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Derivation of a viscoelastic constitutive model
of Kelvin–Voigt type for Cosserat rods

Joachim Linn, Holger Lang, Andrey Tuganov

February 18, 2013

Abstract

We present the derivation1 of a simple viscous damping model of
Kelvin–Voigt type for geometrically exact Cosserat rods from three–
dimensional continuum theory. Assuming moderate curvature of the
rod in its reference configuration, strains remaining small in its de-
formed configurations, strain rates that vary slowly compared to in-
ternal relaxation processes, and a homogeneous and isotropic material,
we obtain explicit formulas for the damping parameters of the model
in terms of the well known stiffness parameters of the rod and the
retardation time constants defined as the ratios of bulk and shear vis-
cosities to the respective elastic moduli. We briefly discuss the range
of validity of the Kelvin–Voigt model and illustrate its behaviour for
large bending deformations with a numerical example.
Keywords: geometrically exact rods, viscoelasticity, Kelvin–Voigt
model, nonlinear structural dynamics

1This preprint is a modified version of the journal article (Linn et al., 2013) that is
based on the paper (Linn et al., 2012) presented at the IMSD 2012 conference.
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1 Introduction

Simulation models for computing the transient response of structural mem-
bers to dynamic excitations should contain a good approach to account for
dissipative effects in order to be useful in realistic applications. If the struc-
ture considered may be treated within the range of linear dynamics with
small vibration amplitudes, there is a well established set of standard ap-
proaches, e.g. Rayleigh damping, or a more general modal damping ansatz,
to add such effects on the level of discretized versions of linear elastic struc-
tural models (see e.g. Craig and Kurdila, 2006).

In the case of geometrically exact structure models for rods and shells
(Antman, 2005), such linear approaches are not applicable. Geometrically
exact rods, in particular, have a wide range of applications in flexible multi-
body dynamics. We refer to the brief introduction given in ch. 6 of (Géradin
and Cardona, 2001) for a summary of the related work published before 2000,
and to ch. 15 of (Bauchau, 2011) for a more recent account on this subject.
Here the proper way to model viscous damping requires the inclusion of a
frame–indifferent viscoelastic constitutive model into the continuum formula-
tion of the structure model that is capable of dealing with large displacements
and finite rotations (see Bauchau, Epple and Heo, 2008).

1.1 Viscous Kelvin–Voigt damping for Cosserat rods

In our recent work (Lang et al., 2011), we suggested the possibly simplest
model of this kind to introduce viscous material damping in our quaternionic
reformulation of Simo’s dynamic continuum model for Cosserat rods (Simo,
1985). Following general considerations of Antman (2005) about the func-
tional form of viscoelatic constitutive laws for Cosserat rods, we simply added
viscous contributions, which we assumed to be proportional to the rates of
the material strain measures U(s, t) and V(s, t) of the rod, to the material
stress resultants F(s, t) and stress couples M(s, t), resulting in a constitutive
model of Kelvin–Voigt type:

F = ĈF · (V −V0) + V̂F · ∂tV , M = ĈM · (U−U0) + V̂M · ∂tU . (1)

A detailed presentation of the kinematical quantities and dynamic equilib-
rium equations of a Cosserat rod is given in section 2, Figs. 1, 2, 3 and 4
provide a compact summary.

In the material constitutive equations (1) the elastic properties of the
rod are determined by the effective stiffness parameters contained in the
symmetric 3× 3 matrices ĈF and ĈM . For homogeneous isotropic materials,
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both matrices are diagonal and given by:

ĈF = diag (GA,GA,EA) , ĈM = diag (EI1, EI2, GI3) , (2)

with stiffness parameters given by the elastic moduli E and G and geometric
parameters (area A, geometric moments Ik) of the cross section. In Lang et
al. (2011) we assumed a similar structure for the matrices V̂F and V̂M , which
determine the viscous response:

V̂F = diag (γS1, γS2, γE) , V̂M = diag (γB1, γB2, γT ) . (3)

The set of six effective viscosity parameters γxx introduced in (3) represents
the integrated cross-sectional viscous damping behaviour associated to the
basic deformation modes (bending, twisting, transverse shearing and exten-
sion) of the rod, in the same way as the well known set of stiffness parameters
given above determines the corresponding elastic response.

1.2 Effective damping parameter formulas

However, in Lang et al. (2011) the damping parameters γxx remained undeter-
mined w.r.t. their specific dependence on material and geometric properties.
Considering the special case of homogeneous and isotropic material proper-
ties, they certainly cannot be independent, but rather should be mutually
related in a similar way as the stiffness parameters of the rod in terms of two
material parameters (E,G) and the geometrical quantities (A,Ik) associated
to the cross section.

Assuming moderate curvature of the rod in its reference configuration,
strains remaining small in its deformed configurations, strain rates that vary
slowly compared to internal relaxation processes within the material, and a
homogeneous and isotropic material, we will show that they are given by

γS1/2

A
=

γT
I3

= η ,
γE
A

=
γB1/2

I1/2
= ζ(1− 2ν)2 +

4

3
η(1 + ν)2 , (4)

where ζ and η are the bulk and shear viscosities of a viscoelastic Kelvin–Voigt
solid (Lemaitre and Chaboche, 1990) with elastic moduli E = 2G(1+ν) and
G related via Poisson’s ratio ν.

While the viscous damping of the deformation modes of pure shear type
is solely affected by shear viscosity η, extensional and bending deformations
are both associated to normal stresses in the direction orthogonal to the
cross section, which are damped by a specific combination of both bulk and
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shear viscosity that depends on the compressibilty of the material and may
be interpreted as extensional viscosity parameter

ηE := ζ(1− 2ν)2 +
4

3
η(1 + ν)2 . (5)

Introducing the retardation time constants τS = η/G and τB = ζ/K, which
relate the viscosities η and ζ to the shear and bulk moduliG and 3K = E/(1−
2ν), as well as the time constant τE := ηE/E = 1

3
[(1− 2ν) τB + 2(1 + ν) τS]

relating extensional viscosity to Young’s modulus, the formulas (4) may be
rewritten equivalently as

γS1/2

GA
=

γT
GI3

= τS ,
γE
EA

=
γB1/2

EI1/2
= τE (6)

in terms of the stiffness parameters of the rod and the retardation time
constants. Interesting special cases of (6) are the simplified expressions ηE =
ζ + 4

3
η, τE = 1

3
(τB + 2τS) for completely compressible materials (ν = 0), and

ηE = 3η, τE = τS for incompressible materials (ν = 1
2
).

The relation ηE/η = 3 between shear and extensional viscosity is well
known as Trouton’s ratio for incompressible Newtonian fluids (Trouton, 1906)
and holds more generally for viscoelastic fluids in the limit of very small strain
rates (Petrie, 2006). If ζ/η = K/G⇔ τB = τS holds, one obtains τE = τB/S
as extensional retardation time constant (independent of ν).

Effective parameters modified by shear correction factors

It is well known that the stiffness parameters GA and GI3 related to shearing
type deformation modes systematically overestimate the actual stiffness of the
structure for cross section geometries that display non–negligible warping.

In the case of transverse shearing, this is accounted for via a modification
of the corresponding stiffness parameter GA→ GAα := GAκα by introduc-
ing dimensionless shear correction factors κα ≤ 1 depending on the cross
section geometry (see Cowper, 1966; Gruttmann and Wagner, 2001). Like-
wise, the torsional rigidity CT = GJT of a rod exactly equals GI3 in the
case of (annular) circular cross sections only, but is smaller than this value
otherwise due to the presence of out–of–plane warping of cross sections. The
replacement GI3 → CT correcting this deficieny corresponds to the introduc-
tion of another dimensionless correction factor κ3 = JT/I3 ≤ 1 depending on
the cross section geometry2 which modifies the torsional stiffness according
to the replacement rule GI3 → GJT = GI3κ3.

2In the case of an elliptic cross section with half axes a and b, the area moments are
given by I1 = π

4 a
3b and I2 = π

4 ab
3, while CT /G = JT = πa3b3/(a2 +b2) = 4I1I2/(I1 +I2),
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Altogether the various shear corrections mentioned above yield the cor-
rected set of stiffness parameter values3

ĈF = diag (GA1, GA2, EA) , ĈM = diag (EI1, EI2, GJT ) . (7)

We argue that the analogously modified damping parameters

γS1/2 = GA1/2 τS , γT = GJT τS (8)

associated to shearing type rod deformations likewise provide a correspond-
ing improvement of the formulas (6), which accounts for the influence of
cross section warping on effective viscous dissipation, such that the effective
viscosity matrices V̂F and V̂M introduced in (3) may be rewritten as

V̂F = ĈF · diag (τS, τS, τE) , V̂M = ĈM · diag (τE, τE, τS) (9)

in terms of the effective stiffness matrices and retardation time constants
given above. A compact summary of our Kelvin–Voigt constitutive model
for Cosserat rods is given in Fig. 1.

1.3 Related work on viscoelastic rods

While there is a rather large number of articles considering various kinds of
damping terms (also of Kelvin–Voigt type) added to linear Euler–Bernoulli
or Timoshenko beam models (usually assumed to have a straight reference
geometry), one hardly finds any work on viscous damping models for geo-
metrically nonlinear beams or rods in the literature.

