7)
From the equation (2.3.6) we obtain for o = 8 = 2 that
oUs
=2 .
582

Hence, Uy does not depend on sy and we get that Us = Us(s1) and due to the boundary
conditions, one has Uy € Hg (0, ar).
With that we conclude for &« = 1 and 5 = 2 that

dUQ(Sl) 6141(31,32) . . dU2
s, + 2% =0 — L{l(sl, 82) = —52 dsy (51) + Ul(31>'

Since U belongs to H%O (w), this yields Uy € HZ(0,ar) and Uy € HE (0, ar).
For the last case, a = 8 = 1, then follows that

ol 1 d dUs 1
881 * EU?) =0 - d51 < T2 d81 (81) + U1(81)> N EZ/{S
d2U. dU-
— Us(s1,82) = asg 2 a—l(sl).

dS% B dSl
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Since U3 belongs to H%O (w), this implies

Us € H3 (0, ar), Uy € H3(0,ar), and
dUs d?U,  dU,y T (2.3.8)
(s1) -

Z/{(Sl,SQ) = <— SQd_Sl(Sl) + Ul(sl), UQ(Sl), aSQd—S% — ad—51

Now focus on the equality given by (2.3.7). For the case o = 1 we obtain with our
expression for U

1

% — U1 +R1 =0 —=

0s1  a

1 dUs d*Us 1 d’U

Ri(s1,82) = _52<5d_&(51) +a 07 (51)) + EUl(Sl) +a 07 (s1)-
Moreover, we get for a = 2

oU: d*U.
—3+R2 =0 — R2(31,82) = —a 2(81).

682 ds%

Observe that due to the above conditions on Us, R belongs to H%O (w). Now, since R
also belongs to H%O (w), we finally obtain

Use Hy(0,am), Uy € H3(0,an).
Thus,

Ri€ Hp (w),  Roe H*(w)n Hp(w),
Uy € H*(w) n H (w),  Use HY(w) n Hf (w),  Use H*(w) n Hf (w)

and
B 1dU, d3U, 1 d*Uy
Rl = —82<ad—81(81) + ad_<9:15(81)) + EUI(Sl) +a ds% (81),
d*U.
RQ = 2(81).

—0——-
2
dsy

2.4 Unfolding of the rescaled shell

With the rescaling operator we could successfully analyze the limit behavior, where
the thickness tends to zero. However, there is a second small parameter describing
the microscopic periodic pattern of our structure. For that reason we need to intro-
duce the unfolding operator. This operator decouples the macroscopic and microscopic
scales and introduces a new set of variables solely acting in the reference periodicity
cell.

Definition 2.4.1 The unfolding T-(¢') (resp. T=(¥)) of a measurable function )’ (resp. 1)
defined on w (resp. ) is measurable on w x Y" (resp. Q x Y') and given by
/
) = (] ). for ety 7
€
T-(W)(s',y) =0, for a.e. (s',y') € Ac x Y7,

and .

72(¢)(8/7y/,y3) = ¢<5[8€] + 5y/793>> Jor a.e. (Sl,y/,y3) €w: XY,
E(w)(8/>y/ay3) =0, fOT a.e. (8',y/,y3) S AE x Y.
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As shown in [15], for every 1’ € L?(w) we have
H7;(¢/)“L2(wxw) < ”WHL?(wy (2.4.1)

1 1
Remark 2.4.1 We consider the function f-(x) = Zsin(%rf) + x, with ¢ = g a8 pre-

sented in [15]. In figure 2.6 we have plotted the original function on the top. On the
bottom we can find the unfolded function Tz(f:).

Original Function

Figure 2.6: Original and unfolded function from remark 2.4.1.

Definition 2.4.2 The rescaling-unfolding operator is defined by
I, =T, 0%..
Given a measurable function v over Q. then I1.(¢)) is a measurable function on w x Y.

Lemma 2.4.1 We obtain the following estimate for the warping:

e () || 22 (o 1 (v < CEI/Que(Us)”L?(Qg‘)' (2.4.2)

We denote by HL,.(Y') (respectively HL, . (Y)) the subspace of H}

N per loc
H

(R2) (respectively
Lo (R*x (—r, m)gmHl (Y')) containing the G periodic functions and

W= {ﬁe HI%W(Y):)) | f (-, y3)dys = 0, f YsTa(,y3)dys =0 ae. in w x Y’}.
—K

—K
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Theorem 2.4.1 There exists a subsequence of {€} (still denoted {€}) and
Ue L2(w;H (Y"))3, R e L2(w; H. (Y"))? and T € L*(w; W) such that

per per

T-(U:) — U strongly in L*(w; HY(Y"))?,
T-:(R:) — R strongly in L?(w; HY(Y"))?,

T: ((91/{5) . strongly in L*(w x Y')3,
0Sq 05q R (2.4.3)
OR: 0R JR .19 "2
—_ — + — [ L Y
7;<8sa> F + ™ weakly in L*(w x Y')*,
1

I (%) —a weakly in  L*(w; HY(Y))3.
One has

1 ~
u(s1,82,93) = WJ u(s1, 82, Y1, Y2, y3)dy1dys, for a.e. (s1,s2,y3) € €L
Y/

Moreover,
1 oU. 5 . 2 1 /v
_7;<85 n+ Re- ta) — Zo3 + Zas weakly in  L*(w; H (Y")),
1 ) oU. " oU. ~ ) . (2.4.4)
EE<8SQ “tg + 235 . ta) — Zop + Zap weakly in  L*(w; H (Y")),
where R R
5 oU: ~ 5 OU. ~ ~ ~
Zi3 = 5 + R, Zoz = 5 + Ra, Zap = €yapU). (2.4.5)
oy Y2

Proof. The strong convergences of (2.4.3), , 5 follow from (2.3.2), , and [15, Propostion
3.4]. Convergences (2.4.3), and (2.4.3) are the consequence of [715, Theorem 3.5] and
[15, Corollary 3.2], respectively.

The convergences of (2.4.4), , follow from Lemma 2.3.1 and [15, Theorem 3.5]. With

Lemma B.2.1 we then obtain the expressions for Zos3 in (2.4.5) and Lemma B.2.2 yields
the expressions Z,3.
Indeed, we first need to identify the different fields appearing in Lemma B.2.1 with

_%ue,l + Rs,l)

U <> 3 Ve «—>
£ £,99 € ( R572

From (2.3.2)1 4, one has

1 —1U 1+ Ren Z13 Cr20 N2
- <VM573 + ( Res Zs weakly in L*(w)?,

1 1 )
_Eufrl +Rea N —52/11 + R R . 2 N2
E[V ( Res ) ] \Y ( ) + Vy <7€2> weakly in L*(w x Y').

Moreover, we set
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Then, one can apply Lemma B.2.1. The function u is in the following defined as ﬁg.
To determine the Z,g, let us identify

1
Ues <> (u€’1> Ve «—> E &3 0
€ u€,2 Y g 0 O

Together with

1 au/g,E aua@
cas(tie) = 5( 9se | 9ss )

we then obtain

oU: 1 1/0U:n U
681 ( 582 * 581 )
e(ue) = 1(5?/{5?1 N 62/{5,2) 6215,2
2% 0s9 081 052

Hence, by (2.3.2)13
1
E(e(us) + U&?) - X?

and
To(Vv:) — Vv + V0.

In our case we have that ¥ = 0. The field (uj,u2) given by Lemma B.2.2 is denoted
(U1, Us). O

2.4.1 Limit of the rescaled-unfolded strain tensor

Proposition 2.4.1 Under the assumptions and the results of Theorem 2.4.1 we obtain
the following weak convergences in L?(w x Y):

1 oR, OR ot
gfk(eu(Ud)-*van+€yJ1a4)+-y3< ! 1) et

+ = )

(981 ayl ayl
. 0Ry  ORy\ | Oty
~1I. ) — Z a Y
SH(ean(e)) — 2o+ egn(@) (52 52 ) +
1 1 ~ 0R1 37/?\,1 OR2 37/?\,2 61_/21 &ﬁQ
—11. ) — =(Z 2
8 (612(u )) 2( 12 + €y,22(u) +y3< 259 + s + sy + oy > + Oy * &‘yl)

1 1
gHs(€13(Ue)) -5 (2313 + =

T (en(ue)) —

61/73 -~ 6U1 au;),
+ R+ —+ —

o 0ys3 ayl)
62/{3 ~ 6@ au?,

Zos+ —+Ro+ — + —
(22 oy 0 Oy ay2>

a
Proof. First, note that the function y3 —

converges uniformly to 1 in w x Y.
a + €y3

Below, we give the limits for 2TI.(eq1 (u.)) and 211 (e13(u.)), since the other cases follow
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analogously. For the calculation we combine the results obtained in Lemma 2.3.1 and
Theorem 2.4.1. We have,

~II. ) = - - , “U.
€ (er1(ue)) ea+eys [T< * au 3)

Therefore, we get for each term in the limit

1oy 1 -
ST <_81 + _usyg) —~ Zi 4 ey, (M) weakly in L(w x V),
e \ds:1 a

(57?,571) N 5R1 n (97%1

kly in L2 Y’
Te 751 951 T oy weakly in (wxY"),
1 OlUg 1 oIl (ﬂs 1) 6u1 .
—H( 5’):—; Ky in L} (wx Y
(7 = on T weakly in (wxY),
1

—II.(a.3) — 0 weakly in  L?(w x Y),
€
and hence
IR @> o weakly in  L?(w x Y).

1
“MLe(en(ue)) = 20+ ey @) +us( 5 o

os1 oy

Now consider

1 1 a U 3 1
gﬂg(elg(ug)) T e 2(a + eys) [T( os1 au€’1 * REJ)
1 _ aﬂ‘g’g €Ys3 6@71
B EHE(UE’I) + HE( 581 ) + (1 * 7)H€< 683 >]

Similar to the previous case we investigate the limits of each component, obtaining

1 ou 1 ol
= 5(—5’3 Uy +R51> ~Z+ B LR, weaklyin L%(w x Y7),
€ 081 a ’ oYy
1
-1l (dz1) — 0 weakly in  L*(w x Y),
g
1 668,3 B 1 6H6(ﬁ3) 6ﬁ3 . 9
EHE(—aS:l ) =2 B weakly in  L7(w x Y),
1 aHE(ﬂs’l) aﬁl . 2
5_26—% — 6_y3 Weakly in L ((.U X Y)
Therefore,
1 au;), (9U3 5U1 . 2
gﬂg(elg(ue)) 5 (Zlg + @ + Rl a—yl + a—y?)) weakly in L (w X Y)

Define the displacement 4 belonging to L?(w; H',,.(Y))? by

per

u(,y) = a('aylay2) + y37€(',y1,y2) + (y3(Z13t1 + Zasta) +ﬁ('7y))a
for a.e. y € Y* and a.e. in w.
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Hence, one obtains

Y3 aul 521/{3 1 Y3 &Lll 521/{3
A R S R S L 0
1 n+ a 0s1 ¥ ost 2 12+ a 089 Ys 051059
—II — U
e «(e(ue)) * 229 — Y3 23 0
0s5
# * 0

+&/(Q)  weakly in L*(w x Y)3*3

where £y (u) is the symmetric tensor whose components are the e, ;;(u)’s. We want to
note here that we obtain the same kind of result as in [29].

Remark 2.4.2 If we compare our results with [16, Proposition 11.13], we see that
Ey(T) = Ey(@) + &, (D),

where the terms on the right hand side follow from the given definitions in [16].

The aim of the following section is to determine the Z,3 by decomposing the displace-

ments into two disjoint sets.

2.5 Inextensional and extensional displacements

2.5.1 Inextensional displacements

Denote H = [Hf, (w)]*x L?(w). We equip H with the scalar product

v 38 (B2 ) 22

1 /00Uy  OUsN s0V7  OVo
5(882 + 551)<652 + 081

) + Ung] dsdss.

The associated norm is equivalent to the usual product norm of [Hf, (w)]? x L*(w) .
Denote Dj the space of inextensional displacements

) ob; 1 0Dy 0P, 009
D;={decH — 4+ -P3=0, —=0, —+——=0¢.
g { c | * a ’ " Osy " 0Osy 081 }

We define the spaces
Hy(0,am) = {¢ € H'([0,a7], R)[1)(0) = ¢(am) = 0}
and HZ(0,ar), respectively. Moreover, we set

am sc—s—l
2 2727 o

A displacement V belongs to Dy if and only if there exists (V1, V2) € HE (0, am) x H3 (0, ar)
such that for a.e. (s1,82) € w
Vi(s1,82) = —s5V5(s1) + Va(s1),
Va(s1,82) = Va(s1), (2.5.1)
Vs(s1,52) = a(s5Vy (s1) = V{(s1)),

s{ =81 —
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where the prime denotes the differentiation w.r.t. s;. The map V € Dy — (V1,V3) €
H(0,am) x H3(0,ar) is one to one and onto.
Denote

Dy = Dy n ([Hp, (w)]* x HE, (w)).

Note that the limit of the mid-surface displacement of the shell U belongs to Dj.
We equip Dy (resp. Dy) with the semi-norm

VD, = Vslr2@y, — (resp. [Vip; = [Va]n2(w)-
Lemma 2.5.1 The semi-norm | - |p, (resp. |- |p,) is a norm equivalent to the norm
of the product space [H'(w)]? x L?(w) (resp. [H'(w)]? x H?(w)).

Moreover, there exist two constants ¢, C' such that for everyV € Dy (resp. V € D) one

has
Vil 0m) + V2l 0.0m) < IVID, < CUVAEL 00m) + V21 22(0.0m)): .
(Uil 0,0m) + 1V2l350.0m) < VIR, < CUVAB 30 0m) + Ve lps(0.0m))

where (V1,Va) are associated to V by expression (2.5.1).

Proof. Step 1. We start by showing the norm equivalences.
Take V € Dy (resp. Dy), then one has

enV) ==V, en(V) = en(V) =0.
Now, the 2D-Korn inequality gives (recall that V; = Vo = 0 on I'y)
Vil + Vel < CIVslZa,)-
Hence, we obtain
VI e c2o) = Vil ) + Velin ) + Vslizw) < ClVslia,) = CIVID,-

On the contrary, to estimate |- [p, by | - [l )2 x 2 () from above, we can use Young’s
inequality such that

HW3=%@M=f%M

A )+ Y 3 22 ot

<[ [(G2) + 2+ (50) + (5) + (3) + vt
< C(IMBgy + Vol + Vsl
= CIVIE @) £2(w)-

For the equivalence of the norm | - |[p, we use the same argumentation as above. The
2D-Korn inequality yields

VI oy x 2oy = Vil )+ V2l Er ) HIVsl 2w < C'IVal 720+ Vsl < CIVIS,-
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For the other direction we obtain
IVIB, =1Valir ) = Vs Vadra) + <V Vs, VVs)12() +{D*Vs, D*Vs) 124

1,0V 1 2 NMWoN\2  1/0V1  0Vo\2 2| 5.0
— —_ — f— —_— —_ — —_— d
L[2<6sl+av3> +<852> +2<852+851> +V3] 5
+{(VVs, VV3>L2(W) + <D2V3, D2V3>L2(w)
<C(MBp) + Pl + Vsl

=CVIEa1 ()12 x 2 ()
Step 2. We prove the inequalities (2.5.2). With expression (2.5.1)3 we obtain

VI, = Wil = [ Vidsids,
:J 2(35‘/2”(81) Vll(sl))QdSldSQ
—af f (s5V3 (51))% = 255V5 (51)V4 (s1) + (V4 (s1))?] dsads

= a® (Vz (1)) + U(V{ (1)) |ds1
0

C(”Vg HL2(0,a7r) + HVI/ H%?(O,aﬂ'))
C(”‘/?H?{Q(O,mr) + HVl H%{l(o,aw))‘

First, note that Va(s1) = V,(s1) = 0 for 51 € {0, ar}, which follows by the expressions in
(2.5.1) and since Vi(0, s2) = Vi(am, s2) = V2(0, s2) = Va(am, s2) = 0 for a.e. sy € (0,1).
Moreover, the Poincaré inequality in H}(0,an) and HZ(0,ar) yields

HVVQH%{%O,(M') + Hvluill(o,aﬂ) < C(H‘/Q ”%2(0 am) + HVI H%Q(O,aﬂ))

12 (o7 3 Lo
<C<13L (VQ)d81+lf L(V))ds: )

J f 32V2 d32d31 —i—f J V1 d32d51
<of«$w>—a$wvwwm>ws
< CJ a?(s§Vy — Vy)2ds’
= OVl = CIVIR,.

For the inequality (2.5.2), we achieve again with the expressions for V3 in (2.5.1)3 that

0V3\2 Vs
VI, =l = [ Vs + [ [(52)"+ (52) dsudes
02V5\ 2 2V5 \2 0%V
+L[< 0s? ) +2<651852> + < 0s3 ) ]d81d82
= [ 0?5575 o) = V(s1)? + (5515 s1) = W (s0))” + (@15 (1)

a’ (551/;”(31) - 1/1”/(51))2 + 2(aV2m)2]dsld52

nm "

<c£?[w§f+<%> OV 2 (V)2 4 (V)2 + (V) + (V) dsy

<C((H Vs H%—I‘I(O,aﬂ) + H‘/l H?’-I?’(O,aﬂ)) :
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For the other direction we note that we can use the Poincaré inequality as described
above such that we obtain

H‘/2H2H4(O,mr) + HVlH%iS(O,aW) < C(H‘/Q H%—I?(O,aﬂ) + HVi H%IQ(O,mr))
Hence, we get

"

IV By + VB < [ L0 610 4 (9 (6202 4 (05 ()
+ (Vi (s1))? + (V4 (s1))? + (W (51))%]ds1
<CJ SQVQ s1)— WV, (31))2 + a? (s%Vzm(sl) - Vlﬁ(sl))2

v

+ (aVy (1)) + a®(s5Va (s1) — Vi (51))° + 2(aVy )?]ds1dss
=C| Vsl = CIVIE,

which concludes the proof. Ol

2.5.2 Extensional displacements

Denote with D the orthogonal complement of Dy in H w.r.t. the scalar product of H.
For every ¢ in L?(w), set

1 l
My (d)(s1) = 7[ o (s1,82)dsa, for a.e. s1 € (0,an),
0
1 l
M5(d)(s1) = ff ¢(s1, 82)s5dsa, for a.e. s1 € (0,am).
0
Note that for every U € Dg, one has Ma(Uy,), MS(Us) € HE(0,ar) while Ma(Us),
MS§(Us) € L2(0,arm) (a e {1,2}).
Let U be in Dpg, then it satisfies
<Uu,v >=J U3V3 ds1dsa, YV e Dy.
Thus, we have to fulfill

f Us(s1,52)(s5V5 (1) — V, (s1))dsids2 =0,  VYVie Hy(0,am),  VVae Hg(0,ar),
w

where we used the expression for V3 from (2.5.1);. This yields the two conditions
that

J M§(Us)(51)Vydsy =0,  YVa e HZ(0,ar),
0

aT
f Mo (Us)(s1)Vydsy = 0, VVi e H}(0,ar).
0
By partial integration and the properties of V; and V5 we obtain

am d2 (Y
f %3)(51) Vads; =0, YV e HZ(0,ar),
0 51

J AMU)(51) 1 0o 0, w1 e B0, am).

0 dSl



2.5 Inextensional and extensional displacements 25

Therefore,

Ma(Us)(s1) = C1, M5(Us3)(s1) = Cas] + Cs,

2.5.3
(Cy, Cy,C3) € R3, for a.e. s1 € (0,am). ( )

Hence,
dMo(Us) _ d> MS(Us)
dsy ds?

Dp = {LIE]HI | =0 in (O,aw)}.

We equip Dg with the norm

110 1
D|p = i et R
L ”2\8 +oay

Note, that Dpg is not a Hilbert space with this norm. Dy denotes the completion of Dg
w.r.t. this norm.

110®1  0P9

205y | Psy

2 6,@2 2
682

] d81d82

Lemma 2.5.2 For every U in Dg, one has
2 e 0,522 (0,0m)) + UL 2 0,0 E7 0,070y + U 20,0502 (0,0m))yy < ClUNE- (2.5.4)

Proof. Since D is the completion of Dy for the norm | - |z, we can prove the estimates
of the Lemma for U € Dp, then by density they will be satisfied for every element in
Dg.

Let U be in Dg, recall that

|0y L) <ls |22 <
asl a lr2w) £ 059 112 (w ) > (25.5)
oy 82/{2 o
| < |Ule.
059 651 L2(w)
Moreover, we also have that U3 fulfills the properties from (2.5.3).
Step 1. In this step we prove
M) 3 0m) + M) 10.0m) + [ M20)] 200 256
+ [Ma(Us)| + M5 Us)| 12(0,am) < ClU| -
Set
~. s1(s1 — am)
My(Us)(s1) = Co——5—,
L sa(55 — 1) for a.e. s1 € (0,am). (2.5.7)
Maa(Us)(s1) = 7J u2(31732)%d32;
0

Hence, one has M§(Us), Mag(Us) € HE(0, ar).
We first show that

dMo(U 1
Hﬁ + 5M2(u3)

< —|Ule-
L2(0,am) \ﬁ

By plugging in the definition for Mo (U;) we get

l
J Z/{1(S1, SQ)dSQ + —J Z/{3 81, SQ)dSQ

1d
ldSl

L2(0,am)
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We interchange differentiation and integration, such that with Jensen and (2.5.5); we

obtain
1t ou; 1
- e d
Hl fo (651 +au3) 52

Moreover, we have

ou 1
e + —Us
0s1  a

1
< — < U]z
L2(0,ar) \/Z‘ L2(w) \/Z

VRS

a

Hd/\@ () ||
S1

o~ TR (o) o

L2(0,am)

(YT rdMe(Uy) 1 2
= JO <d—81 + aMQ(UzJ,)) d81

e

L2(0, aw)

1 2
+ EMQ(U?,)

bl

L2(0,am)

where we use for the second inequality the partial integration

J‘” dMs(Uy)

d
0 d81 Mg(ng) S1

dMa(Us)
dSl
=0, because Mo (U1)eH{ (0,a) =0

= [Maeh) Ma)] —LM Mo(th) ds, — 0.

Therefore, we obtain

1 2
+ || =Ma(Us)

a

< Clu|%.

HdM2 ) |]?
L2(0,am)

S1

L2(0,am)
The Poincaré inequality in H{ (0, an) and the previous results lead to

Hd’”—“”) < O],

L2(0,am)

HMQ(Ul) HHl(O,a'rr) <C

and since Ma(Us) is independent of s; we get
(Ma(Us)| < ClU||e-

Below we show the inequality

< OU|E. (2.5.8)

HdMWl) | LdM5s) | Cs
L2(0,ar)

a dsp

Plugging in the definition for M$ and /\75 we get with Jensen and for s§ € (—1/2,1/2)

HWS_W+1M+%

dsq a dsp @ 1|12(0,ar)
B dil i J tsidsr + ldisl@zM) " % r2(0am)
— (22;{11 Sdso + — (C’g <81 - %) + 03) o)
ME(US)
- _J @Ls{i " 1u>82d52 Lam fol(gzjll lu3>sg oy < I
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Now, we prove the inequality

M) + - 5|

Cs1? < C|U|%. 2.5.9
120 + |Cs 4] 7 (2.5.9)

With the Poincaré inequality, C € R and since MS(2 ), MS(Us) € HE(0, ar) we obtain

HM () + /\/l e (us)|” +1Cs)?

