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Abstract—In this work, a new method for the calculation of Hall
factors is described. It is based on the interdependence with 
mobility components via the respective relaxation (scattering) 
times. The new method allows an accurate determination of 
mobility and carrier sheet concentration from Hall-effect 
measurements and can not only be applied to homogeneously 
doped substrates but also at the interfaces of electronic devices 
such as field-effect transistors. To demonstrate the general 
applicability of the method, we use it to predict the dependence of 
the Hall factor on dopant concentration in silicon and compare it 
with measured Hall factors reported in the literature.  

Keywords—Hall factor, Hall measurements,  relaxation (scattering) 
time, mobility, bulk silicon. 

I.  INTRODUCTION 

 Hall-effect measurements in combination with sheet 
resistivity measurements are well established to determine 
sheet concentration and mobility of charge carriers 
independently in semiconductors and metals. However, from 
the combination of the measured values one obtains an 
effective Hall mobility µH rather than the drift mobility µ of the 
majority charge carriers. The ratio of the two is called Hall 
factor or scattering factor and needs to be known a-priori for an 
accurate interpretation. It is common practice to assume that 
the Hall factor equals unity. From theory it is known that this is 
correct only in strong magnetic fields for which the condition 
µB >> 1 holds. For a magnetic field of B      =  1 T, as an example, 
the mobility should be significantly higher than 10.000 cm2/Vs. 
For lower fields and non-degenerate semiconductors, the Hall 
factor will depend on the particular mechanisms by which the 
charge carriers are scattered and this may depend in turn on 
material and measurement condition. A typical example where 
the assumption of a Hall factor equal to unity is not justified is 
the inversion channel of a MOSFET because of the rather low 
channel mobility. In consequence, when the Hall factor is 
ignored, the sheet concentration and mobility values extracted 
from Hall-effect measurements may be wrong by some 10% 
which is considerable for such devices.

In literature, various approaches have been presented to 
calculate transport properties and Hall factors. They are 
typically based on Monte Carlo methods or solutions of the 
Boltzmann transport equation taking the full band structure into 
account [1,2]. Despite being computationally demanding, they 
still need comparison with experiments and cannot be easily 
applied to general conditions in macroscopic devices. In this 
work we present a new method for the calculation of Hall 

factors. It is based on the fact that both Hall factor and mobility 
depend on the mechanisms by which the charge carriers are
actually scattered. The links between the various mobility 
components and the Hall factor are the respective relaxation 
(scattering) times. A particular advantage of our method is that 
it can be easily applied for different materials under different 
measurement conditions. To show the applicability of the 
method, we calculated the Hall factors in bulk silicon as a 
function of doping concentration and compared them with the 
values reported in literature.       

II. METHOD OF THE CALCULATION

The Hall factor rH0 is defined as the ratio of the Hall 
mobility to drift mobility and can be expressed in the 
relaxation time approximation through certain mean values of 
relaxation times: ݎு଴ ൌ μுμ ൌ ൏ ߬ଶ ൐൏ ߬ ൐ଶ (1)

Therein, the parameter τ denotes the relaxation time, i.e. the 
mean free flight time between carrier collisions. In general, it
will depend on the energy of the charge carriers. The squared 
brackets denote an averaging over the energy of the charge 
carriers. The inverse of the relaxation time 1/τ is the average
number of scattering events per unit time. For many scattering 
processes, the energy dependence of the relaxation time can be
expressed as a simple power law: ߬ ൌ  ௦ (2)ିܧܽ

where a and s are constants whose values depend on the
involved types of scattering mechanisms. For example, for 
semiconductors with acoustic phonon or ionized impurity 
scattering, τ is proportional to E -1/2 (s = 1/2) or to E 3/2 

(s = -3/2), respectively [3].
The values of the averages <τ> and <τ2> can be

calculated analytically as long as the relaxation time can be
expressed in the form of a power law. They take the form ൏ ߬ ൐ൌ ܽሺ݇ܶሻି௦ Гሺହଶ െ sሻГ ሺହଶሻ , (3) 

