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Abstract. Subgroup discovery is a local pattern discovery task, in which
descriptions of subpopulations of a database are evaluated against some
quality function. As standard quality functions are functions of the de-
scribed subpopulation, we propose to search for equivalence classes of
descriptions with respect to their extension in the database rather than
individual descriptions. These equivalence classes have unique maximal
representatives forming a closure system. We show that minimum car-
dinality representatives of each equivalence class can be found during
the enumeration process of that closure system without additional cost,
while finding a minimum representative of a single equivalence class is
NP-hard. With several real-world datasets we demonstrate that search
space and output are significantly reduced by considering equivalence
classes instead of individual descriptions and that the minimum repre-
sentatives constitute a family of subgroup descriptions that is of same or
better expressive power than those generated by traditional methods.

1 Introduction

Subgroup discovery [2IT2I17] is a local pattern discovery task: descriptions of sub-
populations of a database are evaluated against some real-valued quality func-
tion, and those descriptions exceeding some given minimum quality are returned
to the user. The quality functions commonly used in this course like Piatetsky-
Shapiro, binomial test, or Gini-index (see [12] for a list) are functions of the
extension of a subgroup description. Traditional subgroup discovery algorithms,
however, search in the space of subgroup descriptions, usually conjunctions of
attribute/value equality constraints, rather than in the space of extensions. Since
many descriptions can have an identical extension on the given data, this may
lead to (i) many redundant evaluations of the quality function and (ii) to a result
set that contains multiple descriptions of the same subpopulation.

In contrast we propose to consider extension based equivalence classes of sub-
group descriptions rather than individual descriptions. Thereby our algorithms
implicitly search in the space of subgroup extensions, and, consequently, they
have a potentially reduced search space and return at most one description of
each extension, a representative, to the user. For this purpose we propose to
use descriptions with a minimum number of constraints, i.e., a minimum rep-
resentative. This choice is motivated by the common hypothesis that (i) short
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descriptions are easier to interpret than long descriptions and (ii) in scenarios in
which subgroups are used as building blocks for global models short descriptions
lead to better generalization. In summary we consider the following computa-
tional problem:

Problem 1 (NON-REDUNDANT-SUBGROUP-DISCOVERY ). Given a dataset, a qual-
ity function ¢, and a minimum quality threshold ¢*, list a result set R of subgroup
descriptions that satisfies

completeness, i.e., for all subgroup descriptions H with g(H) > ¢* there is an
H’ € R that has the same extension as H,

non-redundancy, i.e., for all pairs of distinct subgroup descriptions H, H' € R
the extensions of H and H’ are distinct, and

representative minimality, i.e., for all listed descriptions H € R there is no
shorter description H' having the same extension.

In addition we also discuss the standard problem variations of mining only rep-
resentatives of the top-k quality equivalence classes as well as mining only classes
having a representative not exceeding a given length-limit.

Results and Contribution. We formalize extension based equivalence classes and
show that they theoretically can subsume an exponential number of individual
subgroup descriptions. Thus, searching equivalence classes rather than individual
descriptions has the potential to reduce search space and output tremendously.
Indeed, as we show in an empirical study, a significant reduction can also be
observed on ten well-known real-world datasets.

While each equivalence class has a unique maximal representative, we show
that the number of minimal and minimum representatives can grow exponen-
tially in the length of that maximal description, and it is NP-hard, given some
description, to compute an equivalent description of minimum length. This result
is complemented by our observation that a simple greedy strategy approximates
a minimum representative within a logarithmic factor.

We use this approximation technique together with the fact that the unique
maximal representatives are forming a closure system to develop a first algorith-
mic solution to Problem [ that builds on any of the known algorithms that can
enumerate closure systems combined with an anti-monotone pruning condition.
As an alternative we present an algorithm that directly traverses the equivalence
classes via the exact minimum representatives. This approach bypasses the hard-
ness of computing minimum representatives by building them inductively from
one another. It comes, however, at the cost of additional memory requirements.

In a concluding empirical evaluation we compare both approaches to each
other and to traditional exhaustive subgroup discovery. We assess good perfor-
mance, as well as a surprisingly good predictive power given that the method
has not been optimized towards this goal.