L2(0,am)
d 1d 2 Cs |2
<C|||[—M; (u1)+——M< 5) + =2
dsi L2(0a7r) @ 1112(0,ar)
1d C
—CH—MC () + =— M5 (Us) +—3
a ds; a L2(0,am)
< C|U| g,

using

am . 1 d ~. Cs B
L <d_31M (Ur) + ad—sle(%)) ?dsl =0.

In the following we prove the inequality

< ClU| & (2.5.10)

‘ ‘ dMas (Z/{Q) 1
L2(0,am)

+ M5 (Us)

With the previous result, partial integration and (2.5.5) we get

d Moo (U: 1~
| t) L Bt

L2(0,am)

1~
- | — s + atsaa) + Lt 00

L2(0,am)

— M;(Uh)

)l

< H dMaa (Z/{Q)
L2(0,a)

1 ~
[ Msten) + 2Rt

where we estimate the first term by plugging in the definition and swapping integration
with differentiation together with Jensen

! !
oU —1 1 l
H_ QMdSQ__J U1(‘,SQ)(SQ—§)dSQ

681 2 l L2(0,am)
61/{2 32 S9 — l) 1 82(82 - l) l ! 6L{1 82(82 - l)
H vl 2 Ty ([ul 2 ]0 o Os9 2 d‘”) 2 (0.0m)
H 61/{2 aZ/{l) 82(82 — l) ds
681 632 2 2 L2(0,a7r)
(?Z/I ou
< c' =4+ 2 < C|U|p-
651 082 L2(w)
Integrating W;—E(UQ) + %//\\4/5 (Us) over (0,ar) and due to the above estimate (2.5.10),
1

one obtains

G| < ClU| e
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and then with again with (2.5.10) and (2.5.8)-(2.5.9)

| M5 @) 2(0.0m) + IMSUs) | £2(0.0m) + IMEU) 111 (0.0m) < CIU 5,

H dMaa (UQ)
dsy

< .
12(0,ar) clules

Since Moo (Us) € HE(0, am) we get

dMog (UQ)

M@t 2

=

< ClU|e.

(0,am) L2(0,am)

The Poincaré-Wirtinger inequality gives together with (2.5.5),

e — Ma(Us)| 2wy < ClU||E- (2.5.11)
o . Sa(s2—1) ) . )
Multiplying Us — Mo (Usz) with — and then integrate with respect to s yields
12
J— < .
(Mane) + 15 Mo)] |, < O]
Therefore,
M2 (Us)l|z2(0,am) < CU| - (2.5.12)

Step 2. We show the 3 inequalities in equation (2.5.4) by using the Poincaré-Wirtinger
inequality. We start with
a2y < ClU| 5.

With the inequalities in (2.5.11)-(2.5.12) we get
[Uo] 2wy < s = Ma(U)] 12w + [Ma(Ue)] 12w < CU| & (2.5.13)

Recall that if X is a separable Hilbert space, then the Poincaré-Wirtinger inequality is
valid in W1P(0,1; X) (p € [1, +o0]). From (2.5.13) and (2.5.5)3 we obtain

|

.
081

(982

< Ol s

L2(0,l;(H(0,ar) L2(0,l;(H(0,am))")

Then the Poincaré-Wirtinger inequality and estimate (2.5.6); in H'(0,1; (H'(0,ar))’)
gives

I | 220,05 m1 (0,am))) < UL — Mo @) | 20,0508 0,0m))y + 1M UL [ 220,050 0,0m)))
< Cld||g-

The above inequality leads to

|24 < OlUle.

681

L2(0,1;(H2(0,ar))")
which together with (2.5.5); yields
1245 220,152 (0,0m))) < ClU| E-

This ends the proof of the Lemma. Ol
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Now, consider the field U, the mid-surface displacement associated to u., which belongs
to H. We decompose it as the sum of an inextensional displacement U . and an exten-
sional one Ug .. By the definition of |-| g and Lemma 2.1.1 we obtain

2
ou, ou,
Upele < ), =t — ta < Ce.
a,,ﬁ’:l aSa 855 L2(w)

Lemma 2.5.3 There exists a subsequence of {e} (still denoted {¢}) and Ur € Dg such
that 1

EUE’E’l — Ug weakly in H'(0,1; (H(0, ar))’)

1

EZ/{E7€,2 — Ug2 weakly in H'(0,1; L*(0, ar))

1

gL{E@g —Up3 weakly in LQ(O, l; (HQ(O, arm))).

Proof. From Lemma 2.5.2, one has

UE 1

H(0,(H (0,0m))) + 1UE 2] H101,02(0,am)) + IUE €3] 1200512 (0,am))) < C,

which yields the claim. ]

Going back to the expressions for Z,3 introduced in Lemma 2.3.1 and Proposition 2.4.1
we get with Lemma 2.5.3 that

s, U
Zap = 2[0sat5+ &sﬂta]'

2.6 The linear elasticity problem

Let a;ji € L*(Y), i,4,k,1 € {1,2,3} and it should satisfy both the symmetry condi-
tion
aijrl(y) = ajini(y) = apij(y),  forae yeY (2.6.1)

and the coercivity condition (¢y > 0)
aijkl(y)Tikal = COTijTij, for a.e. VRS Y, (2.6.2)

where 7 is any 3 x 3 symmetric real matrix. The coefficients afj i of the Hooke’s tensor
for the shell with x = ®(s) are given by

/

s’y s
a;ip () = aijkl({g}» ?3), for a.e. x € (). (2.6.3)
The stress tensor is defined as
0 (v) = aj;per(v), Vv e V.. (2.6.4)

For a given applied force f. the displacement u. of a shell is the solution to the linear
elasticity problem

—Va - (05(ue)) = fein Q2

(2.6.5)
us = 0on Iy,
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in the strong form. The corresponding weak formulation is given by
J o (ue) 1 ex(v)dr = fe(x)v(x)dz, (2.6.6)
oF Q¥
where we can transform it to the reference domain obtaining

J 0% (ue) : e(v) det(ty + 22t [ts|n)ds
oF a

. (2.6.7)
= | fo(s)v(s)det(ty + —t|ta|n)ds.
QF a
The :-operator denotes the Frobenius scalar product.
2.6.1 Assumptions on the forces
We assume that the force is given by
fe(s1,592,53) = €2 f(s1,52) + eF(s1,52) + s39(51, 52), for a.e. (s1,82) € w,

where f = fiti + fota + fan, (f1, f2, f3) € L*(w)? and g = git1 + gata, (91, 92) € L*(w)*.
The force F' is chosen such that it only interacts with extensional displacements. First,
in view of Lemma 2.5.2, we take

Fye L?(0,1; HY(0,am)),  Fye L*(w),  Fye L*(0,1; H*(0,an)).

Then let Vi € Dg and consider

l
<F, VE> = f <F1, VE,1>H1(O,a7r),(H1 (O@ﬂ))/)dSQ + f F2 VEQ d81d82
0 w

!
+ L<F3= VE3) H2(0,am),(H2(0,a7)) )52
Due to Lemma 2.5.2, one has for all Vi € Dg the inequality

[KE Vi)l < (IFll 220,150 0,0m)) + 1202wy + 11 F3ll 200, L3m20,0m)) [ VEIB- - (26.8)
Now recall that this field has to satisfy for all V € Dy that

J F(s1,82) - V(s1,s2)ds = 0.

Hence, for all (V4,Va2) € HY(0,ar) x HZ(0,ar)

Fi(s1, s2) —s5V,(s1) + Vi(s1)
F2(81, 82) VQ(Sl) ds = 0.
w \F3(s1,52) a(s5Vy (s1) — Vi(s1))

With partial integration and the boundary conditions for V] and V5 we get

J [(g—isg + Fy + a%s%)% + <F1 + ag—i’)%]dsld@ =0,

holds for all V; € H(0,ar) and Vo € H3(0,ar). Therefore, the field F € L?(w)? has to
satisfy

dMy(F.
Ma(Fr) + o PM20B)
and ds1 (2.6.9)
dMS(Fy) > MS5(F3) o
g5 T MelF) Ha— =0,
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Remark 2.6.1 For instance take (Fa, F3) € L*(0,ar) x H%(0,ar) and set

dF:
F(s1,82) = 85( — aﬁ(sl)h + Fos1)ty + fg(sl)n>, for a.e. (s1,82) € w.

In Lemma 2.9.2 we show that there exists a field F € L2(w)3, with F = (F11,Fi2, Fa2)
such that

<F, V> = J (F11611(V) + F12612<V> + FQQ@QQ(V))dSldSQ.

Taking the holes into account, we need an additional assumption on the forces F. We
will check this in the proof of the Lemma below.
From now on, we assume that F satisfies (2.6.9) and moreover F € H'(w)3.

Lemma 2.6.1 One has

1 1
‘— fg-udx—€3<f f-Z/{dsld32+—f F -Ug dsi1dss
2k J oz w¥ & Jux

2 2
+ o f o Uy dsidss + r j Ja Ra d81d32) ’ (2.6.10)
3a Jx 3 Jur
< 055/2(HfHL2(w) + |9l 2wy + HFHLQ(w))He(u)HLz(Q?)_

Furthermore

fe wa‘ < CE¥2 (| fllr2(w) + 190 2w) + 1 F5) 220,012 0,0m)) + [F ) i1 o) le(w) | 22 -
(2.6.11)

L

The constants do not depend on €.

Proof. Using the decomposition of u we can write (see Remark 2.1.2)
fa'udxzf fe - udet (tl—i—ﬁtl\tg\n)ds
Qf 0f a

:532/<J f-Udsidss + 2/%2J F -Ug dsidsy +
UJ* w*

€ €

26343

f N o Un dsidso
We

9 3.3 9 4.3 9 5,3
53H J Ja R dsidss + =B J F-Rdsidsy + =B J fa Ra dsypdss
w a  Juw¥ 3a Jyx
2
+J S—?’g-ﬂds—kf Es;;F-Eds%—j S—gsgfgﬂ-nds.
QF a QF a QF a

(2.6.12)
First, using the estimates (2.1.21)y and (2.1.24)2 one gets

| est g mas] < O lgluaglew)l o)
| esaF was] < CEPIF g etz
Q¥

L Ssa fo - nds| < O f] 2 le(w) |2 oz,

*
€

[t R dsidsa] < O 1P et

wd

J N % fo Ra dslds2‘ < 057/2HFHL2(w)He(u)HLQ(Q?)'

€
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Hence, (2.6.10) is proved. For (2.6.11) note that (2.1.24)5 also leads to

3,3

ek 3,3

2
)532,{ FoU dsydsy +

Ws

2¢e
j ) Ga Uy, ds1dso + f i Jo Ra dsi1dso
we We

< C2(| fll2(w) + 1922 le(w) | 202

Now, it remains to estimate J F-Ug dsydsy. For every function ¢ in L' (w), we denote

wd

1 ! ~
qb(e[s—] + 62) dz1dzs, for a.e. s’ € ..
| Jy ey’

M (¢)(s") = 27|

The function M.(¢) belongs to L'(&.) (see [15, 16] for the properties of the operator
M.).
Recall that by (2.1.25), (2.1.24)2, Lemma 2.5.1 and the estimate (2.5.4) one has

C C
Ulle < m“e(u)um(ngf)y UE] 1wy < 8g,ﬁH@(U)Hm(sr;)-

Moreover, we get with [16, Proposition 1.38 |

l JA* F-Updsidss — JA* F- ME(UE) dSldSQ‘ < CeHqu”LQ(UJ)HFHL2(LU)7

L* F - M. (Us) dsidss — L M.(F) - Me(U) dsidss| < C=lU] 12 [V F 1200
Hence,
( L F Uy dsyds, - L M(F) - M. (Up) dSldSQ‘ < Ce|Ul |1 F e o

< Tl Pl le@laaz)

Since M (F') - M:(Ug) is constant on every e-cell, we have

/*|

ME(F) MS(UE) d81d82 = |

Mc(F) - Mc(Ug) dsidss.
o Y| Ja.

Proceeding as above, one shows that
lﬁF.uE dsidsy — [ Mo(F) - M. (Us) dsrdss| < 1/2 1F a1 @) 3oz,
We We

Summarizing the above estimates and using (2.6.8) gives (recall that there are no holes
in A;)
Y™

C
e FuEdsldSZ\ Tl Flm ez,

l J F - Z/[E d81d82
wi
C
‘ F-Ug dsldSQ‘ < M(HFSHLQ(O,L;HQ(O,aﬁ)) + HFHHl(w))HB<U>HL2(Q;")7

which leads to (2.6.11). ]

Eventually, using u = u. as test function in 2.6.6 we obtain

le(ue)l r2(a.) < O/l 2wy + 9l r2()-
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2.7 Unfolded limit problems

For every (Vg, V) in D xD; we define the symmetric tensor £(Vg, V) by

Z11(Ve) —ysAu (V) Z12(Vg) — yshi2(V) 0
EVE,V) = | 212(VE) —y3A12(V) Z22(VE) —y3An(V) 0

0 0 0
ith
h Zo5(Ve) = [aVEt ey |
aB\VE 6$a B 685 “
and
aQVS 1 avl a av 821}3 5 av
A (V) = 0s? ads; 0_81<0_51n)’ Axa(V) = 0s3 a 3_82<5_32n>’
&'2]73 1 @Vl 0 %
A12<V) = 951055 T 089 B 5_32<6_51n>

Denote H,,,(Y*) the subspace of H!(Y*) containing the functions, which are G periodic
and
D =D; x Dp x L3(Q; HL (Y*))3.

per

For every v = (Vg, V,v) € D we consider the symmetric tensor
EVE,V) + &(V)
and the semi-norm
[vllp = 1EWVE, V) + Ey(0) | L2(wxy+)-

Lemma 2.7.1 Given the expressions (2.3.8) for V € Dy, there exist ¢,C € Ry such that

c|VIB, < Z [Aas )72 < CIVID, -
a,B=1

Proof. First, one has

Z [AasW) 22 < C(ID2Vs] 12y + VW1 12()-
a,B=1

This inequality and Lemma 2.5.1 give the inequality on the right-hand side.
We prove the left-hand side of the inequality by contradiction. We assume that there
exists a sequence (V;,)nen in D7, such that

2

[Valo, =1, BZ [Aap(Va)[32() — Oasn — oo,
a,B=1

By Lemma 2.5.1 and the expressions introduced in (2.5.1), we can also consider a se-
quence (Vi , Van)nen in H3(0,am) x H$ (0, ar) with

Vaalfrz 0.0m + IVanlizgo.am = 1
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and the components A,z can be expressed as

1 / " m
A (V) = 5(32‘/2 n(81) = Vi,(s1)) +a(s5Vy,,(s1) — Vi),

1 "
A1a(Vn) = 5‘/2 (s1) + aVy,,(s1), (2.7.1)
Ao (V) = 0.

Furthermore, there exists (V1, V2) € H3(0,an) x Hi(0,ar) such that
(Vi Vo) — (Vi,Va)  weakly in HY(0,a) x HA(0, am).
By Sobolev embedding we get
Vi, Van) — V1, V2) strongly in  Hg (0, am) x Hg(0,ar).
Moreover, since |Aqs(Vy)| — 0 for (o, 5) € {(1,1),(1,2),(2,2)}, we have that

1 c " / c n "
(s5V5 (s1) = Vi(s1)) +a(ssVy (s1) =V ) =0,

— Q|

(2.7.2)
~Va(s1) +aVy (s1) = 0.

Solving the differential equations with the respective boundary conditions we obtain for
(2.7.2), that

Vo =c3+cy Sin(s—l) +c cos(s—l).
a a

Together with V5(0) = V,(0) = V, (0) = 0 we conclude that V5 = 0. Plugging that result
into (2.7.2),, gives

1 ’ "
Evl (s1) +aV; (s1) =0.

With the corresponding boundary condition this yields V3, = 0 and therefore that
(Vin, Va,n) converges strongly to (0,0) in HZ(0,ar) x HZ(0,ar).

Considering again equation (2.7.1) with our assumption that ||A11(Vy)|r2() — 0, we
also get (Vlmn, VZI”;Z) — (0,0) strongly in L?(0,an) x L?(0, ar).

Then the convergence (Vi,,Va,) — (0,0) strongly in H3(0,ar) x Hi(0,ar), which
contradicts the fact that |V;? + ||Va = 1, coming from the assumption

“Hg(O,cwr) ||H4(O arm
% n||H3 0am) T \|V2,n||§13(0’m) =1 for all ne N. n
We define
H;BT,O( ) {w € per( ) |w = 0 on ay*}
Lemma 2.7.2 Consider the space S = R3 x R3 x H;erO(Y*>3' Then,
2
H(TA7T37@)H§ = Z HTXB + yng’B + eag,y(@)“%2(y*)
a,f=1
a/iﬁ

+[lers,y (D) T2 (yny + 2,y (@) T2(ye) + lessy (@) |72y

defines a norm on S equivalent to the product-norm.
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Proof. We introduce the field ® € H!(R3)3 given by
®1(y) = <T}11 + y371191> + 12 (Tflxz + y37}92>

Dy (y) = yo (7'312 + y37'1292> + 11 (7’}12 + ygﬁ%f)

2 2
By(y) = _[(3/;) il (y;) T%2+y2y17'12].

Hence, we have
[(7a, 78, @)lls = [Ey(® + )| L2y #)3xs.
We will show now that |€,(® + @) z2(y+)sxs = 0 implies that & = 0 and @ = 0.

Consider the case £,(®+w) = 0, which yields that ® + @ is a rigid displacement. Hence,
there exist a,b € R3 such that

ai + bayz — baye
O+ D =r, with 7(y) = | a2 + b3y1 — b1ys
az + biyz — bayr

Since, © is a periodic function with periods p1, p2, one has (® —r)(y+p;) = ( —7)(y)
for a.e. y e (R?\ Ugea (€ + S)) x (—k, k). The two first components yield the equations

11 11 12 12

T4 tystg =0, A+ Y3t = —bs, ; e ( )
or a.e. y3 € (—k, k).

22 22 12 12

T4 +y3tg =0, A +y37g = bs,

Therefore, we obtain 74! = 7L = 722 = 722 = 712 — 712 — (0 and b3 = 0. Now, the
’ A B A B A B )

equality of the third component gives by = by = 0. Hence, we conclude that & = 0 and
that r is a constant displacement. Moreover, since @ € H! (Y*)3 the displacement

per,0
r = 0 and therefore @w = 0, which proves that | - |s is a norm.
The proof that there exists a constant C' > 0 such that
C(|TA‘ + |TB| + H@HHl(Y*)) < H(TA>TB’@)”S’ V(TA’TBva)) €S,
is easily done by contradiction. O

Lemma 2.7.3 The semi-norm | - |p is a norm equivalent to the product-norm of
]D[ X DE X LZ(Q;HI (Y*)>3

per

Proof. By the definition of | - ||p,, we get that

2

[olf = 3 1Zas(VE) = y3Ras(V) + €apy (D) Z2(xys)
a,f=1

+ 2lle1sy (0) Fauys) + 2le2sy O Taguys) T 2lessy (@) T2y

Furthermore, note that we have

2
IEVE) oy = Lwaﬁ(vm T yshap(V)%ds
a,f=1
2
= > | Zap(VE)® + (y3hap(V))ds
a,B=1 Q

2 3 2
2K
=2k Z HZaﬂ(VE)H%z(w) + 3 Z HAaﬁ(V)H%Q(w)'
a,f=1 a,B=1



36 Chapter 2 Homogenization of Shells

With Lemma 2.7.2 and the equivalence of norms we obtain that

2 1Zas(VE)| £2(w) 2 1AasWV) 22() + 18] L2(oxy) < [V

a,f=1 ,B 1
Z 1 Zas(VE) | 22(w) Z I Aas O 2(w) + 18] 22 (xy#))-
aﬁ 1 a,B=1

2
Moreover, we get that 2 | Zas( VE)HLQ(w) IVEell%.
a,B=1
Besides, Lemma 2.7.1 yields

c|VIg, < Z [AasW)Z2() < CIVIB,-
a,8=1

Finally, we conclude

e(IVels + Vi, + 18] 2% ) < Iolo < C(IVels + Vis, + [8lz2x) )
O

Theorem 2.7.1 Let u: be the solution of the elasticity problem (2.6.6). Then the fol-
lowing convergence holds:

1
EHE (e(us)) = EUEU) + E,(TQ) strongly in L?(w x Y*)?, (2.7.3)

where (Ug,U,u) € D is the unique solution of the rescaled and unfolded problem

1

2% wxY# ijkl <€ij (Up,U) + 5y¢j(@)) (gkl(VE, V) + 5y,kl (6)) dsldy

, (2.7.4)

, 2 0
=Y *If (f -V + g—agava - %ga(%n)ds’, V(Vg,V,0)eD

Proof. Take v = (Vg,V, ) such that
VepeCl(@)?nDg, Vel?@®)?nDy,
and consider the test function v, = v} + v2, where

_ V() + eVp(s) — 53[‘90’%}@)(5') () tals).

v2(s) = 52@(3', {S}),

with 0 € C!(w; H,,,.(Y*)?) satisfying 17(0 S2,Y) = ﬁ(mr, s2,y) fora.e. (s2,y) € (0,L)xY™*.
We only calculate the elements ej2(v!) and ej3(v}), since the rest follows in a similar

way. We obtain

Oy
—
»
~—
|

for a.e. s € €,

Wl a ol 61); 1 a qoul s3. 0v}
e12(ve) _2[a+33 aslt aSQtl] 2a—|—53[581t2 A+ )652t1]
1 a Vs VE o (32]}3 02 Vi3 A% aVE 1
= 2 1+ 3 (22
2a+53[651 e 0s1 83(631852 e 681852> (1 )<882 e 052 >

(st )< Vs 1w <82VE3 10VE,1>>]_

(951(982 E (982 (951(982 B E (982
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Applying the rescaling-unfolding operator 1I. and dividing by ¢ yields together with the
properties for D; that

1 1 a NVEo OVE1 82V3 ys V1 ey3 Vg1
_H 1 — ) 2 _ 2 2__ —J9 )
€ (e12(vz)) 2a+ ey {< 0s1 * 089 ) 3 051052 + a 552 + a 0y
_ EY3 0%V €Y3 V1 . *Vg 3 (e + @ZVE 3 1 Ve
a 081089 a 089 Y3 0810589 831032 a 0sy
1 52])3 oV1 . 2 *
— EZIQO}E) — y3<681632 — (9_52> strongly in L“(w x Y*).
For e13(v}) we then obtain
1 a ovl av 1 a 81} sg. Ovl
1y _ & Y% _ - 1 3 e
e13(ve) 2[@—1—33 651n+ 653t1] 2a—|—33[831 +(1+ a)ﬁsgtl]
B 1 a Vs 8VE73 1 s3 /0V3
24+ 83 [<851 aV1> ( 081 aV1> + <831 avl)

s3e /0Vgs 1 S3 <8V3 ) (aVE 3 1 )
- == 1+ =) —(=—— - = — =0
* a ( 081 avl> (1 a )( 081 avl 081 avl ’
by summing up all the terms in the square bracket. In conclusion we get that
II.(e(v;)) — EVE, V) strongly in L?(w x Y*).

