
GMD –
Forschungszentrum
Informationstechnik
GmbH Marcello L‘Abbate, Matthias Hemmje

VIRGILIO
The Metaphor Definition
Tool

May 1998

15
GMD Report

© GMD 1998

GMD –
Forschungszentrum Informationstechnik GmbH

Schloß Birlinghoven
D-53754 Sankt Augustin

Germany
Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618
http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungs-
ergebnisse aus der GMD zum wissenschaftlichen, nicht-

kommerziellen Gebrauch veröffentlicht. Jegliche Inhaltsänderung
des Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of scientific

work for scientific non-commercial use. The commercial
distribution of this document is prohibited, as is any modification

of its content.

Anschrift der Verfasser/Address of the authors:
Marcello L‘Abbate
Matthias Hemmje

Institut für Integrierte Publikations- und Informationssysteme
GMD – Forschungszentrum Informationstechnik GmbH

Dolivostraße 15
D-64293 Darmstadt

E-mail: labbate@gmd.de
 hemmje@gmd.de

ISSN 1435-2702

3

ABSTRACT : The Virgilio software system is a general purpose exploration tool for
large collections of complex structured data. It generates visualisations of the results of
a query to a database by the help of virtual reality objects, embedded into predefined
virtual reality scenarios. This document describes the design, specification, and
implementation of the Metaphor Definition Tool. This component of the Virgilio
software system has to identify the most suitable virtual worlds for representing the
result of a query. This is achieved by considering the metaphor definition task as a
general constraint satisfaction problem. The logical formalism adopted to describe
interrelationships among the involved objects corresponds to that of the Prolog
programming language, in order to take advantage from its built in backtracking
strategy. This paper presents the overall Virgilio architecture, provides a brief
introduction to the concept of metaphor and its use within the Virgilio environment,
contains a description of the MDT as well as a description of the repositories, and
explains how to integrate the MDT into the whole system. Two complex mapping
examples are also introduced.

Keywords: Information systems, user interfaces, information visualisation, metaphor
generation

4

5

INDEX

1. INTRODUCTION...7

2. OVERVIEW OF THE ARCHITECTURE OF VIRGILIO...8

3. WHY METAPHORS ...10

4. THE MDT..12

4.1 Mappings..12

4.2 Query Repository...14

4.3 Virtual World Object Repository...16

4.4 Metaphor Repository..18

5. THE MAPPING PROCESS..19

5.1 The Virtual World list..19

5.2 The Query list...20

5.3 Executing the process..21

6. FUTURE WORK...22

7. REFERENCES..23

8. ACKNOWLEDGEMENTS...25

APPENDIX A - MAPPING EXAMPLE I..25

APPENDIX B - MAPPING EXAMPLE II...34

6

7

1. INTRODUCTION

Virgilio is a VR-based system, which generates visualisations of complex data objects
representing the result of a query [Massari et al. 96, Massari et al. 97, Massari et al. 98].
The system uses a data base repository of virtual world objects and creates a visual
representation of the data-set resulting from the formulated query. This is achieved by
following precise rules. The structure of the query result must be preserved and the
chosen virtual objects must be suitable for supporting the type of data to be displayed.
Moreover, Virgilio is based on concrete metaphors (i.e. metaphors where the visual
domain is composed by objects known by users from their everyday experience) in order
to take advantage of common knowledge about real world objects.

Two different classes of users may interact with the Virgilio system: final users and
system administrators. Final users, on the one hand, will access the system by
formulating a query by means of natural language. After the initial information retrieval
step of the Virgilio system, they will browse the data items by means of a virtual reality
exploration. System administrators, on the other hand, have to carry out mainly two
tasks. First they will translate the query formulated by the final users into an SQL-form,
in order to allow further processing within the system. Second, a system administrator
takes also part in the definition of the actual set of virtual scenes to be presented to the
final users. It is possible to think of automatic procedures that may support or even
substitute this work of system administrators. This issue is discussed later in this
document.

Another relevant feature of the Virgilio system is the possibility to use it like a standard
client-server application on the web. The virtual world scenes are stored in VRML
format [VRML], and the final users can access the system by means of a common web-
browser which supports VRML.

A component of the Virgilio system, called the Metaphor Definition Tool (MDT),
generates and analyses all possible mappings among the objects of the query data-set
and the objects of a set of virtual worlds. Further procedures will determine whether the
generated mappings are to be considered as efficient metaphors or not, and therefore to
be shown to the user as the final query result visualisation of Virgilio .

This document describes the MDT design, specification and its implementation. Section
2 presents the overall Virgilio architecture. Section 3 provides a brief introduction to the
concept of metaphor and its use within the Virgilio environment. Section 4 contains a
description of the MDT as well as a description of the repositories. The mapping
process is discussed in the 5th section. Finally section 6 explains how to integrate the
MDT into the whole system. The appendix introduces two complex mapping examples.

8

2. OVERVIEW OF THE ARCHITECTURE OF VIRGILIO

In Figure 2.1 the architecture of Virgilio is depicted. The final user’s query is first
processed by the Query Tool (QT). It provides an SQL script of the query which is
stored into the Query Repository (QR) as output. The MDT will take the selected query
as input, as well as data taken from the Virtual World Object Repository (VWOR) in
which the virtual objects are described, in order to find out one or more metaphors
suitable for representing the result of the query into a virtual scene. The MDT will
produce data to be stored into the Metaphor Repository (MR). This data will be used by
the Scene Constructor (SC) to actually build the VRML scenes. The SC will also access
data stored in other repositories, that means:
- the VRML frameworks, from the VWOR;
- the selected query script from the QR;
- the actual result data-set from the source database.
The built scenes will finally be presented to the user who will navigate through the
resulting visualisation by using a common web browser.

Metaphor
Repository

VW Object
Repository

SOURCE
DB

QUERY
Repository

Figure 2.1 - Architecture of Virgilio

QUERY
Tool

MDT

USER

Scene
Constructor

9

Please note that the presence of a system administrator has been omitted in this
overview of the architecture for two reasons. First, the interpretation and understanding
of the system becomes easier and clearer; second, as already mentioned, it is possible to
design procedures that may substitute the system administrator’s work, and the schema
of figure 2.1 would be a possible solution for that topic. The QT can be realised like a
standard visual query interface [Catarci and Costabile 95 , Massari et al. 95] producing
an SQL script for the selected query. Otherwise naive final users will not be able to
formulate their request in natural language. Moreover, as we will see in the next section,
the definition of the actual set of virtual scenes to be presented to the user, can be
entirely carried out by the MDT.

Typically, the data composing the query result has a structure as complex as the
modelling primitives allowed by the database model. Virgilio operates with those
models which can support, directly or indirectly, the notion of nested relations [Atzeni
and De Antonellis 93]. Informally, a nested relation is a set of tuples such that the values
of attributes are allowed to be nested relation themselves.

The queries stored in the query repository (i.e. their SQL expression) will also be
represented, in the same repository, in the form of a Structure Tree [Massari et al. 96]. A
structure tree is a directed graph, whose edges represent the nested relations of the
query. The structured-tree queries will be used either by the MDT or by the Scene
Constructor for their purposes. The structure tree appearing in this paper has a slightly
different implementation than the one described in [Massari et al. 96]. Section 4.2 will
describe these differences, as well as the structure tree's use within the system.

10

3. WHY METAPHORS?

Metaphors are very much used in natural language. A definition given by Lakoff and
Johnson states that "a metaphor is a rhetoric figure, whose essence is understanding and
experiencing one kind of things in terms of another" [Lakoff and Johnson 80].
Therefore, a metaphor gives the possibility to understand new and complex concepts by
means of more familiar (i.e. well-known) ones. This feature has been exploited in the
interfaces of several computer systems. Indeed, in the last two decades the tendency of
the computing world has been to concentrate into designing and developing powerful
interfaces between computer and end-user [Carroll et al. 88, Marcus 94, Erickson 90].
All of them strictly rely on the metaphor concept, thus even the inexperienced user may
think of common actions while performing complex and delicate tasks on a machine.

It is possible to identify two sets of component concepts in every metaphor, namely
target and source concepts [Martin 90]. The former consists of the concepts to which the
metaphor actually refers to, the latter consists of the concepts used in substitution of the
target concepts. For instance, if we consider the desktop interface-metaphor, used in
several kinds of computer platforms, we can notice an often-used wastebasket-tool, in
which the action of throwing away some paper (source concept) represents a familiar
way for deleting an item from the memory or hard disk (target concept).
The metaphors used by Virgilio go in a slightly different direction, e.g. in a data-
oriented way. Indeed, the target concepts consist not only of actions such as the interface
metaphors, but they also include final information, namely different kinds of data. Many
authors have already done some research on that topic [Haber et al. 94, Costabile et al.
95, Aloia et al. 96], and the Virgilio system provides a combination between action and
data-oriented metaphors, generated in a semi-automatic way.

But how can one evaluate if the metaphors created by Virgilio are useful and efficient?
It is very difficult and arduous to give a precise answer to this question. Many authors
and computer designers proved the efficiency of a metaphor by means of usability tests
[Marcus 94, Carroll et al. 88]. They submitted a metaphor to a selected group of
different users, studying and examining the results in a statistic way. But this is hardly
possible with the metaphors used by Virgilio . Even if the source concepts (e.g. the
available virtual worlds) are numerous but fixed as regards the number of occurrences,
the target concepts may vary in every user-session, producing an infinite number of
different metaphors to be tested.

An alternative solution for evaluating metaphors was given by Gentner [Gentner 80] and
then discussed by Carroll, Mack and Kellog [Carroll et al. 88]. He has defined a set of
characteristics such as base specificity, clarity, richness and so on, which have to be
satisfied by every metaphor.

11

These characteristics are:

„BASE SPECIFICITY“is defined as the extent to which the structure of the
metaphor source domain is explicitly understood
(i.e., in terms of its predicates). It sets an upper
limit on the potential usefulness of the source
domain as a predictor of the target.

„CLARITY“refers to the precision of the node correspondences
across the mapping; a metaphor where node and
predicate correspondences are one-to-one rather
than, for example, one-to-many in the target
domain is higher in clarity.

„RICHNESS“is the density of predicates (relative to the total
specified in the base) included in the mapping.

„ABSTRACTNESS“refers to the level at which relations comprising the
mapping are defined. If they are the first order
predicates (relation among nodes) of the metaphor
source, the mapping is less abstract than if they are
higher order relations (those among predicates) in
the source domain.

„SYSTEMATICITY“metaphors are systematic to the extent that mapped
relations are mutually constrained by membership
in some structure of relations.