Prior Work. Addressing output redundancy is a concern of subgroup discovery
research right from the start (see, e.g., [8]). More recent approaches include suc-
cessive weighted covering [13] and the removal of irrelevant descriptions [7]. For
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the first method it is important to note that it can be combined with our’s rather
than being an excluding alternative. The second approach is closely related to
this work in that it also uses the closure system of maximal representatives.
While we are interested in listing minimum representatives of each equivalence
class, their focus is on discarding irrelevant classes.

Traditional subgroup miners usually exploit an optimistic estimator of their
quality function in order to make the approach of searching in the space of descrip-
tions feasible. Hence they create an anti-monotone search space that contains the
family of all interesting descriptions. While our algorithms use equivalence classes
instead of individual descriptions, all the optimistic estimator techniques includ-
ing recent findings [10] can still be applied. Consequently, our algorithms always
use a condensed version of traditional method’s search spaces.

Methodologically our work is directly related to formal concept analysis (e.g.,
[6]) and closed set mining [3IT4/16] because the maximal representatives together
with their equivalence classes form a concept lattice. While our algorithms build
on closure system enumeration techniques, we are only interested in minimum
representatives. This is in contrast to closed set mining where algorithms seek to
list all maximal (closed) members or minimal members (generators or free sets).

2 Basic Definitions

Throughout this work we denote “elementary objects” by non-capital letters,
e.g., e, sets of elementary objects by capital letters, e.g, ' and families, i.e.,
sets, of sets by calligraphic letters, e.g., £. In particular the power set of some
set E is denoted by P(E). The symbol “C” denotes the strict subset relation
between sets. For a family S the terms minimal and maximal refer to the
subset relation, i.e., a set S € S is a minimal element of S if there no strict
subset S’ C S that is also an element of S. In contrast, the term minimum
is used with respect to the cardinality of a set, i.e., S € S is called minimum
element of S if there is no S’ € S with |S’| < |S].

Subgroup Descriptions. Let A = Aj,..., A, be a sequence of n sets we refer
to as attributes. A data record over A is an n-tuple D = (a1,...,a,) €
A X -+- X Ay, for which we denote its i-th component by D(i) = a;. A dataset
D over A is a multiset of data records over A. Note that we do not consider
labeled data respectively target attributes at this points. Labels are introduced
in the paragraph about subgroup quality below.

The subgroup description language considered in this work is the language of
conjunctions of attribute/value equality constraints. We formalize this as follows:
a constraint over A is an expression (4, =v) with ¢ € {1,...,n} and v €
A;. The set of all such constraints is denoted C 4. The family of subgroup
descriptions over A, i.e., the language of conjunctions of such constraints, is
then £4 = P(C 4). In the following we drop the index A whenever it is clear
from the context.

The semantic of conjunctions arises through the following interpretation of
subgroup descriptions: let D be a dataset over A. A datarecord D € D is said to
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support a subgroup description H € £, denoted D = H, if for all (4, =v) € H
it holds that D(i) = v. Then the extension of H in D, denoted by D[H], is the
submultiset of D containing the data records that support H. Extensions are
anti-monotone with respect to the subset relation, i.e., it holds that H C H' =

DIH] 2 DIH).

Subgroup Quality. For the purpose of this work we simply regard a quality
function as a map ¢: £ — R and an optimistic estimator for ¢ as a map
G: L — R satisfying for all H C H' € L that ¢(H) > q(H'). Given a quality
threshold ¢* the family of interesting subgroup descriptions is R = {H €
L: q(H) > g*}. Usually, of course, a quality function depends on the given data.
For instance for a binary labeled dataset D, i.e., a dataset with associated
labels (D) € {+,—} for all D € D a commonly used quality function (and the
one used in our experiments) is the binomial test quality function

ID \D+[ Il |D+>
[H] D]
where Dt = {D € D: = +} denotes the dataset of all +-labeled data
records As optimistic ebtlmator for the binomial test quality function we used
= /ID[H]|/|D| (1 = |D*| /D). In the following, however, the concrete

form of ¢ and ¢ is not considered. We regard them as given blackboxes that
“encapsulate” the data and rely only on the following two requirements:

1. For a given minimum quality threshold ¢* € R the search space § =
{H € L: §(H) > q*} defined by § is anti-monotone, i.e., for all H C H' C
C it holds that H' € S implies H € S.

2. The maps q(H) and §(H) both are functions of the extension of H in the
dataset, i.e., D[H] = D[H'] implies q(H) = q(H’).