One notable exception is Antman’s work (2003), where a damping model
as given by eqns. (1) with positive, but otherwise undetermined parameters
(3) is suggested from a completely different, mathematically motivated view-
point, namely: as a simple possibility to introduce dissipative terms (denoted
as artificial viscosity) into the dynamic balance equations of a Cosserat rod,
which constitute a nonlinear coupled hyperbolic system of PDEs (see also

such that κ3 = JT /I3 = 4I1I2/(I1 + I2)2 ≤ 1 in this case. Equality (κ3 = 1) holds in
the case of a circular cross section with a = b = r ⇒ I1/2 = π

4 r
4 = 1

2I3 only. According
to Nikolai’s inequality CT ≤ 4GI1I2/(I1 + I2) the special case of an elliptic cross section
maximes torsional rigidity among all asymmetric cross section geometries, and the value
GI3 = 2GI valid for circular cross sections provides the absolute maximum of torsional
rigidity (Berdichevsky, 1981).

3The stiffness parameters EA and EIα are not affected by shear warping effects. How-
ever, they already account for uniform lateral contraction, which is a simple specific type
of in plane cross section warping. This topic is discussed further in subsection 3.4 below.
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� KV type constitutive law for material stress resultants & couples:

� Effective stiffness matrices:

� Elastic material parameters: shear modulus G, Young‘s modulus E
� Poisson‘s ratio: � � � �⁄ 2�� 	 1 , bulk modulus: 3� � � �⁄ 1 	 2��

� Effective viscosity matrices:

� Viscous mat. param.: shear viscosity  � ��� , bulk viscosity � � ���

� Extensional viscosity:

0

0

ˆ( ) ,ˆ

ˆ

ˆ

ˆ( ) ˆ
F

M

T

t

T

t

F

M

= ⋅ − + ⋅ ∂ = ⋅

= ⋅ − + ⋅ ∂ = ⋅

F V V V R f

M U U U R m

C

C

V

V

1 2 1 2
ˆ ˆdiag( , , ), diag( , , )

M TF
A A A IG G E E EI JG= =C C

1 2

1 2

diag( , , ) diag( , , )

diag( , , ) diag(

ˆ

ˆˆ , , )

ˆ
F E S

T

S E

M E E M E E S

F
A A A

I I J

η η η τ τ τ

η η η τ τ τ

= = ⋅

= = ⋅

V

V

C

C

2 24
3

(1 2 ) (1 )
E E

Eη ζ η τν ν= − + + =

Note: Incompressible limit ν → ½ ⇒ Trouton‘s ratio ηE / η = 3

Eσ ε ηε= + ɺ

Figure 1: Summary of the Kelvin–Voigt model for Cosserat rods.

Weiss, 2002a), and thereby achieve a regularization effect in view of the pos-
sible formation of shock waves that might appear in the undamped hyperbolic
equations.

The recent article of Abdel–Nasser and Shabana (2011) is another relevant
work for our topic. By inserting a 3D Kelvin–Voigt model into a geometrically
nonlinear beam given in absolute nodal coordinate formulation (ANCF), the
authors obtain a viscous damping model for such ANCF beams which (by
construction) is closely related, but conceptually quite different from our
approach proposed for Cosserat rods. Later we briefly discuss the relation
of both damping models (see section 4.3). We refer othwise to the article
of Romero (2008) for a comparison of the geometrically exact and ANCF
approaches to nonlinear rods.

Mata, Oller and Barbat (2008) model the inelastic constitutive behaviour
of composite beam structures under dynamic loading, using a Cosserat model
as kinematical basis. However, they evaluate inelastic stresses by numerical
integration of 3D Piola–Kirchhoff stresses over 2D discretizations of the local
cross sections to obtain the stress resultants and couples of Simo’s model.
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This differs from our approach aiming at a direct formulation of frame–
indifferent inelastic constitutive laws in terms of F and M, as achieved e.g. by
Simo et al. (1984) for viscoplastic rods. The viscous model proposed in sec-
tion 3.2 of their paper is likewise of Kelvin–Voigt (KV) type, but formulated
in terms of a vectorial strain measure related to the Biot strain (see also
section A.2) and defined pointwise within the cross section. Moreover, they
set up their model using only a single viscosity parameter.

Although there seems to be no further work on viscoelastic Cosserat rods
made from solid material, viscoelastic flow in domains with rod–like geome-
tries has been discussed in a number of articles. In his work on the coiling
of viscous jets, Ribe (2004) presents a reduction of the three-dimensional
Navier–Stokes equations to the dynamic equilibrium equations of a Kirch-
hoff/Love rod, endowed with Maxwell type constitutive equations for the
viscous forces and moments which govern the finite resistance of the jet axis
to stretching, bending and twisting. Although the derivation approach is dif-
ferent from ours, it represents its fluid–mechanical counterpart, as it likewise
provides effective damping parameters4 as given in (4), in the special case
of an incompressible viscous fluid (ν = 1

2
) with extensional viscosity given

by Trouton’s relation ηE = 3η, which in turn confirms our derivation of this
special result.

A systematic derivation and mathematical investigation of viscous string
and rod models in the context of Ribe’s work is given by Panda et al. (2008)
and Marheineke and Wegener (2009). Klar et al. (2009) and Arne et al.
(2011) likewise use Ribe’s Maxwell type constitutive law in their related
work on the simulation of viscous fibers aiming at applications in the area
of textile and nonwoven production. Lorenz et al. (2012) extend constitutive
modelling for viscous strings by deriving an upper convected Maxwell model
using mathematical methods of asymptotic analysis.

In the same context we finally mention the discrete modelling approach
for viscous threads presented by Bergou et al. (2010), which extends earlier
work of Bergou et al. (2008) on discrete elastic rods that, similar to our own
approach as briefly presented in Linn et al. (2008) (see also Jung et al., 2011),
relies on geometrically exact rod kinematics based on the discrete differential
geometry of framed curves.

4In the case of viscous flow in a rod-shaped domain, the area A(s) of the (circular)
cross section as well as its geometric area moment I(s) vary along the centerline curve
in accordance with mass conservation modeled by a divergence-free velocity field of an
extensional flow with uniform lateral contraction.
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1.4 Overview of the remaining sections of the paper

After collecting a few basics of Cosserat rod theory in the following section 2,
we proceed with our derivation of the formulas (4) in of a two–step procedure:
In section 3 we start with the derivation of the elastic (stored) energy function

We(t) =

∫ L

0

ds
1

2

[
∆V(s, t)T · ĈF ·∆V(s, t) (10)

+ ∆U(s, t)T · ĈM ·∆U(s, t)
]

of a Cosserat rod, which is a quadratic functional of the terms ∆U(s, t) =
U(s, t)−U0(s) and ∆V(s, t) = V(s, t)−V0(s) measuring the change of the
strain measures w.r.t their reference values, from three-dimensional contin-
uum theory.

This sets the notational and conceptional framework for the subsequent
derivation of the viscous part of our damping model given in section 4 by an
analogous procedure, which yields the dissipation function

Dv =

∫ L

0

ds
1

2

[
∂tV

T · V̂F · ∂tV + ∂tU
T · V̂M · ∂tU

]
(11)

of a Cosserat rod introduced5 in (Lang et al., 2011). The dissipation function
(11), deduced from the three–dimensional (volumetric) continuum version
of the dissipation function of a Kelvin–Voigt solid (Landau and Lifshitz,
1986; Lemaitre and Chaboche, 1990), corresponds to one half of the volume–
integrated viscous stress power of a rod–shaped Kelvin–Voigt solid, such that
2Dv yields the rate at which the rod dissipates mechanical energy.

Having completed our derivation of the Kelvin–Voigt model, we proceed
by a discussion of a seemingly straightforward, but, as it turns out, erroneous
approach to derive the viscous parts of the forces and moments as given by
(1) as resultants in analogy to the elastic counterparts. This shows that our
energy–based approach to derive viscous damping is the proper one. After
that, we briefly comment on the relation of our continuum model to the
Kelvin–Voigt type model recently proposed by Abdel–Nasser and Shabana
(2011) within their alternative ANCF approach to geometrically nonlinear
rods, and conclude section 4 by a short discussion of the validity of the
Kelvin–Voigt model w.r.t. a more general viscoelastic model of generalized
Maxwell type.

5In (Lang et al., 2011) we absorbed the prefactor 1/2 into the definition (3) of the
damping parameters (see eqns. (9) and (10) in sec. 2.2). This leads to an additional factor
of 2 multiplying VF and VM in the constitutive equations (1) of the rod model.
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(1)a

(2)a
(3)a

1e

3e

2e

φ

1ξ

2ξ

� Configuration variables:

� centerline curve:

� moving frame:

� curve parameter:                  ,  time:

� cross section coordinates: 

[ ] 3: 0,L × →φ R R

( )ˆ ( , ) ( , ) (3)k
ks t s t SO= ⊗ ∈R a e

[0, ]s L∈ t ∈R
2

1 2 0( , ) Aξ ξ ∈ ⊂ R
� Current (deformed) configuration:

( )
1 2( , , , ) ( , ) ( , )s t s t s tα

αξ ξ ξ= +x φ a

� Reference configuration:

( )
1 2 0 0

(3)
0 0

( , , ) ( ) ( )

( ) ( )S

s s s

s s

α
αξ ξ ξ= +

∂ =

X φ a

φ a

Figure 2: Kinematic quantities for the (deformed) current and (undeformed)
reference configurations of a Cosserat rod.