In the next step we consider e;;(v2), where we again just examine ey and e13. One has

612 :%<a+33§;1 %tl)( {g})
ov ov

ol at) (012)

o) =5 (5 e 2ee) (4 2))
ov ov

+§<af33é’_;1n 6_;3tl)< {g})

1 1
Considering now H (e12(v?)) and H (e13(v?)), we obtain

and

1 ~ .

—TI.(e12(v2)) —> ey.12(D) strongly in L?(w x Y*),
£

1

EHE(elg(vg)) — ey,13(0) strongly in L?(w x Y*),

1
~T.(e(v?)) — &(D) strongly in L?(w x Y*)?,
Therefore,

éﬂg(e(vg)) — E(VE, V) + &(V) strongly in L?(w x Y*).
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We plug in our test function v, into the weak formulation (2.6.6), apply the rescaling-
unfolding operator on both sides, divide by 2xe? and pass to the limit. We then obtain
the formulation (2.7.4) with respect to the chosen test function (regarding the right-hand
side, we use the results from Lemma 2.6.1 and [16, Proposition 4.8] to represent it as
an integral over the whole domain w in the limit). Then, by density of C}(@)? n Dg in
Dg, C}(w)? n Dy in D; and Cl(w; H;ET(Y*)g’) in L?(w; H;GT(Y*)?’), this yields (2.7.4) for
every (Vg, V,v) € D.

The existence and uniqueness is a consequence of the coercivity of a;jx;, Lemma 2.7.3
and the Lax-Milgram Lemma. U

2.8 Homogenization of the shell

In this section we want to express the warping-microscopic displacement @ with respect
to the macroscopic Uy and U. Therefore, we choose V = 0 in equation (2.7.4), which
leads to

fy* aijkl <5U<Z/{E,Z/{) + gy,ij (’ZZ)) Sy,kl(@)dy = O, V@\ € H;eT(Y*)g.

Hence, we rewrite u in terms of (Ug,U). Thus, we define the 3 matrices

1 00 010 0 0 0
MY =10 0 0], MZ=M*2=11 0 0], MZ2=10 1 0],

0 0 O 0 0 0 0 0 0

and introduce the 6 distinct correctors ((a, 8) € {1,2}?)
X%‘B € H]%er(y*)g.’ X?ﬁ € H;er(Y*):;v where XlE‘2 = X2E17 X}Q = X%la
which are defined by
af o Ny —
f @ikl (MJ +&yii(Xp )) Eyp(P)dy = 0, N
v Vo e H, (Y*)3. (2.8.1)

L* ikl (y3M%B + 5y,ij(X?B)> Eyp()dy = 0,

Hence, we are able to express 4 as

—~— —~—

u(s',y) = eag(Z/IE)(S/)X%B(y) + AQB(U)(S/)X?B(y), for a.e. (s',y) ew x Y™

Remark 2.8.1 The cell problems defined in (2.8.1) are uniquely solvable up to an ad-

ditive constant and unique in H; ](Y*), see e.g. [48, chapter 6]. Here,

er,[0

Hierfo (V") = {0 € Bl | vy =0},
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2.8.1 The limit problems in the shell’s mid surface

Theorem 2.8.1 The limit displacement (Ug,U) € Dg x D solves the homogenized
problem

| [t scant@ie)eaVe) + 85 (canUe) drir()

+ Aag(U)ea/5/<VE>> + CZ%ZL/B/AQB(U)AQB(V)]dSI (2 < 2)
Y| K> K2 0V ,
-7 (L (f YVt =gaVa — Egaan)ds +(F, VE>),

V(Vg,V) e Dg x Dy,

where 1 OB
h 0 E o
s =y | oo ME + & (0D

1 — 13l
h
baBars = i L* aijr(y) [ng%B + Sy,ij(x?ﬂ)]MZlﬁ dy,
1 — 1l
h
CaBarp = gl L* aijk(y) [ng;’f + 5y,ij(x?5)]ysM?zB dy.

Proof. Consider equation (2.7.4) and choose the test function such that (Vg,V) € Dg x
D; and v = 0. Moreover, with the expression for 4 we obtain for the left-hand side in

(2.7.4)
1

2k wxY

aijia(9) (€5 (Up, U) + E,35(@) ) Eu(Ve, V)ds'dy.

Hence,
f Y*az’jkl(y) [eaﬁ(UE)(g’)(Maﬁ _;_gy’w(f\_é)(y)) +Aa,8(u)<5/)(y3M?jB +&, U(X?ﬂ)(y))]
x M e (Var) (') + sy (V)(s') | s dy
/%'2 /<.',2
:’Y*|<L (f VA 3590Ve - g%%n)ds’ +(F, VE>).

Computing the expressions yields,

1

V¥ Joxyse
+aijr(y)AapU) (ng?“fB + &y, ij(m)>MZl'5/ea,B,(VE)
+aijkl(y)eaﬁ(uE)(M + &y (Xg ))szkl Ay (V)
+aijk (y) Aap(U) <y3M?j 7 ))ysMZl/ﬁ N (V) dy ds'

:||l;/j!| (J (r-v+ ;gava _ %Q%%n)ds'+<F,vE>).

aijkl( )eaﬁ(uE)<M o Ey,ij (X aﬂ)>Msz ea’ﬁ’(VE)

With the expression for the homogenized coefficients we end up with equation (2.8.2). [

Remark 2.8.2 Given the Hooke’s tensor as aijri(y) = aijri(y1,y2), i.e., being indepen-
dent of y3, we can conclude that boge g = 0, for all o, 8,0/, B" € {1,2}. In those cases
the model only consists of membrane and bending effects.
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Lemma 2.8.1 Let Sy bet the set of 2 x 2 symmetric matrices. There exists a constant
C > 0 such that the homogenized coefficients satisfy for all (Tp,Tr) € So x Sy
CLZ%TZ,B, Tgﬁ Tg/ﬁl +bg%@/3, (TgﬁTI o'f +7'a67' o' ) —I—CZ‘Z;@/B,TIQ’GT?,B > C(p of aﬂ—H'aB aﬁ)

Proof. First, we note that with the variational formulation (2.8.1) the homogenized
coefficients read as

T 1 1l A
Qoo = gl L* aijri (y) _Maﬁ + &y ij(x a’B)] [Mz“ﬁ + Eyp(xg” )]dy,
phom, 1 M8+ &, () [M? 4 g d

aBa’B T Y| Jy aijri(y) y3 ij T i (X7 )][ kl + ykl(XE )] Y

1 o 5
= v L* aij (y) 7M 7+ (X )] [ysMkl + Eym(XT )]dy,

1 i W Y Y,
h «a [e} o o
CoBorp = & L* aijki(y) _y3Mijﬁ + & ,ij(X]B>] [ngle + EyuxXyP )]dy-

For every (g, 77) € S3 x S, one has

ap af 045’) af_o'f’

aﬁa/ﬁ/TE’BTEﬂ + baﬁalﬁ,(TE TI o'’ + 717 TR —I—caﬁalﬁ,Tl T

= —*J ijkl Mij +5y,ij(‘1’)][Mkz +5y,kz(‘1’)]dy,
Y#] Jys

with
M = (Tgﬁ + ygrf‘B)Mo‘B and U = Tgﬁx of 4 T}lﬁx?ﬁ.

By the coercivity of a;ji, see (2.6.2), we obtain
j . aijkl(y)[Mij + Sy,z'j(‘l’)] [Mkl +& ,kz(‘I’)]dy
Y

> ¢ L* | M+ E45() || M+ E45() |y

Then Lemma 2.7.2 yields together with the equivalence of the norms that for all (7, 77) €
SQ X SQ

| [+ 0] [0 + 5 (0 ]y > Ol + 72+ 91
C(TE Tg’g + TO‘BTD"B)

O

With that Lemma we conclude that the left-hand side of (2.8.2) is a coercive and bounded
bilinear form. Hence, we obtain with the Lax-Milgram Lemma that it is uniquely solv-
able.

2.9 Different boundary conditions

In this section we want to emphasize on a change of the boundary conditions, such that
the previously free part is clamped, i.e., Tg = ¢([0,an] x {0} U [0,an]| x {l}). We may
note, that all presented estimates and resulting limits are not affected by the change of
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boundary conditions until we consider the split of Y = Uy + Ug. As in (2.5.1), we first
obtain that U7 can be presented as

Ui(s1,52) = —s5U5(s1) + Ui (s1),
u2<51a 52) = U2<81)7 Uy e H&(Oa aﬂ-)v Us e Hg(()?aﬂ—)'
Us(s1,52) = G(SEUQ(SI) — Ui (s1)),

With respect to our new boundary conditions we need that
Us(s1,0) = Us(s1,1) =0, for a.e. sy.

Hence, we obtain
Us(s1) =0, for a.e. s7.

With the same reasoning we conclude that

Ui(s1) =0, for a.e. sq,
and therefore we see that Dy = Dy = {0}.
Remark 2.9.1 In the applied forces we consider F such that

Fy e L*(0,1; H (0, an)),
Fye L (w), (2.9.1)
Fy e L*(0,1; H*(0,an)).

In the case of a fully clamped shell along dw the assumptions on the forces do not change
and we obtain Dy = D; = 0. Hence, we immediately get equation (2.9.2).

Lemma 2.9.1 For every U in Dy, where I'y = dw, one has

o | 11 (0,022 (0,am)) + 1L 0,05 0F7 (0,0m))) + 1 U] 20,0 (E2(0,0m))) < CIU|E-

Proof. This estimate is an immediate consequence of Lemma 2.5.2 and the fact that
Dp = H}(w) x H}(w) x L*(w). O

If we consider the linear elasticity problem presented in section 2.6 and passing to
the limit, as presented earlier, we obtain that the limit homogenized equation is given
by

f QZ%ZIBIGQB(UE)(BQIB/ (VE)dSI = (F,Vg), VYVE € Dg. (2.9.2)

Now, we show that (F, Vg) can be expressed in terms of e,z (VE) for every V € Dg.
Denote with F and F the fields, which are defined by

0
F(-,0) =0, a_sfg _F
F(-,0) =0, Z—i = F.

Recall that the components of F' are given by (2.9.1).
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Lemma 2.9.2 For every V € Dg one has

<F, VE> = J (F11€11(V) + F12612(V) + F22€22(V))d81d$2,
where
Fi1 =akF3, Fiy = —2(?1 + a51f3), Foo = —Fr + 51./—?1 + a@llﬁg.

Proof. Consider V € Dg. We get that

f Fg V3 dSldSQ ZGJ F3 611(V) d31d82 — CLJ F3 51‘/1 dSldSQ,

w

ZGJ F3 611(V) ds1dss + CLJ 01F3 Vi dsidss.

Then
L(F1 + a1 F3) Vidsidsy = — L (F1 + a1 F3) 02Vi dsidss
=— 2J (.7-'1 + a&l]:g) e12(V) dsidss
+ J (F1 + ad1 Fs) 01 Vadsidss
=— 2J (F1 + ad1Fs) e12(V) dsidsy
— f (O1F1 + adn1 F3) Vo dsidss
and finally )

f (FQ - 61./—"1 - a&ll]:g) Vodsidsy = —J (fg - 51.%1 - a@llﬁg) 621/2 dsidsa
w w
With those calculations we obtain for every V in Dg
J F - Vd81d82
w

iV + BBV + F3V3)d81d82

Il

F1 + a&ng Vi + BBV + aF3€11(V))d81d82

]:1 + aal]:g)elg(V) + (F2 — 01 F — aan]-"g)Vg + aFgen(V))dsldsQ

K
((
(-
(-

.7'_1 + aal}_g)elg(V) + (—]‘—2 + 51.%1 + aallﬁg)egg(‘/) + aFgeu(V))dsldSQ.

We conclude the proof by the density of Dg in Dg. Ol
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3 Analytic Solution to Pinching a
Homogeneous Shell

In the previous chapter we have started with the full 3D linear elasticity problem for a
heterogeneous shell and reduced it to an equivalent homogeneous 2D formulation, where
the effective properties are obtained by six auxiliary cell experiments. Our goal in this
chapter is to derive an analytic solution to the homogenized problem for a point load,
which we call in the following a pinching load, acting on the shell. Usually, this kind
of load is Dirac type and does not fit to the derivation in chapter 2. We overcome this
problem by substituting the pinching with an approximated load on a small rectangular
strip later defined in the chapter. Then we transform the weak formulation back into
its strong form. This yields a system of three differential equations, which have to be
solved simultaneously. Next step is to use Airy’s stress function ansatz, see for example
[37] and [43], such that we get a single 8th order PDE, which describes the effects of
bending w.r.t. the described pinching load. After that we closely follow the procedure
presented in [62], where the author considers an isotropic shell, and most importantly
[33], where a full cylindrical orthotropic shell with opposite pinching loads is considered.
We will see that one can easily implement the presented Fourier transform and series
ansatz to get the solution for our half-cylindrical shell, where we clamp the lateral
boundary. After that we investigate the general structure of the analytic solution by
considering different parameters and locations of the load. In the end we solve the weak
formulation numerically via the finite element solver FEniCS, [2], and compare both
solutions with each other. Moreover, we verify with ANSYS the derivation from section
2.9. The analytic solution is used in chapter 5 as the objective functional, which should
be minimized with respect to the underlying design space.

3.1 Deriving the strong formulation

We proceed with the homogenized equation for shells having bgggl g =0, i.e., where the
Hooke’s tensor is constant in the ys direction as mentioned in remark 2.8.2. This yields
the weak formulation of the form

J I:ag%g/ﬁ/eaﬁ(uE)ea/ﬂ/(vE) + CZ%Z/ngaﬁ(u)Aaﬁ(V)]ds’

K2 KOV ) (3.1.1)
= J;} (f -V 4+ %QQVQ — ggaan>d8 + <F, VE>,

V(VE,V) € DE X DI-

The effective properties are obtained as presented in the previous chapter. Moreover,
we have seen that it is necessary in our analysis to decompose the displacements into
an inextensional and an extensional one. For simplicity, we introduce the complete
displacement U = Ug + U7. Since we want to study the effects of a pinching load, which
only acts in the shell’s normal direction, we set the surface force g = 0. The volumetric
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forces f and F' are put together to a single load still denoted as f. Hence, given some
q € L?(w) we take f = ¢ - n. Therefore, (3.1.1) reduces to

f |0l reasU)ears (V) + chiis phag @) Aap(V) | ds' = J q-Vsds,

YV e [Hllﬂo(o.))]2 X H%O(w).

(3.1.2)

Remark 3.1.1 In the following we compare the obtained limit model with the Koiter
shell equation. Hence, throughout this chapter we assume that the shell’s thickness is
denoted by h > 0 and fized.

Remark 3.1.2 In the derivation of the homogenized 2D limit problem (2.8.2), we ini-
tially scaled the forces such that we have no dependencies on € in the limit. If we consider
the forces without the scaling assumptions, therefore being of order O(1), we obtain an
e dependency in our left-hand side. Consequently, due to the estimates (2.1.24) and for
the extensional displacements (2.5.4) we get after applying the rescaling-unfolding oper-
ator 11, that the membrane part is scaled with €, while the bending part is of order 3.
Thus, the so received weak formulation coincides in the isotropic case with the Koiter
shell equation as shown in [14, chapter 7] applied to the geometry of a cylindrical half
shell. There the effective properties are calculated with respect to the Lamé constants \
and i by
Ap

A+2u

AaBor = 2 a®®a’m + p(a®a’m + a®7a’?)

and the full equation is given by

UeV = e H'(w) x H'(w) x H*w)ln = 0 on 1}
h3

f (haocﬁm' ’YUT(U)’VaB(V) + Eaaﬁzﬂ' PUT(u)paﬂ(V)dsl = f deS/’ VWeV.

The appearing operators are derived for general shells as

1/ U, Uy
«@ =35\ 73— — | - Iy o~ Yq )
i 5(“) 2 (aSﬂ + asa> a,ﬁ’u b 5“3
o*Us oUs oU, oU-
_ . 30 o _ 7T ~ T . &
Pap (u) 85a(955 af 580 babtfﬁu?) + ba ( 685 Bau ) + bB ( aSa aTu )

abg T g0 o T
+ EJFFMbB_FaBbU U,

where I‘gﬁ are the Christoffel symbols, a®? the contravariant components of the metric

tensor, bag the covariant components of the curvature tensor and bg the mixed compo-
nents of the curvature tensor. Considering now the cylindrical shell geometry we obtain
that

Fgﬁ = 0, baﬁ = 07 aaB = Oag fOT all 05,5,0' € {172}7

b}:-a, b2 = by = b3 = 0.

Here 0,5 denotes the Kronecker delta. Due to the equivalence of the derived model in
chapter 2 to the Koiter shell we can continue to transform the weak formulation (3.1.2)
back into its corresponding strong form. Moreover, we want to mention that a general
derivation together with error estimates is presented in [34]. It is worth noting that the
bending part coincides with the energy formulation in [37, chapter 9] for pure bending.
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Lemma 3.1.1 Given the weak formulation (3.1.2) for an orthotropic homogeneous half-
cylindrical shell we obtain the strong formulation as a system of the three PDEs

E2 (922/{2 n G62L{2 n ( E1V21 G) 822/{1 E11/21 l&Z/{g -0
1-— V12921 58% 88% 1-— V1221 581582 1-— V12921 G 082 o
E1 (521/{1 lauig) n E1V21 522/{2 n G(aQlel 522/{2 )
1-— V1221 88% a 681 1-— V1221 681582 08% 681882
E1h2 ( 1 (331/{3 i&QL{l) _ E1h2V21 l (331/{3
12(1 — v1a191) a 0s3  a® 0s? 12(1 — v2) a 051053
4Gh? 1 3Us 1 0%
——— ) =0 3.1.3
12 ( a6’81352 a? é’s%) » )
Ey (1 oy N iu > N Ewy 13Uy | Eih? <a4u3 B 1&%{1)
1 — vpgro \a 0sy, a2 ° 1 — vi9191 a 09 12 \ dst  a 0s3
E1V21h2< 542/{3 _ 1 831/{1 > n E1V21h2 641/{3
12 0s30s3  ads10s3 12 0s20s3
Eyh? 0*Uls 4Gh2< MU 1 PU ) g
12 0s3 12 \0s?0s? adsi0s3/ k'

where E1, Eo are the orthotropic Young’s moduli, corresponding to the directions s1 and
S2, V12, V91 the Poisson’s ratio and G is the shear modulus.

_ ,hom _ _hom _ _hom
Proof. Since we have for orthotropic materials that af§i = afgi = chgm = chom = 0 we

consider the expressions Ang(U)Ay g (V) and Z,5(U)Zy (V) with non-zero coeflicients
and perform partial integrations, such that we get rid of the derivatives for V e C’g (R)3.

Due to the properties of ¥V we obtain

U, 1 oUs 1 oy
Z Z ds' = -2 —_ ds’
L 1(U)Z11(V)ds L 352 e 1+ R 1V3+ L{3V3 s,
U, 1 oUs
21 (U)Zn(V)ds' = | — VN
L 11(U)Z22(V)ds i 851652V s 2V2 s,
0*Us 1 oUs
Z Z I = — - 7e
J;] 22(U) 20 (V)ds L 0810589 a(?sz Vads',
02U
J ZQQ(U)ZQQ(V)dS/ :J - P 22V2d8/,
w 55
1 522/{1 522/[2 (322/[1 521/{2
Z d ! = — — — _ . d /
L 12(V) 4L 02 1T Fsias ' Gsidsy 2 @t V20
o*Us 103U, 1 03Us 1 o°U,
A A _— e — Y d I
L n(t)hn » 08t | 0s3 V3+a83:13v a? 82V1
U3 1 U
Ai(U)Ao(V)ds' = | —=5Vs— = ds’
L n(t)Az(V)ds 0 052052 aos 163§v3 o
U3 1 U3
Ago(U)A11(V)ds — ds’,
L 2(U)An( w 63%83%123 ads 1&32V1
4
J Aga(U) Ao (V)ds' = aLi3V3dS/,
w w 085
o*Us 1 Uy 1 U3 1 %y
A A d ! = _— — v d /
J;, 12(U) Az(V)ds w 052053 s a 0s10s3 s a 0s10s3 T a2 0s5 72

(3.1.4)
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Due to the symmetry condition we have afgy = al¢? = ahgm = @b and cigm =
cgﬂg = 0}1’5”27{ = cgfﬂ In the next step we collect the terms appearing with each V;,
which then yields the system of three equations. We start with terms involving Vs,

where we only have membrane effects and obtain the equation

U 1 oU: U U U
hom [ 1 1ro43 hom 2 hom ( 1 2\ _
a1122< 081082  a 0s9 ) 42222 83% - a1212( 081089 63% ) 0

We can express the coefficients ag%@, g in terms of the orthotropic Young’s moduli Fj,
F5 and Poisson’s ratio vq9, v91 together with the shear modulus G. Thus, having from
[50, section 3.3] that

ghom _ vo1Erh
N2 S
ahom _ Eqh
22 = T o)’

hom
ajss = Gh,

the equation can be written as

1/21E1h < 621/{1 l@blg) n Ezh 521/{2 Gh( 621/{1 n 821/{2) 0
1 — viov91 \0s10s2  a 0s9 1 — vigroy 053 0s10sy  0s2 /)
which yields by some simplifications
E2 522/[2 522/{2 E1 V21 62211 E11/21 1 61/{3
e, ( +G> v S, (315
1-— V1221 58% 68% 1-— V12UV21 @81582 1-— V12921 G 582 ( )

This concludes the first equation in (3.1.3). We continue with the terms involving Vi,
where we do not only have membrane effects, but also bending terms. Going through
all expressions in (3.1.4) we obtain

o*u 1 oU U U o*U
hom [ 1 103\  hom 2 hom ( 1 2
“in ( st  ads ) @2211 051059 + 1212 < 0s3 651652>

<1 531/{3 1 62241) <1 832/{3 1 521/{1) —0

a 0e3 a2 02 a 2 2 g2
a 0s;  a* 0sy ads10s5  a* 0s5

hom ]. 832/{3

hom
C ——s + 4c
2211 a 581683 1212

+ At

Again from [50] we have that

ahom _ Erh ah"m _ vo1E1h
Chom _ E1h3 chom _ E1V21h3 Chom _ Gh3

and plugging these results into the previous equation while dividing it by A yields

El 821/[1 1 5U3 V921 E1 622/{2 (922/{1 (921/{2
( 08% * E 581> + 1-— V1221 381582 * G( 83% * 331832>
n E1h2 ( _ 1 @3U3 i 521/{1) _ I/21E1h2 1 531/{3
12(1 — viov91) a ds3  a® 0s? 12(1 — viov01) a 081053
4Gh2<_1 Us i@>:0
12 ads10s3  a® 0s3 '

1 — 19091

(3.1.6)
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For the last part we collect the remaining terms with V3 and together with the non-zero
right-hand side we obtain

ahom <1 aul + 1 u3> ahom l 61/{2 Chom <84Z/{3 _ 1 832/{1> Chom ( 841/{3 _ l 632/[1 )
Mg 051 a2 g 05y - M 05t a 083 122\ 052052 a 051053
‘U o*u ‘U 1 o3U
hom 3 hom 3 hom 3 3
T a0 T e TR \5252 T 01053

We insert the expressions for the effective properties and divide both sides by A, such
that we get

Ey <1 oy n iu?)) + vo1 B4 162/[2 E1h2 <a4Z/{3 B 1 831/{1)
1 —viov01 \a 0s1  a? 1 — v19191 @ 059 12 \ 0st a 0s3
+V21E1h2 ( 842/{3 _ l 637/{1 ) 1/21E1h2 647/{3 (3.1.7)
12 0s20s3  ads10s3 12 0s20s3
Eoh? 0*Us  AGh? f oUs 1 PUs \ ¢
12 0sl 12 <as%as§ a Easlasg> TR
which concludes our claim. O

Remark 3.1.3 At this point we have a model similar to the one presented in [56].
Anyhow, we want to further simplify it as in [59, Art. 121] and [62] for a better symbolic
treatment in chapter 5.