The first requirement follows from the definition of optimistic estimators, and the
second is true for the usually employed quality functions and their estimators.

3 Extension Equivalence and Compression

In this section we formally introduce equivalence classes of subgroup descriptions
and investigate their potential in reducing search space and output of subgroup
discovery. Unless explicitly mentioned otherwise, for the remainder of this article
we assume that D is a dataset of size m over n attributes A. The central notion
of equivalence is:

Definition 1 (Description Equivalence). Two subgroup descriptions H, H' €
L are equivalent (with respect to the dataset D), denoted by H = H', if they
have an identical extension on D, i.e., D[H| = D[H'].

Clearly, = is an equivalence relation on L. For a H € £ we denote its equiva-
lence class with respect to =, i.e., {H' € L: H = H'}, by [H]. For a family
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Table 1. Construction [[] with n = 6

A1 Ay Az Ay As Ag 1

Dy 001 1 1 1 —
D, 1.1 0 0 1 1 —
Ds 11 1 1 0 0 —
Dy 1 1 1 1 1 1+

of subgroup descriptions H C £ we denote by H= the equivalence classes it
contains, i.e., H= = {[H]: H € H}.

In order to investigate the potential reduction of search space and output,
we now give a general dataset construction that intuitively reflects “worst-case
siutations” for traditional subgroup discovery. It leads to several theoretical ob-
servations.

Construction 1. For even positive integers n € N we define the dataset D,
over n binary attributes A = (A1,..., A,) with A; = {0,1} forie {1,...,n} by
Dn = (l)l7 ey Dn/2+1) with Dn/2+1 = (17 ey 1) and

1, otherwise

D) = {07 if j € {2i — 1,23}

fori=1,...,n/2.

Table [l illustrates this construction for n = 6 annotated with binary labels. For
g* = 3/8 only one equivalence class is interesting with respect to the binomial
test quality function, i.e, the one containing the descriptions H with D[H| =
{D4}. Thus, one solution to Problem[for this data is {(A;1=1),(As=1), (A5 =
1)}. In contrast there are 3% = 27 alternative descriptions of this extension: for
each of the pairs {A;, Ao}, {As, As}, and { A5, Ag} choose one or both attributes
to be constraint to 1. Generally the datasets D,, witness that the compression
rate achieved by considering equivalence classes instead of individual description
can grow exponentially in the number of attributes (and data records).

Theorem 1. For all positive integers n € N there is a dataset D of size n/2+1
over n attributes A and a quality threshold q* such that the compression rates

|R|/IR=| and |S|/|S=| are in O(exp(n/2)).

In order to investigate the extend of compression that can be achieved in prac-
tice, we conducted experiments on ten real-world datasets, which are introduced
in more detail in Section [7l Table[2]shows sizes of result families R, compressed
results families R=, search spaces S, and compressed search spaces S= for dif-
ferent quality thresholds ¢*. The threshold ¢100 varies among the datasets: it
is equal to the quality of the 100th highest quality subgroup description (note
that because of ties in the quality |Ri100| can still be greater than 100). The
threshold € is equal to the smallest positive number distinguishable from zero in
double precision. The results for ¢* = t100 give a differentiated impression: rang-
ing from tremendious compression rates of 749.000 (soybean) to no compression
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Table 2. Uncompressed and compressed result families and search spaces

credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote
|Rt100| 100 38K 124 168 100 128 749K 100 113 101
|[Rziool 83 1 17 12 100 1 1 99 113 101
|Sti00] 148K 456M 12K 3458 103K >100M >100M 398K 6067 3505
[Sfoo] 87K 159K 4176 890 69K  8M 1M 395K 5824 3465
|R| 6119K >100M 1078K >100M 11K >100M >100M >100M 65K 3610K
|RZ| 175K 103K 19K 105K 11K 2M 2M  >100M 23K 82K
|Se| 17M >100M 26M >100M 192K >100M >100M >100M 129K 11M
|SZ] 385K 183K 45K 228K 115K 9M 3M  >100M 43K 227K

(vote). For decreasing thresholds, however, a significant compression arises for all
datasets: while (with one exception) it is tractable to search through all equiv-
alence classes with a potentially positive quality (¢* = €), this is infeasible on
most datasets for exhaustive enumeration due to the large number of equivalent
descriptions.