൏ ߬ଶ ൐ൌ ܽଶሺ݇ܶሻିଶ௦Г ቀହଶ െ ቁГݏ2 ቀହଶቁ (4)



with k standing for Boltzmann’s constant, T temperature, and
Г(n) the gamma function defined as: 

Гሺ݊ሻ ؠ න ஶݔ௡ିଵ݁ି௫݀ݔ
଴  (5) 

In accordance with (1), it follows from the expressions above
that the Hall factor becomes rH0 = 1.18 for acoustic phonon 
scattering and rH0 = 1.93 for ionized impurity scattering. It was 
also suggested by Erginsoy [4] that the relaxation time for 
scattering at neutral impurities is independent of the energy of 
the charge carriers (s = 0). For such a mechanism dominating 
at extremely low temperature or for heavily doped 
semiconductors, the Hall factor becomes rH0 = 1. In summary, 
depending on the actual scattering mechanism, values of the 
Hall factor rH0 may vary between 1 and 1.93.  

In a real electronic device, several charge scattering
mechanisms are usually involved in parallel. In order to 
calculate the Hall factor from (1), we need to determine the 
values of <τ> and <τ2> for such conditions. This can be done 
by accounting these several scattering mechanisms when 
averaging relaxation times over energy. As suggested by Iwata 
[5], the various scattering mechanisms can be combined in the 
form

൏ ߬ ൐ ൌ ׬  ௫య మ⁄ ௘షೣௗ௫∑ ఛ೔షభ೔ஶ଴׬ ଷݔ ଶ⁄ ݁ି௫݀ݔஶ଴ (6) 

൏ ߬ଶ ൐ ൌ ׬ ௫య మ⁄ ௘షೣௗ௫ሾ∑ ఛ೔షభ೔ ሿమஶ଴׬ ଷݔ ଶ⁄ ݁ି௫݀ݔஶ଴ (7) 

where x stands for ε/kT with ε denoting the kinetic energy of 
an electron and the index  i the particular scattering 
mechanism. 

To apply (6) and (7) to certain experimental conditions, we 
have to know the relaxation times for each of the scattering 
mechanisms and their dependence on the energy of the charge 
carriers under investigation. For example, for measurements in 
a MOS structure, only scattering of the prevalent charge 
carriers in the inversion layers should be considered. A 
peculiarity of Hall-effect measurements in MOS structures is 
scattering at interface defects which is largely negligible for 
measurements on bulk semiconductor samples. This difference 
in the measurement conditions can manifest itself in different 
Hall-factor values. The new method for the calculation of Hall 
factors presented in this work allows us to master the 
complexity of the necessary calculations. As indicated above, 
it takes advantage of the interdependence of the scattering 
time with mobility. In general, the electron mobility in a 
semiconductor can be expressed as:ߤ௘ ൌ ݁ ൏ ߬ ൐݉௘כ (8)

where <τ> is the mean relaxation time that may contain the 
contributions from several scattering processes, e denotes

elementary charge, and ݉௘כ  stands for the effective electron
mass. It is further assumed that the scattering events are 
independent of each other so that neither of the τi is affected
by other scattering process. The contributions of the individual 
scattering times τi to the global scattering time τ can then be 
combined in the form 1߬ ൌ ෍ 1߬௜ .௜  (9) 

Since the electron mobility is proportional to τ, (9) can be
rewritten in terms of the mobility components µi associated
with the various scattering mechanisms. The result, 1μ ൌ ෍ 1μ௜ ,௜  (10) 

is known as the Matthiessen’s rule. From (8) we see that 
relaxation time and electron mobility differ only by a constant 
factor of ݁/݉௘כ . Having the possibility to calculate specific 
mobility components µi, the components of scattering time τi 
associated with these mechanisms can be easily found. If a 
power-law dependence of the relaxation time on the electron 
energy can be assumed, the unknown constant a in (2) can be
calculated from (3) and (8). Given a, the energy dependence 
of the relaxation time for ith scattering component can be 
derived as: 