By the remarks given in [62] and [59, p. 513] we have that U; and Uy are of the order

A/ % . Therefore, we can neglect the last three terms in the second equation of (3.1.3),
which arose from the bending effects, and the third order terms in the third equation of
(3.1.3). Hence, we can simplify the system to

- E'g 622/;2 i G&%;g n ( V21E1 i G) 527/{1 i 1/21E1 162/[3 -0
— V1221 682 (981 1-— V1221 851882 1-— V1ol21 G (982
E1 622/{1 1 62/{3 1/21E1 621/{2 52U1 522/{2
1— V19221 ( 58% E @81> * 1-— V1221 581682 * G( 58% 881582> =0
E; ( tan 1 us) LB 13U E\n* 0'Us
1 —vio01 \a 081 a2 1 —vigva1 a dse  12(1 — viovay) Ost

21/21E1 h2 541/{3 E2h2 641/{3 4Gh2 542/[3 q

+ + + .
12(1 — viov01) 0s20s3  12(1 — vigva1) Osy 12 0s20s3  h
(3.1.8)

Note that by using the approximation for the shear modulus

N v E1E3
2(1 + /2112 )

and introducing the parameters H = E1/E,, U = | /v1ov21 and chom  the flexural rigidity
in the sy direction, we obtain the Donnell type formulation, see [20]. We can now follow
the Airy stress function ansatz, as presented in [43, chapter 5]. This procedure can be
seen as finding a potential for the stress distribution in the material. It is for example
widely used in the investigation of stresses around holes as in [55]. Via this method it

G
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is then possible to express U; and Us in terms of Us as presented in [56] and [59]. We
then obtain the 8th order PDE

& 2\ wa-w L ous 1 [ 2\’
—+H27 Us + H* — H>*-— ) ¢q=0, (3.1.9)

— +
2h2 4 hom 2 2
a’h 0sy 398 \ Osy 0s7

describing the bending effect Us.

Remark 3.1.4 We want to mention here that in the isotropic case, i.e., By = Fy = F,

vo1 =19 =v and G = equation (3.1.8) corresponds to [59, equation (304)].

E
2(1+v)’
Remark 3.1.5 It is mentioned in [10] that the pinched cylindrical shell is analog to a
plate/beam on elastic foundation. This problem has been considered for example in [31].

3.2 Analytic solution to the pinched cylinder problem

In this section we want to derive the solution of (3.1.9) in terms of a Fourier series in
the circumferential direction and Fourier transform in the longitudinal one. Therefore,
we assume that the half-cylinder is infinitely long. This assumption is an adequate
simplification, due to the free boundary conditions as described in chapter 2. As a
preliminary step we want to recall the definitions of Fourier series and transform as well
as a corollary to the residual theorem, which allows us to calculate integrals over the
real axis.

Lemma 3.2.1 Let Z and @ be two polynomials, such that deg Z + 1 < deg Q). Assume
that QQ has no real roots and define

L ={z e C|Im(z) > 0,Q(z) = 0}.

Then we have that

Z(§)

J () exp(iz€)dE = 2mi 2 Resy

exp(izg),
G 21 o)
where Resy f denotes the residual of f in 9.
Proof. We refer for a proof of this classical result to [8, Theorem 7.11]. [

Definition 3.2.1 The Fourier transform @ of a function w € L*(R"™) is defined as

Flw](§) = J w(z)e & dx, (3.2.1)

n

where © = (21, T2,...,0,)7, € = (&1,&, ..., &) and € - x is the dot product.
The inverse Fourier transform is then defined as

Fd)(x) = = f i(E)e’trde. (3.2.2)
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Definition 3.2.2 A function f € L*((0,an);R) can be expressed by its Fourier series

given as
[0 0]
. /ns
= ?O Z (ancos< ) + by, sin <;)>,
n=1
where
9 am 9 am
on = o | ) cos (") ds form =0, b= = [ 7o) sin (%) ds forn =1
am a am a
0 0

In our subsequent analysis we do not need to go any deeper into the theory. For some
more references on this topic we refer to [3, Lemma 7.11, Lemma 7.12] for a functional
analytic point of view and [21, chapter 4] for the applications in partial differential
equations.

Now we use the classical ansatz of separation of variables and consider the function
Us(s1,82) = wi(s1)wa(sz). Moreover, we want to follow the ideas presented in [33].
Note that in our case we consider a half shell with clamping conditions along the lateral
boundaries. In [33] a full shell with symmetric loading is considered. The importance
in our analysis is to capture the effects of different pinching locations. We assume that
a pinching load is applied at (ago,0), ¢o € (0, 5]. The choice s3 = 0 is w.l.o.g. possible,
since we can always shift the cylinder along the so-axis. In order to solve for Us we
calculate the Fourier transformation of wy in the longitudinal direction while we take
the Fourier series of w; in the circumferential direction s;. We can non-dimensionalize
the equation by substituting so with %2. This yields the representation of the deflection
as

Us(s1, 59) = (% ﬁoag(g) *Z*dg)(“zo + 2 ancos(nas )+b sm(njl>>. (3.2.3)

The crucial part is to ensure that Us satisfies the conditions Us(0, s2) = Us(am, s2) = 0.
Besides, we assume that Us also satisfies the six additional boundary conditions given
as Uy (0, 59) = Uy (a,s9) = ULV (0, 59) = ULV (a,59) = UYT(0, 59) = UV (ar,55) = 0.
Thus, we can take a, = 0 for all n € N and have that the series only consists of
Y1 by sin(22). A similar strategy was used in [37, section 72]. Furthermore, we can
sumphfy the Fourler transform along the longitudinal direction by using the symmetry
condition Us(s1, s2) = Us(s1, —s2). Since the integral over uneven functions is zero we
obtain the representation

3(81,52) 2 by, sin <n81> L lwg(g) cos (582> dg. (3.2.4)

™

It is easy to see that Us satisfies our initial boundary conditions, since

! n sin(0 J wo (&) cos (5 2>d§—0

082 = —
s

:MS

Us(am, s3) = % i by, sin(n) JOOITJQ(OCOS <£ 2)d§ =0.

0

For the further analysis we introduce the coefficients w,, = ws-b,,. Hence, we get

Z/{3(31,82) = % i sin (%) J

n=1 0

0

W () cos (582)d§ (3.2.5)
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Moreover, we need that the load ¢ has to be expressed in the same way as

q(s1,$2) Z G SIn <n8 ) L qu(ﬁ) cos (£S >d§ (3.2.6)

™

Remark 3.2.1 Given a pinching load, represented by expression (3.2.6), applied to a
full shell, we obtain a setup with two opposing pinches at (0, apg) and (0, —agpp) as shown
i figure 3.1. The consequence of that choice is that the resulting displacements cancel
each other out at (0,s2) and (am, s3).

P

ZAT PP
Y

P

Figure 3.1: Full cylindrical shell with opposing force on each half circle.
Inserting the expressions (3.2.3) and (3.2.6) into (3.1.9) yields the equation
Sy 2o (€ e n (22 on (2~
[ (7 m) Jrmsn (12 o (2

By comparison of the coefficients we have to ensure that

(YY) o -
[ = ((2)2 + H2(§)2>2]a<oqn,

€2222

is fulfilled for all n € N. This equation implies that the Fourier transform w,, has to be

chosen such that
[ . ((3)2 + H2<g>2)167(€) 4

B €2222
5>2 n\2\2 12(1-D) , ren4]
) () ()

[ ((a a a’h? a
where ¢ is the Fourier transform of ¢ along the ss-axis and the ¢, are the coefficients
of the Fourier series along the circumferential direction s;. In our analysis we actually
want to study the effects of a point load ¢P™"(s1, s9) at (app,0). In general this leads

to problems in the calculation of ¢ and ¢, hence we consider an approximation given as
q(s1,52).

(3.2.7)
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Definition 3.2.3 Take ¢,0,P € R, such that both 0 < ¢ « 1 and 0 < 0 « 1. We
constider a pinching load

q""h (51, 59) = PP (51 — apo)dP (s2),

where 6P (-) denotes the Dirac distribution.

The approzimate pinching load is defined as

qsn,s) = {10 wmessisapte * (3.2.8)
0, else
We can split q(s1,s2) = q(s1) - ¢*(s2), where
~ ﬁ,lf apo — €< 81 < aypo + ¢, * 17Zf _9<S2<97
q(s1) = q*(s2) =
0, else 0, else

and P can be chosen as 4—1;9.

Remark 3.2.2 In general one has ¢""" € H=?(w), while for the approzimation we
obtain q € L*(w). The results on q?™" are presented in [31].

In figure 3.2 we illustrate the mentioned approximated load to gPh.

<y
P
1

/2

Figure 3.2: Approximate pinching load on the shell.

52
e ——

The Fourier transformation and the Fourier series coefficients are straight forward to
calculate and summarized in the following Lemma.

Lemma 3.2.2 Given the load q as defined above we can express it as in (3.2.6), where
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Proof. We start with the Fourier transform of ¢ in the longitudinal direction. For this
step we may identify ¢ only with ¢*. Thus, we obtain

0
Q0
76 = [ at(sn)cos (£2)a(%2) = [[eos (£2)a(2)
0 a a J) a a (3.2.9)
2 0
For the Fourier series coefficients we take ¢ and consider the integrals of the form
2 aT
g = — f@(sl) sin <@>dsl. (3.2.10)
am a
0
This has to be calculated for all n € N. By the properties of ¢ we get
2 [ op
— f@(sl)sin <@>dsl = — J sin (ns )dsl
am a am a
0 apo—c

With the linear transformation z = s; — app and employing the well-known addition
theorem for cosine we obtain

apo+c c c
J sin (E)ds = fsin (E(z + agoo))dz = Jsin (% + ngo())dz
a a a
apo—c —c
ne
= [ (— + ngoo) — COs (— — ngo())]
a
n ncy .
= [cos <—> cos(npg) — sin ( ) sin(neo)
a a
. ncy .
— cos ( ) cos(npg) — sin (—) sm(mpo)]
a a
2a

. ncy .
= ——sin (—) sin(neyp).
n a

Plugging this back into expression (3.2.10) yields

4P .
Gn = ———sin (%C) sin (ngpo). (3.2.11)

O

Remark 3.2.3 It holds that 0 <« 1 and ¢ « 1. Hence, we can use the approximations

2Sm <§0> ~ 2—0,

N ¢ “ (3.2.12)
—E sin (E) (ncpo) —4—PC sin (ngoo)
nm a am '

Inserting now the approximate formulas (3.2.12) back into equation (3.2.7) yields the
relation
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Using now that P = 4Pfc and with k = (3(1 —72)(a/h)2)i we can express the deflection
U3 as

2
2Pa? & OO <§2 + H2n2>
Us(s1,82) = — - sin (2L sin(no) cos £51 de,
2 .-hom 1
T2C929 1] a (52 n H2n2) + Ak A a
(3.2.13)

where we are left with the calculation of the integral. By applying the corollary to
the residue theorem shown in Lemma 3.2.1 we are able to derive each integral with
respect to n € N. This was actually already shown in [33] for the case of an orthotropic
full cylindrical shell with a symmetrical pinching load, where the identical integral ex-
pressions are obtained. The isotropic case was shown in full detail in [62]. Since the
derivation in [33] is rather condensed we want to present some details in the following
Lemma.

Lemma 3.2.3 Given the expression (3.2.13) for Us, we obtain with Lemma 3.2.1 that

2Pk4 i sin(npg) “in <@>

Us(s1,52) = T EyhH3 Ryn?

n=1,2,34---

x {{(CC +11G) cos (Hi'&') +(¢6=nC) sin (Hi"gz')} exp (— Hi"gz')

+ [(gA_,?B) COS(HC\SQ\) N (nA+CB) ‘i (HC|32|)]6XP<_ HGso| }

a

where the parameters appearing in the formula are given as

hom

C
k= (3(1 — vizvan)(a/h)?)7, H = Gon
2222

J = 2k?, Ry = n?J\/1+ (J/4n2)2,

C=y/5(Rat 37%), n=y/3(Ra— 372,

e

w 1
A=%\/(—n2+77)2+(—%+c)2—(n2—n)]2,
1 J | .
Bzﬁ_\/(—n2+n)2+(—§+§)2+(n2—77)]2,
1 J | .
Czﬁ_\/(nQ—l—n)z—l—(E—kC)g—(n2+77)]2,
1 J | .
Gzﬁ\/(n2+77)2+(§+é)2+(n2+n)]2.
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Proof. We are mainly interested in the evaluation of

* 52 + H?n? ?
l (fQ +(H?n2>4 + 4>/<;4H4§4 “ (%>d£' (3.2.15)

.

"

=f(&)

Z
We first note that f(£) can be represented by f(§) = ﬁ, where Z, () are polynomials

Q(¢)

given as ) \
Z(€) = («52 + H2n2> CQe) = <g2 + H2n2> ARt EAE,

We can easily see that deg(Z) + 1 = 5 < 8 = deg(Q). Moreover, we conclude that Q(¢)
does not have real roots, since Q(¢) = H®n®, for all n € N. Hence, the requirements of
Lemma 3.2.1 are fulfilled and it is applicable. In the next step we explicitly calculate
the roots of @) by solving

4
(€2 + B%n2) + 4k HE" ~ 0.
Introducing X = %, we get the equation
N2 2\* 274
(W +n2) + 2 =0

or equivalently written as

((X2+n2>2+z}];\2> . <<X2+n2>2—ijx2) = 0.

"

7 17

By introducing = = 22 we obtain for I
(x+n?)? +iJe =2+ (202 +iJ)x +n* = 0.

Solving for x yields

It can be easily shown that for z € C, with z = ¢ + di, we have that

ﬁ:%x/m+c+i8%d)%\/m—c

is a root of z. With that result we can simplify (*) to
1 1
1 J* J? i J4 J?
— i 294 _ 2 L 1 7 204 4
ﬁ\/ 6 4+ﬁ\/V16+Jn+4
I JE i J? ,
=—=A/R2— = + —=A\/Ro+ — =n+iC.
NI g\ et = ¢
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Going back to the equation x = 22 we need that

~

3 = (2 ) + i~ £ Q)

Thus, we obtain

1

Rz = /=0 =) + (=5 + 0

\F\N )2 ——+<> .
i%ww-n)u(—guv N

= +A+ Bu.

Moreover, we have that X3,4 = XLQ, where the bar denotes the complex conjugation.
These are the 4 roots given by I. In the same way we get the other 4 roots from IT7
expressed as

X5’6 = §7,8 = +C FiG.

Therefore, we get the 8 roots &;, i =1,...,8, of Q(§) with &1 2 = 5374 = +H(A+ Bi) and
§5.6 = 5778 = +H(C F Gi). In the next step we want to apply Lemma 3.2.1 to evaluate
the integral. We note that the function f(§) is even and therefore satisfies that

f_oooo f(&)sin (%)dﬁ = 0.

Hence, we can calculate the integral (3.2.15) as

[ (s [ 0100 (S2)o - 5 R (52,

velL

where we have by [8, remark 6.4 (2)] that

i531> ) <192 n H2n2>2exp <z’19a81>
a 89(92 + H?n2)® + 16k4H03

Resy f(§) exp (

We observe that |L| = 4 and calculate Resy f(&) exp (@) for 9, = H(A+ Bi) = H,.
a

The other cases follow in the same way. Moreover, we focus on the calculation of the
expression

(19% + 1112712)2

3 . (3.2.16)
891 (19% + H2n2) + 16k4H419‘Z’
For the evaluation we need the identities
J
A+ Bi)? =-n?+n+ (—+ >z
( ) gt (3.2.17)

~ A~ 9

791195 =—-n,
which are easily verified. Moreover, we conclude that 3 satisfies the equation

(9% 4+ n?)? +iJ9? = 0. (3.2.18)
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Then we simplify expression (3.2.16) to

1 (5% + n2>2

SH3 ~ J? A
m@ﬁ+n%?+3ﬁ§

With the property (3.2.18) this reduces to
1 —i JU?
SH3 ~ ~ J2\
19“;’(—%7(19% +n2) + 7)

Together with (3.2.17); and then using (3.2.17), we obtain

1 1 1 s —¢i)
8H® §y(n +¢i)  8H? 959, (n* + ¢?)
—
=R2
1 . .
Altogether, this yields
0
s1 .
[ ey cos (2 )ae -
i ) ) i(A+ Bi)s;
TSP Ryn? (C — Gi)(n — (i) exp (T)

+(~C — Gi)(n — i¢) exp (
—(A+BQM—woam<ﬁg%§@ﬂ>

—(—A+ Bi)(n — i¢) exp (M)l

i(—A+ Bi)sl>

a

a

which can then, by a small computation, be further simplified to our equation (3.2.14).
O]

It is crucial to note, that the applicability of this model highly depends on the ratio
a/n and the magnitude of the corresponding Young’s moduli. Such an investigation is
provided in [62].

3.2.1 Examples

In the following part we want to investigate the function, which we have derived in
the previous calculation by visualizing different parameter settings. Since we can-
not calculate the complete Fourier series we restrict ourselves to the first 30 series
elements and check their impact on the complete solution, by plotting the respec-
tive percentage for the maximal deflection and checking the convergence of the partial

sums
n
Sn = .

i=1
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From that we can deduce up to which element w, one should derive the series before
the values get negligible. These observations are crucial for chapter 5, because in the
symbolic calculation we do not want to add unnecessary elements. Moreover, we fix
throughout our examples the applied force, such that P = —0.8 N as well as the thickness

h = 0.1 cm and radius @ = 2 cm. The shell’s length is equal to 20 cm. In the following
. . . T T T T

we start with an isotropic shell and apply the load at ¢g € {5, 6 §} After that we

consider an orthotropic one with the same configurations. In the end we conclude the

section by comparing our model with the numerical solution to the full weak formulation

(3.1.2).

Isotropic Shell

In the first example we deal with an isotropic homogeneous shell, where we assume that
the Young’s modulus is given by Fy = Fo = 200 MPa and the Poisson’s ratio is v = 0.27.

In figure 3.3 we have plotted the deflected shell given the described load at ¢ = g The
underlying colormap represents the absolute values of U3. We can see that the maximal
deflection is indeed attained at ~ and the effects of the prescribed boundary conditions

are clearly visible. While at the lateral boundary the deflection is U3 = 0, we have some
small displacements at the free boundaries so = +10. Moreover, we compare in figure
3.4 the original configuration with the deflected shell at so = 0. There we can see that
even for small loads the shell deforms in a way, such that the deflected shell is always
smaller than the original one.

In the next step we want to investigate the elements w, of the Fourier series. We

Deflected isotropic shell

0.06

0.041 |

0.03 8

Figure 3.3: Isotropic shell with load at ¢g = g

have summarized the values for the first 12 elements in table 3.1 calculated at (a7,0).
Note that we obviously have w, = 0 for n even, since our formula depends on the
coefficient sin(nyg) = sin(nf). We can see that the values get smaller rather quickly.
For example is w1 almost 200 times smaller than the first one. In figure 3.5 we have
plotted the impact of each element by calculating what percentage they contribute to
the maximal deflection at pg = T We see that the first four non-zero elements have the

biggest effects. This observation is verified by looking at figure 3.6. The partial sums
are already for n = 11 at —0.06, where the value for S3g is —0.061. This means, that
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Comparison of deformed and undeformed shell

—— Deflected Shell
—— Original Shell

Figure 3.4: Deflected shell at sy = 0.

for the isotropic case with the loading at - we can terminate the Fourier series earlier
at around n = 11.

Impact of each element in Fourier series.

1
0.8 - 2
<
‘3
= 0.6 2
RS
2 04} -
E
0.2 |- -
0 AWA | - | |
0 5 10 15 20 25 30
n
Figure 3.5: Respective impact of each element
n 1 3 5 7 9 11

Wy, | -0.050455 | -0.0062096 | -0.0019784 | -0.0007928 | -0.0003826 | -0.0002114

Table 3.1: Fourier series elements for isotropic shell.

We keep the current shell configuration, but change the location of the applied load
to o = % We should then be able to observe the boundary effects more clearly.

For this setup we plot again the full deflected shell in figure 3.7 and analyze the role
of each Fourier series element. The first important difference we want to mention,
caused by changing the applied load’s location, is that the maximal deflection gets
smaller compared to the previous case. In the current setup the maximal deflection is
approximately —0.045. Moreover, we have that the areas of larger deflections occur on
the line from (a7, 0) to (a%,£10). We see later on that moving the load even closer to
the boundary reduces the maximal deflection further. Next up we want to investigate
the Fourier series elements. In figure 3.8 we show both the convergence of the partial
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10-2 Convergence of Fourier series.
—5 :

Il Il Il Il
0 ) 10 15 20 25 30
n

Figure 3.6: Convergence of the partial sums S,,.

Deflected isotropic shell
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0.005

Figure 3.7: Isotropic shell with load at ¢g = —.

W

T

sums and the effective impact of each element. We can see that due to the factor sin(n%)
we get that w,, = 0, if n = 0 (mod 4). Hence, we have less non-zero elements than in the
previous case. Anyhow, we note that the first four non-zero elements still have the biggest
impact on the Fourier series. For n > 10 we are already in the range of the maximal
deflection. Therefore, we can conclude that for this example it is reasonable to break
the series before n = 30, too. In figure 3.9 we give examples for a better understanding
of the effects when we change the location of the load. In the figure we show the loads
at ¢o € {§, 5} As we have mentioned before, the maximal deflection gets smaller,
if we move to the boundary. Moreover, we can also see that the deflection at the free
boundaries is reduced. As far as we consider figure 3.10 for the convergence of the partial
sums we do not get any additional information. Even though, we have in both cases more
non-zero elements than previously, we observe that we do not have any significant effects
for n > 10.  We close here the discussion on isotropic shells and move forward to an
orthotropic material. For such kind of structures we have initially derived the function in
Lemma 3.2.3. For now we can constitute that regarding an isotropic shell the calculation
up to S3p is too extensive. Moreover, we saw that a load near the boundary causes a
smaller deflection than applied in the shell’s middle. Those observations are essential
for an efficient optimization as we see in chapter 5.
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Convergence of Fourier series Impact of each element in Fourier series
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Figure 3.8: Convergence of Fourier series for load at T

Deflected isotropie shell

Deflected isotropie shell

Figure 3.9: Isotropic shell with load at % and g

Convergence of Fourier series Convergence of Fourier series
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Figure 3.10: Convergence of partial sums with load at T and g

Orthotropic Shell

In the following section we keep the shell’s geometry, i.e., having a = 2 cm and [ = 20
cm, as well as the applied loads, starting with P = —0.8 N at (a7,0), such that we are

able to compare the effects of changing the effective properties. Therefore, we consider
two different materials given by
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1. Ey} = 250 MPa, Fs = 200 MPa, 191 = 0.27, v12 = 0.3375,
2. E1 = 200 MPa, EQ = 250 MPa, V21 = 0.27, V12 = 0.216.
It is easy to check that we fulfill in both cases

By _

)
By via

which is the condition for orthotropic materials. We start with the first configuration.
With these values we have increased the stiffness in the circumferential direction. We
have plotted the result in figure 3.11. An immediate difference to the isotropic shell
is the smaller deflection for U3(a%,0) = —0.0305 and the general smaller deflections
near the free boundaries. The solution’s behavior approaching the boundary is still the
same. We may also have a look at the series elements in particular. In table 3.2 we have

Deflected orthotropic shell

0.03

0.025

0.02F

0.0155

0018

0.005

Figure 3.11: Orthotropic shell with load at ¢o = g

summarized the first 6 non-zero elements as well as the diagrams in figure 3.12 showing
the convergence of the partial sums and the impact of each element. From the table
we can clearly see that w;; is again about 200 times smaller than the first element. In
accordance with the left picture in figure 3.12 we can conclude that the elements for
n > 10 are getting rather marginal. Looking at the convergence we are already with
Sg = —0.0302 close to the limit. After that we just obtain small improvements. We can
deduce that breaking the series earlier would be sufficient. The conclusion we can draw
from those results are the same as in the isotropic case.

n 1 3 ) 7 9 11
Wy, | -0.0254578 | -0.0031327 | -0.0009952 | -0.0003983 | -0.0001921 | -0.0001061

Table 3.2: Fourier series elements for orthotropic shell.