4 Border Elements

Border elements, i.e., maximal and minimal members of an equivalence class
[H], play a special role. They contain all information necessary to check whether
some given description is a member of [H]. Among the minimal members one
can find minimum representatives, one of which we desire as representative for
its class. In this section we state some basic but important mathematical and
computational properties of the border elements.

The first observation is that every equivalence class has a unique maximal
(most specific) element. It is given by the map o introduced in the lemma below.

Lemma 2 (Pasquier et al. [14]). For all subgroup descriptions H € L it holds
that o(H) given by

o(H)={(Ai=v): 1<i<n,VD e D[H], D(i) =v} .
is the unique mazimal element of [H], i.e., (i) H = o(H), (i) for all H € L
with H' D o(H) it holds that H # H', and (iii) o(H) is unique with (i) and (ii).

While each equivalence class [H| has a unique maximal element o (H), there can
be more than one minimal (most general) element of [H]. In fact the number
of minimal and even that of the minimum representatives can be exponential
in the cardinality of o(H). Again, the datasets D,, from Construction [Tl witness
this statement: for all I C {1,...,n/2} the description H; defined by

Hy Z{(Am:l) ZEI}U{(AQl_lzl)) {1,77’1,}\1}

is a minimum description of the extension {D,;}, and there are 2"/ such
descriptions. We can conclude:
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Theorem 3. For all positive integers n € N there is a dataset D of size n/2+1
over n attributes A such that there is an equivalence class with O(exp(n/2))
minimum representatives.

For Problem [ we are only interested in constructing one minimum representative
per interesting equivalence class. As an isolated task, however, this is intractable.
This again contrasts the maximal representatives, which can be computed in time
O(nm). In particular the NP-hard MIN-SET-COVER problem—given a family of
subsets F C P(E) with |JF = E, compute a minimum subfamily 7 C F with
JF' = E—polynomially reduces to finding a minimum description. In addition
the reduction preserves solution sizes. Thus, even the inapproximability result
from [5] carries over to our problem.

Theorem 4. Given a subgroup description H € L, it is

(a) NP-hard to compute an equivalent subgroup description G € [H] of mini-
mum length, i.e., |G| = min{|H'|: H' € [H]} and

(b) hard to compute an approzimation G' € [H| in polynomial time that satisfies
|G'| < |G| (1 —€)Inm for all € > 0 where m = |D \ D[H]| is the number of
data records not supporting H .

Proof. We prove both statements by giving a polynomial time transformation
of MIN-SET-COVER instances F C P(FE) to a dataset D over attributes A and
a subgroup description H € L4 such that (i) extension equivalent descriptions
H' € [H] correspond to set covers Frr C F of E of same size, i.e., |H'| = |Fu/|
and (ii) |D \ D[H]]| is equal to the size of the set cover ground set |E|. Part (a)
then follows from the NP-hardness of MIN-SET-COVER and (b) from the result
of B]. Let E = {1,...,m} and F = {S1,...,S,} be a set cover instance. Set
A: {A17~-~aAn} with Az = {0,1} and D = D17...,Dm+1 with

D) = {1, ifi ¢ 5,

0, otherwise

for ¢ = {1,...,m} and D,,41 = (1,...,1). Furthermore, choose H € L as
H={(A;=1): 1 <i<n}. Let H € [H] be a subgroup description equivalent
to H. Then it follows from the definitions that H' C o(H) and D'[H'] = {}
where D' = D \ D[H] denote the datarecords that are not supporting H. It
follows for Frr C F defined by Fr = {S;: (4;=1) € H'} that

Vi€ F, E|j7i€Sj/\Sj e Fr
sVie E, H(A]:].) S H/, Dl(]) =0
&Yie E, D; ¢ D'[H']

That is H' = H if and only if Fg is a cover of E. Moreover, |H'| = |Fp| as
required. a

! Here, hardness means: “as hard as computing a solution to an NP-hard problem in
time n®(°81°8™) for instances of size n.”
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5 Closure System Traversal and Greedy Approximation

Our first algorithmic approach towards solving Problem [ is motivated by the
observation that the transformation used within the proof of Theorem [ can
be reversed. Hence, finding a minimum equivalent representative of a given de-
scription H is in fact equivalent to MIN-SET-COVER. Incoporating that inverse
transformation into the well-known greedy algorithm for MIN-SET-COVER yields
the procedure:

1. set D — D\ D[H], G — 0 -
2. while D[G] # 0 set G < G U {argmin ¢, (p) |DIG U{c}|}
3. return G

Slavik [15] found that the greedy approximation factor for MIN-SET-COVER
is g(m) = Inm — Inlnm + 0.78 for instances with a ground set E of size m.
Taking into account our transformation we have the following result.

