INTRODUCTION TO SMALL WIND TURBINES

OTTI Seminar: Basics of Small Wind Turbines | Tarragona, Spain | 28 April 2010 Paul Kühn | Fraunhofer Institute for Wind Energy & Energy System Technology

Fraunhofer Institute for Wind Energy and Energy System Technology Bremerhaven & Kassel

Research spectrum:

- Wind energy from material development to grid optimization
- Energy system technology for all renewables

Foundation: January 2009 **Employees:** approx. € 15 million

Personal: approx. 240 (full-time: 170)

Directors: Dr. Hans-Gerd Busmann, Prof. Dr. Jürgen Schmid

Formerly:

- Fraunhofer-Center f
 ür Windenergie und Meerestechnik CWMT in Bremerhaven
- Institut f
 ür Solare Energieversorgungstechnik ISET in Kassel

Fraunhofer Institute for Wind Energy and Energy System Technology Business fields I

- Wind energy technology and operating management
- Elasticity and dynamics of turbines and components
- Competence center rotor blade

Development of rotors, drive trains and foundations

Fraunhofer Institute for Wind Energy and Energy System Technology Business fields II

- Environmental analysis for wind and ocean energy
- Control and integration of decentralized converters
- Energy management and grid operation
- Energy supply structures and systems analysis

Small wind turbines and hybrid systems at IWES IWES test site

Small wind turbines and hybrid systems at IWES IWES test site

IWES test site, 10-min-data

Agenda

- 1. Size of modern wind turbines
- Small wind turbine classification and current market status (design, application, costs)
- 3. Planning and yield estimation
- 4. Conclusion

Development Wind turbine size - rated power

*Annual Electricity Production

Size of modern wind turbines

Size of modern wind turbines

Size of modern wind turbines

Characteristics of modern wind turbines*

Number of blad	es three	e 100) (%
Rotor axis	horizonta	100) (%
Rotor position	upwind, active yav	v 100) (%
(Power) speed limitation active pitch) (%
Blade material	fibre-reinforced composites			%
Variable speed	(doubly-fed) induction generator			%
	synchronous generato	r 49	9 9	%
Tower	tubular (concrete, steel) > 90) (%

* Characteristics of wind turbines installed in Germany between 2006 and 2008 (Source: Windenergie Report Deutschland 2008; ISET)

Installed wind power capacity, April 2010

- 1. Size of modern wind turbines
- Small wind turbine classification and current market status (design, application, costs)
- 3. Planning and yield estimation
- 4. Conclusion

Wind turbines Size categories

Small wind turbine
Category - SRotor swept area:up to 200 m²Rated power:up to 75 kW

Small wind turbine classification Size, rated power, design, application...

	Poto supervision of the second s		Photo: www.quietrevolution.co.uk	Photo: www.hannevino.
Model	Superwind 350	Fortis Montana	Quietrevolution qr5	Hannevind 30 kW
Rotor diameter	1,2 m	5 m	3,1 m x 5 m	13 m
Rotor swept area	1,1 m ²	19,6 m ²	15,5 m ²	133 m ²
Rated power	0,35 kW	5 kW	6 kW	30 kW
Rotor axis	horizontal	horizontal	vertical	horizontal
Type of generator	permanent magnet	permanent magnet	permanent magnet	induction
Tower head weight	11,5 kg	230 kg	450 kg	950 kg
Typical application	remote, mobile, battery charger	on- or off-grid,	building mounted, on-grid	commercial, on-grid

Design - rotor concepts Drag and lift

Design Tower types

free-standing lattice

free-standing tube

UKES test site

tilt-up, guyed lattice

tilt-up, guyed tube

Design Tower footprints

Small wind turbine systems DC coupled system

Small wind turbine systems AC coupled system

World small wind turbine market growth Wind power capacity installed & number of units sold in 2008

Market Examples of available types

Applications of small wind turbines Grid connected systems in the built environment

Applications of small wind turbines Remote systems

Applications of small wind turbines ???

- High up-front costs: installation costs vary from about 2 500 € to 7 000 € per kilowatt installed rated power
 - great variety of available small wind turbine designs and applications
 - different system sizes
 - different manufacturer backgrounds and different manufacturing economies of scale
- Reoccurring costs are often not considered
 - Maintenance and repair, replacement of components etc.
 - Production losses

Reliability and downtime Small wind turbines in Germany

- 1. Size of modern wind turbines
- Small wind turbine classification and current market status (design, application, costs)
- 3. Planning and yield estimation
- 4. Conclusion

Why are wind turbines so high? World's highest wind turbine

> Fuhrländer FL2500 Laasow, Germany

Why are wind turbines so high? Boundary layer and free atmosphere

Local wind conditions influenced by terrain type Descriptions of roughness length z₀ by images

Local wind conditions Siting of small wind turbines

Siting of small wind turbines:

- near the place of electricity consumption
- no wind data available
- safety, vibration, noise emissions

Specifications Power coefficients C_P of wind turbines of different size

Specifications*: rated power and rated wind speed No standard rating system for small wind turbines

Specifications and product information Example: power curve

In many cases, published power curves are not measured according to standard procedures, based on estimations etc.

Specifications: power coefficients No standard rating system for small wind turbines

Estimating annual electricity production (AEP) Electrical chacteristics of small wind turbines

Estimating annual electricity production (AEP) Power output: real time data and averaging

IWES test site, measurement period: 2009-07-28 to 2009-10-14, Whisper H80, Southwest Windpower

Estimating annual electricity production (AEP) Rotor diameter / swept area

Rotor diameter	Rotor swept area	Power in the wind x 0,3 at 9 m/s
1 m	0,8 m ²	105 W
3 m	7 m ²	950 W
5 m	20 m ²	2 630 W
7 m	40 m ²	5 150 W
10 m	80 m ²	10 520 W

<u>Example</u>

rotor diameter: D = 3 mavg. wind speed: $V_{ave} = 5 \text{ m/s}$

```
AEP = 260 (kWh/m<sup>2</sup>)/a x 7 m<sup>2</sup>
= 1820 \text{ kWh/a}
```


Small Wind Turbine Yield Estimator MS Excel-Spreadsheet

Free download: www.windmonitor.de

- 1. Size of modern wind turbines
- Small wind turbine classification and current market status (design, application, costs)
- 3. Planning and yield estimation
- 4. Conclusion

Photovoltaics and small wind turbines A brief comparison

Task	Photovoltaic system	Small wind turbine
Resource assessment	solar radiation	average wind speed, main wind direction, turbulence, wind shear
Siting	module orientation and inclination angle, shadowing effects are visible	positioning of tower, effects (wind shadow, turbulence) of obstacles and terrain type are not visible
Sizing	collector area, peak power	swept rotor area, rated power, tower height, tower footprint
Choosing technology	module type, inverter (battery), (fixed or tracking)	great variety of technical concepts (rotor design, type of generator, inverter etc.)
Evaluating operational aspects	no moving parts, repair and maintenance, accessibility (rooftop)	due to moving parts potential safety risks, emission of noise and vibrations, repair and maintenance, accessibility (tower)

SMALL wind turbines – BIG chances Any questions?

M. Sc. Paul Kühn

Devision Energy Economy & Grid Operation Fraunhofer Institute for Wind Energy & Energy System Technology IWES

Königstor 59 | 34119 Kassel, Germany Tel +49 561-7294 351 | Fax +49 561-7294 351 pkuehn@iset.uni-kassel.de