In section 5, we illustrate the behaviour of our viscous damping model
(1) by some simple numerical experiments with a clamped cantilever beam
subject to bending with large deflections. We conclude our article with a
short summary.

2 Basic Cosserat rod theory

The configuration variables of a Cosserat rod (see Antman, 2005) are its
centerline curve ϕ(s, t) = ϕk(s, t) ek with cartesian component functions
ϕk(s, t) w.r.t. the fixed global ONB {e1, e2, e3} of Euclidian space and “mov-
ing frame” R̂(s, t) = a(k)(s, t)⊗ ek ∈ SO(3) of orthonormal director vectors,
both smooth functions of the curve parameter s and the time t, with the
pair {a(1), a(2)} of directors spanning the local cross sections with normals
a(3) along the rod (see Fig. 2).
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� Curvatures (bending & twisting): 

� Darboux vector:

� bending curvatures:

� twisting curvature:

( ) ( )( , ) ( , ) ( , )k k
S s t s t s t∂ = ×a u a

( ) ˆ( , ) ( , ) ( , ) ( , ) ( , )k
ks t U s t s t s t s t= = ⋅u a R U

( )( ) ( ) (3) (3)
SU α α

α = ⋅ = ⋅ ×∂a u a a a
(3) (2) (1) (1) (2)

3 S SU = ⋅ = ⋅ ∂ = − ⋅ ∂a u a a a a

� Reference strain measures:

0 0 0 0
ˆ( ) (0,0,1) , ( ) ( ) ( )T Ts s s s= = ⋅V U R u

� Transverse shear & extensional dilation:

� transverse shearing:

� extensional dilatation: 

( )( , ) ( , ) ( , )k
S ks t V s t s t∂ =φ a

( ) , 1SV Vα
α α= ⋅∂a φ ≪

(3)
3 3, 1SV V= ⋅∂ ≈a φ

Figure 3: Strain measures of a Cosserat rod for transverse shearing, exten-
sional dilatation, bending and twisting.

2.1 Material strain measures

The material strain measures associated to the configuration variables are
given by (i) the components Vk = a(k) ·∂sϕ of the tangent vector in the local
frame (i.e.: V = R̂T · ∂sϕ = Vkek), with V1, V2 measuring transverse shear
deformation and V3 measuring extensional dilatation, and (ii) the material
Darboux vector U = R̂T · u = Ukek, obtained from its spatial counterpart
u = Uka

(k) governing the Frénet equations ∂sa
(k) = u × a(k) of the frame

directors, with U1, U2 measuring bending curvature w.r.t. the director axes
{a(1), a(2)}, and U3 measuring torsional twist around the cross section normal.

In general, the reference configuration of the rod, given by its centerline
ϕ0(s) and frame R̂0(s) = a

(k)
0 (s)⊗ek, may have non–zero curvature and twist

(i.e.: U0 6= 0). However we may assume zero initial shear (V01 = V02 = 0),
such that all cross sections of the reference configuration are orthogonal to
the centerline tangent vector, which coincides with the cross section normal
(i.e.: ∂sϕ0 = a

(3)
0 ⇒ V03 = 1) if we choose the arc–length of the reference

centerline as curve parameter s.
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� 3D momentum balance:

� 1st Piola-Kirchhoff stress: 

� deformation gradient:

P̂

F̂

2

0
ˆDiv

ˆ ˆ ˆ ˆ
t

T T

ρ+ = ∂

=

P b x

PF FP

� Stress resultants & couples:

� material resultants & couples:

(3)

0

( ) (3)

0 0

ˆ

ˆ
A

A

dA

dA
α

α
ξ

= ⋅

= × ⋅

∫
∫

f P a

m a P a

( )

( )

ˆ

ˆ

k

k

k

k

F

M

= = ⋅

= = ⋅

f a R F

m a R M� 1D force & torque balance:

� angular velocity:

� rotational inertia tensor:

( )
2

0

0
ˆ

S ex t

S S ex t

Aρ

ρ

∂ + = ∂

+ ∂ + = ∂ ⋅∂ ×

f f

m f m J ω

φ

φ

( ) ( )( , ) ( , ) ( , )k k
t s t s t s t∂ = ×a ω a

( ) ( ) 2

3 1 2
ˆ , ,k k

k
A

I I I I I
α β

ξ= ⊗ = = +J a a

1 2
, 0

A A AA

dA
α
ξ ξ ξ= = =∫⋯ ⋯

Figure 4: Dynamic equilibrium equations of a Cosserat rod.

2.2 Dynamic equilibrium equations

The constitutive equations (1) — or more general ones of viscoelastic type
(see ch. 8.2 in Antman, 2005) — are required to close the system of dynamic
equilibrium equations

∂sf + fext = (ρ0A) ∂2
tϕ (12)

∂sm + ∂sϕ× f + mext = ∂t

(
ρ0Ĵ · ω

)
(13)

(see Fig. 4) which has to be satisfied by the spatial stress resultants f = R̂ ·F
and stress couples m = R̂ ·M with appropriate boundary conditions (see
Simo, 1985). The inertial terms appearing on the r.h.s. of the equations of
the balance of forces (linear momentum) (12) and the balance of moments
(angular momentum) (13) depend parametrically on the local mass density
ρ0(s) along the rod as well as on geometrical parameters of the local cross
section (area A(s) and area moment tensor Ĵ(s, t) = R̂ · Ĵ0(s) · R̂T ) and
contain the accelerations of the centerline positions ∂2

tϕ(s, t) as well as the
angular velocity vector ω(s, t), which is implicitely defined by the the tem-
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poral evolution equations ∂ta
(k) = ω × a(k) of the frame in close analogy to

the Darboux vector, and its time derivative ∂tω(s, t) as dynamical variables
(see Simo (1985), Antman (2005) and Lang et al. (2011) for details).

Although we implemented Kelvin–Voigt type viscous damping given by
(1) for our discrete6 Cosserat model formulated with unit quaternions as
explained in detail by Lang et al. (2011) and investigated further in (Lang and
Arnold, 2012) w.r.t. numerical aspects, we do not make use of this particular
formulation here, as it is more practical to work with the directors associated
to SO(3) frames for the vector–algebraic calculations which we have to carry
out within our derivations of one–dimensional rod functionals from three–
dimensional continuum formulation.

2.3 Spatial configurations of a Cosserat rod

Introducing cartesian coordinates (ξ1, ξ2) w.r.t. the moving director basis

{a(1)
0 (s), a

(2)
0 (s)} of the cross section located at the centerline point ϕ0(s),

the spatial positions of material points in the reference configuration of the
rod are given by7

X(ξ1, ξ2, s) = ϕ0(s) + ξα a
(α)
0 (s) . (14)

As illustrated by Fig. 2, the positions of the same material points in the
current (deformed) configuration are then given by

x(ξ1, ξ2, s, t) = ϕ(s, t) + ξα a(α)(s, t) + w(ξ1, ξ2, s, t) (15)

in terms of the deformed centerline curve ϕ(s, t), the rotated orthonormal
cross section basis vectors {a(1)(s, t), a(2)(s, t)}, the same pair of cartesian
cross section coordinates (ξ1, ξ2), and an additional displacement vector field
w(ξ1, ξ2, s, t), which by definition describes the (in–plane and out–of–plane)
warping deformations of the cross sections along the deformed rod.

The kinematic assumption that the cross sections of a rod remain plane
and rigid in a configuration is equivalent to the assumption that the displace-
ment field w vanishes identically. Although we will initially adhere to this

6Practical applications of our Cosserat rod model with Kelvin–Voigt damping in Multi-
body System Dynamics are reported in our recent collaboration with Schulze et al. (2012).
We refer to the article of Zupan et al. (2009) for fundamental aspects of Cosserat rods
with rotational d.o.f. represented by unit quaternions, as well as to the recent work (2012)
of the same authors discussing the undamped dynamics of quaternionic Cosserat rods with
various time integration approaches.

7Within this paper we make use of Einstein’s summation convention — as the reader
may have observed already — w.r.t. all indices occuring twice within product terms, with
greek indices α, β, . . . running from 1 to 2 and latin ones i, j, k, . . . from 1 to 3.
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very common assumption for rod models, we will later admit some specific
form of in–plane deformation of cross sections — namely: a uniform lateral
contraction — to correct a deficiency w.r.t. artificial in–plane normal stresses
caused by the excessively rigid kinematical ansatz (15) with w ≡ 0.

