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ABSTRACT 

 
Perfect quality control of food becomes more and more a matter of course. Foreign materialslike 
pieces of rocks, insects, plastics, carton etc. have to be identified and sorted out. For many years, 
near-infrared spectroscopy has been a widely-used analytical offline method for quality inspec-
tion for small samples in the food and agriculture industry. Up to now, high-speed automatic 
sorting machines work usually on the basis of visual inspection, not near-infrared inspection. 
This article describes how an in-line food sorting system can be developed on the basis of hyper-
spectral imaging data. We focus on analyzing the vast amount of data to yield minimum band 
selection with optimal classification results required for an industrial sorter. 
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1. INTRODUCTION  
 
From the customer’s point of view, the perfect quality of food becomes more and more a matter 
of course. People of many nations increasingly buy semi-finished food. Thus, the food is not 
washed, sliced, and prepared by the end customer, i.e., quality control is not performed "at home 
in the kitchen." Therefore, food has to be prepared in advance such that only perfect food is the 
output without any defect and especially without any foreign objects like pieces of rock, insects, 
plastics, carton etc. Premium quality food is expected to look appealingly. Thus, besides objects 
which are obvious foreign bodies even for a layman, also parts of the good product, i.e., the fruit, 
vegetable, tea, or herb etc. have to be removed from the product stream. Several aspects motivate 
companies to put in sorting machines: the achievable quality is constant, sorting machines can 
run 24 hours a day, the sorting result is better than with manual sorting, and the sorting costs are 
decreased. 
 

1.1 Machine Vision 
 
Machine vision has been refined to a high level of sophistication and has been applied exten-
sively in manufacture engineering. It combines visual, infrared (IR), ultra-violet (UV), or x-ray 
sensing with digital video technology and image processing. Machine vision has been applied for 
many years almost exclusively to the inspection of engineering components, manufactured by 
processes such as casting, stamping, pressing etc., which produce close tolerance arte-
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facts (Graves and Batchelor, 2003). In contrast, natural products exhibit wide variations in over-
all size and shape, internal structure, color and surface texture. As a consequence, machine vision 
has been applied for a much shorter time to the food industry. 
The Fraunhofer Institute for Optronics, System Technologies and Image Exploitation (IOSB) has 
performed research of inspection systems for over 20 years, e.g., inspection of blisters for the 
pharmaceutical industry, and has developed sorting machines especially for the tobacco and food 
industry for about 10 years. While in the past the focus was mainly on inspections using the vis-
ual wavelength range by means of RGB line cameras, research and development is shifting to-
wards non-visual wavelength ranges. 
 

1.2 Spectroscopy 
 
Visible and near-infrared (Vis/NIR) spectroscopy, which covers the spectral region between 
400 nm and 2500 nm, has become an important non-destructive technique for chemical analysis 
and quality assessment of a large class of agricultural and food products (Williams and Nor-
ris, 2001). Conventional Vis/NIR spectroscopy only provides point or area measurements, and 
therefore cannot quantify the spatial variation or distribution of properties and attributes in the 
product item. Moreover, the technique is largely empirical, relying on the development of cali-
bration models relating spectral information to reference measurements that are often destructive 
(Lu, 2007). 
 

1.3 Hyperspectral Imaging 
 
The limitations mentioned above can be overcome with hyperspectral imaging, an extension of 
spectroscopy from single-point inspection to two-dimensional measurement. Hyperspectral im-
aging was first developed for remote satellite sensing of the earth and for military reconnaissance 
over 20 years ago. In the past decade, the technique has received increasing attention for assess-
ment of the quality and safety inspection of food and agricultural products (Lu, 2007; Zude, 
2009). With the spatially resolved spectral data at hand, chemometric methods and image proc-
essing methods can be combined for the analysis of heterogeneous products, such as agricultural 
or biological samples in the laboratory or food products during in-line automated visual inspec-
tion (Mehl et al., 2004; Gomez et al., 2005; Ariana et al., 2006b).  
 