In the next step we focus on the second configuration, where the Young’s modulus Fo
is given bigger than Fi. In figure 3.13 we can have a look on the solution. Surprisingly,
we observe that the maximal deflection increases in this case. More precisely, we obtain
that Uz(a%,0) = —0.0955. Actually, one would assume that the deflection decreases if
any of the Young’s moduli increase. To explain that result we should note here, that
we have neglected some terms from the original system of PDEs in Lemma 3.2.3 to
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Impact of each element in Fourier series Convergence of Fourier series
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Figure 3.12: Convergence of Fourier elements for orthotropic shell.

Deflected orthotropic shell

Figure 3.13: Isotropic shell with load at ¢o = g

get our analytical solution. Those parts are probably missing in this case. Evaluating
the function at (a%,0) yields that the deflection is of the same order as F3/k§, where
we assume that the shell’s geometry stays unchanged. This means that in general it is
favorable to have a structure, which is stiffer in the circumferential direction than in the
longitudinal one. Next up, we want to investigate the convergence of the Fourier series
and check if we run in any trouble there. In table 3.3 we have summarized again the
first six non-zero elements in the series. These values confirm the conclusions we have
drawn from the previous simulations. We can also take a look at the convergence results
in figure 3.14. Both plots give the same qualitative results as before. Only the values
w, for n < 10 have a high impact on the total solution.

n 1 3 5 7 9 11
Wy, | -0.0797477 | -0.0098157 | -0.0031343 | -0.0012575 | -0.0006071 | -0.0003354

Table 3.3: Fourier series elements for orthotropic shell.

To close this section we shortly have a look on the solution when the load is moved to
the boundary. We restrict ourselves on the cases where the load is applied at 7 and
g The results are presented in figure 3.15. As in the isotropic case we can see that a
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Impact of each element in Fourier series Convergence of Fourier series
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Figure 3.14: Convergence of Fourier elements for orthotropic shell.
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Figure 3.15: Orthotropic Shells with load applied at
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load near the boundary has a lower effect on the deflection than applied in the middle
of the shell. Moreover, we can see that a shell, which is stiffer in the circumferential
is preferable to a shell with higher values for F>. We can establish for chapter 5 that
it is sufficient to consider only the first four series elements and minimize the function
S4. On the other hand, we have seen that our reduced model does not capture all
important effects. Anyhow, it is necessary to take this model for the sake of having
symbolic expressions, which we introduce in the next chapter 4. For now we continue
with investigating the full weak formulation in equation (3.1.2). For that reason we
solve the problem numerically via a finite element ansatz and compare it to our analytic

solution for small loads. After that we verify the result from 2.9 by considering different
BCs in ANSYS.
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3.3 Numerical models for pinching a cylinder

3.3.1 Solving Koiter equation with FEniCS

To derive our analytical solution we had to simplify the strong formulation of the Koiter
equation by neglecting some terms due to asymptotic arguments. The following part is
dedicated to achieve a numerical solution for the weak formulation (3.1.2). There are
various different techniques for this goal, but we focus on a finite element ansatz with
FEniCS, see [2]. In order to obtain a solution with this program we need to consider
the following steps:

e Construct triangulation of the domain w.
e Define a suitable function space for the test functions, Galerkin method.
e Implement the weak formulation with boundary conditions.

For the triangulation we use the mesh generator Gmsh [24]. Since w is a rectangular
domain the mesh is easy to implement and we obtain 102940 cells with 51869 vertices. As
our test function space we use polynomials of degree 2, since the operators A,g defined
in section 2.7 are of the same order. For further information we refer to [32]. For our
left-hand side we identify the membrane effects given by

a (U, V) = J AT ooy (U e (V) S
and the bending effects with
CLQ(Z/{, V) = J CZ%,'Z/B/AO(B(U)Aalﬂ/(V)dS/.

We want to mention here, that the presented approach is very basic and we do not
address the problem of shear locking in shells. For a more in-depth numerical analysis
of shells we refer to [41] and [7]. Our right-hand side will be chosen such that it fits to the
pinching load ¢P™" of -1 N. For a better implementation we consider the approximated
load g on a disk with radius 0.001 cm. The right-hand side is described together with
f = q-n by the functional

(V) = Lf -Vds'.

We consider a shell with radius a = 5 cm and plot it along the middle line for sy = 0.
With that approach we immediately see the difference between our analytic solution
and the full model. The corresponding results together with the initial undeflected
shell are presented in figure 3.16. We first note that the deflections at the point where
the pinching load is applied are roughly the same. We obtain here a relative error
of

|u?§l,l7l7rzréx - ??,r;gaﬂ — 0.0271
(2
The values for the maximal deflections are Uy, = —0.2038 and U575, = —0.1984.

We can investigate some different effects, if we move closer to the boundaries. Due
to the neglected third order terms, the analytic solution is always beneath the original
shell and does not preserve the arc length. However, the numerical solution bulges at
around s7 = %r and s1 = 35‘T7’. Hence, the full model preserves the shell’s arc length. For
the optimization it is important to note, that the maximal deflections are of the some
order.
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Comparison of deformed and undeformed shell

== Numerical solution
= QOriginal shell
- Analytic solution

Figure 3.16: Comparison of analytic and numerical solution.

3.3.2 Numerical study of different boundary conditions

In this chapter’s last section we want to investigate the numerical behavior, if we change
the boundary conditions according to section 2.9. Therefore, we consider an orthotropic
shell with radius @ = 3 mm, length [ = 40 mm and thickness A = 0.06 mm. We assume
that the shell has Young’s moduli £; = 17.518 GPa, Fy = 17.536 GPa and Poisson’s
ratio 19 = 0.00636. Since we obtain the ratio Fi/E, = 0.999, it is reasonable to take
91 = 2. All the simulations have been computed with ANSYS, where we consider
shell finite elements with eight nodes and six degrees of freedom each. The total number
of elements is 11040 with 33579 nodes. Next, we define the boundary conditions. We
distinguish them into four different groups. The first group consists of the weakest
kind of support as shown in figure 3.17. In this case we clamp the shell’s four corner
points and restrict gradually spatial displacements along the longitudinal boundary.
Note, that the first group corresponds to the initial boundary conditions presented in

Figure 3.17: Shell with boundary conditions BCO from group one.

our analysis. The other three groups all have a fixed circumferential boundary. In the
second group we summarize all experiments, where we consider the boundary condition
described in section 2.9. See for example figure 3.18. In this particular case we limit the
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displacements at the circumferential boundary, i.e., U(+, +}/2) = 0. This condition varies
with the examples. We consider shells, where we only fix the displacements /1 and U3 at
the curved boundary to check the impact of additionally fixing Us. Other cases within
this group also restrict some rotational degrees of freedom along the circumferential
boundary. The last two groups only consist of one case each. In group three we examine

Figure 3.18: Shell with boundary conditions BC3 from group two.

the boundary conditions presented in figure 3.19. Here, we consider a fully clamped shell
along its curved boundary, i.e., we also restrict the rotational degrees of freedom. In

Figure 3.19: Shell with boundary conditions BC7 from group three.

the last case we have a fully clamped shell, where we limit all degrees of freedom along
the complete boundary dw. This setup is shown in figure 3.20. On all of these shells

Figure 3.20: Shell with boundary conditions BC8 from group four.

we now apply a successively increasing pinching load of at most P = 10 N. We consider
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the normalized deflections Us/h, which are summarized in figure 3.21. We can see that

10 , : - us
; 2 ‘
'! / i wJ - ()
8 I o ™ < Grl 1
‘J' ¥ q . 2¢
M e ol ) 2d
z EI 2
3 A / : W )
LO ’7 f se e 2a
4 ‘.' Crll< #oe 3
:‘ ' 4
/ Nerm| === 5
2 \ — 6
\\ _— 7
GrIV™~ o 8
0
0 10 20 30 40 50

Normalized deflection U3/h

Figure 3.21: Normalized deflections w.r.t. pinching load.

the shells with boundary conditions from group one have the biggest deflections w.r.t.
the pinching load. On the contrary, all other shells, where the circumferential boundary
conditions are somehow fixated, have smaller displacements. This is in correspondence to
our theoretical result. We proved in section 2.9 that in those cases the weak formulation
reduces to a membrane model and the bending effects are neglected. If we closer examine
the examples from group two, we conclude that if the displacements i/, and U3 are fixed
along the curved boundaries then it does not change the result if we additionally set U to
zero. Moreover, we observe that the groups two to four are quite similar. This means that
clamping the whole boundary dw is equivalent to a fixation of the curved boundary I'g =
&([0,am] x {0} U [0, ar] x {I}) as mentioned in remark 2.9.1.
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4 Calculating Effective Properties with
Symbolic Parameters

In this chapter we want to explain how the homogenization of shells can be practically
implemented. Our focus lies on methods that utilize the network structure of the peri-
odicity cells. Therefore, we present a reduction of the variational problems (2.8.1) to 1D
beam FE. In general the presented algorithm is performed numerically, but our goal in
this thesis is to obtain qualitative results, which give a direct insight on how a change
of the design variables affects the homogenized model. Hence, we want to modify the
algorithm such it can be executed symbolically. We start with a summary of the results
presented in [49], where the homogenization and optimization of textile-like structures
with respect to their in-plane properties were analyzed, and [50]. In our case we adapt
it to the calculation of the effective bending properties as shown in [31]. We will see that
the homogenization process can be split into three parts

o Assembling of the global stiffness matrix (GSM) w.r.t. beam finite elements.
o Solving the linear equation.
e Calculation of the effective properties from the obtained displacement field.

For our analysis we implement everything with MATLAB. We will see that solving
the symbolic linear equation is in general a non trivial task and should be handled
carefully. There are different possibilities to deal with this problem and we consider
some preprocessing techniques to reduce the complexity as well as outsourcing the linear
equation to Singular, see [19].

4.1 Algorithm for calculation of effective properties

In regard of the theoretical derivation in chapter 2 we now want to establish in this
section an algorithm for the calculation of the effective properties presented in equation
(2.8.2). We mainly focus on the implementation of the effective bending properties,
since the in-plane coefficients a?j",;? are discussed in great detail in [49, 58] and applied for
optimization. In general, we follow the Homogenization approach that was shown in [50],
where the cell-problems are reduced to a 1D beam model on the lattice structure. The
presented procedure yields the effective plate coefficients, which we have seen in remark

2.4.2 are equivalent to our effective shell coefficients.

Remark 4.1.1 We want to mention here that in [50] the derivation of the cell problems
is done by an asymptotic expansion method on the plate domain, where we consider the
displacement as

s oul(s
W (5) = u(s, 2) = w0(s) + expg(y) 2

5 25, ly=s + O(?), s €, (4.1.1)

€

where Xpq € HY.,.(Y)3, with p,q € {1,2,3} and Y is the periodicity cell.

per
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The homogenized bending coefficients ¢/ ﬁ 5 according to [50, p. 154-157], are equiva-
lently calculated as

i = 7 |, o[ B (0G0 M M ay @12)
and the X , a, B € {1,2} are the Y-periodic solutions to the cell problems
L* ikl <5z'j,y(x?‘5 ) — ysM ) Erty(Y)dy = 0. (4.1.3)

Remark 4.1.2 It is shown in [50], that the limiting equation of bending an equivalent
homogeneous orthotropic plate can be determined as,

h a4wg h 64 0 h 84
leﬁﬁ + legém + 252775 s 4 = f3(51, 82), (81, 52> € w. (414)
51

The aim is now to derive the solutions to formula (4.1.3). We achieve this by using beam
finite elements, related to [39, chapter 6], having six degrees of freedom, three spatial
and three rotational, at each end. We also have to implement the periodic boundary
conditions, respectively.

4.1.1 Reduction to 1D beam problems and stress interpolation

We want to exploit the fact, that the solid pieces of the plate structure are beam-like.
Therefore, we introduce a reduction of our periodic cell-problem to an Euler-Bernoulli
beam model and compute the effective properties. The derivation of those has been
presented earlier and we follow the techniques in [50], which have been applied in [49].
The following lines are a quick summary from mentioned works, where we especially
focus on the derivation of the bending coefficients. We assume that the periodicity cell
can be represented by a graph network I'y of nodes and edges. E denotes the set of
all edges in I'y. We consider such an one-dimensional geometry of some cell I'y and
take a node n of I'y. For one of its adjacent edges e € E(n) define y(e,n) € R? to
be the directional vector of the edge pointing to n. We introduce with I¢ = |y(e,n)|2
the edge’s length. For each edge e let z; be its longitudinal component. Furthermore,
we denote with (g1, g2, g3) the global basis for each edge e, and (If,[5,15) defines the
local basis. The matrix C¢ € R3*3 is the transformation matrix, Such that (1,15,15) =
(91,92,93)C€. According to the derived homogenization technique the effective bending
coefficients are obtained from the solutions to the cell problems with periodic boundary
conditions on I'y. Given the two indices «, € {1,2} we can formulate our problems as
follows: find the periodic displacement fields u,5 € I'y — R!*6 such that the auxiliary

vector field mag = uag + Mi‘ﬁ , which was shifted by the unit perturbations of the
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periodicity cell, corresponding to the bending experiments, solves the following set of
equations.

At each edge e define mg 5 € [0;1°] — RI*4,

[ms5], € HY((0:190), [més], € H2(0519)), [m,s], € H2(0: 1T, [ms), < H([0: 1),
equilibrium conditions on edges hold:

ECA” Lz [mg], =0,

EeIS%[mgB]z —0,

EEI?f%[mgﬁ]s =0,

G- ], =,

force balance conditions in nodes hold:

Sepn BC (4 ([mea), )| 15 (Ime),)” 15 (Imsil,)” ) o,

Z1 Z1
moment balance conditions in nodes hold:

2een(n) C° (GEJE ([mgﬁ]4>/ —E°I3 ([mgﬂ]s)

Z1 Z1

"

and the periodic boundary conditions hold:
[ag] 1y = O (Imaslys = M) and [uaglyg = C° | | =5 [mesly | - FOME)

are periodic.
+ Dirichlet condition: at one node all six degrees of freedom are fixed
or at two nodes six in total.

(4.1.5)

The constants appearing in this equation are properties of the underlying beams. We
express the area of each cross section with A€, the area moments w.r.t. the second and
third axis with I5, I§ and the polar moment J¢ of the element. For a circular beam
with radius 7 those are determined as A® = 772, I§ = I§ = 7r*/4 and J¢ = 7r*/2. The
last two missing constants are the Young’s modulus £ and the shear moduli G¢ of the
element. By the square bracket notation [-];.; we denote the i-th to j-th component of
the vector. We should also specify how the perturbations Mij for the cell-experiments
look like. They are described by the vectors

—Y1Y3 —Y2Y3 0 0
M= 0 |, ME={ o |, ME=|-y| M2=|-py
0 0 0 0

Remark 4.1.3 We note here, that we introduce four corrector problems instead of the
mentioned three. In the presented case M$™ corresponds to M**, while we obtain the
third corrector for M'? by ML? + M2L. This is important for the calculation of the
effective properties.
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This yields the three conditions for the spatial compenents. With the operator F' we
can calculate the remaining three rotational conditions, depending on the given Mf,fﬁ .
It is based on the formula found in [27] defined as

th
F (Mi’g )= | 62|, where
03
0 - 4 7( le _|_ le) % Maﬁ( )7 le d d
4 - i}
02 = —5 | | (235 + 2205) x MP(2) |I§ dz5 d2s,
r w® - |
2 - i}
Os =3 1§ + 2015) x M3P(2) 1§ dzs d
37T e 7(23 5 + 2205) x Mg (Z), 3 a23 dzg,

with w® being the cross section of the fictional beam connecting to periodical dependent
nodes. With z = (z1, 22, 23) we describe the variables in the local beam coordinate
system, s.t.

Z = (y - yln>C€7

where y;,, denotes the left node of the edge in the global coordinate system. We can then
finally employ beam finite elements, as for example presented in [39], and express the
system (4.1.5) as a linear equation of the form Av,s = b,3. The right-hand side depends
on the periodic boundary conditions and the applied perturbations Mi‘ﬂ . The assembly
of the GSM A is presented in [58]. Moreover, a complete discussion about the matrix’s
kernel structure is provided. In the case of symbolic design parameters x € R™ we obtain
then a linear equation A[x|vas = bag|z], which we investigate in section 4.2. Given the
solution for these cell experiments we are able to calculate the effective properties of the
cell on a beam level. The corresponding results on an exemplary cell are presented in
figure 4.1.

(b) M

(c) M (d) M3

Figure 4.1: Solution to the cell problems
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If we follow [50, chapter 5] further, we see that given the stress tensor o, € R3%3,
depending on the displacement field obtained by applying Mf,f’B , we can calculate the
bending coefficients as

1
CZZZZ’,B’ = ( - m fy Y30aa (y)dy> )
IB/B/
(4.1.7)

chee = ( - 137 | m(oast) + %(y))dy) . forazb.
Y o'
Hence, we need to find a way to calculate the stresses from our solution vectors. We
introduce a stress interpolation regarding our beam model. Given a single beam from
our network, it has in total 12 degrees of freedom. In [39], an approach to achieve from
this 12D field a 4D field and finally a 3D field is shown. If we take a beam with nodes
u and v and components

u = (u17u27u370u179u259u3)T7 (418)

v = (v17v27v379v176v2791}3)T7 (419)

then the 4D field is obtained via a polynomial interpolation, as explained in [39, p. 92],
where we multiply our component vector with the interpolation matrix R € R**12 such
that

P 0 0 O 0 0O P~ 0 0 O 0 0
0O Ny 0 O 0 N O N3 0 O 0 Ny
0 0 N 0O —No 0 O 0 N3 0 —Ng O
o o0 0 P O 0O 0 0 0 P O 0

For P;,j = 1,2 see [39, p. 69] and the N;,i = 1,2,3,4 are described in [39, p. 92]. We
then obtain our 4D field as
uP = R (u) .
v

Given this 4D field, we can follow [60] to reduce it even to a 3D field, where the compo-
nents are given by

R= (4.1.10)

4D ouzP ouiP outP
UL = Uy — 22 — 23 +w ,
621 52’1 azl
4D
4D 4D Jduy
U = Uy — 23Uy — V2 , (4.1.11)
62'1
auélD
uz = u%D + ZQUiD — vzt
62’1

The parameter w is a warping constant. A higher order approximation may be obtained
if desired. This method was also used to obtain the visualizations of the cell-problems.
Furthermore, it is shown in [60] that using these interpolations and the initial 4D field
we can calculate the stresses in connection to Hooke’s law. We introduce the local stress
field for a single beam as

3U4D 02u4D 62u4D au4D au4D
E 1 2 3 o 4 4
( 021 2 62% =3 82% ) HZ3 021 HZ2 021
I au4D
0%(z) = — g 0 0 . (4112
6z1
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with p being the second Lamé constant. Let us denote a beam in its local coordinate
systems by z € [—1°/2,1°/2] x w.. If we pass our beam and local stress field into global
coordinates and plug it in formula (4.1.7), this yields

hom _
Caaﬁ/ﬁl =

1
( — m Z f (Yin3.e + Cizz1 + Ciz29 + C5323) (C’eaé?ac(z))(Ce)T)dz)
eeE[—%,%]Xwe 6’6/

and

1
CZ%"ZIB/ = < — m Z J (yln,:’)’e + Cngl + 026322 + C§323)X
L
! l T
(Ce(aofﬁc(z) + 0450 (2))(C°) )dz> :
a/ﬁ/

Here, y1,3,¢ is the third component of the beam’s left node. It is then easy to calculate
the integrals w.r.t. to the given cross sections. In the case of MATLAB one can use the
int function to perform the integration symbolically. We want to mention here that for
orthotropic materials holds the equality ci¢7 = chom.
Remark 4.1.4 We note that we can calculate the orthotropic material properties E,
Esy, v91 and via according to [50] as

hom hom

_ Ci122 _ G211

Vg = hom.? 1 = hom.’

Ci111 C2222

h h
By — 126ﬁ”ﬁ(1 — V211/12) By — 12023%(1 — V211/12)
1= 9 2 — y

h3 h3

with h the thickness of the shell.

With this procedure we have a fast way to calculate the effective properties for our
limit equation. We observe that the whole problem can be split into two crucial
steps

e Obtain the displacement field via beam FE,
o Integrate over the interpolated stress fields.

In section 4.2 we perform those tasks completely symbolically and obtain analytic solu-
tions for our effective properties.

4.2 Solving symbolic linear equations with Singular

In the previous section we have discussed the homogenization procedure for lattice struc-
tures presented in [50]. There we have seen that we can reduce the problem to 1D beam
finite elements. In this process we end up with solving a linear equation system denoted
by Av = b with A € RV being symmetric and positive definite, and b € RY. Here, N
denotes the total number of free components in system (4.1.5). As we mentioned in the
introduction our goal is to obtain expressions for the effective properties with respect
to the underlying design parameters. Hence, the matrix and right-hand side not only
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consist of numerical values but also of the symbolic design variable x € G < R, where
G is compact. Then the linear equation is given as A[x]v = b[x]. This increases the
complexity of the problem. In general MATLARB’s backslash operator works for symbolic
matrices, still we will see that it struggles with more complicated designs. Therefore,
we need to process the linear equation in Singular, a computer algebra system, which
is more convenient for such problems. In the following we explain how the programs
are coupled and what preprocessing steps have to be made. These simplifications are
obligatory to obtain solutions in Singular and already help to reduce the computational
time in MATLAB.

Given C’ij,CN'i € R and functions fij(x),gij(x),fi(x),ﬁi(x) e C°%(R™,R), with ¢g¥(x),
J'(x) # 0, Vx € G, we have that

~.
(2

ij R
Aij[x] =Cz'j£ij—é)(x;, bi[x] =Ci§i<(z;, 1<i,j5<N.