Lemma 5. Given a subgroup description H, a minimum representative of [H]
can be approzimated in time O(|o(H)| m) within g(m) where m = |D \ D[H]| is
the number of data records not supporting H.

Thus, any algorithm that traverses the search space of equivalence classes can be
combined with the greedy algorithm to approximately solve Problem [l Several
known algorithms are identified as applicable for that task by another observa-
tion: the maximal representatives form a closure system.

Lemma 6 (Pasquier et al. [14]). The map o is a closure operator, i.e., it
satisfies for all HyH' € L that H C o(H) (extensivity), H C H = o(H) C
o(H'") (monotonicity), and o(H) = o(c(H)) (idempotence).

There are several efficient algorithms listing all closed sets of a closure operator
like the divide and conquer algorithm from formal concept analysis [9]. Adapting
a closed frequent itemset miner like LCM [16] to our task is even more natural:
we plug in optimistic estimate pruning instead of frequency pruning, and instead
of single items we have single constraints. Since there are at most nm valid con-
straints for a dataset of size m over n attributes, together with the performance
of LCM we get the result:

Theorem 7. Problem [ can be solved in time O(|S=|n?m?) and space O(nm)
if the representative minimality condition is relaxzed to: for all listed descrip-
tions H € R there is no description H' having the same extension with |H| >
9(ID\ DIH]|) |H|.

Note that in case of a constant number of attribute values the bound on the
number of constraints boils down to O(n), and consequently the time complex-
ity in the theorem is improved by a factor m. The theoretical approximation
guarantee of the greedy algorithm, although optimal with regard to Theorem [4],
may appear somewhat weak. In practice, however, the worst-case bound is vir-
tually never attained, and the greedy result is usually close to optimum (see
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Section [7). Moreover, note that the potentially expensive greedy algorithm has
to be called only for the returned result equivalence classes and not during the
actual traversal of the closure system.

In order to adress the top-k problem variant, i.e., to list only representatives
of k highest quality classes, only minor changes are necessary: instead of directly
printing the interesting subgroup descriptions, collect them in a priority queue
with capacity k. In this scenario the search space can be reduced significantly
by adjusting the ¢* threshold whenever a new subgroup description is added to
the result queue (and the queue is full).

On the other hand, there is no easy way to include a length-limit for additional
pruning, i.e., when we are only interested in reprentatives containing no more
than [ literals, this cannot be exploited for reducing the search space. The reason
is that, even if exact minimum reprentatives would be on hand, in general LCM
(or any other common closed set miner) does not list the closed sets in ascending
order with respect to their minimum equivalent descriptions.

6 Inductive Minimum Representative Construction

In this section we present an alternative algorithmic approach for non-redundant
subgroup discovery that, intuitively, is based on a breadth-first traversal of the
directed graph containing as vertices all equivalence classes that lie in the search
space and edges between any two classes [H] # [H'] such that there is a con-
straint ¢ € C with (HU{c}) € [H'] (note that the existence of such a constraint
is independent of the chosen representatives H, H'). It turns out that minimum
representatives of an equivalence class [H| correspond to shortest paths from [)]
to [H] in that graph. Thus, beside having the weakness of a significant mem-
ory overhead because all visited classes have to be kept in memory in order to
guarantee a non-redundant traversal, this strategy has two major advantages:

1. it generates minimum representatives of each equivalence class without ad-
ditional cost and,

2. as it visits equivalence classes in ascending order with respect to the mini-
mum cardinality of their members, it allows for pruning based on a length-
limit.

The straightforward implementation of that graph traversal has the serious draw-
back that it reaches vertices via many redundant ways: a minimum representative
G induces |G|! different paths to [G]—one for each of its orderings. This effect can
be significantly reduced by chosing some arbitrary but fixed order {cy,...,cn}
of the constraint set C. Thereby the expressions “max H” and “min H” are
defined for non-empty descriptions H € L by referring to the constraint in H
with the maximum or minimum index, respectively. Algorithm [I below uses this
order to reduce its traversal paths to those that are in descending order. To de-
scribe its behavior in more detail and prove its correctness we define a modified
lexicographical order on the descriptions £, denoted by “~<.”, given by:
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H~<p H < |H|<|H|vV (|H|=|H|Amax(HAH') € H') .
Using this strict linear order we can specify the elements that Algorithm [ enu-

merates among the potentially many minimum representatives.