From the user’s point of view, an imaging spectrometer is a line-scan camera with a few hundred 
pixels per line. However, in contrast to a grayscale camera, this camera does not just measure 
one radiance value for each pixel, but hundred and more color values, distributed across the 
spectrum at which the sensor is sensitive. Each color value represents the energy of the light 
measured within a portion of a narrowband spectrum of, e.g., 10 nm width. The images are cap-
tured line by line synchronized with the motion of a sliding-table which yields a data cube repre-
senting spatial information in two directions and spectral information in onedirection (see fig-
ure 1). 
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Figure 1. Hyperspectral data cube. 
 

1.4 Band Selection 
 
The first application where the IOSB got in contact with hyperspectral imaging was the devel-
opment of an in-line color measurement system to determine exactly the color of plastic granules 
by means of a hyperspectral imaging system in the visual range (Vieth et al. 2009). While it is 
important to describe the color of plastic granules using the complete visual spectrum – using 
only RGB would not encompass the whole visual range and could produce ambiguous results 
due to metameric effects – we want to focus on using as less wave bands as possible. 
Several aspects motivate to use only a minimal number of wave bands. The already good sorting 
quality of existing and future sorting machines which are based on RGB line cameras should be 
extended by one or several additional “colors” of the invisible light instead of a complete hyper-
spectral imaging system. The costs of such a system are much higher than just one or two addi-
tional line-scan cameras. Due to the low frame rate of a hyperspectral imaging system, a line 
camera is to be preferred. This also yields a higher resolution and consequently smaller foreign 
bodies can be classified and sorted. First experiments support the suggestion that a few bands are 
adequate for obvious improvement of sorting results compared to sorting based on solely RGB 
line scan cameras. 
The reduction of the number of bands and the consequential reduction of data allow applying 
more algorithms for image analysis and classification. 
The drawback of a reduced number of bands is the specific design for a certain product, i.e., ma-
terial type. 
 

1.5 From Laboratory to In-line Food Sorting 
 
In order to characterize the product to be inspected, the material is first analyzed by means of 
hyperspectral imaging systems, e.g., from 1000 – 2500 nm, i.e., up to the shortwave infrared 
(SWIR) wavelength range. The material is moved with a constant velocity on a sliding table be-
low the hyperspectral imaging system. 
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Secondly, data analysis is applied todetermine characteristic wavelength regions whichdiscrimi-
nate between product and foreign bodies. 
Thirdly, the output of the analysis describes the required bands which are the basis for the design 
of a sorting system. With this knowledge, camera sensors, filters, and suitable illumination have 
to be selected. 
Fourthly, the overall sorting system has to be designed and build which has to be set up in the 
industrial environment and fulfill the requirements of the customer. 
 
A typical sorting system for dried food is composed of a vibration pan, a conveyor belt with a 
typical velocity of 3 m/s, the camera and lighting components, and the valve block which rejects 
the foreign bodieswith compressed air. The resolution is adaptedin order to meet the customer’s 
needs. A typical setup is shown in figure 2. 
 

Figure 2.Sorting system. 
 