„EXHAUSTIVENESS“base exhaustive metaphors map each of their
relations into the target domain (target exhaustive
metaphors are defined analogously).

„TRANSPARENCY“metaphors are more transparent if it is easy to
determine which of the relations specified in the
base are to be mapped into the target.

„SCOPE“ ...refers to the extensibility of the mapping.

It is possible to think of automatic procedures that may evaluate most of the constraints
proposed by Gentner.
Another element to take into consideration while generating a metaphor surely is the
user model [Chang et al. 93]. A metaphor is more efficient if it fits the user's needs and
habits well. In future versions of Virgilio users will introduce themselves to the system
by answering a given form, about their attitudes and working areas, in order to create
adequate metaphors. The system will be expanded with a new repository (the user
repository, UR), which will contain all models of users that have previously interacted
with Virgilio .

12

4. THE MDT

The MDT is a module of the Virgilio system, which has to identify, among all
predefined virtual worlds, the most suitable ones for representing the query result. A
virtual world is defined to be suitable when it meets a set of requirements. For instance,
a virtual world has to contain objects capable of displaying all data types of a potential
query result. Moreover, as already mentioned, it is necessary to preserve the structure of
the formulated query which has been imagined and therefore determined by the final
user himself. Navigation through the resulting information visualisation will seem more
natural to him, since he already knows the directions to choose and how “deep” to go on
while browsing the visualised data. Finally, a virtual world has to guarantee the above
described metaphoric effect, in order to allow a more spontaneous and effective
browsing of the data.

4.1 Mappings

The mapping process of the MDT will determine whether a virtual world is suitable or
not for visualising the current query. This is achieved by examining the objects
composing the virtual world in order to generate one-to-one correspondences with all
elements composing the query result data-set. Such a correspondence will be established
only if the involved objects support the same kind of data and only if they maintain the
same position within the overall structure schema.

For example, consider a simple virtual world composed by a room with a poster and a
chest of drawers inside. The poster may visualise a large image and the chest of drawers
may be composed of a variable number of drawers. Each drawer may contain folders
displaying some text. Moreover, consider a query retrieving information about a music
singer, let's say Sting. This information would comprehend his photograph and all his
released Compact Disks. The query would also retrieve the titles of the songs contained
in each CD. If we now apply the mapping process the following result may be
determined:

� the whole room may represent the singer Sting;
� the poster on the one wall would visualise his photograph;
� the chest of drawers may contain a number of drawers corresponding to the

number of CD's retrieved;
� each drawer would be mapped to a specific CD;
� by opening one drawer you would find some folders, each of them

corresponding to a song contained into the related CD.

The mapping process is successful in this case because the two structures correspond to
each other. Moreover the objects of the room displaying final information (e.g. the
poster and the folders in a drawer) support a kind of data (e.g. an image and some text)
compatible with the kind of data of the retrieved information (e.g. the singer's photo
and the titles of songs).

13

This virtual world may be expanded by considering a corridor of rooms. Each room may
contain the same objects described above. Therefore, it would be possible to formulate a
query retrieving a set of singers. Each of them would be mapped to a single room of the
corridor.

In figure 4.1 a scheme of the MDT is sketched. The following modules can be seen in
the figure:

� MDT core, which performs the mapping process;

� Query repository interface, which transforms the structure tree of a query into a

suitable format for the MDT (e.g. a list, see section 5.2);

� VW object interface, which provides the MTD Core with the necessary data

describing the virtual worlds (e.g. their overall structure and the kind of data
supported by each single object);

� Metaphor repository interface, which stores the result mappings produced by the

MDT Core into the MR.

The List Generator provides an internal description (i.e. with respect to the MDT) of the
containment relationships of the VW objects. This description is also a list (see below,
in section 5).

List
generator

Relationship
description

VW
List

VW
List

Metaphor
Repository

VWO
Repository

VWOR
Interface

VW
List

Metaphor
Repository
Interface

Query
List

Query
Repository
InterfaceStructure

Tree

SQL
 Expr.

Structure
Tree

Query
Repository

Structure
Tree

Generator

MDT
CORE

Mappings

Figure 4.1 - The components of the Metaphor Definition Tool

14

4.2 Query Repository

Whatever interface is provided for formulating a query (i.e. by means of the work of a
system administrator or using a visual query interface), such a query is translated into an
SQL form. Another component of the system, called Structure Tree Generator (STG, see
figure 4.1), divides the query into sub-queries and saves them in form of a structure tree
in the Query Repository (QR). Figure 4.2 shows the ER-schema of the QR. Every
structure tree Node is instanced to one of the following three node classes:
- a set_of node, which contains a sub-query retrieving a finite set of identical objects;
- a record node, which contains a sub-query retrieving an aggregation of different
objects;
- an attribute node, which contains a sub-query retrieving a specific data item.
A complex query can thus be described by a combination of nodes belonging to the
above mentioned classes. They are linked together by containment relations in order to
generate different levels of nesting.
Every query starts with a record node (see the "root" relation in Figure 4.2) that may be
tied either to set_of nodes (by means of the "contains" relation), or to attribute nodes (by
means of the "owns" relation), or at last to other record nodes (by means of the "has"
relation). The objects retrieved by the sub-query of a set_of node are of kind record node
(see the "collects" relation in Figure 4.2). Since attribute nodes may be of different data
types, depending on the kind of information they retrieve (i.e. text, picture, sound...),
they are linked by the relation "isof" to another entity of the QR, called typeofData.
Each query is identified by the attribute “Qname”.

Query Dbase

Structure
Tree Node

Setofnode Record
node

Attribute
node

Typeof
Data

regardson

belongsto

root

collects

contains

owns

has
isof

Qname description

QId

DbName DbId

STNid

SQLscript Key

SQLscript

dataId

description

(1,1) (0,N)

(1,N) (1,1)

(1,1)

(0,1)

(1,1) (0,1)

(1,1) (0,N)

(1,N) (1,1)

(0,N)
(0,1)

(1,1)

(0,N)

Figure 4.2 - Query Repository

15

The query of the example in section 4.1 would have a structure tree corresponding to the
one contained in figure 4.3.

SYMBOL STRUCTURE TREE
NODE

Set_of node

Record node

Key Attribute node

Attribute node

Type_of_data node

The structure tree proposed in this paper has a slightly different implementation than the
one specified in [Massari et al. 96]. In this new version a naming of the edges has been
introduced, with respect to the following schema:
� if an instance of a record node has got an instance of a set_of node as a child, they

will be linked together by an edge named "contains";
� if an instance of a record node has got an instance of another record node as a child,

they will be linked together by an edge named "has";
� if an instance of a record node has got an instance of an attribute node as a child, they

will be linked together by an edge named "owns";
� if an instance of a set_of node has got an instance of a record node as a child, they

will be linked together by an edge named "collects".
The names chosen for the edges correspond to the names of the relations contained in
the ER-schema of the QR (figure 4.2).
Moreover, in this newly proposed version of a structure tree, "type_of_data" nodes have
also been inserted, in order to have a direct access to the kind of data that an attribute
node may support (i.e., text, image, sound, and so on). This information will take part in
the final determination process of the virtual scenes to be presented to the user. It is
therefore necessary to define a standard of possible data types supported by the whole
system.
It is now possible to directly transform the structure tree in a suitable format for the
MDT core component. This operation will be carried out by the query repository
interface (see figure 4.1 and section 5 for a detailed explanation).

STING

PHOTO CD'S

IMAGE CD

CD TITLE SONGS

STRING SONG

SONG TITLE

STRING

owns contains

isof collects

owns contains

isof collects

owns

isof

Figure 4.3 - Structure tree query "Sting"

16

4.3 Virtual World Object Repository

The virtual scenes which will visualise the output of the Virgilio system are
implemented in [VRML] in order to allow a standard client-server application on the
Web. The scenes are stored into the Virtual World Object Repository (VWOR), whose
ER-schema is depicted in Figure 4.4.
The objects composing a complex virtual world may be of one of the following kinds:
- Aggregator, which represents a scene capable of containing different other VR objects;
- Classifier, which represents a scene displaying a set of identical Aggregator objects;
- Accessory, which represents an object supporting a specific kind of data;
- Aggrsymbol, which can be used within a VR scene as an icon for an Aggregator.
Aggrsymbols are often used for switching from one scene to another.
An aggregator object may contain some classifiers (linked with the relation "contains"),
some accessory objects (linked with the relation "owns"), or even other aggregators
(linked with the relation "has"). An aggregator is possibly related to his icon (i.e. to an
aggrsymbol object) by means of the "hasIcon" relation. An aggrsymbol may also "own"
some accessory objects, that have to correspond to some of the ones "owned" by the
associated aggregator. A classifier object is linked to the classified set of aggregator
objects by means of the "collects" relation.
In order to avoid the generation of "unnatural" virtual scenes with either too many or too
few virtual world objects, every classifier object has got two attributes (Min and Max),
delimiting the range of occurrences.
The kind of data that an Accessory object can support is stated by the "typeOfData"
entity, linked by means of the "isOf" relation.

Figure 4.4 - Virtual World Object Repository

(0,N)
collects

(1,1)

has
(0,N)

(0,M)Max

Classifier

Min

(1,1)
contains

(0,N)

Roo

Aggregator
(0,N)

owns
(0,M)

Accessory

(1,1)

isof

(0,N)

Type of
data

hasicon
(0,1)

(1,1)

(0,N)
owns

(0,M) Aggrsymbol

VWobject
VWobjId

VRML FRMK

17

The VW objects mentioned in [Massari et al. 96] include also another kind of objects,
namely "Jumpers", which may be used to switch from the current virtual world to
another. Such kinds of objects have not been considered during the implementation of
this version of the MDT, since there are still some open questions about their effective
meaning and utilisation. For instance, it is not clear if the virtual world to jump at
should contain the whole starting query or only a part of it. Moreover, it would not be
easy to presume the user's reaction and behaviour if the initially chosen metaphor would
be substituted by another one.

The virtual world considered in the example of section 4.1 may be described by a graph
like the one displayed in figure 4.5. The starting object (called "Room") is of kind
aggregator and represents the whole virtual world. It is linked by means of the "owns"
relation to an accessory object (the "Poster") which is capable of displaying an image.
The aggregator object "Room" also "contains" a classifier object called "Chest of
drawers". It classifies a set of aggregator objects called "Drawer" (see the "collects"
relation). Every drawer "owns" an accessory object ("DrLabel") which may display a
short text. This accessory is also part of the aggrsymbol object "Drawer front" that
identifies every drawer in its closed position (linked by the "hasIcon" relation). The
classifier object "Drawer Inside" may "collect" a set of folders. Each folder is capable of
displaying some text.