Definition 2 (Canonical Minimum Representative). The canonical min-
itmum representative of an equivalence class [H], denoted by p(H), is the
unique minimum representative of [H| that is minimal with respect to <.

These canonical minimum representatives have the important property that they
can be built from one another inductively via their suffixes.

Lemma 8. Let G # ) be a non-empty canonical minimum representative of its
equivalence class [G], i.e., G = u(G). Then G' = G\ {min G} is the canonical
minimum representative of [G'].

Proof. Assume there is a G” € [G'] with G” < G'. Then G” U {minG} <
G'U{minG} = G. But as
D|G" U{min G}] = D[G"] N D[{min G}]
= D[G'] N D[{min G}]
=D[G' U {minG}| = D|G] ,

ie., (G U{minG}) € [G], this contradicts G = u(G). ]

Now we can prove the correctness and time complexity of Algorithm [

Algorithm 1. Inductive Minimum Representative Construction

Require: ordered ground set of constraints C = {c1,...,¢cn},

extension closure operator o,

quality function ¢ with optimistic estimator ¢, and quality threshold ¢*
Output : family {u(H): ¢(H) > ¢*} in lexicographical order

1. init O as empty queue and V as empty prefix tree
2. enqueue (0,0(0),C) on Q
3. while Q # () do

4. dequeue front element (G, S, A) of Q

5. if ¢(S) > ¢* then print G

6. A'—{ceA\S: c<minG, (GU{c}) >q¢*}

7. for all ¢; € A’ in ascending order of their index do
8. G —GuU {Cz}

9. S —o(G)

10. if ' ¢V then

11. add S’ toV

12. enqueue (G',S5,A’) on Q
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Theorem 9. Algorithm [l exactly and non-redundantly lists u(H) for all [H] €
R= = {[H]: q(H) > q*} in lexicographical order in time O(|S=|n?*m?) and
space O(|S=|nm) where S= = {[H|: ¢(H) > ¢*} is the search space of all
potentially interesting equivalence classes.

Proof. For each dequeued tuple at most |C| augmentations are evaluated involv-
ing a computation of ¢ and a visited check. The prefix-tree lookup is performed
in time |S| < |C| and o is computed in time nm. Also the space dominant data
structure V contains at most one element of size at most |C| for each dequeued
tuple. As |C] is bounded by nm the claim follows if we can show that in lexico-
graphical order for each [H| € 8= a tuple (u(H),o(H), A) is enqueued and only
tuples of this form are enqueued, i.e., if the following three properties hold:

(i) If a tuple (G, S, A) is enqueued before (G’, S’, A’) then G <1 G'.
(ii) For all [H] € 8= a tuple (G,S,A) with G = p(H) and S = o(H) is
enqueued, and A D {ce C: (GU{c}) € ST, c <minG}.
(iii) all enqueued tuples (G, S, A) are of the form G = u(H) and S = o(H) for
some [H] € S§=.

Property (i) is implied by the breadth-first strategy and the following observa-
tion: if G < G2 then all descriptions G} generated from G are lexicographi-
cally smaller than all descriptions G5 generated from Gs.

Assume that (ii) is violated for some [H]. Then choose a class [H] that violates
(i) with a minimal G’ = u(H). As (0,0(0),C) is enqueued in line 2] it holds
that G’ # . By Lemma 8 G = G’ \ {min G’} is lexicographically minimal in
[G]. The anti-monotinicity of the search space and G C G’ imply that (ii) holds
for [G]. In particular a tuple (G, S, A) is enqueued with (min G’) € A because
min G’ < min G (for the same reason and because of the anti-monotinicity of S=,
the augmentation set A’ satisfies A’ D {c€ C: (G’ U{c}) € =, ¢ <minG'}).
Thus, G’ is generated subsequently in line Bl Then o(G’) does not pass the
visited check in line [[0l This implies that [G’] has already been visited, say via
G" € [G']. Tt follows from (¢) that G” <1 G’ contradicting G’ = p(G’).