Since the matrix is sparse we get C;; = 0 for a lot of entries. A closer look on the structure
of fi7 and g yields thgt 1?}'161‘6 are polynomial expressions h/, k¥, hy, kg € R[x] as well
as rational numbers pzf, pg € Q\Z such that
L i o i
=B + kI, g = R ) + (Y
The right-hand side b[x] is similarly constructed. Our aim is now to replace those ex-

pressions, which have a rational exponent, and find the lowest common denominator in
the linear equation.

4.2.1 Preprocessing

We start with identifying the polynomials k’}j(x) and k;j (x). We have to iterate through
all entries A;;, where ¢ > j, and b;, to check them if they contain a rational exponent.
Therefore, we have to convert the symbolic expressions to a char. It is crucial to note
that all symbolic terms k with a rational exponent will be displayed as 'k~ (p/q)’. Then
it is easy to check if the expression = (" appears in the char array. We save the basis and
the exponent in two different lists. Repeated occurrences of the same expressions are
neglected. This does not include the case of same basis but different exponent. Once
we have finished with our iteration we obtain the two lists basis and exponent. In the
next step we identify the unique elements of basis together with their corresponding
exponents. Thus, we are left with a new list basisynique and non-empty sets of exponents
exponentimique for each element basisynique[l]. We introduce n new symbolic variables
wi,l = 1,...,n, where n is the length of basisynique. In the next step we iterate
through each list exponentimz-que and determine the lowest common denominator to the

respective entries, which we denote by ¢;. Hence we can substitute all entries in A[x]
which are given in basisynigue[l] = x; with w; = Xll/ql.

Remark 4.2.1 As an example we assume that we find in our matriz A three polynomial
expressions given by x'/?, 2”2 y”*. After the first step we obtain the lists basis = {z, x, y}
and exponent = {1/2,3/2,5/4}. We see that the expression x appears twice in basis, but
with different rational exponents. Hence, we get after eliminating the multiple entries the
lists basiSunique = {2,y} and exponentf ,; . = {12,372}, exponenty . . = {%1}. We
now introduce the symbolic variables w, w, together with the numbers q, = 2,q, = 4.
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The substitution is then practically done by using subs(A,x"% w,) and subs(A,yl/qy,wy)
in MATLAB.

With that technique, also applied to our right-hand side, we can replace A[x] with

fij(xawla o 7W'n)

P where U og e R[x,wy,.... W
ZJg”(X,Wl,...,Wn)’ f g [ s W1, ) n]

Alx, Wi, ..., Wy] =

are polynomials without any rational exponents. Once we have substituted our initial
linear equation

Alx]v = b[x], with Alx, w1, ..., Wy]v =b[x,w1,...,Wy],

we have to get rid of all appearing denominators.
We go through the entries of A and b to find the least common multiplier of all g
together with §° denoted by

glcm(x7W17 e 7Wn)-
Once we have found this candidate we replace A[x,wi,...,wy]v = b[x,Wi,..., Wy]
with
ﬁ[x,wl,...,wn]v =5[X,W1,...,Wn], where
E[X, Wi, .., Wy = A[x, W1,...,Wp] " Giem, b[x,Wi,...,Wp| =0b[x,Wi,..., W] Gicm-

We have finally arrived with a linear equation, where all entries are given by
gij, gz € R[X, Wi, ... ,Wn].

Next, we have to discuss how to forward the linear equation, which was assembled and
preprocessed in MATLAB, to Singular.

4.2.2 Calling Singular

The most essential part is the discussion on how to save the matrix A and vector Z, such
that it can be handled in Singular. Moreover, we have to clarify the structure of the
underlying ring. Since the matrix A is sparse we declare it in Singular as a module M
and save only the non-zero entries. Therefore, we implement each row of the matrix in
the format N

M[i] = A;* gen(j),

where gen(j) is the j-th generator. Anyhow, the right-hand side b will be declared as a
matrix of size N x 1. This means we save the entries as

rhs[i,1] = EZ

Since the coefficients still depend on the design parameters x, wq, ..., w, and we want
to find the solution v € R[X]N we have to declare the ring r appropriately. It is defined
as

ring r = (0,x,Wy,...,Wy,pi), (v(1..N)),(c,dp);.

The first round bracket indicates the coefficients of the ring. In our example we consider
Q extended by our design parameters and a placeholder pi for 7. We want to mention
here that 7 will appear, if we calculate effective properties of structures consisting of
one or more elliptical beam elements. The second bracket defines the variables of our
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solution vector. And the last part specifies the ordering. For further details we may
refer to [26].
After this setup we invoke the liftstd function in Singular. This yields the stan-
dard basis X and transformation matrix T to our module M. For a deeper understand-
ing we refer to [38] or [51]. From that point on we can replace our linear equation
with

Mv = rhs < X' v = T rhs.
The final solution is then obtained by defining the ideal

I=Xx"v—T'rhs

and solve for its linear part. We are now left with a solution vector v which will then
be transfered back to MATLAB, where we reconstruct the stresses and calculate the
effective properties as we have shown in section 4.1.1. We also want to refer to [40],
where the author presents other practical examples for using Singular.

At first this whole process looks a bit tedious, but it is inevitable to obtain analytic
expressions for arbitrary beam like structures. In the next section we establish some
examples with increasing difficulties, where we want to compare the resulting solutions
as well as the running time. The linear equations are solved both with Singular and
MATLAB’s backslash operator. All presented examples are calculated on a Fujitsu
Esprimo P920 desktop PC with 8 Intel Core i7-4790 CPU @ 3.60GHz proces-
SOTS.

4.3 Examples

With the preprocessing technique, that we have developed in the previous section we
want to calculate the effective properties of some real life examples. For each case we
consider a different parametrization and obtain the respective solutions in terms of the
symbolic variables. Moreover, we have to restrict the choice of each symbolic variable x
to some given compact interval G < R™. This is necessary to guarantee that our linear
equation is solvable for each choice of x. Since our matrix is derived from beam FE, we
do not want to consider values for x such that we get singular networks with arbitrary
small beams. These precautionary measures yield a GSM, which is symmetric positive
definite at any time. We start with a rather simple example, where an analytical solution
can be calculated by hand. Next up we focus on the case of hexagonal structures. Given
that particular network we consider both a change of geometry and for a fixed hexagon
we want to investigate how the choice of different beam structures changes the effective
properties. The change of geometry not only means varying the width and length but
also shifting some beams vertically to induce more stiffness. After that we also prepare
an auxetic structure.

Remark 4.3.1 Regarding the indexes we note that we consider everything in the local
coordinate system of the periodicity cell given by e;. With respect to the global coordinate
system, we have that ey corresponds to the sy direction,i.e., (0,1,0)T and eq is aligned
with so, (1,0,0)T.

4.3.1 Open grid structure

In our first example we consider an open grid structure as presented in [61, section 7.2.3].
There we look at the pattern shown in figure 4.2, where the beams have a rectangular
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cross section of width by, o € {1,2} and height h. The distance between two parallel
beams is denoted by .

€1

Figure 4.2: Open Grid Structure

This example is good for testing, since the flexural rigidities are analytically given
with

hom - Eb1h3 hom o Eb2h3

C1111 = Ttl’ Co222 = Ttg’

where E denotes the Young’s modulus of the beam material. We see that increasing the
widths b, of the beams makes the whole structure stiffer, while widening the distance
between two parallel beams decreases the flexural rigidities. In our example we now
fix the cross sections and take h = by = by = 0.2 cm. The area moments of inertia
are then given by I/, = % cm?. Moreover, we assume that the beams are made of a
material with Young’s modulus £ = 2 GPa and Poisson’s ratio 0.3. Thus, we can only
vary the distances between parallel beams. In order to calculate the effective properties
with the algorithm presented in section 4.1, we need to identify the periodicity cell Y.
In figure 4.3 we see that taking the red cell as Y yields by periodical continuation the
whole structure. This choice is even the smallest possible periodicity cell that we can
take. In the next step we introduce the two symbolic variables z and y, and assume
that the periodicity cell can be in the es direction at most 4cm long and in the e
direction 2 cm long. Furthermore, the cell should be at least bigger than 0.4 cm in
both directions. Otherwise the beams would penetrate each other. Concerning those
constraints we introduce the parametrization as shown in figure 4.4 with x € [0, 1.8]
and y € [0,0.8]. The full structure is then obtained by repeating the periodicity cell at
the red lines. This yields the relation ¢; = 2(2 — z) and t2 = 2(1 — y). Plugging in all
parameters into the analytic formulas we can conclude that the flexural rigidities are

calculated as
hom 320 hom 320

= = —. 4.3.1
C1111 24(2 )’ €2222 24(1 — y) (4.3.1)

On the basis of that structure we want to check, if the symbolic solution matches
the analytical results. After that we want to investigate, whether solving the linear
equation in Singular yields the same results as MATLAB’s backslash operator and which
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Figure 4.3: Periodicity cell for open grid structure.

Figure 4.4: Parametrization of periodicity cell for an open grid structure.

method performs better. In figure 4.5 we can see the results that we obtain in the
symbolic calculation over the given domain defined by the constraints. For both cell
experiments we observe that the symbolic solution corresponds to the results presented
in [61]. Therefore, our algorithm performed symbolically yields the exact results. As we
have discussed in section 4.2 we can make use of Singular to calculate the solution of the
linear equation. In figure 4.6 we can look at the results obtained with both methods. In

[ [ [ | [ [
| = Symbolic Calculation | = Symbolic Calculation
60 , 60 : .
—— Analytical Solution —— Analytical Solution
=40 |-
5
20 |
0
0

(a) cifit (b) c55%5

Figure 4.5: Comparison of analytic and symbolic solution.

our case only for the 0’21202"5 experiment. Since both procedures return the same solution,
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we want to compare the time consumptions. We want to remind here that for stopping
the time in the Singular part, we not only account for solving the linear equation itself,
but also add the time for the I/O process to save the GSM and the right-hand side in
their respective format. The cumulated times for all four experiments in the case of the
open grid structure are presented in figure 4.7. We immediately see that both methods

Values for ¢, calculated with Matlab. Values for c,,,, calculated with Singular.

Figure 4.6: Comparison of the solutions.

need less than a second. Note that the y-axis is in logarithmic scale. However, in all
cases MATLAB is faster. We want to mention here, that this is mostly because of the
I/0 process and since the problem is rather easy. For a complete overview of the other

Time Comparison for Symbolic Problem

100§ ‘ ‘ | mmm Matlab
; I | = Singular
- - |
210t f |
— B §
2 - |
=
210771 |
o8 = ]
g g 1
S
S - |
1073 £

11 22 21 12
M, \Y o Mz M,
Experiment

Figure 4.7: Time Comparison for solving the open grid structure.
effective properties we show them in figure 4.8. Here, we can see that ¢l = chom = 0.
This means that our structure is indeed orthotropic. Moreover, we get that the Poisson’s
ratio of an equivalent homogeneous shell is zero.

4.3.2 Varying hexagon

In this section we want to consider a more elaborate example, where we vary the width
and length of a hexagon. Such hexagonal structures appear also in real life applications
as for example in filter systems and in foils for cosmetic applications. In the next
chapter we can then use the symbolic expressions for the flexural rigidities to find the
optimal design. As in the previous case we want to determine the minimal periodicity
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Values for €122 calculated with Singular. Values for a1 calculated with Singular.

05 1 05

value
=

value
=

0.5 0.5

06 : = 2 06 : = 2
04" = 15 i 2 15

" 0s 02 : 05
y 0o 5 ¥ 0o i

Values for ¢, . calculated with Singular.
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Figure 4.8: Other effective properties for open grid

cell Y, which we can parametrize. Moreover, we want to specify certain constraints to
get realistic solutions. After that we run our symbolic homogenization procedure to
express the cg%’g, P with respect to these variables. In figure 4.9 we have indicated the
smallest periodic cell with the red box. The full structure is then received by periodic
continuation of the red box in both directions.

The goal now is to parametrize the structure such that we need as few symbolic variables

Figure 4.9: Periodicity cell of the hexagon

as possible. In general each newly introduced variable increases the complexity. We look
at figure 4.10, where we cut out a quarter of a hexagon, consisting of three beams, as we
can see in the left part. We introduce two symbolic variables g, and g,, which we denote
as ¢ = (gz, gy). This g is shown as the red dot in the figure and the underlying red box
indicates the constraints, which we enforce on the choices for our design parameter. In
our structure we fix one point at (0,0.5), the green dot, which is independent of the
design parameters and we connect the dots with a beam element. Next we add a beam
which is perpendicular to the orange line and connect it with the red dot. Hence, this
beam is given by the two nodes (g,,0) and (g, gy), where we denote by I(g) = g, the
beam’s length. In the end we have to describe the third beam starting at the green
node. This one should be parallel to the ey axis and have the length [(g), which is
necessary to generate a proper periodicity cell. We connect the two points (0,0.5) and
(0,0.54 gy). After that we reflect the beam structure along the orange and green line to
obtain a hexagon. In the right part of the picture we can see two examples, where one



82 Chapter 4 Calculating Effective Properties with Symbolic Parameters

is the extreme case of having a rectangle instead of a hexagon. The beams itself have a
circular cross section with » = 0.03 mm, Young’s modulus £ = 200 GPa and Poisson’s
ratio v = 0.3. We can now set up the mesh to calculate the effective properties with

(0,0), /\

[ (g) Design Variation

Figure 4.10: Variation of the hexagonal geometry

respect to the given parametrization, where we assume that g € [0.1,0.4] x [0.2,0.5]. In
figure 4.11 we can see the values for c}¢% plotted over the constraint domain. Once again
we have used both MATLAB’s backslash operator and the Singular computation. We
notice that both methods yield the same results, where the difference for this example

in L?-norm is 2.0543-10715. Likewise to the open grid structure we want to compare the

Values for € calculated with Matlab Values for €11 calculated with Singular
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0.14 0.14
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0.04 \ b :
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0.4 05 04 05
03 04 03 04
0z 03 oz 03

Figure 4.11: Effective cf¢]? for the varying hexagon

time needed with both variants. We immediately see that it takes longer to compute this
problem. Especially, the difference between MATLAB and Singular is getting smaller.
In all four experiments it takes around 10 s to invoke both the I/O operations and
solving the linear system by calling Singular.

In figure 4.13 we can have a look at the other results. Moreover, we have summarized
some selected analytic expressions in the appendix C. Another important investigation
is that we satisfy the orthotropy condition cf¢5% = chgi". This means we can calculate a
pinching load on the equivalent homogeneous shell with our function derived in section
3. Hence, we can directly plug in the polynomial expressions and see how the design
choice affects the result. We also want to emphasize on the values of cf¢5 for g, = 0.5.
This is the setup, where we obtain a rectangle instead of a hexagon. We observe that
at this point we always obtain the value cf¢5%(-,0.5) = 0, for all g, € [0.1,0.4]. This is
in correspondence to the open grid examples, where all beams are parallel either to the
€1 or ey axis.
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Time Comparison for Symbolic Problem
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Figure 4.12: Time Comparison Matlab and Singular for varying hexagon
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Figure 4.13: Other effectve properties for the varying hexagon calculated with Singular.

4.3.3 Varying cross sections

In the next example we want to consider the case, where the hexagon’s size is fixed, but
we are allowed the vary the design of the beams. Thus, we consider a structure as shown
in figure 4.14, where the length is 1.8 mm and the width 0.6 mm. There we assume that
the hexagon consists of two types of beams, where both are given in the first part with
a quadratic cross section and after that with a circular one. We assume that the beams
parallel to the ey axis have the green cross sections on the right, while the oblique beams
have the blue ones. The mechanical properties are the same as in the previous example.
We introduce the symbolic variables x and y which control the size of the cross sections.
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A simple calculation of the area moments of inertia for both cases, the quadratic cross
section on top and the circular one on the bottom, yields

green __ $_4 Iblue _ y_4
y/zm 12’ vz 19
green _ 554_’” Iblue _ 3/4_7(-
y/z,o 64 ) y/z,o 64 .

1)
1. Bl
€2
T Y
: N B

Figure 4.14: Change in cross section

Furthermore, we assume that z,y € [0.03, 0.1] for both instances. When we set up the
global stiffness matrix we can introduce the area moments of inertia as presented and
take them through the whole process. We note that the thickness h is not constant in
this experiment. It is actually given as max(x,y). In figure 4.15 we show the results

of the first case for the effective ci9% in the top layer and % on the bottom. A

small calculation of the difference for ch97? in L2-mnorm, which is 4.8986 - 10718, confirms
that both methods yield the same result. We note, that in this case the structure is
again orthotropic for all combinations of (x,y). We provide the exact polynomials in the

Appendix C. In the next step we want to check the second case. A closer investigation

Values for c,,,, calculated with Matlab. Values for c calculated with Singular.
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Values for ¢, ., calculated with Matlab. Values for ¢, , ., calculated with Singular.

Figure 4.15: Comparison of effective properties for varying quadratic cross sections.

of our parametrization reveals that we are for (x,y) = (0.06,0.06) in the configuration
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of our example in section 4.3.2. Hence, we should obtain the same value as for choosing
g = (0.3,0.4) in the previous calculation. In figure 4.16 we present the effective properties
for our structures. We focus on the values for 43y and 7. We first note that the
plots look similar to the quadratic cross section, but the current design is less stiff
than the other. This corresponds to the classical Euler-Bernoulli beam theory, where
a rectangular cross section has a bigger flexural rigidity than a circular one. Moreover,
we can calculate the value of ch9h at (z,y) = (0.06,0.06) and obtain 0.217. The same
result is indeed attained for the example in section 4.3.2.

Principally, we can conclude for this example that increasing the width of the beam
elements also increases the stiffness. Given this structure we will examine in chapter
5 what the best choice for minimizing the deflection is. Moreover, we also want to
investigate how the Poisson’s ratio in both cases behave. For now we continue with the

Values for c,,,, calculated with Matlab. Values for c,,,, calculated with Matlab.

y 002 po2 ' " 002 002

b b

Values for ¢, calculated with Matlab. Values for ¢, calculated with Matlab.
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Figure 4.16: Comparison of effective properties for varying circular cross sections.

comparison of the time used for each experiment in MATLAB and Singular. The results
are presented in figure 4.17. As we can see in the diagram, the computation time needed
for both cross sections, is less than for the varying hexagon. It takes here slightly more
than 1 s for each experiment. We still see that it is faster to stay in MATLAB, even
though the difference between both methods is rather marginal. Note, that the plot is
still in log-scale. We close this example for now and move on to a problem, which uses
just one symbolic variable. This example will demonstrate why it is more reasonable to
use Singular instead of MATLAB and it shows why one should always be careful, when
calculating with symbolic variables.

4.3.4 Shifted beams

In this section we consider a parametrization with just one symbolic variable. This
particular example shows that one should be really careful with the parametrizations.
Even though it seems easier than the previous ones it is so far the most difficult. We
consider a hexagon with fixed width, 0.6 mm, and length, 1.8 mm, but we assume that



86 Chapter 4 Calculating Effective Properties with Symbolic Parameters

== Matlab == Matlab
; == Singular ; == Singular
[} (]
E E
= £
21001 2 210° ) i
3 E
2 A,
£ £
Q Q
O O
M M2 Mz M M} M2 Mz M2
Experiment Experiment
(a) Square (b) Circle

Figure 4.17: Time comparison for varying cross sections.

the green beams can be shifted vertically. Hence, we parametrize the distance between
the green and blue beams as shown in figure 4.18 by some variable z. Moreover, we
note that the area moments of inertia of each beam are constant, where we assume that
the beams are circular with radius 7 = 0.03 mm. We consider again the same material
properties as before and assume that z € [0,0.03]. After calculating all experiments,

€1

€2

Figure 4.18: Variation in z direction.

both with Singular and Matlab, the first observation one can make is that the solutions
from both methods again coincide. The differences are always of the order 1076, We
want to have a closer look on the flexural rigidities in the es-direction, given as chgy.
As we can see in figure 4.19, we have for the case with z = 0 that iy = 0.217.
This result is the same as the corresponding value from the example in section 4.3.2
with (gz,9y) = (0.3,0.4). Moreover, we can deduce from the plot that shifting in the z
direction makes the construction stiffer in the ey direction. If we compare the maximal
with the minimal value, we have an improvement of about 0.04. Therefore, compared
to other design approaches the shifts do not induce that much stiffness. It is important
to note that this example actually attains configurations, which are not orthotropic.
Anyhow, the differences between c¢%% and ch9 are small. Moreover, due to the shifts
we have that bg%’g, g # 0. We assume in chapter 5 that this structure is orthotropic and
perform the minimization of the maximal deflection. A look at the time comparison
in figure 4.20 reveals that in this case Singular outperforms MATLAB. While it takes
for the backslash operator between 10-20 minutes, Singular needs together with the
I/O operation just about 10 seconds. This result is rather surprising, if we consider
that there are actually fewer variables. On the contrary, it shows us that we cannot

determine a priori which method should be chosen. We close now this example with the
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Figure 4.19: Shift in z direction with contact condition.
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Figure 4.20: Time comparison shift in z direction.

observation that Singular should indeed be chosen in favor of MATLAB. Even though in
most examples MATLAB was slightly faster, we can run into a lot of trouble for special
parametrizations as seen in this case.
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4.3.5 Auxetic structure

As a last example for periodic structures we want to discuss a periodicity cell which
inherits an auxetic behavior, i.e., having negative Poisson’s ratio for all configurations.
Such materials are of interest in different engineering applications, as shown in [22] and
in the framework of optimization in [57]. For that case we consider the beam structure
given in figure 4.21. We first need to identify the minimal periodicity cell Y of the
structure and introduce a suitable parametrization in figure 4.22. We assume that the
beam in the middle, which is parallel to the es-axis and starting at the green dot, has
a fixed length [,.x. Moreover, the oblique beams connected with the green dot have
the same length and their direction is given by the angle «. This parameter will be our
symbolic design variable in the homogenization process. The distance from the green
dot to the origin is [ 4. The full cell Y is then obtained by reflecting the described
parametrization along the ej-axis, which is drawn in orange. In the following example
we choose the parameter l,,x = 0.6 mm. This means that the periodicity cell’s length
is constant with 4 - [,,x, while the width is dependent on the angle v by 2, - sin(7y).
The beams are assumed to be circular with radius r = 0.03 mm and Young’s modulus
E =200 GPa.

Figure 4.21: Periodic structure of an auxetic material.

€1

€2

Figure 4.22: The auxetic cell

For this special structure we include two pictures demonstrating the M?2? experiment in
figure 4.23, which yields the values for A9y and ci9i?. Next up we want to verify that our
structure is indeed auxetic for all choices of . To investigate that we show the obtained
effective properties ch9m and ch9? calculated both with MATLAB and Singular. The
results are presented in the figures 4.24 and 4.25. We can not only observe that both

methods yield again the same result, but also that the values ch9% are always bigger than

0, while the cgé”ﬁ are always negative for all v € [§, 7]. Hence, calculating the Poisson’s
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2 R

Figure 4.23: Cell Experiment M2? for auxetic material.

ratio vq9 gives the result on the right side of figure 4.26. For the sake of completion, we
also show the values for 151, which is not as interesting as the other case. For o we
can see that increasing the angle v makes the Poisson’s ratio smaller. Moreover, we can
conclude that

lim 51 (y) = 0.

s
T3

This configuration coincides with the geometry of an open grid structure or to the case
that g, = 0.5 in example 4.3.2. The corresponding result are in accordance with the
analytic solution for the open grid structure given in [61]. Another interesting task is
finding the minimal Poisson’s ratio. We will consider this problem in the next chapter,
where we implement optimization techniques to find this value. To finish this section
we want to check the time needed to solve the linear equation system. The bar diagram
in figure 4.27 presents the total processing times. For this example we can only deduce
that the I/O procedures are rather time-consuming.