SYMBOL
VIRTUAL
WORLD
OBJECT

Aggregator

Classifier

Aggrsymbol

Accessory

Type of data

Room

Poster Chest of
 drawers

Image Drawer

Drawer front DrLabel

String

owns contains

isof collects

hasicon owns

owns

contains

isof

Drawer
inside

Folder

collects

FoText

Text

isof

owns

Figure 4.5 - Virtual world "Room"

18

4.4 Metaphor Repository

Once all possible mappings have been achieved and some of them are found to be
suitable for the final result visualisation, the MDT stores its output into the Metaphor
Repository (MR). This is achieved by generating a metaphor graph [Massari et al. 96]
for each successful mapping. Each metaphor graph has a root node, which will later be
provided as a parameter to the Scene Constructor in order to build the final scenes. Its
overall structure will correspond to the one of the related structure tree. The information
stored in its nodes will be a reference to the corresponding structure tree node and a
reference to the mapped virtual world object. Moreover, it is necessary to add nodes for
each aggrsymbol that may represent an aggregator from the "outside", i.e. from a
different virtual scene. The aggrsymbol nodes of a metaphor graph should also contain a
reference to the accessory objects they may support.

The final construction of the virtual scenes will be realised as a scanning of the
metaphor graph. The sequence used to traverse the nodes will depend on the user's
decisions and needs. Therefore, the scene constructor will only build and visualise the
scenes that the user actually wants to visit.

In this document a final version of the metaphor repository will not be given, since its
realisation strongly depends on the implementation of the scene constructor algorithm.
Anyway a possible metaphor graph for the considered example is shown in section 5,
after the specification of the mapping process itself.

19

5. THE MAPPING PROCESS

The process of searching among all available virtual-world objects, the ones that may be
suitable for supporting the query result data-set, is called the mapping process. A set of
tools have been evaluated in order to find a proper one for performing this task. The
Prolog programming language has been found suitable because it provides a means for
representing the structure trees and the virtual-world object structures in a standard
format [Bratko 90]. Thus, both query and virtual world are described as lists of
relations. The entries of these lists have the following form:

name_of_relation (source_node, destination_node).

A comparison between the list for the query and the list for the virtual-world object can
be achieved with a logic-based approach. If we assume the lists of all available virtual
worlds to be the starting set of clauses of a Prolog program, we can easily set the query
list as the main goal to reach. This process is explained in the next sections.

5.1 The Virtual World list

Every time a new virtual world is added to the VWOR, a new list of relations has to be
created. Figure 5.1 contains an example which shows the list related to the virtual world
“Room”. As you can notice, the names of every virtual world object contained in the list
start with a lowercase letter, in order to be considered by the Prolog interpreter as
constant values.
Furthermore, every list has to be completed with other relations, namely the "HasMin"
and "HasMax" relations, which link every classifier of the virtual world to their Min and
Max attributes.
A "hasIcon" relation will also be inserted for all those aggregator objects which have no
Aggrsymbols related. They will be linked to the constant "nil".

 /* VIRTUAL WORLD ROOM */

contains (aggregatorroom, classifierchestdrawers).
contains (aggregatordrawer, classifierdrawerinside).

collects (classifierchestdrawers, aggregatordrawer).
 collects (classifierdrawerinside, aggregatorfolder).

hasmin (classifierchestdrawers, 0).
hasmin (classifierdrawerinside, 1).
hasmax(classifierchestdrawers, 20).

 hasmax(classifierdrawerinside, 10).

owns(aggregatorroom, accessoryposter).
owns(aggregatorfolder, accessoryfotext).
owns(aggregatordrawer, accessorydrlabel).
owns(aggrsymboldrawerfront, accessorydrlabel).

isof (accessorydrlabel, typeofdatastring).
 isof (accessoryfotext, typeofdatatext).

isof (accessoryposter, typeofdataimage).

hasicon (aggregatordrawer, aggrsymboldrawerfront).
hasicon (aggregatorfolder, nil).

 hasicon (aggregatorroom, nil).

Figure 5.1 - Prolog list for virtual world "Room"

20

5.2 The Query list

A query list is created every time a final user accesses the system with a new query. The
names of the structure tree nodes appearing in each relation now begin with an
uppercase letter, so that they will be treated as variables. A query list always starts with
the instance of variables containing the cardinalities of set_of nodes (see the query
"Sting" -list in Figure 5.2). These data will be retrieved by the QT and are available to
the system in form of metadata [Massari et al. 96]. The second part of the query list
represents the query itself. "HasMin" and "HasMax" relations are also inserted as well as
instructions for controlling the cardinality values. Finally "hasIcon" relations are
inserted for every record node in order to find out the icons that could possibly represent
the record in the virtual scenarios. The third part of the query list manages the output of
the variables contents to a file, by means of "write" commands.

I.
 /* Prolog goal list from query ‘STING’ */

 main:-
 /* Set_of nodes Cardinalities */
 CDsMin is 1,
 CDsMax is 8,
 SongsMin is 1,
 SongsMax is 10,

 /* Clauses and Cardinality Tests */
 hasicon(RecordSting, RecordStingIcon),
 owns(RecordSting, AttributePhoto),
 isof(AttributePhoto, typeofdataimage),
 contains(RecordSting, SetOfCDs),
 collects(SetOfCDs, RecordCD),
 hasicon(RecordCD, RecordCDIcon),
 hasmin(SetOfCDs, CMin), CDsMin >= CMin,
 hasmax(SetOfCDs, CMax), CMax >= CDsMax,
 owns(RecordCD, AttributeCDTitle),
 isof(AttributeCDTitle, typeofdatastring),

 contains(RecordCD, SetOfSongs),
 collects(SetOfSongs, RecordSong),
 hasicon(RecordSong, RecordSongIcon),
 hasmin(SetOfSongs, SoMin), SongsMin >= SoMin,
 hasmax(SetOfSongs, SoMax), SoMax >= SongsMax,
 owns(RecordSong, AttributeSongTitle),
 isof(AttributeSongTitle, typeofdatastring),

 /* File Output */
 tell(mdtsting),

write('THE RECORD STING HAS BEEN MAPPED WITH : '),
 write(RecordSting), nl,
 write('ITS ICON IS : '),
 write(RecordSingerIcon),nl,nl,

write('THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : '),
 write(AttributePhoto), nl,
 write('THE SET OF CDS HAS BEEN MAPPED WITH : '),
 write(SetOfCDs), nl,
 write(' MIN WORLD : '),write(CMin),
 write(' MIN QUERY : '),write(CDsMin),nl,
 write(' MAX WORLD : '),write(CMax),
 write(' MAX QUERY : '),write(CDsMax),nl,nl,
 write('THE RECORD CD HAS BEEN MAPPED WITH : '),
 write(RecordCD), nl,
 write('ITS ICON IS : '),
 write(RecordCDIcon),nl,nl,
 write('THE ATTRIBUTE CD TITLE HAS BEEN MAPPED WITH : '),
 write(AttributeCDTitle), nl,

write('THE SET OF SONGS HAS BEEN MAPPED WITH : '),
 write(SetOfSongs), nl,
 write(' MIN WORLD : '),write(SoMin),
 write(' MIN QUERY : '),write(SongsMin),nl,
 write(' MAX WORLD : '),write(SoMax),
 write(' MAX QUERY : '),write(SongsMax),nl,nl,
 write('THE RECORD SONG HAS BEEN MAPPED WITH : '),
 write(RecordSong), nl,
 write('ITS ICON IS : '),
 write(RecordSongIcon),nl,nl
 write('THE ATTRIBUTE SONG TITLE HAS BEEN MAPPED WITH : '),
 write(AttributeSongTitle), nl,nl,
 write('###'),
 nl,nl,fail.

Figure 5.2 - Prolog goal list from query "Sting"

21

5.3 Executing the process

A command file, as the one shown in Figure 5.3, will be generated every time a
mapping process is invoked. It contains all basic steps to be carried out by the Prolog
interpreter. First, a file called "multi" is loaded in order to inform the system that some
clauses could be used in several different files. The second step consists of the loading
of the virtual world lists. In our example we have only one virtual world to load (the
"Room"). The Virgilio system administrator or some other tools will update this part of
the command file by inserting the names of all the virtual world lists that have to be
considered for the mapping. In this way it is possible to take into account some
constraints (for instance the user model) for the creation of efficient metaphors.
After the loading of a query list (see the instruction "[Sting]." in our example) a final
instruction ("main.") will tell the system to begin the searching of all possible mappings.
This is realised by a built-in backtracking algorithm which is the standard way to
proceed by every Prolog interpreter.
Following a depth first search strategy, the system makes a comparison between the
relational structure of the query list and the relational structure of the virtual world list.
A set_of node will be mapped to a classifier object only if the comparison between the
related cardinalities does not fail. An attribute node will be mapped to an accessory
object only if they support the same type of data. In case of success the variables
appearing in the query list are instanced to the constants of the virtual world list, and
saved to a file for further uses. For the generation of a metaphor graph, information
about aggrsymbols are also added to the output file.

 /* COMMAND FILE FOR THE MAPPING OF QUERY "STING" */

 /* LOADING OF PREFERENCES */

 [multi].

 /* LOADING OF VIRTUAL WORLDS */

 [room].

 /* LOADING OF THE QUERY */

 [sting].

 /* GOAL TO REACH */

 main.

Figure 5.3 - Command File for the mapping process of query "Sting"

22

Figure 5.4 shows the output of the mapping process applied to the example of the query
"Sting". After the definition of the final scene constructor algorithm, the output of the
processing step will be expanded with all the necessary data describing the involved
objects. For example, it will be necessary to store references to the virtual world objects
and the structure tree nodes, which are part of the resulting metaphor graph.

A possible metaphor graph would be the one of figure 5.5. One can see that its general
structure corresponds to that of the related structure tree.