2. RELATED WORK 
 

2.1 Band/Feature Selection in NIR Data Analysis 
 
In general, there are two different approaches for using hyperspectral images for classification 
purposes. Firstly, one can use all hyperspectral bands for the classification and determine class-
separating features by taking (linear) combinations of all bands. A review and comparison of 
different feature extraction algorithms is shown in Paclik et al. (2006).A very well-known exam-
ple for feature extraction is the Karhunen–Loève transform (PCA). It is used in several applica-
tions. However, the principal components cannot be interpreted physically in a meaningful way, 
as they are linear combinations of all measured spectral bands. For the same reason, the PCA 
cannot be realized in a simple and fast sensor design which is necessary for sorting devices. A 
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very good separation of classes in hyperspectral data can be achieved by usage of support vector 
machines (Gualtieriand Chettri,2000). 
Secondly, a hyperspectral image can be used to select a number of subbands. This can either be 
done by picking single bands (feature selection) or by combining adjacent spectral bands. The 
latter approach is often called band selection and can easily be implemented in hardware, as dif-
ferent bands can be extracted by customized optical filters. Therefore, cheaper and faster camera 
setups can be used. A collection of different sensor designs is presented in the following section. 
There are different strategies for implementing band selection. It can be done by iteratively di-
viding the spectrum (Serpico and Moser, 2007) or by merging neighboring bands (Withagen et 
al., 2001). De Backer et al. (2005) uses weight-functions for extracting and combining bands. 
These weight-functions can be interpreted as the transmittance of optical filters. Hence, this ap-
proach is very promising for the presented problem of determining filter characteristics. 
For evaluating any band selection and the corresponding separability of classes, different dis-
tance measurements are used, e.g., the Bhattacharya distance by De Backer et al. (2005) or the 
Mahanalobis distance by Withagen et al. (2001). The distance measurements are used to define a 
criterion function which needs to be optimized. As the number of possible band selections is very 
large, the global optimum cannot be determined with reasonable effort. Hence, global optimiza-
tion procedures like genetic algorithms, simulated annealing, sequential forward (floating) selec-
tion, or sequential backward (floating) selection are used to find an optimal selection.  
 

2.2 Approches to Sensor Design 
 
There are different waysfor making a multispectral image. As the objects move on a conveyor 
belt, it is possible to install several monochrome cameras with different optical filters attached. 
In this case, the illumination most likely but not necessarily has to be the same at all camera po-
sitions and the objects must not move themselves on the conveyor belt. Otherwise, the cameras 
observe different sceneswhichmakes data analysis more complex. To avoid these problems, the 
multispectral image has to be recorded at the same position. Therefore, different detector designs 
are possible. Firstly, a rotating wheel containing different optical filters can be mounted between 
the camera and the conveyor belt (Ariana et al. 2006a). As the conveyor belt moves on while one 
multispectral dataset is being recorded, the use of a filter wheel is only possible for conveyor 
belts moving at moderate speed. A second possibility is a three-CCD camera, e.g., developed by 
Duncan et al. (2009) and used by Withagenet al. (2001). Here, three monochrome CCD-cameras 
and a trichroicprism are used. The prism separates the image in different spectral bands. These 
bands can be adapted by selecting different coatings at the prism surfaces. By this design, it is 
possible to record the same scene with three different bands at the same time. Another design 
allows doing this with only one camera. Therefore, a beam splitting unit divides the light from a 
single lens into different channels. Each channel is filtered to a specific spectral region and im-
aged on one single CCD-array. This setup is used by Lu et al. (2007). 
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3. EXPERIMENTAL RESULTS 
 
As argued in Section 1.4, in many sorting applications where different materials have to be quali-
tatively identified and detected, the measurement of a complete NIR spectrum with a spectro-
graph can be avoided. Instead, the measurement can be reduced to selectively measure the spec-
tral reflectance of the product to be inspected at discriminating wavelengths. This spectral selec-
tivity can be achieved by using optical band-pass filters or by using selective spectral illumina-
tion techniques. In this section, the proposed approach to develop an in-line sorting system based 
on NIR sensitive sensors and selective optical filters is illustrated on a realexample from the food 
inspection domain. In particular, chopped and dried onions should be monitored for foreign ma-
terials such as stones or packaging residues like paper scraps (see Figure 3).  
 

Figure 3. (Left) Dried onions and foreign material which have to be detected by the sorting sys-
tem: (1) dried onions, (2) wood splitter, (3) paper scraps, (4) cork, (5) cord, (6) stones, (7) plas-
tic. (Right) Mean spectra of the training data set which was acquired from the materials shown 
left with hyperspectral imaging. The filled gray curve represents the quantum efficiency of the 
spectral sensor that is deployed in the sorting system. 
 
As outlined in Section 1, in the first step, hyperspectral data of the good product and the foreign 
materials, which are likely to get into the good product during various processing steps, is per-
formed. Then, a subsequent data analysis of the hyperspectral reflectance data aims to identify 
spectral regions that capture distinct characteristics of both material types, i.e., good and foreign 
materials, and therefore permit a good material separation. In view of sensor design, these spec-
tral regions then serve as decision basis for the choice of a set of optical band-pass filters that 
make a NIR sensor selective for these specific spectral regions. As a result, such a sensor is able 
to capture single- or multispectral inspection images which allow a material-based segmentation. 
 