߬௜ሺܧሻ ൌ Гכ௜݉௘ߤ ቀହଶቁ ௦೔݁ሺ݇ܶሻି௦೔Гሺହଶ െିܧ ௜ሻݏ (11) 

It should be noted that these formulas are valid for non-
degenerate semiconductors with a single-valley spherical 
energy band. For multi-valley semiconductors, such as Si, SiC 
and Ge, the expression for the Hall factor has to be modified. 
For this purpose, the Hall factor given by (1) for the single-
valley model is multiplied by a constant a0 that accounts for 
the anisotropy of the effective electron mass. Thus, the Hall
factor for the case of a multiple conduction valley 
semiconductor can be expressed in the form [6] ݎு ൌ    ு଴ܽ଴ (12)ݎ

where rH0 is the scattering factor given by (1) for single-valley
semiconductors assuming isotropic model, and a0 is known as 
the “Hall mass factor” or anisotropy factor of the Hall-effect.
The latter is given by [6]ܽ଴ ൌ ܭሺܭ3 ൅ 2ሻሺ2ܭ ൅ 1ሻଶ (13) 

with K being the ratio of longitudinal and transverse effective
masses of the electrons. For Si, SiC and Ge, the Hall mass 
factor a0 takes values of 0.87, 0.98 and 0.785, respectively. 

Using (6) – (11), and assuming the concurrent action of
different scattering mechanisms, the Hall factor can be easily 
determined and corrected with the anisotropy model given in
(12).



III. HALL FACTOR IN BULK SILICON

To check the feasibility of our new method for the calculation 
of Hall factors, we applied it to the calculation of the Hall 
factor in bulk silicon, which was extensively investigated in the 
literature. Specifically, we investigated the dependence of the 
Hall factor in n-type silicon at room temperature on the doping 
concentration. For this purpose, we performed simulations of 
electronic transport in phosphorus-doped silicon samples for 
the range of phosphorus concentration from 1×1017 cm-3 to 
2×1020 cm-3. Given bulk silicon, we assumed that the mobility 
is determined by Coulomb scattering on ionized impurities and 
by bulk phonon scattering. To model the mobility component 
due to bulk phonon scattering, a constant mobility of 
µph = 1417 cm2/Vs at T = 300 K was adopted from the work of 
Lombardi et al. [7]. The mobility component due to charged 
impurity scattering was calculated using the Arora model as 
implemented in TCAD Sentaurus. It can be described by [8]μௗ௢௣ ൌ  μ௠௜௡ ൅ μௗ1 ൅ ሺேವேబ ሻ஺כ (14) 

with ND standing for the donor concentration and µmin, µd, N0 
and A* > 0 for some given parameters of the model. To predict 
the dependence of the Hall factor on the dopant concentration, 
we started with an analysis of (14). It is clear from the 
functional dependence that the doping-related component will 
strictly decrease with an increasing doping concentration. This 
is shown also in Fig. 1. It can be interpreted as an increase of 
the number of scattering centers in the bulk with an increasing 
dopant concentration, leading further to a monotonic increase 
of Coulomb scattering. Keeping in mind that the Hall factor is 
rH0 = 1.18 for the limiting case of exclusive acoustic phonon 
scattering and rH0 = 1.93 for the exclusive case of ionized 
impurity scattering, one expects also an increase of the Hall 
factor with doping concentration. On the other hand, several 
groups found experimentally that the Hall factor in n-type 
silicon increases with donor concentrations but only until a 
doping level of about 3×1018 cm-3 [9-13]. With a further 
increase of doping concentration, the Hall factor decreases 
and, for doping concentrations exceeding 1020 cm-3, the Hall 
factor approaches the theoretical value of rH = 0.87 [11]. This 
value of rH results from rH0 = 1 in (12) with the anisotropy of 
the electron mass in silicon taken into consideration. It is 
important here to point out that a value of rH0 = 1 indicates 
that the semiconductor has already become degenerate. Vice 
versa, the reduction of the Hall factor can be taken as an 
indication that the importance of scattering at charged 
impurities decreases at sufficiently high doping levels. The 
apparent contradiction between the Hall factor found 
experimentally and predicted by our model can be reconciled 
by noting that the effect of the screening due to the presence 
of majority charge carriers has not been accounted for. This 
kind of screening is expected at very high doping levels at 
which doping acts not only as a source of Coulomb scattering 
at ionized impurities but simultaneously reduces it due to the 
increase in the concentration of majority carriers. 