 /* MAPPING RESULTS FOR QUERY "STING" */

 THE RECORD STING HAS BEEN MAPPED WITH : aggregatorroom
 ITS ICON IS : nil

 THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : accessoryposter
 THE SET OF CDS HAS BEEN MAPPED WITH : classifierchestdrawers
 MIN WORLD : 0 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 8

 THE RECORD CD HAS BEEN MAPPED WITH : aggregatordrawer
 ITS ICON IS : aggrsymboldrawerfront

 THE ATTRIBUTE CD TITLE HAS BEEN MAPPED WITH : accessorydrawerlabel
 THE SET OF SONGS HAS BEEN MAPPED WITH : classifierfolders
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 10 MAX QUERY : 10

 THE RECORD SONG HAS BEEN MAPPED WITH : aggregatorfolder
 ITS ICON IS : nil

 THE ATTRIBUTE SONG TITLE HAS BEEN MAPPED WITH : accessoryfotext

 ##

Figure 5.4 - Mapping results for query "Sting"

Room

Poster Chest of
 drawers

Drawer

Drawer front DrLabel Drawer
inside

Folder

FoText

STING

PHOTO

CD'S

CD

CD TITLE

SONGS

SONG

SONG TITLE

Figure 5.5 - Metaphor Graph for query "Sting". The thick edges represent
 the generated mappings.

23

6. FUTURE WORK

In order to achieve compatibility among the MDT and the other modules of Virgilio (see
Figure 2.1) a set of interfaces should be implemented. These interfaces have been shown
in Figure. 4.1. and explained in Section 4.

After the realisation of a first simple scene constructor algorithm, it would be possible to
integrate these components, and achieve the first generic version of the Virgilio system.
It would be of course necessary to create some more virtual worlds to store into the
VWOR. Figure 6.1 shows a possible data flow chart for the Virgilio version 1.0. The
final user formulates his query by means of a visual query interface. The output of this
step is an SQL script of the query. It will be processed by the Structure Tree Generator
component and stored in form of a structure tree into the QR. The List Generator
component will now produce the query list to be used within the MDT core. The lists of
all available virtual worlds will also be furnished, and after the processing step, all
possible mappings will be available in form of metaphor graphs in the MR. Finally, the
user will interact again with the scene constructor, choosing the most appropriate
mapping and browsing at last the requested data.

Please note that all the processing steps explained above can be carried out on-line and
may be also available over the web. Moreover, since there will be a low number of
available virtual worlds at the beginning, the mapping process won't cost too much
execution time.

It is clear that this first Virgilio release does not take into account all of the features
explained in the previous sections. For instance, the metaphor effect of the produced
mappings is not verified, and the queries and mappings of preceding sessions (stored in
the QR or the MR) are not considered.
By the way, Virgilio 1.0 could be used for special purposes in which the available
virtual worlds are fixed and addressed to a selected user group (for example the visitors
of a trade fair).

Visual
query

interface

Structure
Tree

Generator
MDT

Scene
Constructor

VWOR
Source

DB

QR MR

USER USER

Figure 6.1 - Data flow chart for Virgilio version 1.0

24

7. REFERENCES

[Aloia et al. 96] Aloia, N., Matera, M., Paternò, F. (1996)
A Semantics-based Approach to Designing Presentations for
Multimedia Database Query Results, Proceedings of AVI 96

 Gubbio, Italy.
[Atzeni and
De Antonellis 93] Atzeni P., De Antonellis V., (1993)
 Relational Database Theory, Benjamin Cummings.

[Carroll et al. 88] Carroll, J.M., Mack, R.L., Kellogg W.A. (1988)
Interface Metaphors and user interface Design, Chapter 3 of the
Handbook of Human-Computer Interaction, Elsevier

 Science Publishers B.V
[Catarci and
Costabile 95] Catarci, T., Costabile, M.F., (1995)
 Special Issue on Visual Query Systems
 Journal of Visual Languages and Computing Vol. 6

[Chang et al. 93] Chang, S.K., Costabile, M.F., Levialdi, S., (1993)
Modelling users in an adaptive visual interface for database
systems, Journal of Visual Languages and computing, vol. 4.

[Costabile et al. 95] Costabile, M.F., Catarci, T., Matera, M. (1995)
 Visual Metaphors for interacting with Databases,

 SIGCHI Bulletin, Volume 27, No. 2

[Erickson 90] Erickson, T.D. (1990)
 Working with Interface Metaphors
 In The Art of Human-Computer Interface
 Design, Addison-Wesley, Reading, Mass.

[Gentner 80] Gentner, D. (1980)
The Structure of Analogical Models in Science,
BBN Technical Report, No. 4451.

[Haber et al. 94] Haber, E.M., Ioannidis, Y.E., Livny, M. (1994)
 Foundations of Visual Metaphors for Schema Display,

Journal of Intelligent Information Systems, Vol. 3.
[Lakoff and
Johnson80] Lakoff, G., Johnson, M. (1980)
 Metaphors we live by,
 The university of Chicago Press

25

[Marcus 94] Marcus, A. (1994)
 Managing Metaphors for Advanced User Interfaces,

 Proceedings of AVI 94, Bari, Italy.

[Martin 90] Martin, J.H. (1990)
 A Computational Model of Metaphor Interpretation,
 Academic Press.

[Massari et al. 95] Massari, A., Pavani, S., Saladini, L., Chrysantis, P.K. (1995)
Query by icons in Proceedings of the International
Conference ACM-SIGMOD, S. Jose, California, USA.

[Massari et al. 96] Massari, A., Saladini, L., Hemmje, M. (1996)
Architecture and System Specification of Virgilio
appearing in GMD Arbeitsberichte, Gesellschaft fuer Mathematik
und Datenverarbeitung, Darmstadt, Germany.

[Massari et al. 97] Massari, A., Saladini, L., Hemmje, M., Sisinni, F. (1997)
Virgilio: a non-immersive VR system to browse multimedia
databases, Proceedings of the IEEE International Conference on
multimedia computing systems, IEEE computer society press,
573-580

[Massari et al. 98] Massari, A., Saladini, L., Hemmje, M., Sisinni, F., Paradiso, A.,
Napolitano, W., Leissler, M.
Virtual Reality Systems for browsing multimedia
To appear in Furth, B. : Handbook of Multimedia computing

[Paradiso and
Hemmje 96] Paradiso, A., Hemmje, M., (1996)

A generic refinement of the Virgilio System’s design and a
prototypical architecture, in GMD Arbeitspapiere No. 1093

 Gesellschaft fuer Mathematik und Datenverarbeitung,
Darmstadt, Germany.

[Bratko 90] Bratko, I. (1990)
 Prolog, Programming for artificial intelligence,
 Addison Wesley Publishing

[VRML] Virtual Reality Modelling Language
Spec. On www. Http://vrml.sgi.com/moving-worlds/spec

26

8. Acknowledgements

The present paper was written during Marcello L’Abbate’s stay as a student assistant at
the Institute for Integrated Publication and Information Systems (IPSI) of GMD –
German National Research Center for Information Technology in Darmstadt and at the
University of Bari.

It is the result of requirements that were gained during the earlier development of the
first prototypes of the Virgilio system. Therefore, it is to be seen, on the one hand,
within the framework of the Virgilio project which has been co-operatively conducted
by the Department for Visual Interaction Tools (VISIT) of GMD-IPSI, the University of
Rome “La Sapienza” and the University of Bari in Italy. On the other hand, the work is
based on discussions led with colleagues about related implementations and
publications within the European Working Group for Foundations of Threedimensional
Information Visualisation (FADIVA). Therefore, it is also a self-contained and
independent publication.

In particular, we would like to thank Maria Francesca Costabile, Donato Malerba, Aldo
Paradiso, Annabella Loconsole for many interesting discussions and their support during
the implementation of the MDT component.

27

APPENDIX A - Mapping Example I

The query used by the first Virgilio prototype [Paradiso and Hemmje 96], dealing with
music types and authors, is called “Music”.

Query “Music”: Retrieve all the names of the music types stored in the database. For
each music type retrieve a short text, which explains its historical background.
For each music type retrieve the name and the picture of the bands typically
performing such a music type. For each band retrieve all the names and cover
images of the albums released by the band. For each album retrieve the titles of
the songs contained in it.

Its structure tree is shown in Figure A.1. One can identify that the first node is a record
node which represents the whole query. It has only one child, namely a set_of node,
which contains the SQL script for a part of the first sentence of the query text ("retrieve
all the music types stored in the database"). A single music type appears in the structure
tree as a record node, which "owns" the requested information (name and short text, see
query text) in form of attribute nodes. It also contains another set_of node, which
represents the set of all the bands performing a certain music type. The rest of the
structure tree can now be easily traced, because it contains repetitions of the above
examined notions.

SONG

NAME SONG

STRING

owns

isof

CD'S

SONGS

collects

containsowns

TITLE

STRING

isof
COVER

PICTURE

isof

owns

NAME

STRING

isof

NAME TYPE

STRING

isof

CD

collects

SINGER

containsowns

PHOTO

IMAGE

isof

owns

MUSIC TYPES

collects

SINGERS

collects

containsowns

NOTES

TEXT

isof

owns

contains

MUSIC TYPE

MUSIC

Figure A.1 - Structure Tree representing the query "Music"

28

Every node of the structure tree contains a short SQL query, determined by the Structure
Tree Generator. As an example, consider the query script contained in the classifier
structure tree node "singers":

 SELECT *
 FROM singers
 WHERE name IN (SELECT singers.name
 FROM tipically_sings
 WHERE music_name = <selected_music_type>);

The result of this SQL sentence will be a list containing all the names of the singers
(stored in the source DB) whose released music may belong to a specific music type,
chosen in a previous step during the browsing of the result (set in the
"selected_music_type" variable).

Another example is the query script of the attribute node "photo":

 SELECT photo
 FROM singers
 WHERE (name IN (SELECT singers.name
 FROM tipically_sings
 WHERE music_name = <selected_music_type>))
 AND (name = <selected_singer_name>);

The "selected_singer_name" variable contains the name of the singer whose photo is
going to be retrieved and visualised.

29

The virtual world considered for this example also appears in the Virgilio prototype.
You may follow its structure in Figure A.2. The table on figure A.2b explains the
meaning of the objects contained in the graph of figure A.2. The schema describes a
building with a main entrance hall leading to an elevator. This Classifier object gives the
possibility to access an Aggregator object called "floor" by pushing on its aggrsymbol,
namely the button on a button table. Every button has an accessory associated to it (a
button label), which identifies the floor to reach. The floor contains a sign (the accessory
fname), which displays the same information as the previously pushed button. It also
may contain two different kinds of sideboards. The first (a simple accessory) capable of
displaying a text and the second (an aggregator called complex board) may display a text
as well as a picture. A floor aggregates also a corridor with rooms, which may be
entered by opening a door with a label on it (the aggrsymbol of aggregator room). In a
room you may find an Accessory poster with an image and two other classifiers, namely
a chest of drawers and a photo album on a table (see Figure A.2).