For simplicity we assume the rod to be prismatic, such that all cross
sections along the rod are identical, and the domain of the cartesian co-
ordinates (ξ1, ξ2) coincides with one fixed domain A ⊂ R2. As usual we
choose the geometrical center of the domain A to coincide with the ori-
gin of R2 such that 〈ξα〉A = 0 holds, where we introduced the shorthand
notation 〈f〉A :=

∫
A f(ξ1, ξ2) dξ1dξ2 for the cross section integral of func-

tions. In addition we choose the orientation of the orthonormal director pairs
{a(1)

0 (s), a
(2)
0 (s)} as well as {a(1)(s, t), a(2)(s, t)} to coincide with the principle

geometrical axes of A, such that 〈ξ1ξ2〉A = 0 holds. The quantities that
characterize the geometric properties of the cross section in the Cosserat rod
model are the cross section area A = 〈1〉A, the two area moments I1 = 〈ξ2

2〉A,
I2 = 〈ξ2

1〉A and the polar area moment I3 = 〈ξ2
1 + ξ2

2〉A = I1 + I2.
We obtain the centerline of the reference configuration as the average po-

sition ϕ0(s) = 〈X〉A /A of all material points of the cross section located at
fixed s. The same relation ϕ(s, t) = 〈x〉A /A holds for deformed configura-
tions provided that the warping field w(ξ1, ξ2, s, t) satisfies 〈w〉A = 0.

3 The stored energy of a Cosserat rod

In order to set the notational and conceptional framework for the derivation
of the viscous part of our damping model, we first give a brief account of
the derivation of its elastic part, i.e.: the stored energy function (10) of a
Cosserat rod. Within this derivation we will encounter a variety of smallness
assumptions w.r.t. the curvatures describing the reference geometry of the
rod as well as the local strains occuring in its deformed configurations. In
our subsequent derivation of the viscous dissipation function (11) we will use
the same assumptions and thereby remain consistent with the derivation of
the elastic part.

3.1 Three–dimensional strain measures

In the first step we compute the deformation gradient F̂ = gk⊗Gk, the right
Cauchy–Green tensor Ĉ = F̂T · F̂ and the Green–Lagrange strain tensor
Ê = 1

2
(Ĉ− Î) from the basis vectors Gk = ∂kX and gk = ∂kx associated to

the curvilinear coordinates of the rod configurations given by (14) and (15),
with ∂k = ∂

∂ξk
for k = 1, 2 and ∂3 = ∂s for ξ3 = s.
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The dual basis vectors Gj and gj are defined by the relations Gi ·Gj =
δij and gi · gj = δij respectively. Proceeding in this way we obtain the

basis vectors of the reference configuration (14) as Gα = a
(α)
0 (s) and G3 =

a
(3)
0 (s) + ξαU0α(s)a

(α)
0 (s). Their duals may be computed from the general

formula Gi = Gj×Gk/J0 with J0 := (G1×G2) ·G3, where (ijk) is a cyclic
permutation of the indices (123), with the result:

G1 = a
(1)
0 + ξ2

U03

J0
a

(3)
0 , G2 = a

(2)
0 − ξ1

U03

J0
a

(3)
0 , and G3 = 1

J0
a

(3)
0 .

The inital curvatures U0α(s) contained in the determinant J0(s) = 1 +
ξ2U01(s)− ξ1U02(s) and the initial twist U03(s) of the reference configuration
(14) influence the deviation of the dual vectors Gk from the frame direc-

tors a
(k)
0 (s) within the cross section. Both vectors coincide if the reference

configuration of the rod is straight and untwisted (i.e.: U0 = 0). We have

approximate coincidence Gk ≈ a
(k)
0 (s) if curvature and twist of the reference

configuration are sufficiently weak, in the sense that for the curvature radii
given by Rk = 1/|U0k| the estimates |ξα|/R3 � 1 and |ξα|/Rβ � 1⇒ J0 ≈ 1
hold throughout each cross section along the rod, such that all initial curva-
ture radii Rα are large compared to the cross section diameter.

The geometric approximation J0(s) ≈ 1 will occur repeatedly and there-
fore play an important role in the derivation of the elastic energy and dissipa-
tion function of a Cosserat rod. To compute the deformation gradient we also
need the basis vectors gα = a(α)(s, t) and g3 = a(3)(s, t) + ξαUα(s, t)a(α)(s, t)
of the deformed configuration (15) with vanishing gradient of the warping
vector field (∂kw = 0). For the dual vectors gk one obtaines analogous ex-
pressions as those for the dual vectors Gk given above, which we omit here.

For the special kinematical relations of a Cosserat rod, the deformation
gradient F̂ = gk ⊗Gk may be expressed in terms of a pseudo–polar decom-
position (see Géradin and Cardona, 2001) by a factorization of the relative

rotation R̂rel(s, t) := R̂(s, t) · R̂T
0 (s) = a(k)(s, t) ⊗ a

(k)
0 (s) connecting the

moving frames of the reference and deformed configurations of the rod. The
resulting formula

F̂(ξ1, ξ2, s, t) = R̂rel(s, t)

[
Î +

1

J0(s)
H(ξ1, ξ2, s, t)⊗ a

(3)
0 (s)

]
(16)

depends on the absolute values of the curvatures of the reference configuration
(14) through J0(s), and on the change of the strain measures of the rod given
by the difference vectors U(s, t)−U0(s) and V(s, t)−V0 with V0 = (0, 0, 1)T

in terms of the material strain vector H(ξ1, ξ2, s, t) = Hk(ξ1, ξ2, s, t) a
(k)
0 (s)
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with components

H1(ξ2, s, t) = V1(s, t)− ξ2 [U3(s, t)− U03(s)] ,

H2(ξ1, s, t) = V2(s, t) + ξ1 [U3(s, t)− U03(s)] , (17)

H3(ξ1, ξ2, s, t) = [V3(s, t)− 1] + ξ2 [U1(s, t)− U01(s)]

−ξ1 [U2(s, t)− U02(s)] ,

which can be written more compactly8 in the form of a cartesian vector
R̂T

0 ·H = (V−V0)− ξαeα× (U−U0) = Hkek w.r.t. the fixed global frame.
Computing the right Cauchy–Green tensor Ĉ = F̂T · F̂ with the deforma-

tion gradient given by (16) results in the following exact expression for the
Green–Lagrange strain tensor:

Ê =
1

2J0

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
+

H2

2J2
0

a
(3)
0 ⊗ a

(3)
0 . (18)

The approximate expression9

Ê ≈ 1

2

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
(19)

may be obtained from (18) by the geometric approximation J0 ≈ 1 assumed
to hold for the reference geometry and the additional assumption ‖H‖ � 1
of a small material strain vector.

Later we will make use of the approximate strain tensor (19), which is
linear in the vector field H and therefore also in the change of the strain
measures of the rod, to obtain the stored energy function (10), which then
becomes a quadratic form in the change of the strain measures. Likewise we
will use (19) to obtain an approximation of the strain rate ∂tE in terms of
the rate ∂tH of the strain vector.

8Our derivation generalizes the one given by Géradin and Cardona (2001) for the
simpler case of a straight and untwisted reference configuration of the rod (i.e. U0 =
0). Apart from using a slightly different and more compact notation, the kinematically
exact expression of the deformation gradient given by eqns. (16) and (17) is algebraically
equivalent to the one given by Kapania and Li (2003) in eq. (47) of their paper. We note
that the difference terms U−U0 and V −V0 appear already in the kinematically exact
expression (18) before discarding second order terms. This shows that our approach is
more general than the one chosen by Weiss (2002a).

9We note that (19) may alternatively be interpreted as an approximation of the Biot
strain (see section A.1 of the appendix).
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3.2 Validity of the small strain approximation

For deformed configurations of a slender rod one observes large displace-
ments and rotations, but local strains remain small. To estimate the size of
the strain tensor it is useful to compute its components Eij = a

(i)
0 · (Ê · a

(j)
0 )

w.r.t. the tensor basis a
(i)
0 ⊗ a

(j)
0 obtained from the directors of the reference

frame R̂0(s). From (18) and (19) we obtain identically vanishing in–plane
components (Eαβ = Eβα ≡ 0), as well as the exact and approximate expres-
sions

Eα3 = E3α =
Hα

2J0

≈ Hα

2
, E33 =

H3

J0

+
H2

2J2
0

≈ H3 (20)

of the components related to out–of–plane deformations of the local cross
section. Introducing the the quantity |ξ|max := max(ξ1,ξ2)∈A(|ξ1|, |ξ2|) to es-
timate the maximal linear extension of the cross section A, one may esti-
mate the deviation of the determinant J0(s) from unity by |J0(s) − 1| ≤
|ξ|max(1/R1 + 1/R2) as a coarse check of the validity of the approximation
J0 ≈ 1. Otherwise the smallness of the components of Ê is implied by the
smallness of the components Hk of the strain vector. According to (17) these
components in turn become small if the change of the strain measures of
the Cosserat rod is small, i.e. if the estimates |Vα| � 1, |V3 − 1| � 1,
|Uk − U0k| � 1/|ξ|max hold.

For slender rods with moderately curved undeformed geometry these es-
timates are obviously easily satisfiable, except for extreme deformations of
the rod that produce large curvatures or twists of the order of the inverse
cross section diameter. In this case, the assumption of small strains obviously
would be invalid.