In the following, the band selection technique proposed by De Backer et al. (2005) is explained 
and illustratively applied to the task of in-line inspection of dried onions. Since in this work, 
band selection is performed by the optimization of a parameterized set of Gaussian optical filters, 
this method is particularly interesting for the purpose of sensor design. 
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To determine a set of optical filters which is adequate for the described inspection task, various 
spectra of the dried onion samples and the polluting materials were acquired by using a hyper-
spectral imaging system in the near-infrared wavelength range from 1000 nm to 2500 nm. A 
halogen lamp was used to illuminate the samples. In order to obtain reflectance spectra of the 
samples that are independent of the spectrum of the light source as well as independent of the 
quantum efficiency and the dark current of the hyperspectral imaging sensor, the measured spec-
tral radiances were standardized. For this purpose, the measured radiance of a white reference 
panel and a dark current image were used for reflectance calibration. Finally, a labeled and 
equally sized training data set was set up, consisting of one class with spectra obtained from the 
dried onions and another class composed of equal portions of spectra from the foreign material 
depicted in Figure 3. 
 
With the labeled training data set at hand, supervised band selection was conducted to select a 
small number of waveband regions that provide a high discrimination between the dried onions 
and the foreign material. However, rather than to consider the spectra as feature vectors and to 
select a subset of spectral variables, the spectra are treated as continuous functions and features 
are extracted by a set of Gaussian-shaped weight functions as proposed by De Backer et 
al. (2005). This approach to feature extraction mimics the process of sampling the spectral reflec-
tance with a set of optical filters 
 

where denotes the central wavelength and the width of the optical band-pass filter. Features 
from a spectrum are then extracted by the linear transformation 
 

which simulates the measuring of with a spectral sensor with quantum efficiency and an 
optical filter in front of it.That is, is the intensity (in digital numbers) that would 
be measured by a spectral sensor. For simplicity, the influence of the illumination is neglected by 
assuming a constant spectral irradiance with respect to wavelength. Therefore, given a sensor 
with quantum efficiency which should be deployed in the sorting system, the problem of 
selecting an adequate set of optical band pass filters for the specific sorting application can be 
addressed by choosing a set of filter parameters and and evaluating the extracted features 

from the labeled training data. Since in food sorting foreign material detection is the goal, the 
optical filters have to be selected so that the features exhibit high discrimination 
potential for material classification. At the same time, the number of extracted features should 
be small in order to keep the complexity of the classification problem low and to alleviate the 
curse of dimensionality when the number of training samples is limited (see Hastie et al. (2003) 
for an in-depth discussion). Moreover, from a technical point of view, only a small number of 
optical filters can be used in sensor design (see Section 2).  
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In De Backer et al. (2005), the adjustment of the filters is formulated as continuous 
optimization problem, where the objective is to maximize the Bhattacharya distance between the 
extracted features from a two-class labeled training data set. From a theoretical point of view, the 
Bayes error provides the lower bound on the expected classification error and hence would be 
the best criterion to evaluate the extracted features for their classification potential. However, in 
general, the Bayes error cannot be computed directly and, therefore, other statistical measures 
like the Bhattacharya distance are proposed in the literature to estimate the separability of two 
classes of features (Simin et al., 2009). Another possibility is feeding the extracted features di-
rectly to a classifier and evaluate these according to their classification performance, e.g., which 
could be estimated by using cross-validation within the training data set or by using a separate 
test data set. These two approaches to feature selection are referred to as filter and wrapper ap-
proaches in literature (Kohavi and John, 1997).  
In our experiments, the Bhattacharya distance is used as criterion for selecting a set of filters 

that produce discriminative features from the training data set. Since this criterion 
function has many local maxima (De Backer et al., 2005), the differential evolution method 
(Storn and Proce, 1997) was used as global stochastic optimization procedure to find a set of 
good filters. Due the restriction that practically only imaging sensors with a small number of 
selective filters can be built, the optimization problem was restricted to small dimensions with 

.