Complex
Board

Board Picture

String Room Text Text Picture

Album

String Image Page

Plabel Index Photo

String Picture

String

contains contains

collects

hasicon

has

owns owns

owns owns

owns

isof isof isof

isof

isof isof

isof

Figure A.2 - Virtual world "Building" structure graph

Entrance
Hall

Button
Table

FloorButton

Fname Corridor Sideboard

Dlabel Door Poster

Drawer

Folders

Folder

Foname

contains

collects

owns

isof

contains

contains

collects

collects

hasicon

hasicon

owns owns owns

owns owns

Picture String

isof isof

Chest
Drawers

Drpicture
Drawer
Front Drlabel

hasicon

collects

owns owns

owns owns

isof

owns

30

VW OBJECT NODE TYPE MEANING

Entrance Hall Aggregator Main Entrance Hal l to the
Bui ld ing

Button Table Classifier Elevator and Button Table

Button Aggrsymbol Button on the Button Table
of the Elevator

Floor Aggregator Generic Floor of the
Bui ld ing

Fname Accessory Name of a Floor

Sideboard Accessory Board with a text

Complex Board Aggregator Board with text and a
picture

Board Accessory Text on the Complex Board

Picture Accessory Picture on the Complex
Board

Corridor Classifier Corr idor of Rooms

Door Aggrsymbol Door to access a Room

Room Aggregator Room of the Bui ld ing

Dlabel Accessory Label on a Door

Poster Accessory Picture on the wal l of a
Room

Album Classifier Book on a table in the
Room

Index Aggrsymbol Summary of the contents of
the Book

Page Aggregator Single Page of the Book

Plabel Accessory Name of a Page

Photo Accessory Picture on a Page

Chest Drawers Classifier Piece of Furni ture with
Drawers

Drawer Front Aggrsymbol Front Panel of a Drawer

Drawer Aggregator Drawer from the Chest

Drlabel Accessory Label on a Drawer front

Drpicture Accessory Picture on a Drawer front

Folders Classifier Set of Folders in a Drawer

Folder Aggregator Folder in the Drawer

Foname Accessory Name of the Folder

Figure A.2b Meaning of the objects contained in the graph of figure A.2.

31

The following figure A.3 shows the Prolog list related to the virtual world "Building".
This virtual world contains seven aggregator objects, and therefore seven hasicon
relations can be found on the Prolog list. Three of them are linked to the constant nil
because they do not have a related aggrsymbol object.
It is of course possible to expand a virtual world by adding more objects. In this case it
will be necessary to update the virtual world list by inserting the new relations.

/* VIRTUAL WORLD BUILDING */

 contains(aggregatorentrancehall, classifierbuttontable).
 contains(aggregatorroom, classifierchestdrawers).
 contains(aggregatorroom, classifieralbum).
 contains(aggregatorfloor, classifiercorridor).
 contains(aggregatordrawer, classifierfolders).

 collects(classifierbuttontable, aggregatorfloor).
 collects(classifiercorridor, aggregatorroom).
 collects(classifierchestdrawers, aggregatordrawer).
 collects(classifierfolders, aggregatorfolder).
 collects(classifieralbum, aggregatorpage).

 hasmin(classifierbuttontable, 2).
 hasmin(classifiercorridor, 1).
 hasmin(classifierchestdrawers, 0).
 hasmin(classifierfolders, 1).
 hasmin(classifieralbum, 1).

 hasmax(classifierbuttontable, 20).
 hasmax(classifiercorridor, 30).
 hasmax(classifierchestdrawers, 20).
 hasmax(classifierfolders, 10).
 hasmax(classifieralbum, 30).

 owns(aggregatorfloor, accessoryfname).
 owns(aggregatorfloor, accessorysideboard).
 owns(aggregatorroom, accessoryposter).
 owns(aggregatorcomplexboard, accessoryboard).
 owns(aggregatorcomplexboard, accessorypicture).
 owns(aggregatorfolder, accessoryfoname).
 owns(aggrsymboldoor, accessorydlabel).
 owns(aggregatorroom, accessorydlabel).
 owns(aggrsymboldrawerfront, accessorydrpicture).
 owns(aggrsymboldrawerfront, accessorydrlabel).
 owns(aggrsymbolbutton, accessoryfname).
 owns(aggrsymbolindex, accessoryplabel).
 owns(aggregatordrawer, accessorydrlabel).
 owns(aggregatordrawer, accessorydrawerpicture).
 owns(aggregatorpage, accessoryplabel).
 owns(aggregatorpage, accessoryphoto).

 isof(accessoryfname, typeofdatastring).
 isof(accessorydrlabel, typeofdatastring).
 isof(accessoryfoname, typeofdatastring).
 isof(accessoryplabel, typeofdatastring).
 isof(accessorydlabel, typeofdatastring).
 isof(accessorysideboard, typeofdatatext).
 isof(accessoryboard, typeofdatatext).
 isof(accessorypicture, typeofdatapicture).
 isof(accessorydrpicture, typeofdatapicture).
 isof(accessoryphoto, typeofdatapicture).
 isof(accessoryposter, typeofdataimage).

 has(aggregatorfloor, aggregatorcomplexboard).

 hasicon(aggregatorroom, aggrsymboldoor).
 hasicon(aggregatordrawer, aggrsymboldrawerfront).
 hasicon(aggregatorpage, aggrsymbolindex).
 hasicon(aggregatorfloor, aggrsymbolbutton).
 hasicon(aggregatorcomplexboard, nil).
 hasicon(aggregatorentrancehall, nil).
 hasicon(aggregatorfolder, nil).

Figure A.3 - Prolog list for virtual World "Building"

32

The query repository interface (refer to section 4.1) will generate the query list displayed
in figures A.4a and A.4b. The first part of the list contains the instance of the classifier
cardinalities (see section 5.2). The second part of the list represents the query itself.
The Virgilio version 1.0 will discard this list after achieving the mapping. Future
versions may keep every structure tree and related list, in order to be utilised in more
and successive sessions.

 /* Prolog goal list from query ‘MUSIC’ */

 main:-

 /* Classifier Cardinalities */

 MusicTypesMin is 5,
 MusicTypesMax is 15,
 SingersMin is 2,
 SingersMax is 30,
 CDsMin is 1,
 CDsMax is 8,
 SongsMin is 1,
 SongsMax is 10,

 /* Clauses and Cardinality Tests */

 contains(RecordMusic, SetOfMusicTypes),
 hasicon(RecordMusic, RecordMusicIcon),
 collects(SetOfMusicTypes, RecordMusicType),
 hasicon(RecordMusicType, RecordMusicTypeIcon),
 hasmin(SetOfMusicTypes, MTMin), MusicTypesMin >= MTMin,
 hasmax(SetOfMusicTypes, MTMax), MTMax >= MusicTypesMax,
 owns(RecordMusicType, AttributeNameType),
 isof(AttributeNameType, typeofdatastring),
 owns(RecordMusicType, AttributeNotes),
 isof(AttributeNotes, typeofdatatext),
 contains(RecordMusicType, SetOfSingers),
 collects(SetOfSingers, RecordSinger),
 hasicon(RecordSinger, RecordSingerIcon),
 hasmin(SetOfSingers, SiMin), SingersMin >= SiMin,
 hasmax(SetOfSingers, SiMax), SiMax >= SingersMax,
 owns(RecordSinger, AttributeName),
 isof(AttributeName, typeofdatastring),
 owns(RecordSinger, AttributePhoto),
 isof(AttributePhoto, typeofdataimage),
 contains(RecordSinger, SetOfCDs),
 collects(SetOfCDs, RecordCD),
 hasicon(RecordCD, RecordCDIcon),
 hasmin(SetOfCDs, CMin), CDsMin >= CMin,
 hasmax(SetOfCDs, CMax), CMax >= CDsMax,
 owns(RecordCD, AttributeTitle),
 isof(AttributeTitle, typeofdatastring),
 owns(RecordCD, AttributeCover),
 isof(AttributeCover, typeofdatapicture),
 contains(RecordCD, SetOfSongs),
 collects(SetOfSongs, RecordSong),
 hasicon(RecordSong, RecordSongIcon),
 hasmin(SetOfSongs, SoMin), SongsMin >= SoMin,
 hasmax(SetOfSongs, SoMax), SoMax >= SongsMax,
 owns(RecordSong, AttributeNameSong),
 isof(AttributeNameSong, typeofdatastring),

Figure A.4a - First and second part of the query list "Music"

33

Once a mapping has been determined, the variables contents are stored in a file (named
"mdtmusic"), in order to be processed by the metaphor repository interface, which will
generate a metaphor graph. In this example the output has been designed only for
information purposes, so that one can verify the occurred mappings (see figure A.4b).

/* File Output */

 tell(mdtmusic),

write('THE RECORD MUSIC HAS BEEN MAPPED WITH : '),
 write(RecordMusic),nl,
 write('ITS ICON IS : '),
 write(RecordMusicIcon),nl,nl,
 write('THE SET OF MUSIC TYPES HAS BEEN MAPPED WITH : '),
 write(SetOfMusicTypes), nl,
 write(' MIN WORLD : '),write(MTMin),
 write(' MIN QUERY : '),write(MusicTypesMin),nl,
 write(' MAX WORLD : '),write(MTMax),
 write(' MAX QUERY : '),write(MusicTypesMax),nl,nl,
 write('THE RECORD MUSIC TYPE HAS BEEN MAPPED WITH : '),
 write(RecordMusicType), nl,
 write('ITS ICON IS : '),
 write(RecordMusicTypeIcon),nl,nl,
 write('THE ATTRIBUTE NAME TYPE HAS BEEN MAPPED WITH : '),
 write(AttributeNameType),nl,
 write('THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : '),
 write(AttributeNotes), nl,
 write('THE SET OF SINGERS HAS BEEN MAPPED WITH : '),
 write(SetOfSingers), nl,
 write(' MIN WORLD : '),write(SiMin),
 write(' MIN QUERY : '),write(SingersMin),nl,
 write(' MAX WORLD : '),write(SiMax),
 write(' MAX QUERY : '),write(SingersMax),nl,nl,
 write('THE RECORD SINGER HAS BEEN MAPPED WITH : '),
 write(RecordSinger), nl,
 write('ITS ICON IS : '),
 write(RecordSingerIcon),nl,nl,
 write('THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : '),
 write(AttributeName), nl,
 write('THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : '),
 write(AttributePhoto), nl,
 write('THE SET OF CDS HAS BEEN MAPPED WITH : '),
 write(SetOfCDs), nl,
 write(' MIN WORLD : '),write(CMin),
 write(' MIN QUERY : '),write(CDsMin),nl,
 write(' MAX WORLD : '),write(CMax),
 write(' MAX QUERY : '),write(CDsMax),nl,nl,
 write('THE RECORD CD HAS BEEN MAPPED WITH : '),
 write(RecordCD), nl,
 write('ITS ICON IS : '),
 write(RecordCDIcon),nl,nl,
 write('THE ATTRIBUTE TITLE HAS BEEN MAPPED WITH : '),
 write(AttributeTitle), nl,
 write('THE ATTRIBUTE COVER HAS BEEN MAPPED WITH : '),
 write(AttributeCover), nl,
 write('THE SET OF SONGS HAS BEEN MAPPED WITH : '),
 write(SetOfSongs), nl,
 write(' MIN WORLD : '),write(SoMin),
 write(' MIN QUERY : '),write(SongsMin),nl,
 write(' MAX WORLD : '),write(SoMax),
 write(' MAX QUERY : '),write(SongsMax),nl,nl,
 write('THE RECORD SONG HAS BEEN MAPPED WITH : '),
 write(RecordSong), nl,
 write('ITS ICON IS : '),
 write(RecordSongIcon),nl,nl,
 write('THE ATTRIBUTE NAME SONG HAS BEEN MAPPED WITH : '),
 write(AttributeNameSong), nl,
 write('###'),
 nl,nl,fail.