3.3 Elastic constitutive behaviour at small strains

If we assume the rod material to behave hyperelastically with a stored energy
density function Ψe(Ê), a simple Taylor expansion argument10 shows that
the behaviour of the energy density within the range of small strains may
be well approximated by the quadratic function Ψe(Ê) ≈ 1

2
Ê : H : Ê,

where H = ∂2
Ê

Ψe(0̂) is the fourth order Hookean material tensor known from
linear elasticity. This quadratic approximation yields a well defined frame–
indifferent elastic energy density that is suitable for structure deformations
at small local strains, but arbitrary large displacements and rotations, and

10Additional assumptions are the vanishing of the elastic energy density at zero strain
(Ψe(0̂) = 0), as well as the absence of initial stresses in the undeformed configuration (i.e.:
Ŝ0 = ∂ÊΨe(0̂) = 0̂).
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therefore serves as a proper basis for the derivation of the stored energy
function of a Cosserat rod.

The corresponding approximation of the stress–strain relation yields the
2nd Piola–Kirchhoff stress tensor Ŝ = ∂ÊΨe(Ê) ≈ H : Ê for small strains.

The 1st Piola–Kirchhoff stress tensor P̂, which is used to define the stress
resultants and stress couples of the Cosserat rod model (see Simo, 1985, for
details), is obtained by the transformation P̂ = F̂ · Ŝ using the deformation
gradient, and the Cauchy stress tensor as the inverse Piola transformation
σ̂ = J−1P̂ · F̂T depending also on J = det(F̂). If we approximate the strain
tensor Ê by (19) and consistently discard all terms that are of second order
in ‖H‖ in accordance with our assumption of small strains, we have to use
the approximation F̂ ≈ R̂rel(s) (which implies J ≈ 1) for the deformation
gradient in all stress tensor transformations. This means that all pull back
or push forward transformations are carried out approximately as simple
relative rotations connecting corresponding frames R̂0(s) and R̂(s, t) of the
undeformed and deformed configurations of a Cosserat rod. Alltogether we
obtain the approximate expressions11

Ŝ ≈ H : Ê ⇒ P̂ ≈ R̂rel · Ŝ , σ̂ ≈ R̂rel · Ŝ · R̂T
rel (21)

for the various stress tensors, which are valid for the specific type of small
strain assumptions encountered for Cosserat rods, as discussed above.

In the case of a homogeneous and isotropic material, the Hookean tensor
acquires the special form of an isotropic fourth order tensor HSV K = λ Î⊗ Î+
2µ I depending on two constant elastic moduli: the Lamé parameters λ and
µ. Here Î and I are the second and fourth order identity tensors, which act
on (symmetric) second order tensors Q̂ by double contraction as I : Q̂ = Q̂
and Î : Q̂ = Tr(Q̂), such that one obtains Q̂ : (Î ⊗ Î) : Q̂ = Tr(Q̂)2 and
Q̂ : I : Q̂ = Q̂ : Q̂ = Tr(Q̂2) = ‖Q̂‖2F , where ‖ . . . ‖F is the Frobenius norm.
The corresponding energy function is the Saint–Venant Kirchhoff potential

ΨSV K(Ê) =
1

2
Ê : HSV K : Ê (22)

=
λ

2
Tr(Ê)2 + µ ‖Ê‖2F =

K

2
Tr(Ê)2 + µ ‖P : Ê‖2F ,

where P = I− 1
3
Î⊗ Î is the orthogonal projector on the subspace of traceless

second order tensors, such that P : Ê = Ê − 1
3
Tr(Ê)Î yields the traceless

(deviatoric) part of the strain tensor, and K = λ+ 2
3
µ is the bulk modulus.

11An alternative interpretation of (21) in terms of the Biot stress tensor is briefly dis-
cussed in section A.3 of the appendix.
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3.4 Modified strain accounting for lateral contraction

The stress–strain relation obtained from (22) is given by

ŜSV K = λ Tr(Ê) Î + 2µ Ê = K Tr(Ê) Î + 2µ P : Ê . (23)

Inserting the approximate expressions (19) and (20) of the strain tensor
and its components into (23) yields the small strain approximation ŜSV K ≈
λH3Î + µ[H ⊗ a

(3)
0 + a

(3)
0 ⊗H] of the stress tensor ŜSV K for Cosserat rods.

The computation of the stress components w.r.t. the basis of R̂0(s) directors
yields normal stress components Sαα ≈ λH3 and S33 ≈ (λ+ 2µ)H3, and the
shear stress components are given by S12 = S21 = 0 and Sα3 = S3α ≈ µHα

respectively.
As both elastic moduli λ = 2µν/(1−2ν) and λ+2µ = 2µ(1−ν)/(1−2ν)

appearing in the expressions for the normal stress components, expressed in
terms of the shear modulus µ = G and Poisson’s ratio given by 2ν = λ/(λ+
µ), diverge in the incompressible limit ν → 1

2
(just as the bulk modulus K =

2
3

1+ν
1−2ν

G does), the normal stresses would become infinitely large whenever
the normal strain E33 ≈ H3 becomes nonzero. This unphysical behaviour
is a direct consequence of the kinematical assumption of plain and rigid
cross section, which prevents any lateral contraction of the cross section in
the case of a longitudinal extension. Therefore the assumption of a perfectly
rigid cross section, as well as the expressions (18) and (19) derived under this
assumption, are strictly compatible only with perfectly compressible materials
(i.e.: in the special case ν = 0).

The standard procedure to fix this deficiency (see e.g. Weiss, 2002a) is
based on the plausible requirement that all in–plane stress components Sαβ
(including the normal stresses Sαα), which for rods in practice are very small
compared to the out of plain normal and shear stresses Sα3 and S33, should
vanish completely. This may be achieved by imposing a uniform lateral
contraction with in–plane normal strain components Eαα = −νE33 upon the
cross section.

Although this procedure seems to be an ad hoc one, it may be justified
by an asymptotic analysis12 of the local strain field for rods, e.g. in the way
as presented by A.E.H. Love (1927) in the paragraph §256 on the ”Nature
of the strain in a bent and twisted rod” in Ch. XVIII of his book. Following
Love’s analysis, we obtain the in–plane normal strains to leading order as
Eαα = ∂αwα = −νE33 with the additional requirement that E12 = E21 =
∂1w2 + ∂2w1 = 0, which determines the in–plane components wα of the the
warping field w corresponding to the lateral contraction in terms of E33.

12See (Berdichevsky, 1981) and ch. 15 of (Berdichevsky, 2009) for a modern comprehen-
sive analysis within Berdichevsky’s variational asymptotic approach.
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To obtain the modified value of Eαα = −νE33 one has to add an additional
term −νE33 a

(α)
0 ⊗a

(α)
0 to the exact expression (18) of the strain tensor. Using

the identity Î = a
(k)
0 ⊗ a

(k)
0 , we obtain the modified expression

Ê′ = Ê − ν E33

[
Î− a

(3)
0 ⊗ a

(3)
0

]
(24)

for the strain tensor, with E33 ≈ H3 as small strain approximation according
to (19). Inserting the modified strain tensor (24) into the stress–strain equa-
tion of the Saint–Venant–Kirchhoff material with Tr(Ê′) = (1 − 2ν)E33 ≈
(1− 2ν)H3, and using the relation λ(1− 2ν) = ν

1+ν
E that relates the Lamé

parameter λ to Young’s modulus E, we obtain the following modified expres-
sion for the stress of a Cosserat rod:

Ŝ′SV K ≈
Eν

1 + ν
H3 a

(3)
0 ⊗ a

(3)
0 + G

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
. (25)

By construction, we now obtain vanishing in–plane stress components S ′12 =
S ′21 = S ′αα ≡ 0, while the transverse shear stresses remain unaffected by the
modification (i.e.: S ′α3 = S ′3α ≈ GHα with G = µ). As 2G = E/(1 + ν),
we likewise obtain the modified expression S ′33 ≈ EH3 for the normal stress
component orthogonal to the cross section, which corresponds to the familiar
expression from elementary linear beam theory, with Young’s modulus E
replacing λ+ 2µ.

3.5 Elastic energy of a Cosserat rod

Next we demonstrate briefly how the modified expressions (24) and (25)
directly lead to the well known stored energy function (10).

In the case of a hyperelastic material with an elastic (stored) energy den-
sity Ψe the elastic potential energy of a body is given by the volume integral∫
V0
dV Ψe of the energy density over the volume V0 of the reference config-

uration of the body. In the case of a rod shaped body parametrized by the
coordinates (ξ1, ξ2, s) of the reference configuration (14), the volume mea-
sure of V0 is given by dV = J0dsdξ1dξ2, where J0 is the Jacobian of the
reference configuration (see subsection 3.1). Using the geometric approxima-
tion J0 ≈ 1, the stored energy function of a rod shaped body is obtained as
the integral

∫
V0
dV Ψe ≈

∫ L
0
ds 〈Ψe〉A of the density over the cross sections

and along the centerline of the reference configuration of the rod.
In the special case of the energy density (22) this leads to the stored

energy function We =
∫ L

0
ds
〈

ΨSV K(Ê′)
〉
A

, using the modified strain tensor

Ê′ from (24). Applying our previously introduced approximations of small
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strains and small initial curvature, we obtain the approximate expression

ΨSV K(Ê′) =
1

2
Ŝ′SV K : Ê′ ≈ 1

2

[
EH2

3 + G(H2
1 +H2

2 )
]

(26)

for the energy density. Its cross section integral
〈

ΨSV K(Ê′)
〉
A

may be eval-

uated in terms of the integrals〈
H2

1 +H2
2

〉
A = A(V 2

1 + V 2
2 ) + I3(U3 − U03) ,〈

H2
3

〉
A = A(V3 − 1)2 + Iα(Uα − U0α) ,

which finally yields the desired result

2
〈

ΨSV K(Ê′)
〉
A
≈ EA(V3 − 1)2 + GA(V 2

1 + V 2
2 ) (27)

+ EIα(Uα − U0α) + GI3(U3 − U03) ,

corresponding exactly to the stored energy function (10) with effective stiff-
ness parameters given by (2). The subsequent introduction of shear correc-
tion factors (GA → GAκα) as well as the corresponding correction GI3 →
GJT = GI3κ3 of torsional rigidity13 finally yields the stored energy function
(10) with correspondingly modified effective stiffnesses as given by (7) (see
also section 4.1 for a more detailed discussion of this point).