For (iii) observe that S = o(G) for all enqueued tuples by the generation of S
in line[@ Now assume that G # u(.S) for an enqueued tuple (G, S, A). Then there
is an G’ € [S] with G’ <1 G. By the anti-monotinicity of the search space and
(ii) a tuple (G',S’, A’) is enqueued, and by (i) it is enqueued before (G, S, A).
In the same iteration S’ = S is added V. Consequently, (G, S, A) can not be
enqueued as it does not pass the visited check in line [0—a contradiction. O

There are some additional speedups that do not affect the worst-case time com-
plexity. For the top-k scenario the same changes as for the closure/greedy ap-
proach can be applied. Furthermore, if at a node (G, S, A) with ¢;, ¢; ¢ S it holds
that ¢; € 0(GU{¢;}) then it follows o (GU{¢;, ¢;}) = 0(GU{c¢;}) by monotonicity
of o. In this case the augmentation element ¢; can be removed from A’ of the
child (GU{¢;},0(GU{c;}), A’) in case ¢; <, ¢; as it would redundantly gener-
ate the same equivalence class again. Furthermore, the sorting of the constraint
set can have a substantial impact on the computation time. It is, however, a
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non-trivial problem to find an optimal sorting (see [9] for a comparison of dif-
ferent sorting strategies for divide and conquer closed set listing).

7 Empirical Evaluation

In this section we empirically compare non-redundant subgroup discovery with
minimum representatives to traditional subgroup discovery. This includes an
evaluation of both proposed algorithmic solutions for Problem[Il We considered
ten datasets from the UCI Machine Learning Repository [I], which are presented
along with their most important properties in Table Bl All numerical attributes
where discretized using minimal entropy discretization. As representative tradi-
tional subgroup miner we used the state-of-the-art algorithm Dpsubgroup [I0].
All involved algorithms were implemented in Java and will be published on the
author’s webpage. For the sake of a better comparision we used a simplified
reimplementation of the LCM algorithm and not the implementation published
by its author. The quality function was the binomial test quality function com-
bined with the optimistic estimator introduced in Section 2 All experiments
were performed on a Core 2 Duo E8400 @ 3Ghz running a Sun SE 6ulQ Java
Virtual Machine with 1.5 GB of Java heap space under Windows XP.

Computation Time. Table @l contains the computation times that correspond
to the compression experiments presented in Section [B] for Dpsubgroup (dpsg),
LCM/greedy (lem/gr), and Algorithm[I] (imr). The threshold ¢100, i.e., the qual-
ity of the 100th best subgroup description, is explicitly stated. The results es-
sentially reflect the already observed search space reduction. Although, even for

Table 3. Datasets

dataset credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote
label bad 1 maln. pois. recm. sick EI  bspot. pos. repub.

n 15 56 18 22 8 39 60 35 9 16
m 1000 32 148 8124 12960 3772 3190 638 958 435
|C| 58 159 50 117 27 66 133 287 27 48

Table 4. Computation time (in seconds unless stated differently); “oom” and “>12h”
for computations that ran out of memory or out of time, respectively

dataset credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote

q” 0.094 0.336 0.244 0.267 0.029 0.177 0.223 0.190 0.061 0.306
dpsg 2 84.4m 0.5 0.6 1.2 4.3h 10.6h 23 0.3 0.4
lem/gr 3.2 23 0.3 1.0 23 18.3m 123 38 0.2 0.2
imr 3.6 23 0.2 0.9 2.4 oom 115 20 0.2 0.3
q €

dpsg 242 >12h 457 >12h 2 >12h >12h >12h 1 127
lem/gr 184 95 6.5 53m  85.5 Th 41m >12h 15 59
imr 26 60 4 39 5 oom oom oom 2 19
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Fig. 1. Logscale search space and runtime comparison of Algorithm [ (imr) vs. Dp-

subgroup (dpsg) for increasing length limits

datasets on which a compression is achieved traditional subgroup discovery is
not directly outperformed. This is illustrated in Figure [l in which the devel-
opment of search spaces and computation time for increasing length-limits are
shown. The Dpsubgroup algorithm is only beaten by Algorithm [T for sufficiently
large differences in the search space. This behavior is due to the sophisticated
data structures (fptrees [2/11]) Dpsubgroup uses in contrast to our algorithm.