Figure A.4b - Third part of the query list "Music"

34

The command file for the mapping process contains instructions for the loading of the
virtual world list ("[building]."), for the loading of the query list ("[music]."), and for the
beginning of the mapping process ("main."). It is displayed in figure A.5.

The result of the mapping process (i.e. the contents of the file "mdtmusic") are
contained in figure A.6.

 /* MAPPING RESULTS FOR QUERY "MUSIC" */

 THE RECORD MUSIC HAS BEEN MAPPED WITH : aggregatorentrancehall
 ITS ICON IS : nil

 THE SET OF MUSIC TYPES HAS BEEN MAPPED WITH : classifierbuttontable
 MIN WORLD : 2 MIN QUERY : 5
 MAX WORLD : 20 MAX QUERY : 15

 THE RECORD MUSIC TYPE HAS BEEN MAPPED WITH : aggregatorfloor
 ITS ICON IS : aggrsymbolbutton

 THE ATTRIBUTE NAME TYPE HAS BEEN MAPPED WITH : accessoryfname
 THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : accessorysideboard
 THE SET OF SINGERS HAS BEEN MAPPED WITH : classifiercorridor
 MIN WORLD : 1 MIN QUERY : 2
 MAX WORLD : 30 MAX QUERY : 30

 THE RECORD SINGER HAS BEEN MAPPED WITH : aggregatorroom
 ITS ICON IS : aggrsymboldoor

 THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : accessorydlabel
 THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : accessoryposter
 THE SET OF CDS HAS BEEN MAPPED WITH : classifierchestdrawers
 MIN WORLD : 0 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 8

 THE RECORD CD HAS BEEN MAPPED WITH : aggregatordrawer
 ITS ICON IS : aggrsymboldrawerfront

 THE ATTRIBUTE TITLE HAS BEEN MAPPED WITH : accessorydrlabel
 THE ATTRIBUTE COVER HAS BEEN MAPPED WITH : accessorydrpicture
 THE SET OF SONGS HAS BEEN MAPPED WITH : classifierfolders
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 10 MAX QUERY : 10

 THE RECORD SONG HAS BEEN MAPPED WITH : aggregatorfolder
 ITS ICON IS : nil

 THE ATTRIBUTE NAME SONG HAS BEEN MAPPED WITH : accessoryfoname

 ##

 /* COMMAND FILE FOR THE MAPPING OF QUERY "MUSIC" */

 /* LOADING OF PREFERENCES */

 [multi].

 /* LOADING OF VIRTUAL WORLDS */

 [building].

 /* LOADING OF THE QUERY */

 [music].

 /* GOAL TO REACH */

 main.

Figure A.5 - Command file for the mapping

Figure A.6 - Mapping results

35

The metaphor graph resulting from the mapping of query "Music" with virtual world
"Building" has got the same overall structure as the query "Music" structure tree. The
graph contains only the virtual-world objects which have a corresponding structure tree
node mapped to them. Figure A.7 depicts a possible representation of the metaphor
graph.

Sideboard

Poster

NOTES

PHOTO

Entrance
Hall

Button
Table

FloorButton

Fname Corridor

Chest
Drawers

Dlabel Door

Drawer

Drpicture
Drawer
Front Drlabel Folders

Folder

Foname

Room

MUSIC

MUSIC TYPE

SINGER

SONG

CD

MUSIC TYPES

SONGS

SINGERS

CDS

COVER

NAME

NAME TYPE

TITLE

NAME SONG

Figure A.7 - Metaphor graph for the mapping of query "Music" with
 virtual world "Building". The thick edges represent the
 mappings.

36

APPENDIX B - Mapping Example II

In the following, another example is treated. It introduces a new query called "Italy"
regarding Italian cities and their main tourist attractions. Also a new virtual world
“Railway” has been considered, dealing with railway and underground stations. The
mapping process is applied to both virtual worlds “Building” and “Railway”, and
produces three different mappings. The query “Italy” may be formulated as follows:

Query “Italy”: Retrieve all the names of the Italian regions.
For each region retrieve the notes of its historical background and the image of
its geographical map.
For each region retrieve the names of its provinces.
For each province retrieve the name and the picture of its main tourist
attractions.
Retrieve for each province, moreover, the names of all the towns belonging to its
area with a population greater than 30000 people.
For each town retrieve the names of its main tourist attractions.

Its structure tree is shown in figure B.1.

PROVINCIA

contains
contains

CITY

STRING

isof

owns

PROVINCE

collects

containshas

contains

ITALY

REGIONS

collects

owns

REGION

NAME

STRING

isof

CHART

PICTURE

isof

NOTES

TEXT

isof

PHOTO

PICTURE

isof

ownsowns

MONUMENT

collects

MONUMENTS

NAMEMON

STRING

isof

owns owns

TOWN

collects

TOWNS

contains

NAMETOWN

STRING

isof

owns

LOCMONS

collects

owns

LOCMON

NLOCMON

STRING

isof

Figure B.1 - Structure Tree query "Italy"

INFO

37

Figure B.2 shows the complete query list for query "Italy". It is divided again into three
parts according to the specifications given in section 5.2.

 /* Prolog goal list from query ‘ITALY’ */

 main:-

 /* Classifier Cardinalities */

 RegionsMin is 20,
 RegionsMax is 20,
 ProvinceMin is 1,
 ProvinceMax is 15,
 MonumentsMin is 1,
 MonumentsMax is 20,
 TownsMin is 1,
 TownsMax is 8,
 LocMonsMin is 1,
 LocMonsMax is 10,

 /* Clauses and Cardinality Tests */

 contains(RecordItaly, SetOfRegions) ,
 hasicon(RecordItaly, RecordItalyIcon),
 collects(SetOfRegions, RecordRegion) ,
 hasicon(RecordRegion, RecordRegionIcon),
 hasmin(SetOfRegions, ReMin), RegionsMin >= ReMin,
 hasmax(SetOfRegions, ReMax), ReMax >= RegionsMax,
 has(RecordRegion, RecordInfo) ,
 hasicon(RecordInfo, RecordInfoIcon),
 owns(RecordInfo, AttributeChart) ,
 isof(AttributeChart, typeofdatapicture) ,
 owns(RecordInfo, AttributeNotes) ,
 isof(AttributeNotes, typeofdatatext) ,
 owns(RecordRegion, AttributeName) ,
 isof(AttributeName, typeofdatastring) ,
 contains(RecordRegion, SetOfProvince) ,
 collects(SetOfProvince, RecordProvincia) ,
 hasicon(RecordProvincia, RecordProvinciaIcon),
 hasmin(SetOfProvince, PrMin), ProvinceMin >= PrMin,
 hasmax(SetOfProvince, PrMax), PrMax >= ProvinceMax,
 owns(RecordProvincia, AttributeCitta),
 isof(AttributeCitta, typeofdatastring),
 contains(RecordProvincia, SetOfMonuments) ,
 collects(SetOfMonuments, RecordMonument) ,
 hasicon(RecordMonument, RecordMonumentIcon),
 hasmin(SetOfMonuments, MoMin), MonumentsMin >= MoMin,
 hasmax(SetOfMonuments, MoMax), MoMax >= MonumentsMax,
 owns(RecordMonument, AttributePhoto) ,
 isof(AttributePhoto, typeofdatapicture) ,
 owns(RecordMonument, AttributeNameMon) ,
 isof(AttributeNameMon, typeofdatastring) ,
 contains(RecordProvincia, SetOfTowns) ,
 collects(SetOfTowns, RecordTown) ,
 hasicon(RecordTown, RecordTownsIcon),
 hasmin(SetOfTowns, ToMin), TownsMin >= ToMin,
 hasmax(SetOfTowns, ToMax), ToMax >= TownsMax,
 owns(RecordTown, AttributeNameTown) ,
 isof(AttributeNameTown, typeofdatastring) ,
 contains(RecordTown, SetOfLocMons) ,
 collects(SetOfLocMons, RecordLocMon) ,
 hasicon(RecordLocMon, RecordLocMonIcon),
 hasmin(SetOfLocMons, LMMin), LocMonsMin >= LMMin,
 hasmax(SetOfLocMons, LMMax), LMMax >= LocMonsMax,
 owns(RecordLocMon, AttributeNLocMon) ,
 isof(AttributeNLocMon, typeofdatastring),