13 The correction of torsional rigidity accounts for the contribution of out–of–plane cross
section warping in terms of a corresponding torsional stress function Φ(ξ1, ξ2) and leads
to an improved approximation of the strain and stress fields as well as the resulting elas-
tic energy given by (10) compared to its 3D volumetric counterpart. Similar arguments
apply to an improved approximation of transverse shear strains and stresses as well as the
associated part of the elastic energy density by accounting for additional contributions
given by a corresponding pair of stress functions χα(ξ1, ξ2). The classical results obtained
by St.–Venant are given in ch. XIV of Love’s treatise (Love, 1927) (see also ch. II §16
in (Landau and Lifshitz, 1986)). They are contained as a special (and simplified) case
within Berdichevsky’s more comprehensive and modern treatment in terms of his method
of variational asymptotic analysis applied to rods (see (Berdichevsky, 1981, 1983) and
ch. 15 of (Berdichevsky, 2009)). Apart of Timoshenko’s original treatment of shear cor-
rection factors, the article of Cowper (1966) is a classical reference on this subject, with
correction factors obtained from pointwise (centroidal) and cross section averaged values
of transverse shear stresses σα3 (see also the discussions in ch. II, section 11. of Villagio
(1997) and section 2.1 of Simo et al. (1984)). More recently an alternative approach based
on energy balance as utilized e.g. in (Gruttmann and Wagner, 2001) and likewise fits to
our considerations, is considered as standard due to superior results. However, the issue
of correction factors for transverse shear in Timoshenko–type rod models is still subject
of discussion and research activities (see e.g. Dong et al., 2010).
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3.6 Kinetic energy and energy balance for rods

In general, the kinetic energy of a body is given by the volume integral∫
V0
dV 1

2
ρ0v

2, where ρ0(X) is the local mass density of the body in the ref-
erence volume, and v(X, t) = ∂tx(X, t) is the velocity of the respective ma-
terial point. Using the kinematic ansatz (15) with the geometric approxi-
mation J0 ≈ 1, assuming a homogeneous mass density, and neglecting the
contribution of cross section warping (w ≡ 0), we obtain the integral ex-

pression Wk =
∫ L

0
ds 1

2
ρ0[A(∂tϕ)2 + 〈ξ2

α〉A (∂ta
(α))2] for the kinetic energy of

the rod as a quadratic functional of the time derivatives of its kinematic
variables. The rotatory part may be reformulated in terms of the material
components Ωj = ω · a(j) of the angular velocity vector ω = Ωja

(j) of the
rotating frame, which is implicitely defined by ∂ta

(k) = ω × a(j), by sub-
stituting 〈ξ2

α〉A (∂ta
(α))2 = IkΩ

2
k. This finally yields the familiar expression

Wk =
∫ L

0
ds 1

2
ρ0[A(∂tϕ)2 + IkΩ

2
k] for the kinetic energy of a Cosserat rod as

given in Lang et al. (2011) with Ωk expressed in quaternionic formulation. Al-
together we obtain the approximation

∫
V0
dV [1

2
ρ0v

2+Ψe] ≈ We + Wk =: Wm

of the three–dimensional mechanical energy of a rod shaped body in terms of
the corresponding sum of the kinetic and stored energy functions Wk and We

of the Cosserat rod model as given above. In the absence of any dissipative ef-
fects, the mechanical energy must be conserved exactly in both the 3D as well
as the 1D setting, such that the identities d

dt

∫
V0
dV [1

2
ρ0v

2 + Ψe] = 0 = d
dt
Wm

hold identically as a consequence of the respective balance equations for both
the 3D volumetric body and the 1D rod.

4 Kelvin–Voigt damping for Cosserat rods

Now we have collected all technical prerequisites and approximate results
that enable us to derive the dissipation function (11) of a Cosserat rod from
a three-dimensional Kelvin–Voigt model in analogy to the derivation of the
stored energy function (10) in a consistent way.

In Landau and Lifshitz (1986) (see Ch. V §34) the dissipation function∫
V
dV 1

2
ηijklε̇ij ε̇kl is considered as an appropriate model of dissipative effects

within a solid body near thermodynamic equilibrium, with constant fourth
order tensor components ηijkl that are the viscous analogon of the compo-
nents of the Hookean elasticity tensor. According to our formulation, the
dissipation function suggested by Landau and Lifshitz (1986) becomes that
of a Kelvin–Voigt solid (see Lemaitre and Chaboche, 1990):

DKV =

∫ L

0

ds
〈

ΨKV (∂tÊ)
〉
A

=

∫ L

0

ds
1

2

〈
∂tÊ : V : ∂tÊ

〉
A
. (28)
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This is a quadratic form in the material strain rate ∂tÊ defined as the time
derivative of the Green–Lagrange strain tensor. The constant fourth order
viscosity tensor V may be assumed to have the same symmetries as the
Hookean tensor H, depending on viscosity parameters in the same way as
the components of H depend on elastic moduli. The stress–strain relation of
the Kelvin–Voigt model is given by Ŝ = H : Ê + V : ∂tÊ, with the viscous
stress14 given by the term Ŝv := V : ∂tÊ = ∂∂tÊ

ΨKV (∂tÊ).
The dissipation function for a Cosserat rod results by inserting the rate

∂tÊ
′ of the modified strain tensor (24) into the dissipation density function

ΨKV of the Kelvin–Voigt model. We will compute this function explicitely
in closed form for the special case of a homogeneous and isotropic material.
In this special case, the viscosity tensor assumes the form

VIKV = ζ Î⊗ Î + 2η P = (ζ − 2

3
η) Î⊗ Î + 2η I , (29)

depending on two material constants: bulk viscosity ζ and shear viscosity η.
To compute ∂tÊ

′ we use the expression (24) for the modified Green–
Lagrange strain tensor of a Cosserat rod including the small strain approxi-
mation (19), with the result15

∂tÊ
′ ≈ 1

2

[
∂tH⊗ a

(3)
0 + a

(3)
0 ⊗ ∂tH

]
− ν ∂tH3

[
Î− a

(3)
0 ⊗ a

(3)
0

]
(30)

14Note that Ŝv : ∂tÊ = 2ΨKV (∂tÊ) corresponds to the viscous stress power density,
such that the integral Pv(t) := 2

∫
V
dV ΨKV (∂tÊ) over the body volume yields the (time

dependent) rate at which a Kelvin–Voigt solid dissipates mechanical energy under approx-
imately isothermal conditions near thermodynamic equilibrium, (see Ch. V §34 & §35)
of Landau and Lifshitz (1986)). For a thorough discussion of the role of the dissipation
function within the theory of small fluctuations near thermodynamic equilibrium from the
viewpoint of statistical physics we refer to the the corresponding paragraphs in ch. XII
in Landau and Lifshitz (1980) (in particular §121), as well as V. Berdichevsky’s recent
article 2003. In section VI of the latter, the author points out that a Kelvin–Voigt type
constitutive relation holds also at finite strains, with the dissipative part governed by a
fourth order viscosity tensor V[Ê, ∂tÊ] depending on the local strain and its rate. While
a dependence of V on the invariants of ∂tÊ in general prevents the existence of a dissi-
pation function, the latter does indeed exist according to V.B.’s arguments if V = V[Ê]
is independent of the strain rate. This holds e.g. in the case of the Kelvin–Voigt limit of
constitutive laws belonging to the class of finite linear viscoelasticity (Coleman and Noll,
1961) at sufficiently small strain rates (i.e. sufficiently slow deformations of a body).