To account for the screening of ionized impurities by 
majority carriers, we have to adapt our model accordingly. 
The suggested modification for the degenerate case is based
on an analogy between screened ionized impurities and neutral
impurities. At sufficiently low dopant concentration, the 
distances between the ionized impurities are sufficiently large 
so that the free electrons can be considered to exist separately 
from them. As the impurity concentration and with it the
concentration of free electrons increases, electrons will spend 
on their paths more and more time in the vicinity of ionized 
impurities. For very high dopant concentrations, impurities
will find themselves surrounded by alternating electrons which
compensate their charge. In terms of the power-law energy 
dependence of the relaxation times, the power index s in (2)
should change accordingly from the value of -3/2 typical for
ionized impurity scattering to the value of 0 that is valid for 
the scattering on the neutral centers. Evidence from the
measurements of Hall factors indicates that this decrease
happens at a doping level exceeding about 3×1018 cm-3 which 
corresponds closely to the Mott transition [14]. To include the 
effect in our Hall-factor calculation, based on the reasoning
above, we model the predicted dependence of the power index 
s on doping concentration Ni empirically in the form 

ݏ ൌ 1.5 ൈ ൮ 11 ൅ ቀଷൈଵ଴భవே೔ ቁଵ.ଶ െ 1൲ (15) 

A graphical representation of this relationship can be found in 
Fig. 2. In accordance with (15), the power index s changes 
from -3/2 to 0 when dopant concentration grows from zero to 
infinity. At low dopant densities, when scattering at ionized
centers is dominant, s has its minimum equal to -3/2. With 
increasing screening, the importance of Coulomb scattering 
will decrease, which is reflected in the increase of the constant 
s. Finally, at high doping levels around 2×1020 cm-3, the
scattering is similar to that at neutral impurities, which is 
reflected in the tendency of s towards the value of 0. 

Fig. 1. Bulk mobility in silicon as a function of phosphorus concentration. 



In accordance with the method presented in the previous
section, taking the mobility degradation due to phonon and 
Coulomb scattering in the phosphorus-doped silicon bulk 
material and introducing the effect of screening at high doping 
levels discussed above into account, the Hall factor in the bulk 
Si was calculated as a function of dopant concentrations. The 
results of this calculation are shown in Fig. 3 in comparison 
with the measurements reported in the literature for Si [9-13].

In accordance with the predictions of our method, the Hall 
factor in bulk silicon increases up to a doping level of 
4×1018 cm-3. When the phosphorus concentration increases 
further, the screening of the ionized impurities by the majority 
charge carriers sets in and leads to a continuous reduction of 
rH towards a value of 0.87 when the dopant density reaches a 
value of 2×1020 cm-3.

For a correct interpretation of the results, we also present 
in Fig. 3 typical error bars of these measurements which are 
about 12% and independent of doping level. It should be noted 
our calculated values are within the experimental error of 
nearly all experimental data points. The excellent agreement 
between calculations and experimental results confirms the 
validity of our new method for the calculation of Hall factors 
and allows us to apply this method further to electronic

devices for which the additional complication by the interface
imposes conventional approaches. 

V.  SUMMARY 
In this work a new method for the calculation of Hall factors
has been presented which is based on its interdependence with 
mobility via the relaxation (scattering) time. The method was 
validated by applying it to the dopant dependence in bulk 
silicon and comparing the calculated values to the experiments 
available. The simplicity of the method suggested allows to 
apply it further to the interpretation of Hall-effect 
measurements on electronic devices like MOSFETs where the 
presence of the interface to the gate oxide poses an additional 
severe complication. 
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