192 M. Boley and H. Grosskreutz

Table 5. Greedy performance for ¢* = ¢

credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote
avg. min. 5.588 4.914 4.532 5.776 5.328 7 ? 7?7  5.005 5.991
avg. apx. 5.603 5.032 4.562 5.862 5.328 9.062 6.591 7  5.041 6.039
max. dif. 5vs.37vs.45vs.36vs.4nodiff ? ? ?7 6vs.48vs. 5
time frac. 0.9 0.07 054 099 0.97 096 0.78 ? 0.93 0.59

A further noteworthy fact is that unless Algorithm [Mran out of memory (the
oom entries) it always outperforms LCM /greedy. This motivates a more detailed
investigation of the latter approach.

Greedy Performance. We analyze the perfomance of the greedy algorithm within
the lem/greedy approach in two respects: (a) the length of the produced repre-
sentatives and (b) the greedy algorithm’s fraction of the computation time for
the experiments with ¢* = e. Note that this is an extremely unfavorable case for
the lem/greedy approach because of the large number of interesting equivalence
classes, each of which requires one greedy call. The results are listed in Table Bl
We note that (a) for all datasets the length of the subgroup descriptions obtained
using the greedy algorithm is only marginally greater than the minimum length
and (b) the computation time of LCM/greedy was dominated by the greedy
algorithm. Without the greedy approximations LCM even slightly outperformed
Algorithm [T on most datasets.

Predictive Power. While it is out of scope of this article to evaluate the claim
that selecting minimum representatives improves understandability for users,
their power as building blocks of global prediction models can be supported with
standard accuracy experiments. Although not their primary intention, subgroup
description families R are sometimes evaluated (see [I3]) by investigating the
area under the ROC curve (AUC) of the set of global models {h;: 1 <i < |R|},
where h; classifies a given data point as positive if it supports any of the @
highest quality subgroup descriptions from R. For each dataset we compared
the predictive quality of the

— top-20 subgroup description (sgd),

— minimum representatives of the top-20 equivalence classes (min-repr),

— and additionally the hypothesis of the rule learner J-RIP, a Java implemen-
tation of RIPPER [4].

A rule learner was chosen as additional benchmark because, among supervised
learning methods, the nature of the hypotheses it produces is most similar to the
subgroup based models. Table [6] shows the average AUC of ten cross validations
using five folds. For performance reasons, we executed all subgroup discoveries
with a depth limit of 5. Using equivalence classes instead of subgroup descriptions
always resulted in a higher or equal AUC. Perhaps surprisingly, in addition, the
hypotheses build from the minimum representatives also outperformed the rule
learner hypotheses on the majority of datasets.
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Table 6. Average AUC over ten 5-fold cross-validations

dataset  credi. lung-. lymph mush. nurse. sick splice soybe. tic-t. vote
RIPPER 0.619 0.729 0.774 1.0 0.815 0.916 0.969 0.917 0.975 0.959
sgd 0.628 0.708 0.757 0.890 0.813 0.908 0.987 0.792 0.999 0.972
min-repr 0.633 0.731 0.831 0.946 0.813 0.928 0.987 0.856 0.999 0.972

8 Conclusion

Discussion. Beside the results stated in the introduction our experiments pri-
marily revealed the following trade-off in using non-redundant subgroup discov-
ery based on equivalence classes: while one gains a significant compression of
the search space and output, this is sometimes outweighted by the fact that
one loses the sophisticated data structures of traditional methods. There are,
however, many datasets/quality thresholds managable by our algorithms, that
were completely intractable before due to an exponential explosion of the search
space. This opens up new opportunities for some datasets like an exhaustive
enumeration of all positive quality equivalence classes with a subsequent global
optimization step.

Future Work. It is important to note that the results of this article easily gen-
eralize to more expressive constraint languages as long as they guarantee unique
maximal representatives and extension anti-monotonicity with respect to some
specialization relation. This is for instance the case for interval constraints, which
are appealing in the presence of ordinal attributes. In constrast to the standard
attribute/value equality constraints of the form “A; = v” an intervall constraint
for a real-valued attribute is of the form “A; € [I,u]”. In the presence of more
expressive constraint languages the equivalence class search space becomes even
more important as there is an increasing number of ways to (redundantly) de-
scribe one and the same extension. This motivates a future study investigat-
ing the combination of non-redundant subgroup discovery and other constraint
languages.
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