Values for cg292 calculated with Singular Values for cs992 calculated with Matlab
| | | | | |
3 [
0 2.5
)
—
<
=~
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1.5
Y Y
(a) Singular (b) Matlab

Figure 4.24: chom for auxetic materials.

4.3.6 Summary

In the five presented examples we have shown the advantages of calculating effective
properties with symbolic expressions. The greatest improvement we have achieved with
this method is obtaining analytic expressions for the flexural rigidities, shear modulus,
Poisson’s ratio and Young’s moduli depending on our parametrization. In the sense of
example 4.3.1, the open grid structure, one does not have to calculate the values by hand,
instead it reduces to defining a reasonable parametrization and progress the mesh with
our algorithm. We are also able to calculate the analytic expressions for more elaborate
examples, 4.3.2-4.3.5. Moreover, we have developed a way to solve the problem with
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Values for cg211 calculated with Singular. Values for cs911 calculated with Matlab.
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Figure 4.25: chg for auxetic materials.
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Figure 4.26: Poisson’s ratio for auxetic materials.
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Figure 4.27: Time comparison for the auxetic material.

an efficient computer algebra system. In most cases the I/O procedures are tedious but
for meshes, where one considers shifting elements in the outer plane direction, we can
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reduce the computation time by using Singular and therefore it is preferable to use this
procedure. Regarding the time consumption we should discuss one more question: What
are the benefits of the symbolic calculation compared to a numerical parameter study?
In the next section we will solve two examples via a parameter study in contrast to our
described method.

4.4 Comparison symbolical and numerical homogenization

Of course the presented algorithm can be implemented numerically. To obtain the ef-
fective properties of one particular setup this variant is incredibly faster. Anyhow, if we
want to study the behavior of different variations in the mesh it can also get computa-
tionally costly. For those cases it may be of advantage to calculate the symbolic effective
properties. Therefore, we want to investigate two questions

e Do both procedures yield the same results?
e When is the symbolic calculation faster than the parameter study?

We restrict ourselves to the examples of the open grid structure and the varying hexagon.
Beginning with the open grid parametrization we first compare the results. For that rea-
son we discretize the intervals [0, 1.8] and [0, 0.8] both with 10 points and calculate the
L?-norm of the difference between the symbolical and numerical solution. The values
are summarized in table 4.1. Since c¢% and ch9? should be 0 anyway by the theoretical
results in [61], it is not surprising to see that the difference is exactly 0. For the other
two bending experiments we see that both values are of the order 10~%. Moreover, we
can check in figure 4.28 the convergence of the numerical solution to the symbolical one.
We see that for refined meshes the difference gets smaller up to around 5 - 1077. We
should keep in mind that we introduce two numerical errors in the comparison. The
first one lies in the numerical solution itself and the second one in the conversion of
symbolic parameters to numerical values. We can conclude for this example that the
numerical method yields the same values as the symbolic calculation. Introducing more
discretizations points will then decrease the difference. We now want to compare the

hom hom hom hom
1111 C1122 | %2211 €2222

Difference | 2.662 - 106 0 0 |3611-107°

Table 4.1: Difference in L? for open grid.

time consumption. In order to make reasonable conclusions we measure the complete
processes. This involves the setup of the global stiffness matrix, solving the linear equa-
tion and calculating the effective properties.

Since we obtain in our presented variant the symbolic expressions, which can be later
converted to functions, we get a discretization independent time. Once we have calcu-
lated the effective properties the evaluation of certain points is done instantaneously. For
the numerical method we will successively increase the number of discretization points
in the intervals and take track of the time for evaluating all points. We start with 100
points and go up to 3600. In figure 4.29 we present the results. Obviously, the time for
the numerical method increases linearly. It is interesting to see that solving the symbolic
problem is as fast as a parameter study with ~900 discretization points. Considering
that the analytical expressions are more meaningful, it is important to underline that
in this example the presented approach is as efficient as the numerical one.
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Figure 4.28: Convergence of numerical solution to symbolic.
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Figure 4.29: Time consumption for numerical and symbolical calculation of open grid.

We continue with the same comparisons for the varying hexagons. Of course this
parametrization is a bit more complex. In table 4.2 we show the calculated differ-
ences again on a grid with 100 points. The values are sufficiently small. It may surprise
that the differences for c}ffz’g and c%”ﬁ are the same. Anyhow, since the hexagon is an
orthotropic structure we have to get 0?102”5 = 0}2‘5{’} and therefore we end up with the same
numbers. The convergence of the numerical solution to the symbolic one, in the case of
a hexagon, is shown in figure 4.30. Also for the second mesh we can conclude that both
methods yield the same results.

hom hom hom hom
C1111 C1122 C2211 €2222
Difference | 1.585-10~% | 1.252-107° | 1.252-107° | 3.484 - 10~*

Table 4.2: Difference in L? for hexagon.
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Difference of numerical and symbolical solution
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Figure 4.30: Convergence of numerical solution to symbolic.

Next, we take a look on the time consumptions in figure 4.31. We have the identical
setup as in the previous case, where we now discretize the interval [0.1, 0.4] x [0.2, 0.5]
first with 100 points and then up to 3600. We can observe that the symbolical method
needs almost a minute. We see that for a study over the complete domain the numerical
treatment is still faster. Hence, for more complex geometries the numerical method
outperforms the symbolic one.

Time Consumption for parameter study
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Figure 4.31: Time consumption for numerical and symbolical calculation of hexagon.

In conclusion we should keep in mind that it is in general computationally more expensive
to get analytic expressions with the symbolic calculation than performing a numerical
parameter study. However, the time factor is mostly relevant for complex structures and
the benefit of having analytic expressions is more valuable.
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5 Optimization

In this chapter we want to combine all the obtained results and use them to opti-
mize structures given certain objective functions. All of this should be done within
the structures’ mechanical possible range. We consider here both the minimization of
displacements due to pinching loads and the Poisson’s ratio optimization. In each case
we investigate the equivalent homogenized shells, where we use the results derived in
chapter 2. Since each periodicity cell can be parametrized via symbolic design variables
we perform the calculations symbolically as presented in 4. Especially, for the case of
minimizing the maximal deflection we use the analytic formulation of the pinched cylin-
der problem, discussed in chapter 3. We see that the design choice affects the coefficients
in the Fourier series. In the following section we focus on the setup of our optimization
algorithm and after that we reconsider the examples from section 4.3 and optimize them
w.r.t. the underlying constraints.

Remark 5.0.1 We want to recall here that the local ey direction of the periodicity cell
corresponds to the global (0,1,0)T direction for the full shell. Hence, it is aligned with
the direction of the curvature. Consequently, the local vector ey is aligned with (1,0,0)7
the shell’s longitudinal direction.

5.1 Objective functionals

In this section we present the derivation of the objective functionals. We start with
minimizing the maximal absolute deflection caused by a pinching load. Therefore, we
take the analytic function, which we have derived for homogeneous orthotropic shells,
given by

2Pk* 2 sin(ngo) nsi
toonssy = 2K S silgn) g onny
3(81, 82) 7TE2hH3n_1;),4... Ron? sin ( —

x { (¢C +nG) cos (Hﬂsﬂ) + (¢G —nC) sin (H/(lllszl)]e_“iw

+ [(CA - TIB) COS (%‘82‘) + (77A + CB) sin (—H(i’Sﬂ)]erilsz }’

where we refer to Lemma 3.2.3 for details on the parameters and how they are obtained.
Since we have considered a pinching load, we know that the maximal absolute deflection
will occur at the same point as the load itself. Hence, we need to insert (agy, 0) into our
formula to obtain

|43 (515 52) | Lo () =

2Pkt &1 5
rEoyh H3 ngl Ryn? sin(ngo)” - [(CC +nG) + (CA - WB)]‘ (5.1.1)

= u?),max-
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We note here that all parameters in the formula are bigger than 0, except the applied
force P. Therefore, we can also consider

2P|kt & 1
7TE2hH3 el RQTZ

Us, s = ;s sin(ngo)? - | (CC +nG) + (¢A = nB)|. (5.1.2)

From that point on we assume that P is positive. We concluded in section 3.2.1
that we can terminate the series with n < 10, since the partial sums converge rather
fast. In this part we proceed with Sg to simplify the calculations. Hence, we continue
with

o°Pkt &
TFEQhH3 oy R2n2

Z/{3,max = Sin(n(po)2 . [(CC + T}G) + (CA — T]B)] (513)

Furthermore, we saw in that section that the maximal deflection gets smaller the closer
the pinching load is applied to the boundary. Thus, we will get the biggest deflection if
we apply the load at (ago, s2) = (%,0). Due to the expression sin(nyg) we have only 4
non-zero elements in the series and we can simplify it to

2Pk &
Z/{S,max = Z

7 EyhH® [(CC +nG) + (CA — nB)]. (5.1.4)

2n+1

This yields our objective functional, where all the parameters in the sum also depend
on 2n + 1. We know that they rely on the shell’s effective properties, too. We can plug
in the symbolic expressions of our effective properties into this function. This means,
that given our design variables x € R, the expression U3 4, can be identified as a
function

Z/[3,maac :R™ R,

2Pk; >
US,ma:v (X) 7TE2( 2

2n+1)

n=0

(5.1.5)
Moreover, we impose constraints on each design variable x;. There are a;,b; € R such
that x; € [a;, b;]. With that we can formulate our optimization problem as

min HU3(81, 52, X) HLOO(UJ) = Z/{3,maa: (X)
* (5.1.6)
s.t. a; < X; < bz

The optimization problem for the Poisson’s ratio is then obtained in a similar way. We
know from remark 4.1.4 that we can calculate the expressions from the effective bending
properties as

chom Chom

Vo = 1122 V1o = 2211
21 = Chom ’ 12 = Chom '

1111 2222

Since both parameters depend on the design variable x we can formulate the Poisson’s
ratio optimization as

hom
. cvhs(x
max / min vo1(x) = %()
x 1711 (%)

s.t. a; < X; < bi,
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where the formulation for 15 follows respectively.
There are various different methods for solving such a constrained optimization problem.
We focus on the projected gradient method as discussed in [5, section 2.3]. There we
consider a steepest descent approach, where we choose the length of the step size via
the Armijo rule along the projection arc. Moreover, if the current iteration x’ violates
one or more constraint we project the value back into the admissible set. We define the
projection
P:R™—R™
P(x) = <max(min(x, b;), ai)> A

=1, ,m.
We have summarized the procedure in algorithm 1.
Remark 5.1.1 Since our homogenization process has been done completely symbolically

we can calculate the gradients with MATLAB’s diff operator. This can be used to obtain
the search direction in the projected gradient method.

Algorithm 1 Projected Gradient Method

1: procedure PROJECTED GRADIENT(f, Vf,P,2") = Calculate the minimum of f
2 ¥ = P(a)

3 tol = 10712

& oe(0,1), a=1

5: while k < M do > M is maximal number of allowed iterations
6 d=—Vf(zh)

7 ¢ = P(2F + ad)

8 while f(zF) — f(zF*1) < —od" (¥ — 2**1) do

9: a=a-3

10: ok = P(2% + ad)

11: end while

12: if ||f(zF1) — f(2%))|l2 < tol then

13: break

14: end if

15: a=1

16: end while

17: return zFt1

18: end procedure

We want to emphasize here again that the effort we put into the setup of our sym-
bolic homogenization procedure benefits the optimization process. It is not only pos-
sible to directly analyze the analytic formulation for the partial sum S, and see how
they depend on the underlying parametrization, but also the gradients are easily ob-
tained.

5.2 Examples for minimization

We revisit the examples presented in chapter 4 and plug the effective properties, which
have been calculated symbolically, into our function U3 ;. or the Poisson’s ratio v12, v9;.
We use then the projected gradient method to obtain the optimal designs with respect
to the given constraints. Since the coefficients P and a do not affect the choice of 2y,
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The maximal deflection of a cylinder with open grid periodicity.
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Figure 5.1: Maximal Displacement for open grid structure normalized.

in the minimization of the deflection, we fix those values with P = 1, a = 2 and consider
the normalized displacements.

5.2.1 Optimize: Open grid structure

We consider the parametrization of the open grid structure as presented in section 4.3.1
and assume that a shell with this periodic structure is under the pinching load P. With
the formula (4.3.1) in section 4.3.1 we can easily calculate that

20000 20000
= E —

g = ————

1—y

1

i

2—=x

and consequently our parameter H in the functional simplifies to

Since we have vis = 191 = 0, we deduce that in the functional (5.1.5) only Fy and H de-
pend on the choice of the design variables. This simplifies the function to

3
(2-a)?
u3,ma:r(xay) = Z Cn—a
n=0 (1 - y)2

where C), are some coefficients in R. The gradient is then given as

, __3£22::f222

EPRY)

VU?.,max(wvy) - Z Cn (;1_ Jz?)’
n=0 22—

(1—y)3

We have plotted the function U354, over the domain in figure 5.1, where the results
are normalized with the maximal value being 1. We can see how the figure resembles
the theoretically derived function U3 e As we move closer to the singularity y = 1,
our deflection explodes. Furthermore, plugging the function and its gradient into the
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(a) x = (1.8 0) (b) x = (0 0.8)

Figure 5.2: The best and worst shape w.r.t. our design space compared.

optimization method yields that the minimal deflection is obtained for (z,y) = [1.8 0].
In order to qualitatively discuss the result we take a look on the shells with the best and
the worst choice of design parameters given in figure 5.2. We can see that in order to
minimize the deflection we have to stabilize the shell along the circumferential direction.
As we can observe in the left picture of figure 5.2, the shell has a lot of beams in this
direction, while the configuration on the right just has a few.

In the next step we will keep the open grid structure, but consider a different parametriza-
tion.

Different design space

Here we investigate the example presented in [31] to demonstrate that the design vari-
ables can be chosen freely. We take again an open grid structure, but the choice of the
design space is different. Especially, we do not only vary the spatial properties of the
length, but we also want to change the thickness of some beam elements. Therefore, we
need to specify the area moments of inertia as symbolic variables. We consider the setup
in figure 4.2 and make the following assumptions that

b1 + by =1,
t1 = 2-to.

We take x = (t2,b1), together with the requirement that ¢o € [2, 3] and by € [0.5, 0.9].
Furthermore, we assume that all beam elements still have the properties £ = 2 GPa
and Poisson’s ratio v = 0.3.

Remark 5.2.1 We want to mention here that the example presented in [31] was a
heterogeneous plate on an elastic foundation.

Once we have implemented this mesh structure we can run it through our algorithm,
which yields (t2,b1) = (2.0 0.9) as the optimal solution. This means that the distance
between two parallel beams should be as small as possible, as we have seen in the
previous example. Moreover, the condition b; = 0.9 can be understood as making the
beams in the circumferential direction as big as possible to increase Fi, even if this
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means to get smaller beams in the longitudinal direction. In figure 5.3 we have plotted
the normalized deflection over the given constraints. We can see how marginal the choice
of t5 is compared to b;. This is mostly due to the coupling of £; and ¢, in this experiment.

The maximal deflection of a cylinder with open grid periodicity.
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Figure 5.3: Normalized Displacments for the second parametrization of an open grid
structure

5.2.2 Optimize: Varying hexagon

We now continue with the example of a varying hexagonal structure. We remind that
for the following analysis we consider circular beams with radius 0.03 mm, which have
a Young’s modulus of 200 GPa. We want to vary the length and the width of the
periodicity cell according to section 4.3.2. In figure 5.4 we show the normalized deflection
for the current example. We can immediately see that the function explodes, if we choose
the hexagon as small and narrow as possible. We are able to calculate the optimal
solution with (g, gy) = (0.4,0.4209). In figure 5.5 we present the best and worst set of
design parameters. Similar to the open grid structure, we need a configuration which
increases the Young’s modulus E; in the circumferential direction. We note here that
the best solution on the left side is almost the extreme case of having a rectangle instead
of a hexagon. Apparently, it is beneficial to still keep a hexagonal structure. Also the cell
should be as big as possible. We can conclude the discussion of the spatial optimization
for hexagons. We have seen that the best solution for this case is non-trivial. We later
on see that the Poisson’s ratio optimization is closely related to the one of the auxetic
structure.

5.2.3 Optimize: Varying cross sections

We move on with our next example, where we consider the different design approach for a
fixed hexagon, where we let our cross section either be circular or quadratical and control
the size of the beam elements. We have seen that both cases yield similar results. There-
fore, we focus on the quadratical cross section. We consider both the minimization prob-
lem and Poisson’s ration optimization. We take x and y as the design variables described
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The maximal deflection of a cylinder with hexagonal periodicity.
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Figure 5.4: Normalized deflection for varying hexagon problem.
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Figure 5.5: Best and worst choice for the varying hexagon problem.

in section 4.3.3, and assume that (x, ) € [0.03,0.1]%. By plugging the effective properties
into 5.1.2 we obtain the result shown in figure 5.6.

It is easy to see from the plot that the beams parallel to the longitudinal direction should
be chosen rather thin, while the oblique beams are very wide. A small computation of
the optimum confirms our suspicion that the optimal choice is (z,y) = (0.03, 0.1).
In figure 5.7 we present the optimal solution and relatively show the scales between
the green beam and the blue beam. We can see that the choice of y has a higher
impact than z. This is similar to the previous examples, where we have seen that the
effective stiffness in the circumferential direction should be chosen as large as possible.
For this example we also want to find the design choice, which maximizes, respectively
minimizes, the values of v9;. We start with the minimum for o1, which is attained
at (x,y) = (0.03,0.1). Our gradient method can also be easily adapted to find the
maximum, which we obtain at (0.1,0.03). The corresponding plot of o is in figure
5.8. This parametrization is a great example to show the impact of our method, since
actually any geometrical or mechanical property could be introduced as a variable and
optimization can be performed w.r.t. these designs.
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The maximal deflection of a cylinder with hexagonal periodicity.
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5.2.4 Optimize: Shifted beams

In this section we want to study the 1D optimization problem, where the beams par-
allel to the longitudinal axis are shifted into the vertical direction. We have seen that
especially this problem can be rather time consuming. For the optimization it is inter-
esting to see if such shifts introduce a certain stiffness, which minimizes the deflection
caused by pinching loads. Remember, that we have fixed the in-plane geometry of the
hexagon and take circular beam elements with radius » = 0.03 mm, £ = 200 GPa and
v = 0.3. Our shift is bounded by r = 0.03. In figure 5.9 we have plotted the maximal
deflection given this parametrization. As we can see, increasing the shift yields at first
a bigger deflection. The maximal deflection is then attained for z = 0.0034. It is easy
to see from the plot that the minimal deflection is reached for the biggest shift z = 0.03.
Moreover, we can also consider for this case the Poisson’s ratio maximization of vqs.
In figure 5.10 we show the corresponding plot. For the presented function we can con-
clude that the maximal Poisson’s ratio is reached at z = 0, while the minimal one is at
z = 0.03.

5.2.5 Optimize: Auxetic structure

In our last example we investigate the auxetic periodicity cell. For those structures it
is particularly interesting to optimize the Poisson’s ratio. As we have described in the
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Poisson’s ratio Y31 for varying cross section

Figure 5.8: Poisson’s ratio v9;

The maximal deflection of a cylinder with hexagonal periodicity.
1

0.9

0.8

Deflection

0.7

0.6

Il Il Il

0 0.5 1 1.5 2 2.5 3
z 1072

Figure 5.9: Deflection w.r.t. to shifting beams along the z axis.

beginning of the chapter we minimize the value of 115. Besides, one can notice that this
parametrization is certainly similar to the one of the hexagon and we want to check if
an auxetic setup is better than the hexagon, given the maximal deflection. But we first
proceed with the Poisson’s ratio optimization. In figure 5.11 we show the values of v1s.
We can see that increasing the angle v makes 19 smaller until we reach the minimum at
v = 0.9966. This point is then the solution to our optimization problem. We show the
pattern for this design choice in figure 5.12. Moreover, we want to emphasize again that
for v = § we obtain v12 = 0, which coincides with the results given for the open grid
structure and the hexagon. Moreover, we compare the best solution for the Poisson’s
ratio optimization with the one for minimizing the deflection. Therefore, we also deal
with our objective functional U3 ,,,q,. Here we obtain the deflection given in figure 5.13.
Similar to the varying hexagon we need to have beams that are almost parallel to the
e axis. We then receive that the best configuration is given for v = 1.5063. We have
plotted the shell with such a structure in figure 5.14. Finally, we want to conclude
this chapter with closing the gap between the auxetic material and the hexagon. As we
mentioned in the beginning of this subsection we can actually generate auxetic materials
via the parametrization of the hexagon. Therefore, we need to change the constraints on
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Poisson ‘s ratio v12 for hexagonal periodicity
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Figure 5.10: Poisson’s ratio for vertical shifts.
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Figure 5.12: Auxetic material with optimal Poisson’s ratio.

gy, where we initially only allowed 0.2 < g, < 0.5. For the following example we assume
that g, < 0.8. Then we obtain the deflection as shown in figure 5.15. One can clearly
see that the configurations with g, near 0.5 yield smaller deflections. But an extreme
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The maximal deflection of a cylinder with hexagonal auxetic periodicity
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Figure 5.13: Normalized deflection for auxetic material.

Figure 5.14: Optimal shell with auxetic structure.

auxetic design choice gives a better result than the corresponding worst combination for
g as derived in section 5.2.2. Anyhow, we get with the optimization scheme that the
minimal deflection is still obtained for (g, g,) = (0.4, 0.4209).

This finally closes the discussion on the optimization. With the given examples we have
not only shown that the symbolic homogenization process gives analytic formulations
for the effective properties, but also makes the optimization easier. Both objective func-
tionals are easily implemented and we obtain the gradients by using the diff operator.
With a projected gradient method we are able to get the optimal designs w.r.t. to the
underlying parametrization. Since the computation times are reasonable we can solve
industrial problems very efficiently.
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The maximal deflection of a cylinder with hexagonal/auxetic periodicity.
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6 Conclusion

In the presented work we have successfully managed to analyze the pinched cylinder
problem, which arises in various different real life applications. We have started with
developing the homogenization procedure for cylindrical shells in chapter 2. This devel-
opment is new in the context of linear elastic shells, where we used classical decompo-
sition techniques for the displacements. After applying the rescaled-unfolding operator
I, we were able to pass to the limit and arrive with an equivalent homogeneous equa-
tion. Moreover, we could study the effects of the boundary conditions on our model.
Since the curvature does not affect the calculation of the effective properties we could use
an efficient plate homogenization algorithm for lattice structures, which uses a reduction
to 1D beam finite elements. The effective bending properties were then obtained by four
unit cell experiments.

Considering our weak formulation from chapter 2 we could formulate our problem in
the strong formulation given as a system of three PDEs as presented in chapter 3. To
simplify this PDE we used classical results to obtain an 8th order single PDE, which
describes the bending effects due to a given load. We henceforth assumed our load
to be a pinching load. By assuming the shell to be infinitely long we could employ
a Fourier transform in the longitudinal direction. In the circumferential direction we
introduced the Fourier series, which could then capture the clamping conditions. Us-
ing the residue theorem we finally derived an analytic function for the pinching problem.