/* File Output */

tell(mdtitaly),
write('THE RECORD ITALY HAS BEEN MAPPED WITH : '),
write(RecordItaly),nl,
write('ITS ICON IS : '),
write(RecordItalyIcon),nl,nl,
write('THE SET OF REGIONS HAS BEEN MAPPED WITH : '),
write(SetOfRegions),nl,
write(' MIN WORLD : '),write(ReMin),
write(' MIN QUERY : '),write(RegionsMin),nl,
write(' MAX WORLD : '),write(ReMax),
write(' MAX QUERY : '),write(RegionsMax),nl,nl,
write('THE RECORD REGION HAS BEEN MAPPED WITH : '),
write(RecordRegion),nl,
write('ITS ICON IS : '),
write(RecordRegionIcon),nl,nl,
write('THE RECORD INFO HAS BEEN MAPPED WITH : '),
write(RecordInfo),nl,
write('ITS ICON IS : '),
write(RecordInfoIcon),nl,nl,
write('THE ATTRIBUTE CHART HAS BEEN MAPPED WITH : '),
write(AttributeChart),nl,
write('THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : '),
write(AttributeNotes),nl,
write('THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : '),
write(AttributeName),nl,
write('THE SET OF PROVINCE HAS BEEN MAPPED WITH : '),
write(SetOfProvince),nl,
write(' MIN WORLD : '),write(PrMin),
write(' MIN QUERY : '),write(ProvinceMin),nl,
write(' MAX WORLD : '),write(PrMax),
write(' MAX QUERY : '),write(ProvinceMax),nl,nl,
write('THE RECORD PROVINCIA HAS BEEN MAPPED WITH : '),
write(RecordProvincia),nl,
write('ITS ICON IS : '),
write(RecordProvinciaIcon),nl,nl,
write('THE SET OF MONUMENTS HAS BEEN MAPPED WITH : '),
write(SetOfMonuments),nl,
write(' MIN WORLD : '),write(MoMin),
write(' MIN QUERY : '),write(MonumentsMin),nl,
write(' MAX WORLD : '),write(MoMax),
write(' MAX QUERY : '),write(MonumentsMax),nl,nl,
write('THE RECORD MONUMENT HAS BEEN MAPPED WITH : '),
write(RecordMonument),nl,
write('ITS ICON IS : '),
write(RecordMonumentIcon),nl,nl,
write('THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : '),
write(AttributePhoto),nl,
write('THE ATTRIBUTE NAMEMON HAS BEEN MAPPED WITH : '),
write(AttributeNameMon),nl,
write('THE SET OF TOWNS HAS BEEN MAPPED WITH : '),
write(SetOfTowns),nl,
write(' MIN WORLD : '),write(ToMin),
write(' MIN QUERY : '),write(TownsMin),nl,
write(' MAX WORLD : '),write(ToMax),
write(' MAX QUERY : '),write(TownsMax),nl,nl,
write('THE RECORD TOWNS HAS BEEN MAPPED WITH : '),
write(RecordTown),nl,
write('ITS ICON IS : '),
write(RecordTownsIcon),nl,nl,
write('THE ATTRIBUTE NAME TOWN HAS BEEN MAPPED WITH : '),
write(AttributeNameTown),nl,
write('THE SET OF LOC MONS HAS BEEN MAPPED WITH : '),
write(SetOfLocMons),nl,
write(' MIN WORLD : '),write(LMMin),
write(' MIN QUERY : '),write(LocMonsMin),nl,
write(' MAX WORLD : '),write(LMMax),
write(' MAX QUERY : '),write(LocMonsMax),nl,nl,
write('THE RECORD LOC MON HAS BEEN MAPPED WITH : '),
write(RecordLocMon),nl,
write('ITS ICON IS : '),
write(RecordLocMonIcon),nl,nl,
write('THE ATTRIBUTE NLOC MON HAS BEEN MAPPED WITH : '),
write(AttributeNLocMon),nl,nl,

write('##'),
nl,nl,fail.

Figure B.2 - Query list for query "Italy"

38

The first scene of the virtual world “Railway”, contains two nested classifiers (see figure
B.3). First, you may choose a train by walking on its departure track, which will lead
you to a destination. Second, you may decide to enter a specific wagon for a more
detailed choice of the final destination. Every track contains a display divided into three
screens, each of them supporting a different kind of data. The destination station also
contains two classifiers but not nested this time. You may indeed take another train or
enter the underground for reaching a near location.

Main
Station

Main
Tracks

Stations

Trains
Destination Wagon

Train

Traindest

contains

Busstops

Busstop

Stopname

collects

owns

contains

contains

collects

collects

collects

hasicon

Screen2

isof

Display

owns owns

owns

owns

owns

isof

Main
Track

Train
Label

String

isof

Screen3

isof

Screen1

isof

Text Picture Time

owns

has

Station

owns

String

contains

String

String

isof

isof

String Picture

isof isof

Underground

Strname Stairs Street

hasicon

collects

owns owns

owns

contains

Metro

Figure B.3 - Virtual world "Railway"

39

The table on figure B.3b explains the meaning of the objects of the virtual world
"Railway". Use it for a better understanding of figure B.3.

VW OBJECT NODE TYPE MEANING

Main Station Aggregator Entrance hall of the station

Main Tracks Classifier Station passage leading to the
departure tracks

Main Track Aggregator Single departure track

Display Aggregator Multifunction display terminal

Screen1 Accessory Screen of the display containing
some text

Screen2 Accessory Screen of the display containing a
picture

Screen3 Accessory Screen of the display containing a
time value

Train Label Accessory Label identifying the train's main
destination

Stations Classifier Train with different wagons

Wagon Aggrsymbol Wagon entrance

Station Aggregator A smaller station

Destination Accessory Label identifying the name of the
station

Underground Classifier Passage leading to underground
trains

Stairs Aggrsymbol Stairs leading to a specific
underground train

Metro Aggregator Underground train

Strname Accessory Label with name of a street

Street Accessory Image of the reached place

Trains Classifier Passage leading to the departure
tracks

Train Aggregator Single departure track

Traindest Accessory Label identifying the destination
of a train

Busstops Classifier Timetable for bus departures

Busstop Aggregator Entry of the timetable

Stopname Accessory Label identifying the destination
of a bus

Figure B.3b - Meaning of the objects contained in the graph of figure B.3.

40

Virgilio will be more efficient and useful when a large number of virtual worlds are
available. There should be no limit set to the fantasy of virtual-world designers. An
airport, a trade fair or a ship would also be suitable solutions for displaying large
amounts of data. It could be even possible to think of combinations among different
worlds, as long as the metaphor effect is considered.

The Prolog list for the virtual world "railway" is shown in Figure B.4.

 /* VIRTUAL WORLD RAILWAY */

 contains(aggregatorMainStation, classifierMainTracks).
 contains(aggregatorMainTrack, classifierStations).
 contains(aggregatorStation, classifierUnderground).
 contains(aggregatorStation, classifierTrains).
 contains(aggregatorTrain, classifierBusStops).

 collects(classifierMainTracks, aggregatorMainTrack).
 collects(classifierStations, aggregatorStation).
 collects(classifierUnderground, aggregatorMetro).
 collects(classifierTrains, aggregatorTrain).
 collects(classifierBusStops, aggregatorBusStop).

 has(aggregatorMainTrack, aggregatorDisplay).

 owns(aggregatorDisplay, accessoryScreenOne).
 owns(aggregatorDisplay, accessoryScreenTwo).

owns(aggregatorDisplay, accessoryScreenThree).
 owns(aggregatorMainTrack, accessoryTrainLabel).
 owns(aggregatorStation, accessoryDestination).
 owns(aggregatorMetro, accessoryStreet).
 owns(aggregatorMetro, accessoryStrName).
 owns(aggregatorTrain, accessoryTrainDest).
 owns(aggregatorBusStop, accessoryStopName).
 owns(aggrsymbolWagon, accessoryDestination).
 owns(aggrsymbolStairs, accessoryStrName).

 isof(accessoryScreenOne, typeofdatatext).
 isof(accessoryScreenTwo, typeofdatapicture).

isof(accessoryScreenThree, typeofdatatime).
 isof(accessoryTrainLabel, typeofdatastring).
 isof(accessoryDestination, typeofdatastring).
 isof(accessoryStreet, typeofdatapicture).
 isof(accessoryStrName, typeofdatastring).
 isof(accessoryTrainDest, typeofdatastring).
 isof(accessoryStopName, typeofdatastring).

 hasmin(classifierMainTracks, 2).
 hasmin(classifierStations, 1).
 hasmin(classifierUnderground, 1).
 hasmin(classifierTrains, 1).
 hasmin(classifierBusStops, 1).

 hasmax(classifierMainTracks, 25).
 hasmax(classifierStations, 20).
 hasmax(classifierUnderground, 20).
 hasmax(classifierTrains, 15).
 hasmax(classifierBusStops, 30).

 hasicon(aggregatorStation, aggrsymbolWagon).
 hasicon(aggregatorMetro, aggrsymbolStairs).
 hasicon(aggregatorMainTrack, nil).
 hasicon(aggregatorTrain, nil).
 hasicon(aggregatorMainStation, nil).
 hasicon(aggregatorDisplay, nil).
 hasicon(aggregatorBusStop, nil).

Figure B.4 - Virtual world "Railway" list

41

The command file related to the mapping process for the query "Italy" (figure B.5)
contains the loading of both virtual worlds and, of course, the loading of the query list.
The system administrator or other tools may have selected to add the "Railway" virtual
world after considering the geographical nature of the query. In this way a more efficient
metaphor may be generated.

The MDT finds out three successful mappings (shown on the next pages). The first two
pertain to the virtual world "Building". They differ as regards the chosen objects in a
room. In the first case the classifier chestOfDrawers has been chosen twice, and in the
second case a classifier album replaces one chest of drawers. The third mapping
contains the objects of the virtual world "Railway".

 /* COMMAND FILE FOR THE MAPPING OF QUERY ‘ITALY’ */

 /* LOADING OF PREFERENCES */

 [multi].

 /* LOADING OF VIRTUAL WORLDS */

 [building].
 [railway].

 /* LOADING OF THE QUERY */

 [italy].

 /* GOAL TO REACH */

 main.

 Figure B.5 - Command File for the mapping process of query ‘Italy’

42

The first mapping result regards the virtual world "Building". Its entrance hall leads to
an elevator which gives the possibility to access different floors of the building (by
pushing a button on the button panel). Each floor is mapped to an Italian region. Once
arrived on a selected floor the scene visualises an information board and a corridor of
rooms. The board consists of two displays. The former shows a geographical map of the
region belonging to that floor. The latter contains some historical notes about that
region. Each room represents a province and contains two chests of drawers displaying
the requested data. The first chest visualises the names and photos of the main tourist
attractions of the province on the front panel of each drawer. The second chest displays
on its panel only the name of a town with less than 30.000 inhabitants. By opening a
drawer of this chest it is possible to see some folders which contain the names of the
main tourist attractions of the corresponding town.