15Computing ∂tÊ′ from (24) leads to the identity ∂tEαα = −ν ∂tE33 ≈ −ν ∂tH3 likewise
obtained from (30). This implies that the relation Eαα = −νE33 between in–plane to out–
of–plane normal strains remains valid also for dynamic motions (at least for sufficiently
slow ones), and that Poisson’s ratio ν may still be treated as a constant in this case (see
also Christensen, 1982, sec. 2.3).
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depending on the time derivative ∂tH(ξ1, ξ2, s, t) = ∂tHk(ξ1, ξ2, s, t) a
(k)
0 (s) of

the material strain vector with components

∂tH1(ξ2, s, t) = ∂tV1(s, t)− ξ2 ∂tU3(s, t) ,

∂tH2(ξ1, s, t) = ∂tV2(s, t) + ξ1 ∂tU3(s, t) , (31)

∂tH3(ξ1, ξ2, s, t) = ∂tV3(s, t) + ξ2 ∂tU1(s, t)− ξ1 ∂tU2(s, t) ,

i.e.: R̂T
0 · ∂tH = (∂tHk) ek = ∂tV− ξαeα× ∂tU, written as a cartesian vector

w.r.t. the global basis {e1, e2, e3}.
Inserting (30) and (31) into the dissipation density function ΨIKV (∂tÊ

′) =
1
2
∂tÊ

′ : VIKV : ∂tÊ
′ of the isotropic Kelvin–Voigt model, analogous compu-

tational steps as those done for the derivation of the stored energy ΨSV K(Ê′)
in the previous subsection yield the expression

2ΨIKV (∂tÊ) ≈ ηE (∂tH3)
2 + η

[
(∂tH1)

2 + (∂tH2)
2
]
,

with the extensional viscosity parameter ηE as defined in (5) appearing as
the prefactor16 of (∂tH3)

2. The computation of the cross section integrals of
the squared time derivatives (∂tHk)

2 yields the expressions〈
(∂tH3)

2
〉
A = A(∂tV3)

2 + Iα(∂tUα)2 ,〈
(∂tH1)

2 + (∂tH2)
2
〉
A = A

[
(∂tV1)

2 + (∂tV2)
2
]

+ I3(∂tU3)
2 ,

from which we obtain the desired cross section integral of the dissipation
density function:

2
〈

ΨIKV (∂tÊ)
〉
A
≈ ηEA (∂tV3)

2 + ηEIα (∂tUα)2 (32)

+ ηA
[
(∂tV1)

2 + (∂tV2)
2
]

+ ηI3 (∂tU3)
2 .

The dissipation function (11) of the Cosserat rod with diagonal damping
coefficient matrices (3) and damping parameters (4) is then obtained as

Dv ≡ DIKV :=

∫ L

0

ds
〈

ΨIKV (∂tÊ
′)
〉
A

by inserting the approximation of
〈

ΨIKV (∂tÊ
′)
〉
A

given in (32).

16The term K(1 − 2ν)2 + 4
3G(1 + ν)2 = E analogously appears as the prefactor of H2

3

in the expression (26) of the stored energy function of a Cosserat rod for the St.–Venant–
Kirchhoff material.

23



4.1 Modification by shear correction factors

There is obviously a high degree of formal algebraic similarity in the deriva-
tions of the stored energy function (10) as presented in subsection 3.5 and the
dissipation function (11) as presented above: Both functionals result by in-
serting the specific strain tensor (24) of a Cosserat rod or respectively its rate
(30) into a volume integral over the 3D body domain of a density function
defined as a quadratic form given by constant isotropic fourth order mate-
rial tensors H and V, making use of the same geometric as well as “small
strain” approximations implied by the specific kinematical ansatz (15) for
the configurations of a Cosserat rod. The formal analogy in the derivation
procedure leads to a dissipation density (32) that may be obtained from its
elastic counterpart (27) by substituting viscosity parameters for correspond-
ing elastic moduli (G→ η, E → ηE) and strain rates for strain measures.

In the case of the stored energy function (10) the effective stiffness param-
eters (2) of the rod model are obtained from a derivation using a kinematical
ansatz that completely neglects out–of–plane warping (i.e.: w3 = 0 = ∂kw3)
due to transverse shearing and twisting, but accounts for in–plane warping
(i.e.: wα 6= 0) in a simplified way by assuming a uniform lateral contraction
(ULC) of the cross section according to the linear elastic theory (see section
3.4). Softening effects due to out–of–plane warping are then accounted for by
introducing shear correction factors 0 < κj ≤ 1, which in the case of a homo-
geneous and isotropic material enter the model as multipliers A→ Aα = Aκα

and I3 → JT = I3κ3 of the area A and polar moment I3 of the cross section
and — according to the linear theory — depend solely on the cross section
geometry. The modified stiffness constants (7) are obtained in combination
with the elastic moduli G = µ and E, the latter appearing instead of λ+ 2µ
due to the enforcment of vanishing in–plane stresses by allowing for ULC
according to (24).

Although the derivation of explicit formulas17 for κj is carried out for
static boundary value problems, the same κj, as well as the kinematic ansatz
accounting for ULC, may be used for dynamic problems, due to the negligible
influence of dynamic effects on the warping behaviour of cross sections, pro-
vided that the rod geometry is sufficiently slender. Therefore the geometric
modifications A→ Aα = Aκα and I3 → JT = I3κ3, which have already been
used to provide modified stiffness parameters (7) for an improved approxima-
tion of the 3D (volumetric) elastic energy by the stored energy function (10)
in the static as well as in the dynamic case, remain likewise valid to achieve a
comparable improvement for the approximation of the 3D integrated viscous
stress power by the dissipation function (11), with modified damping param-

17We refer to footnote 13 for a discussion of this issue.
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eters given by (8), leading to the modified expressions (9) for the effective
viscosity matrices.

This completes our derivation of the Kelvin–Voigt type dissipation func-
tion of a Cosserat rod. Although the arguments given above would certainly
benefit from a mathematical confirmation by rigorous (asymptotic) analysis,
the latter is beyond the scope of this work.

4.2 An (erroneous) alternative derivation approach

The formulation of the Cosserat rod model given by Simo (1985) introduces
spatial force and moment vectors f and m, usually denoted as stress resultants
and stress couples, as the cross section integrals

f(s, t) =
〈
P̂(ξ1, ξ2, s, t) · a(3)

0 (s)
〉
A
,

m(s, t) =
〈
ξ(s)× P̂(ξ1, ξ2, s, t) · a(3)

0 (s)
〉
A

of the traction forces of the 1st Piola–Kirchhoff stress tensor acting on the
cross section area and the corresponding moments generated by the Piola–
Kirchhoff tractions w.r.t. the cross section centroid, which are obtained by
means of the “lever arm” vector ξ(s) = ξαa

(α)
0 (s). Both integrants may be

expressed in terms of the 2nd Piola–Kirchhoff stress by means of the trans-
formation P̂ = F̂ · Ŝ with the deformation gradient. In view of the small
strain approximation P̂ ≈ R̂rel · Ŝ with Ŝ ≈ H : Ê discussed in subsection
3.3 we obtain the relations

R̂0(s) · F(s, t) ≈
〈
Ŝ(ξ1, ξ2, s, t) · a(3)

0 (s)
〉
A
,

R̂0(s) ·M(s, t) ≈
〈
ξ(s)× Ŝ(ξ1, ξ2, s, t) · a(3)

0 (s)
〉
A

connecting the spatial stress resultants f = R̂ · F and stress couples m =
R̂ ·M to their material counterparts rotated to the local reference frame
R̂0(s) = ak0(s)⊗ ek.

Expanding the material force and moment vectors w.r.t. the local ONB
given by the reference frame R̂0(s) as R̂0(s) · F(s, t) = Fk(s, t) ak0(s) and
R̂0(s) ·M(s, t) = Mk(s, t) ak0(s) yields their components in terms of the cross
section integrals

Fj = 〈Sj3〉A , M1 = 〈ξ2S33〉A , M2 = 〈−ξ1S33〉A ,

M3 = 〈ξ1S23 − ξ2S13〉A
of the components of Ŝ w.r.t. this basis. To compute these components of
the material force and moment vectors in closed form for the special case
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Ŝ′ = HSV K : Ê′ + VIKV : ∂tÊ
′ = Ŝ′SV K + Ŝ′IKV with the approximate ex-

pressions (24) and (30) of the Green–Lagrange strain tensor and its rate
and the constant isotropic material tensors HSV K = K Î ⊗ Î + 2GP and
VIKV = ζ Î ⊗ Î + 2η P, we have to evaluate the cross section integrals with
the stress components S ′α3 = GHα + η∂tHα and S ′33 = EH3 + η̃E∂tH3, with
η̃E := (1− 2ν)ζ + (1 + ν)4

3
η multiplying the strain rate ∂tH3 ≈ ∂tE33.

Therefore η̃E has to be interpreted as extensional viscosity, but obviously
differs from the expression ηE given in (5) and derived above by comput-
ing the dissipation function. Therefore the corresponding retardation time
constant τ̃E := η̃E/E = 1

3
(τB + 2τS), which is independent of the value of

Poisson’s ratio ν, likewise differs from the expression of the extensional re-
tardation time τE given in (6). Both expressions η̃E and ηE yield extensional
viscosity as a combination of shear and bulk viscosity, but agree only in the
special case ν = 0. The same assertion likewise holds for the corresponding
retardation times, of course. However, only ηE yields the correct incompress-
ible limit ηE → 3η for ν → 1

2
, while η̃E tends to the smaller (and incorrect)

value of 2η in this case.
The resulting expressions for the material force components are given by

Fα = GA [Vα + τS ∂tVα] , F3 = EA [(V3 − 1) + τ̃E ∂tVα] ,

and the material moment components correspondingly by

Mα = EIα [(Uα − U0α) + τ̃E ∂tUα] ,

M3 = GI3 [(U3 − U03) + τS ∂tU3] .