Finally, the filters obtained by the optimization procedure (see Figure 4) were evaluated on a 
separate hyperspectral test image. In this test image, samples of dried onions are prepared with 
various foreign materials from the learning data, so that these could hardly be detected by con-
ventional color imaging (see Figure 5). The obtained filter sets are applied to the acquired test 
spectra to extract features for classification. By this, a single- ( ) and two multispectral 
( ) images are obtained by simulating the measuring process of the reflectance by the 
sensor with the corresponding band pass filters. Afterwards, Linear (LDA) and Quadratic Dis-
criminance Analysis (QDA) (see Hastie et al. (2003) for more details) was used to classify the 
extracted features, that is, the simulated single-and multispectral images are segmented accord-
ing to the good product and foreign materials (see Figure 5).  
 

Figure 4. Sets of selective filters obtained by differential evolution. The spectral sensitivities of 
the filters are indicated as blue Gaussian-shaped curves. The red and green line plots indicate the 
mean spectra from the training data set (green: dried onions, red: foreign materials). The filled 

gray curve represents the quantum efficiency of the spectral sensor that is deployed in the sorting 
system. 
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Figure 5 shows the simulated sorting results that are expected for the NIR line-scan sensor and 
the different sets of optical filters obtained by differential evolution. The best result was obtained 
by a set of filters and QDA as classification method, where all polluting materials are 
indicated in the segmented image. By the use of LDA, the wood splitters were not detected, 
which means, that the extracted features cannot be linearly separated. 
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Figure 5. Results obtained by evaluating the optimized filter sets in Figure 4 on a separate hyper-
spectral test image (lower right). The extracted features are classified using LDA and QDA 

yielding in a segmentation into good product (green) and foreign materials (red). 
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However, two of the three mean wavelengths lay outside the sensitive area of the chosen sen-
sor. It is interesting to see that a comparable result is obtained by using only features with 
filters in the sensitive area. However, the QDA segmentation result shows a slightly higher false 
alarm rate, that is, good product is falsely classified as polluting material. Taking into account 
the smaller technical effort to develop a sensor with only two selective filters compared to three 
optical filters, it could be concluded that a sensor with two optical filters is appropriate for this 
particular food sorting application from a cost-benefit point of view. To reduce the negative ef-
fects of falsely classified good product, conventional image processing techniques like morpho-
logical filtering can be used to eliminate small falsely classified regions. Finally, the results ob-
tained with a single selective optical filter clearly show that a single feature alone cannot dis-
criminate between the different material types. Although all foreign materials are detected, the 
false alarm rate is too high to be corrected by subsequent image processing operations. 
 

4. CONCLUSIONS AND OUTLOOK 
 
Hyperspectral imaging allows combining classical laboratory spectroscopy with imaging proc-
essing, where the latter is well established in automation processes. By means of band selection 
methods we showed how to close the gap between the huge amount of laboratory data and the 
need for speed during food sorting. 
We used the Bhattacharya distance as criterion for selecting a set of filters. Then we applied the 
selected filters to acquired data of dried onions and related foreign materials in order to finally 
perform LDA and QDA for classification. Firstly, QDA yields better results. Secondly, the clas-
sification results with two and three filters are better than those with one filter. Taking, e.g., 
morphological filters into account, a classification on the basis of two filters would probably 
yield results which would be sufficient for reaching good product quality. 
 
The presented results can be further evaluated by, e.g., determining the ratio of foreign material 
detected by the proposed method. In some applications, it could be necessary to distinguish be-
tween different kinds of foreign material. In such cases, a more specified classification with sev-
eral classes of foreign material needs to be developed. The relation between the necessary num-
ber of filters and the distinction of classes could be evaluated.  
Finally, the proposed setup could be tested with real optical filters and the sorting results could 
be compared to the predicted ones.  
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