 /* MAPPING RESULTS QUERY "ITALY" */

 THE RECORD ITALY HAS BEEN MAPPED WITH : aggregatorelevator
 ITS ICON IS : nil

 THE SET OF REGIONS HAS BEEN MAPPED WITH : classifierbuttontable
 MIN WORLD : 2 MIN QUERY : 20
 MAX WORLD : 20 MAX QUERY : 20
 THE RECORD REGION HAS BEEN MAPPED WITH : aggregatorfloor
 ITS ICON IS : aggrsymbolbutton

 THE RECORD INFO HAS BEEN MAPPED WITH : aggregatorcompboard
 ITS ICON IS : nil

 THE ATTRIBUTE CHART HAS BEEN MAPPED WITH : accessorypicture
 THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : accessoryboard
 THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : accessoryfname
 THE SET OF PROVINCE HAS BEEN MAPPED WITH : classifiercorridor
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 30 MAX QUERY : 15

 THE RECORD PROVINCIA HAS BEEN MAPPED WITH : aggregatorroom
 ITS ICON IS : aggrsymboldoor

 THE ATTRIBUTE CITY HAS BEEN MAPPED WITH : accessorydlabel
 THE SET OF MONUMENTS HAS BEEN MAPPED WITH : classifierchestdrawers
 MIN WORLD : 0 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 20

 THE RECORD MONUMENT HAS BEEN MAPPED WITH : aggregatordrawer
 ITS ICON IS : aggrsymboldrawerfront

 THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : accessorydrawerpicture
 THE ATTRIBUTE NAMEMON HAS BEEN MAPPED WITH : accessorydrawerlabel
 THE SET OF TOWNS HAS BEEN MAPPED WITH : classifierchestdrawers
 MIN WORLD : 0 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 8

 THE RECORD TOWNS HAS BEEN MAPPED WITH : aggregatordrawer
 ITS ICON IS : aggrsymboldrawerfront

 THE ATTRIBUTE NAME TOWN HAS BEEN MAPPED WITH : accessorydrawerlabel
 THE SET OF LOC MONS HAS BEEN MAPPED WITH : classifierfolders
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 10 MAX QUERY : 10

 THE RECORD LOC MON HAS BEEN MAPPED WITH : aggregatorfolder
 ITS ICON IS : nil

 THE ATTRIBUTE NLOC MON HAS BEEN MAPPED WITH : accessoryfoname

 ##

Figure B.6 - 1. Mapping result for query "Italy" with virtual
world "Building" .

43

This first mapping would probably be discarded and therefore not shown to the final
users for two reasons. First of all, it contains a repetition of two objects (the chest of
drawers in a room) which may cause perplexity among the users. Furthermore, the
drawers representing the tourist attractions of the regions are empty, and may produce
undesired metaphoric effects.

Look at the metaphor graph for this mapping on figure B.7.

Drawer

Entrance
Hall

Button
Table

FloorButton

Fname Corridor

Dlabel Door

Room

ITALY

REGION

PROVINCIA

REGIONS

PROVINCE

Chest
Drawers

Drawer

Drlabel
Drawer
Front

TOWN

TOWNS

NAMETOWN

CITY

NAME

Folders

Folder

Foname

LOCMON

LOCMONS

NLOCMON

Complex
Board

Board Picture

INFO

NOTES CHART

Chest
Drawers

Drawer
Front

MONUMENTS

Drlabel

NAMEMON

Drpicture

PHOTO

MONUMENT

Figure B.7 - Metaphor graph for the first mapping result of query "Italy"

44

The second mapping result differs from the first one only as regards the objects in a
room. One chest of drawers has been replaced by a classifier album. It visualises the
names and photos of the main tourist attractions of the province related to the selected
room. Figure B.8 shows the second mapping results also stored into the file "mdtitaly".

 /* MAPPING RESULTS QUERY "ITALY" */

 THE RECORD ITALY HAS BEEN MAPPED WITH : aggregatorelevator
 ITS ICON IS : nil

 THE SET OF REGIONS HAS BEEN MAPPED WITH : classifierbuttontable
 MIN WORLD : 2 MIN QUERY : 20
 MAX WORLD : 20 MAX QUERY : 20

 THE RECORD REGION HAS BEEN MAPPED WITH : aggregatorfloor
 ITS ICON IS : aggrsymbolbutton

 THE RECORD INFO HAS BEEN MAPPED WITH : aggregatorcompboard
 ITS ICON IS : nil

 THE ATTRIBUTE CHART HAS BEEN MAPPED WITH : accessorypicture
 THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : accessoryboard
 THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : accessoryfname
 THE SET OF PROVINCE HAS BEEN MAPPED WITH : classifiercorridor
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 30 MAX QUERY : 15

 THE RECORD PROVINCIA HAS BEEN MAPPED WITH : aggregatorroom
 ITS ICON IS : aggrsymboldoor

 THE ATTRIBUTE CITY HAS BEEN MAPPED WITH : accessorydlabel
 THE SET OF MONUMENTS HAS BEEN MAPPED WITH : classifieralbum
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 30 MAX QUERY : 20

 THE RECORD MONUMENT HAS BEEN MAPPED WITH : aggregatorpage
 ITS ICON IS : aggrsymbolindex

 THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : accessoryphoto
 THE ATTRIBUTE NAMEMON HAS BEEN MAPPED WITH : accessoryplabel
 THE SET OF TOWNS HAS BEEN MAPPED WITH : classifierchestdrawers
 MIN WORLD : 0 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 8

 THE RECORD TOWNS HAS BEEN MAPPED WITH : aggregatordrawer
 ITS ICON IS : aggrsymboldrawerfront

 THE ATTRIBUTE NAME TOWN HAS BEEN MAPPED WITH : accessorydrawerlabel
 THE SET OF LOC MONS HAS BEEN MAPPED WITH : classifierfolders
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 10 MAX QUERY : 10

 THE RECORD LOC MON HAS BEEN MAPPED WITH : aggregatorfolder
 ITS ICON IS : nil

 THE ATTRIBUTE NLOC MON HAS BEEN MAPPED WITH : accessoryfoname

 ##

Figure B.8 - 2. Mapping result for query "Italy" with
virtual world "Building".

45

This mapping result may probably have a better metaphor effect than the precedent,
since it contains an object (the album) which seems to be more appropriate for the
visualisation of the data type picture.

Figure B.9 shows the metaphor graph for mapping result number two.

Entrance
Hall

Button
Table

FloorButton

Fname Corridor

Dlabel Door

Room

ITALY

REGION

PROVINCIA

REGIONS

PROVINCE

Chest
Drawers

Drawer

Drlabel
Drawer
Front

TOWN

TOWNS

NAMETOWN

CITY

NAME

Folders

Folder

Foname

LOCMON

LOCMONS

NLOCMON

Complex
Board

Board Picture

INFO

NOTES CHART

Album

Index

MONUMENTS

Plabel

NAMEMON

Photo

PHOTO

MONUMENT

Page

Figure B.9 - Metaphor graph for the second mapping result of query "Italy"

46

The third and last mapping result concerns the virtual world "Railway" introduced in
this section. The first scene represents the main track of the virtual station and allows to
access different trains leading to all Italian regions. Once on a departure track you may
enter a wagon for the final destination choice, i.e. a province of the selected region.
Each track also contains a display with two activated screens. The virtual world foresees
three different screens but for the query "Italy" only two are needed, the first one
displaying the geographical map and the second one visualising historical notes. Once
arrived at the destination station you may decide to take another train for reaching the
cities with less than 30000 inhabitants. These trains have only one wagon and the
destination station has a simple structure since it allows only to read the bus stop time
chart, which shows the names of the tourist attractions for that town. The station of the
province gives also the possibility to use an underground system, leading to local
monuments and attractions.

 /* MAPPING RESULTS QUERY "ITALY" */

 THE RECORD ITALY HAS BEEN MAPPED WITH : aggregatorMainStation
 ITS ICON IS : nil

 THE SET OF REGIONS HAS BEEN MAPPED WITH : classifierMainTracks
 MIN WORLD : 2 MIN QUERY : 20
 MAX WORLD : 25 MAX QUERY : 20

 THE RECORD REGION HAS BEEN MAPPED WITH : aggregatorMainTrack
 ITS ICON IS : nil

 THE RECORD INFO HAS BEEN MAPPED WITH : aggregatorDisplay
 ITS ICON IS : nil

 THE ATTRIBUTE CHART HAS BEEN MAPPED WITH : accessoryScreenTwo
 THE ATTRIBUTE NOTES HAS BEEN MAPPED WITH : accessoryScreenOne
 THE ATTRIBUTE NAME HAS BEEN MAPPED WITH : accessoryTrainLabel
 THE SET OF PROVINCE HAS BEEN MAPPED WITH : classifierStations
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 15

 THE RECORD PROVINCIA HAS BEEN MAPPED WITH : aggregatorStation
 ITS ICON IS : aggrsymbolWagon

 THE ATTRIBUTE CITY HAS BEEN MAPPED WITH : accessorydestination
 THE SET OF MONUMENTS HAS BEEN MAPPED WITH : classifierUnderground
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 20 MAX QUERY : 20

 THE RECORD MONUMENT HAS BEEN MAPPED WITH : aggregatorMetro
 ITS ICON IS : aggrsymbolStairs

 THE ATTRIBUTE PHOTO HAS BEEN MAPPED WITH : accessoryStreet
 THE ATTRIBUTE NAMEMON HAS BEEN MAPPED WITH : accessoryStreetName
 THE SET OF TOWNS HAS BEEN MAPPED WITH : classifierTrains
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 15 MAX QUERY : 8

 THE RECORD TOWNS HAS BEEN MAPPED WITH : aggregatorTrain
 ITS ICON IS : nil

 THE ATTRIBUTE NAME TOWN HAS BEEN MAPPED WITH : accessoryTrainDest
 THE SET OF LOC MONS HAS BEEN MAPPED WITH : classifierBusStops
 MIN WORLD : 1 MIN QUERY : 1
 MAX WORLD : 30 MAX QUERY : 10

 THE RECORD LOC MON HAS BEEN MAPPED WITH : aggregatorBusStop
 ITS ICON IS : nil

 THE ATTRIBUTE NLOC MON HAS BEEN MAPPED WITH : accessoryStopName

 ##

Figure B.10 - 3. Mapping result for query "Italy"
with virtual world "Railway".

47

Mapping result number three could be preferred to number two because of the
geographical nature of the virtual world "Railway". Anyway, the final decision could
also be taken by the users, according to their needs or preferences.
The metaphor graph for the third mapping is depicted in figure B.11.

Main
Station

Main
Tracks

Main
Track

Trainlabel Stations

Destination Wagon

Station

ITALY

REGION

PROVINCIA

REGIONS

PROVINCE

Trains

Train

Traindest

TOWN

TOWNS

NAMETOWN

CITY

NAME

Busstops

Busstop

Stopname

LOCMON

LOCMONS

NLOCMON

Display

Screen1 Screen2

INFO

NOTES CHART

Underground

Stairs

MONUMENTS

Strname

NAMEMON

Street

PHOTO

MONUMENT

Metro

Figure B.11 - Metaphor graph for the third mapping result of query "Italy"