Since we wanted to investigate the effects of design choices on our periodicity cell we
established the homogenization as a symbolic procedure in chapter 4. We focused on
solving linear equations of the type A[x]v = b[x], where both A and b depend on
symbolic parameters. It was crucial to introduce a certain pre-processing routine to
decrease the complexity of the problem. Moreover, we were able to use the computer
algebra programming language Singular for our problem and got a robust method for
various different cases. After that we investigated a lot of different examples and com-
pared the symbolic calculation to classical numerical methods.

In chapter 5 we inserted the so obtained analytic expressions for the effective properties
into the solution of chapter 3. Due to the symbolic treatment it was easy to implement
the projected gradient method for the minimization of maximal deflections caused by
the point load. The optimal solutions for the presented examples were calculated and
discussed.

All in all we not only performed the asymptotic analysis for the periodic perforated shells
but also found qualitative answers to industrial problems.
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A Important Results

Korn’s inequality

The first Korn inequality:

Theorem A.0.1 Let Q = R™ be bounded. Then every function u € H} () satisfies the
inequality
IVulZe () < 2le(u)]2(q)-

The second Korn inequality:

Theorem A.0.2 Let Q2 < R™ be bounded and a Lipschitz domain. Then every function
u e HY(Q) satisfies the inequality

Jullmr ey < C(Julzz) + ez )-

Proof. The proofs for these classical results are summarized in [48, chapter 2]. [

Young’s inequality

Theorem A.0.3 Given a,b € Ry and p,q = 1, such that Y/p + g = 1 the following

inequality holds:

1 1
ab < —aP + =011,
p q

Proof. A proof for this inequality can be found in [3, Lemma 1.18]. O

Jensen inequality

This inequality was initially derived for integrals w.r.t. to probability measures.

Theorem A.0.4 Let (S,B,u), with S < R™, be a probability space and ¢ : R™ — R
convex function. Let f € L'(u; R™) then

@(L fdu> < Lsoo fdp.

Proof. This theorem was proved in [3, p. 139]. O

Corollary A.0.1 If we take f : [a,b] — R Lebesque-integrable we obtain

b b
so<bfaff<m>dx> < |wo D

Proof. Due to the normalization ﬁ we can use the previous classical version. ]
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Poincaré inequality

Theorem A.0.5 Let Q < R™ be a bounded Lipschitz domain. Then all u € H(Q)
satisfy
[u = ualr20) < ClVulL2@),

where ug = ﬁ §o u(z)da.
If we consider u € H}(Q) we get

lulz2@) < VUl 2 ()

In the latter case € does not have to be Lipschitz.

Proof. For a proof we refer to [17, section 4.2]. O

Lax-Milgram

Theorem A.0.6 Let X be a Hilbert space and consider a continuous bilinear form
a:X x X — R and take a linear functional | € X', where X' denotes the dual space. If
there are constants ¢, C' such that a fulfills

1. a(z,y) < C|z|x|ylx, for all x,y € X (boundedness),
2. a(z,z) = c|z|x, for all x € X (coercivity),

then there exists a unique x* € X such that

a(z*,y) = U(y), for ally € X.

Proof. We refer to [17, Theorem 4.6] for a proof. O

Sobolev embedding

Theorem A.0.7 Let m,n >0 and p,q = 1 and 2 = R™ be a bounded Lipschitz domain.

If m — s Jj— ﬁ, then the embedding WP () < W74(Q) is continuous.
p q
If m — LSS Jj— ﬁ, then the embedding W™P(Q) — W79(Q) is compact.
p q
If m— LS 7, then the embedding W™P < C7(Q) is compact.
p
Proof. This well-known theorem is proved in [3, section 8.9] O

Transformation theorem for integrals

Theorem A.0.8 Let O,U < R™ be open and consider a diffeomorphism ® : O — U.
Then for every f : U — R continuous and with compact support holds

f f(y)dy=f f(®(x))| det DP(z)|dz.
U o
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B Homogenization of Shell

Y/

Figure B.1: Cell Y’ and the perforated domain Y’*

B.1 Proof of Proposition 2.1.1

There exists kg > 0 such that
O, = {s e RAT | dist(s,T) < ko} < Y'*.

Since the boundary of T is Lipschitz, there exist R/, R} > 0 and N > 2 open sets O,
'v such that

o ) is included in a ball of radius R’ and is star-shaped with respect to a ball of
radius R}, i€ {1,...,N},

. OZ{GOQH =,ie{l,...,N—1},and O n O] = &,

.« O, c UY, 0 cy'™

Set Oy = O X (=5, k), O; = O}x(—k,k), i€{l,...,N}. Onehas

e Pi: O, is included in a ball of radius R = R’ +  and is star-shaped with respect
to a ball of radius Ry = inf{R},k}, i€ {1,...,N},

o P OimOiH:@,ie{l,...,N—l},andONm(Ql:@,
° P3: O,QO C Uzj\il Oz c Y™
Set Of, = Oy (Tx(—k,k)). Below, we will use the classical extension result

Lemma B.1.1 There exists an extension operator P from H'(Oy,) into H'(O,) sat-
isfying for all p € HY(O,)

PO)0n =6, VPO 0s,) < Vo0,

The constant only depends on 0T,

'Note that if we transform the domain O,, by a dilation, the constant does not change.
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Proof of Proposition 2.1.1. For every £ € 2. and O;, i € {1,..., N}, if £ s small enough,
the domain ®(e€ + €0;) is included in a ball of radius 2Re and is star-shaped with
respect to a ball of radius Rie/4 (due to property P; and Lemma A2 in [27]).

Now, let u be a displacement belonging to H'(Q.)3. For every ({, i) € Ze x {1,...,N}
there exists a rigid displacement r¢ ; such that

IVa(u = rei) L2 @erenn)) < Cle)| 2@ eere0,))- (B.1.1)
The constant doe not depend on ¢, £ and O;, it only depends on the ratio R/R; (see
Theorem 2.3 in [27]). Then, step by step we compare the rigid displacements 7¢ 1, ¢ 2,
..., r¢.y thanks to the properties P2 and P3. To do that, observe that there exist two
constants independent of € and £ such that

ce®|O0; N O441] < ‘@(55 +e0; N Oz‘—&-l)’ <Ce®0;n Oppq], iefl,...,N -1},
ce}|On N O] < (€ +eONn N O1)] < Ce3|ONn N Oy].

As a consequence, there exists a rigid displacement r¢ such that

IVa(u = re)|L2@(eerev=)) < Cle(w)|r2@eerey=))- (B.1.2)

The constant doe not depend on € and &.

At this point, transform the domain ®(¢§ + ¢Y™*) by the inverse map z € Y*
O (€ + €z), then apply Lemma B.1.1 in order to extend the function in the hole T'
and finally transform by the map z € Y —— ®(ef + €z) and to the result add the
displacement r¢. The L? norm of the strain tensor of the extended displacement (now
defined in ®(e£ + €Y)) is bounded by a constant (independent of € and £) multiply by

le(w) 2 (@(ee+evs))-

We apply this process to every domain of € + Y™, £ € Z.. Finally, we obtain an
extension of the displacement u satisfying (2.1.6). O

B.2 Two lemmas

For the definitions and properties of the unfolding operators Tz, M. we refer to [15, 16]
Lemma B.2.1 is proved in [16]. Let Q be a bounded domain in R with Lipschitz
boundary and Y = Hf\il(o,li), l; >0,i=1,...,N.

Lemma B.2.1 Suppose p € (1,4+0). Let {(ues5, v 5)}es be a sequence in WHP(Q)N x
WL QNN (with v. 5 a symmetric matriz) converging weakly to (u, v) in WLP(Q)N x
Wl,p(Q)NxN.
Assume furthermore that there exist X in LP(Q)N*N and v in LP(S; W;e’f,o(Y))NXN
such that as (e,9) — (0,0)
1 .
S(e(ua(s) +v.5) — X weakly in LP(Q)NN
Tes(Vvo5) = Vo+ V, 0 weakly in LP(Q x V)N *N*N,

(B.2.1)

Then u belongs to W*P(Q)N and there exists u e LP(S; W;éf,O(Y))N such that, up to a
subsequence,

1 ~ )
57;5 (e(ug,(;) + vg,g) — X + ey(u) + 0v weakly in LP( x Y)NXN,

#§H+w, D= ey(u).

if §—>9€ [0, +0),

(B.2.2)
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Proof. First, from (B.2.1) one obtains that e(u) + v = 0, then since € is a bounded
domain with Lipschitz boundary u belongs to W2P(Q)". We also deduce from this
convergence and the Korn inequality that u. s strongly converges to u in whp(Q)N,
Then, up to a subsequence, there exists XelLp (2 x V)N such that

1 ~
57;,6 (e(uss) +ves) = X weakly in LP(Q x V)V,

Step 1. In this first step we assume that % — 0 € [0,+400).
Introduce the function Z. s belonging to LP(Q; WP (Y)Y defined as

1
Z.s = g%(llg’(s — Ms(ua,é)) - M. (vue,5) : yc. (B23)

Its gradient and symmetric gradient with respect to y are
VyZls = E(vus,é) - M; (Vua,cs)

ey(Zes) = 7;(6(“5,6)) - Ma(e(us,§)) (B.2.4)
= 7;(6(“5,6) + Vs,é) - (7;("6,5) - Ms(vs,é)) - M. (e(ue,é) + Va,é)-

Convergence (B.2.1); on one side together with the fact that |Vves|rrq) and % are

bounded, give
ley(Zes)| Lraxyyv < C(6 +¢) < C06.

The Korn inequality implies

”ZE,5

|Lo@wia(y)) < C6.

Consequently, up to a subsequence, there exists 7 in LP (Q; WEP(Y))N such that,

1 .
52— Z weakly in LP(Q; WHP(Y))V, (B.2.5)
By (B.2.4) one has
1 1 e Te(Ves) — Mc(v 1
Sﬁ(e(ug,g) +Ves) = gey(Zg’{;) +5 (Ves) g (Ves) + g./\/l8 (e(ues) + veys).

Then going to the limit using(B.2.5) and [16, Proposition 1.25 and Theorem 1.41]

1 - .
gﬁ(vugﬁvg,é) — X =¢y(Z)+0(Vvy +¥)+X weakly in LP(2xY)V*N. (B.2.6)

Now, we prove that

5 0 %u
_z_ Y ( € My (vSuC )
t 2 Z 89@8% yjyk Y<yjyk)
7,k=1
is periodic (note that this function belongs to LP(€; WP (Y))V).
We proceed as in the proof of [16, Theorem 1.36], one first evaluates the difference of
the traces of Z. 5 on the faces Y7 = {0} x (0, DN~V and Y; + e;. For a.e. (z,y') € QxY7,

one has . .
ZE,&(xv Yy + ei) - Zs’(s(l‘, Yy )

— L (Tes) g+ e1) = Telueg)(2,9)) — Me(M> )

5331

= T+ ceny) — To(ug)@y) - M (220 @),

8371

™= o
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Let ® be in D(QxY7)Y, one has successively

J Z.5(x Y+ ;) Zs,g(a:,y')) - ®(x,y) dedy’
QXYl

(
Joo

B 1 , au&g ’ ’
= 2(7; u.s)(x +cer,y) — Te(ue5) (2, y )) - Ms( o )(x)] - ®(x,y") dedy
:J 7;(11375)(37,!@/)' q)(x_gelay)_q)(xﬂy)dxdy/
QXYl €
ou. s , ,
_ M. ) - ®(z,y) ded
M) @) @y dady
/ a‘b / !
| (aesle) = T - 5 oy dndy
QXYl ml

+ Lm(a;;f - Mg<6;;1’5)) (2, y) dady’

O(x —cey,y) — P(x,y) +cer - Vo O(z,y
4 7;(1155)(37,!7/)' ( 1y) ( y) 1 €T ( y)
QXYl e

dxdy’

then

[ (M) - T(ug,(;)(x,y’))-j—q’w,y/)dxdy’
Q L1

><Y1
0P
+ J ug 5(x) — Mc(ug5)(z) - a—(a:, y')dxdy'
QxY; T
6u5 5 6u€ P ’ ’
+ J;)X < - )) - O(x,y') dedy

@ - ) ") — ¢ ) ! ' qu) ) !
+ J ~(ueg) (e, y) - 2oL y) — B y) F cen @ Y) fpay.
QXYl e

The last right-hand side is equal to (see [16, Proposition 1.24])

[ Mo @) = Tewas) ) - Sy oy
QOxYy 1

X
0P n
+Luaa f o (z,y")dy’ — E(La—m(fﬂ,y)dy)dx
auE,(S ’ / / /
o o () (Lq)(x,y)dy —Me(fy@(x,y)dy)dx

O(x —cer,y) — P(x,y) +cey - Vo ®(z,y
+ 72(115,5)(5573/)' ( 1 y) ( y) 1 ( y)
QXYl 9

dxdy'.

Divide by ¢ and then pass to the limit using [16, Propositions 1.38 and 1.39]. It yields

- ®(x,y) dzdy’

f Za,é(fp»y/ + ei) - Ze,é(wa y,)
QXYl 6

0P 0
— —0(Vu(x c-—x,'dmd’—i——f u(z) —=
J,., o) ey [ w3
N o%u

= 0 x /C-@x,'dazd'.
fw 3y (O ey
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Hence, for a.e. (z,y') € OxYy, Z(z,y + ;) — Z(z,y') = 0 2 . We obtain

81:16:5

similar equalities for the difference of the traces of Z over the other faces of Y. That
proves the claim. Then, a straightforward calculation gives (using Ve(u) + Vv = 0)

() = (2)_9§166(u)6_ (2)+0§1 ov .

eylt) = €y oz Yk = ¢y oz Uk
k=1 k=1

With (B.2.6), that gives the convergence (B.2.2);.

€
Step 2. In this step we assume that 57 +00.

Again we consider the function Z. s introduced in (B.2.3). Now, it satisfies
|Ze 5| r(;wrw(vy) < Ce.
Hence, up to a subsequence, there exists Z in LP (Q; WEP(Y))N such that,
%za,{; — 7 weakly in LP(Q;W'P(Y))V. (B.2.7)
Observe that

1 01
572(6(115,6) +Ves) = ggﬁ(e(u575) +ve5) — 0 strongly in LP(Q x Y )NN

1 01
g/\/l5 (e(ug,(;) + V575) . ESMg (e(ugv(s) + VE’(;) — 0 strongly in LP(Q)NXN.

One has

1 1 7;‘ € - M6 € 1
gﬁ(e(u575) + V575) = gey(Zgyg) + (Ves) 5 (Ves) + EM€ (e(ugv(;) + vg,(g).

Passing to the limit in the above equality gives
ey(i) + Vvy’+v=0.

Then, as in the previous step we prove that

Z ax ax (v — My (5w
J
is periodic. Thus (B.2.2)s is proved with u = —v. O]

As a consequence of Lemma B.2.1 one has (see also [16, Lemma 11.11])

Lemma B.2.2 Suppose p € (1,+0). Let {(ucs,v-5)}es be a sequence in WIP(Q) x
WhP( )N converging weakly to (u,v) in WLP(Q) x WIP(Q)N. Assume furthermore that

there exist X in LP(Q)N and ¥ in LP(%; Wpcjfo(Y))N such that as (e,8) — (0,0)

1
g(V“&fS +ve5) = X weakly in )N

Tes(Vves) — Vo + V0 weakly in LP(Q x V)NV

Then u belongs to W2P(Q) and there ewists u € LP(; W eTO(Y)) such that, up to a
subsequence,

1
— 6 € [0, +00), 57}75 (Vug’(; + v€,5) — X + Vyu+ 00 weakly in LP(€ x )N

— +00, v =V,u
(B.2.8)
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Proof. Consider the fields u. s € WHP(Q)" and the symmetric matrix v, 5 € WhP(Q)N*N
defined by

Uz s = (u6,67 0,..., O), (V6,6)11 = Vle,

1 e
(VE,(S)li = (V€,5)i1 = 5”1’,57 (VE,(S)ij = 0if (7’7]) € {27 cee 7N}2’

These fields satisfy the assumptions of Lemma B.2.1 and the convergences (B.2.1).
Therefore, the results in (B.2.2) give (B.2.8). O
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C Analytic expressions of effective
properties

C.1 Varying Hexagon

Effective c9999 =

(81-7w2-((91- (442 —4-y+4-22+1)%/2) /2—1938146465057258287 -y +5963527584791566024-
y - 2% — 3876292930114518212 - 42 + 7752585860229035332 - 43 + 2981763792395782400 -
22 4 969073232528629280))/(3746994889972252672 - (100 - & + 3) - (78 -y + 13- (4 - % —
4oy+4-22+1)%2 4240y - 22 — 31292 + 312 93))

C.2 Varying cross section

For quadratic cross section we obtain for cog9o =
(9966688830111384174375 - 1042 . 7. 2. y4)/(2251799813685248 (325 - z* 43091012

y') - ((9-y)/5 + 27/25))

and for ¢1111 =
(10751552136042485625 - pi - y* - (127-10(1/2) - * + 1200 - *)) /(2251799813685248 - (325 -
2 309 - 1012 - y*) - ((9 - y) /5 + 27/25))

C.3 Vertical shift of beams

The value for the shifted beams was simplified by vpa. 2220 =
(1.0-(2+0.06)-((2.0-(4.4066€31-22-(2.751127- 22 +1.2332¢31) —1.3935€32- 22 (3.6387e32-
22 4+1.7611e30)))/(1.0-(2.7511e27- 2% +1.2332¢31)%2 — 10.0- (3.6387e32- 2% +1.7611e30)?) +
(8.8131e31-22-(5.5022€27- 22 +2.4663e31) —2.787e32- 22 (7.2774€32- 22+ 3.5223¢30) ) /(1.0-
(5.5022€27 - 22 +2.4663e31)% — 10.0 - (7.2774e32 - 22 4 3.5223e30)?) — (2.0 - (1.4013e33 - 22 -
(3.6387€34-22+1.7611e32) —4.431432-22-(2.7511e29- 2% +1.2332¢33))) /(10.0-(3.6387e34-
22 +1.7611e32)? — 1.0 (2.7511e29 - 2% 4 1.2332¢33)2) — (2.8361e32 - 22)/(3.6821e34 - 2% +
5.7283e32) + (2.4268¢ — 9 - (3.6196e39 - 22 + 8.4513e37))/(2.3013e32 - 2% + 3.5802¢30) +
(2.8252¢ — 19 - (3.1092¢49 - 22 + 7.2596€47))/(2.3013€32 - 22 + 3.5802¢30) + (0.50894 -
(1.3808e33 - 22 + 3.2239¢31))/(9.2053€33 - 22 + 1.4321e32) — (4.0 - ((9.0003e44 - 2% +
6.9894€42) - (1.5001e41 - 22 + 6.724e44) — 3.1623 - (9.0003e44 - 22 + 6.9894¢42) - (1.984¢46 -
22 +9.6028e43)))/(10.0 - (1.984¢46 - 22 + 9.6028¢43)? — (1.5001e41 - 22 + 6.724¢44)?) +
((2.7511€27 - 22 + 1.2332e31) - (—1.265¢18 - 2% + 4.4066e31 - 22) — 3.1623 - (3.6387e32 - 22 +
1.7611e30) - (—1.265¢18 - 2% + 4.4066e31 - 22)) /(1.0 - (2.7511e27 - 2% + 1.2332¢31)? — 10.0 -
(3.6387e32 - 22 + 1.7611e30)%)))/(1.188 - z + 0.07128)
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C.4 Auxetic material

We present the solution, simplified by vpa(.,10), c1120 =

(1.0-(4.34989752-2* —(2.0-(4.335445455e38-2° —1.021926429¢39-2* +2.393165891e39-2:3 —
4.220741956€39-2% 42.473582211e39-2—4.45244798¢39))/(3.042361441e37- (22 —0.36)% +
1.2676506€38 - (22 —0.36)% — 1.25771222¢39 - 22 — 1.213099031e39) — 4.071504079 -z + 2.0 -
22-(0.434989752- (0.36 — 1.0- ) /2. (9.0 — 25.0-22) /2 — 0.7829815537) + (24.42902447 - -
(25.0-22-9.0))/(125.0-2%+225.0- 22 +150.0- 2+ 387.0) — (0.8699795041 - 2.2 (774.0- (0.36 —
1.0-22)1/2.(9.0—25.0-22)7/2 —282123.0-(0.36 — 1.0-22)/2.(9.0—25.0- %) '/2 — 196830.0- 2 +
3641355.0- 22 +2022975.0- 23 —13122000.0-2* —7290000.0- 25 + 16706250.0-2° +9281250.0-
27 +4218750.0-28+2343750.0-2° —17578125.0-2' 0—9765625.0-2' 14-2187000.0-22- (0.36 —
1.0-22)Y/2.(9.0—25.0-2%) /2 4+820125.0-2° - (0.36 — 1.0-2:2) /2. (9.0—25.0-22) /2~ 5163750.0-
24 (0.36—1.0-22)1/2. (9.0 —25.0 - 22)1/2 —1771875.0- 2° - (0.36 — 1.0 - 22)"/2- (9.0 — 25.0 -
222 42250000.0-2%-(0.36—1.0-22)1/2-(9.0—25.0-22)/2+234375.0-27 - (0.36 — 1.0-2:2) /2.
(9.0—25.0-22)Y2 +450.0- 2% (0.36 — 1.0 22) /2. (9.0—25.0- 22)7/2 + 3515625.0 - 3 - (0.36 —
1.0-22)12.(9.0—-25.0-22)/2 +250.0- 23 (0.36 — 1.0- 22) /2 (9.0— 25.0- 2%) /2 + 1953125.0-
2%-(0.36—1.0-22)Y2.(9.0-25.0-2%)/2 ~109350.0-z- (0.36 — 1.0- ) /2. (9.0— 25.0-22) /2 +
300.0-2-(0.36 — 1.0 22) /2. (9.0 — 25.0- 2%)7/2 — 354294.0))/((25.0- 22 — 9.0)3 - (125.0 - 3 +
225.0- 22 +150.0 -z + 387.0)) + (8.143008158 -z - (5.0- 2 —3.0) - (5.0- 2 +3.0)?) /(125.0 - 2 +
225.0-2% +150.0- 2+ 387.0) +7.328707342)) /(0.0082944 - (0.36 — 1.0-22) /2 +-0.000248832).
Here, z = laux - cos(7y).
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The core of this thesis lies in the task of structural optimization of periodic perforated
cylindrical shells under a given point load. The problem is divided into three
subcategories: Asymptotic analysis, macroscopic model and optimization. In this
work we show a qualitative derivation, together with an algorithm for calculating
the effective properties. We start with a decomposition of the applied displacements.
Using the Unfolding-Rescaling operator we can decouple the two small parameters.
The homogenization on beam-like structures is executed numerically and symbo-
lically. The effective properties depend solely on the periodicity cell. We calculate the
analytical solution of the limit equation. The solution is determined via a Fourier
transformation and series. Moreover, this function depends on the effective
properties. It is possible to represent the displacements w.r.t. certain design variables.
This allows performing optimization with simple methods. We use a steepest descent
method to minimize the resulting displacement. This yields the optimal configuration
w.r.t. our admissible design space. Applied industrial problems can thus be effectively
solved.
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