A comparison with the stiffness and damping parameters (2) and (6) entering
the constitutive equations (1) shows that the derivation approach sketched
above correctly yields all of the stiffness parameters as well as the damping
parameters associated to transverse and torsional shear deformations. How-
ever, the damping parameters governed by normal stresses and extensional
viscosity do not agree due to the appearance of τ̃E instead of the correct time
constant τE.

The discrepancy between the results of both derivation approaches can be
traced back to the fact that the integration of the traction forces and their as-
sociated moments over the cross section fails to account for the non–vanishing
contributions of the in–plane strain rates ∂tE

′
αα = −ν∂tH3 associated to uni-

form lateral contraction to the total energy dissipation of the rod. Paired with
the corresponding viscous stress components S ′αα = [(1−2ν)ζ−(1+ν)η]∂tH3

these result in the (in general non–vanishing) contribution

S ′αα(∂tE
′
αα) = −2ν [(1− 2ν)ζ − (1 + ν)η] (∂tH3)

2

= (ηE − η̃E) (∂tH3)
2
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to the dissipation function. As the cross section integrals given above involve
only the stress components S ′α3 and S ′33, this additional source of damping is,
by definition, not contained in the resulting formulas for the material force
and moment components Fj and Mj obtained via this approach.

However, this deficiency affects only the viscous part of the constitutive
equations. The elastic part does not show any discrepancy, as the modified
strain tensor (24) by construction provides vanishing in–plane elastic stress
components (see section 3.4), such that the stored energy function does not
contain any contributions from non–vanishing in–plane elastic stresses to the
elastic energy, and the cross section integrals of the traction forces and their
moments yield all stiffness parameters correctly.

In summary, the considerations above suggest that, also in the case of
more general viscoelastic constitutive laws, our approach to derive effective
constitutive equations for Cosserat rods by computing the stored energy and
dissipation functions is superior to the alternative approach based on a direct
computation of the forces and moments as resultant cross section integrals
of the traction forces and associated moments, as the latter yields an ef-
fective extensional viscosity which is systematically too small for partially
compressible and incompressible solids (i.e.: 0 < ν ≤ 1

2
).

4.3 ANCF beams with Kelvin–Voigt damping

In the recent article of Abdel–Nasser and Shabana (2011), a damping model
for geometrically nonlinear beams given in the ANCF (absolute nodal coordi-
nates) formulation has been proposed. The authors obtained their model by
inserting the 3D isotropic Kelvin–Voigt model as described above into their
ANCF element ansatz. They used the Lamé parameters λ and µ as elastic
moduli, and introduced corresponding viscosity parameters λv and µv, which
they related to the elastic moduli by dissipation factors γv1 and γv2. From the
context it seems clear that in our notation γv2 = τS, such that µv = GτS = η.
Likewise we may identify γv1 = τB, such that λv = KτB − 2

3
GτS = ζ − 2

3
η,

and the viscosities are related by the same relation as the elastic moduli (i.e.:
λ = K − 2

3
G). If the ANCF ansatz chosen in (Abdel–Nasser and Shabana,

2011) handles lateral contraction effects correctly, both models should behave
similar and yield similar simulation results. However, the appearance of the
unmodified elastic moduli λ = 2µν/(1−2ν) and λ+ 2µ = 2µ(1−ν)/(1−2ν)
in the element stiffness matrix (see eqn. (25) of the paper) indicates that the
formulation chosen in (Abdel–Nasser and Shabana, 2011) may have problems
in the case of incompressible materials (ν → 1

2
). A clarifying investigation

of this issue as well as a detailed comparison of both models remains to be
done in future work.
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4.4 Validity of the Kelvin–Voigt model

As remarked already in Landau and Lifshitz (1986), the modelling of viscous
dissipation for solids by a dissipation function of Kelvin–Voigt type is valid
only for relatively slow processes near thermodynamic equilibrium, which
means that the temperature within the solid should be approximately con-
stant, and the macroscopic velocities of the material particles of the solid
should be sufficiently slow w.r.t. the time scale of all internal relaxation pro-
cesses.

To illustrate and quantify this statement, we briefly discuss the one–
dimensional example of a linear viscoelastic stress–strain relation σ(t) =∫∞

0
dτ G(τ)ε̇(t − τ) governed by the relaxation function of a generalized

Maxwell model given by G(τ) = G∞ +
∑N

j=1Gj exp(−τ/τj), i.e. a Prony
series (see e.g. Haupt, 2002). By Fourier transformation we obtain the rela-
tion σ̂(ω) = Ĝ(ω)ε̂(ω) in the frequency domain, where the real and imaginary
parts of the complex modulus function Ĝ(ω) = G∞ +

∑N
j=1Gj

iτjω

1+iτjω
model

the frequency dependent stiffness and damping properties of the material.
Using a 1D Kelvin–Voigt model σKV (t) = Gε(t) + ηε̇(t) we obtain the

simple expression σ̂KV (ω) = [G + iηω]ε̂(ω), which approximates the gen-
eralized Maxwell model at sufficiently low frequencies with G = G∞ and
η =

∑N
j=1Gjτj. The deviation between the generalized Maxwell model and

its Kelvin–Voigt approximation may be estimated as

|σ(t)− σKV (t)| ≤ 1

π

N∑
j=1

Gj

∫ ∞
0

dω
|ε̂(ω)| (τjω)2√

1 + (τjω)2
.

This deviation may indeed become small, provided that the modulus |ε̂(ω)|
of the strain spectrum, which appears as a weighting factor for the terms of
the sum on the r.h.s., takes on non–vanishing values only at frequencies much
smaller than those given by the discrete spectrum of the inverse relaxation
times ωj = 1/τj. The estimate given above also shows that in this case the
Kelvin–Voigt model provides a low frequency approximation of second order
accuracy.
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Figure 5: Damped non-linear bending vibrations of a clamped cantilever
beam (see text for further details).

5 Numerical Examples

To illustrate the behaviour of our damping model, we show the results of
numerical simulations of nonlinear vibrations of a cantilever beam in Fig. 5
obtained with the discrete Cosserat rod model presented in Lang et al. (2011).

The parameters of the beam are: length L = 30 cm, quadratic cross-
section area A = 1 × 1 cm2, mass density ρ = 1 g/cm3, Young’s modulus
E = 1 MPa, and Poisson’s ratio ν = 0.3. We assume that ζ/η = K/G holds
for the viscosity parameters, such that according to our model (6) the values
of all retardation time constants are equal (τB = τS = τE). The tests were
performed with three different values (0.02 s, 0.04 s, and 0.08 s) of τE = τB/S.
No gravitation is present.

The beam is fully clamped at one end, the other end is initially pulled
sideways by applying a force fL = Fe1 of magnitude F = 0.05 N to the other
end. The resulting initial deformation state in static equilibrium18 deviates

18A highly accurate approximation of this equilibrium configuration may be obtained as
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far from the linear range of deformations governed by (infinitesimally) small
displacements and rotations w.r.t. the reference configuration, while local
strains are small in accordance with the constitutive assumptions. Start-
ing from this initial equilibrium configuration, the beam is then released to
vibrate transversally. The deformations of the beam shown in the inset of
Fig. 5 are snapshots taken during the first half period of the oscillations
which illustrate that in the initial phase of the oscillations substantial geo-
metric nonlinearities are present. During the vibrations the beam remains in
the plane of its initial deformation, such that all deformations are of plane
bending type, and the extensional viscosity ηE = EτE becomes the main
influence for damping.

As expected, the plots of the transverse oscillation amplitude x(t) =
e1 · ϕ(L, t) recorded at the free end of the beam show an exponential dying
out in the range of small amplitudes (linear regime). The deviations from
the exponential envelope adapted to the linear regime that are observed
during the initial phase clearly show the influence of geometric nonlinearity.
The plots also suggest that damping becomes weaker in the nonlinear range.
However, linear behaviour seems to start already with the fifth oscillation
period, where the amplitude still has a large value of ≈ L/3.

This may be further analyzed by evaluating the logarithmic decrements
δk = ln(x(tk)/x(tk+1)) recorded between succesive maxima x(tk) of the am-
plitude as well as the corresponding damping ratios ζk implicitely defined
(see Craig and Kurdila, 2006, ch. 3.5, p. 75) by δk = 2πζk/

√
1− ζ2

k . The
plots for the values of ζk determined in this way are shown in the inset of
Fig. 5. As expected, the ratios approach constant values in the linear regime,
which scale as 1 : 2 : 4 proportional to the values of the time constant τE
used in the simulations. The simulations also show that the decrements be-
come lower in the range of large amplitudes, which confirms the observation
that the damping effect of our Kelvin–Voigt model is extenuated by the pres-
ence of geometrical nonlinearity. Nevertheless, ζk still scales approximately
proportional to τE also in the nonlinear range.

To investigate the influence of a variation of the bending stiffness on the
damping behaviour, an additional test with quadrupled Young’s modulus
E = 4 MPa was performed. In the corresponding amplitude plot shown in
Fig. 5 the time axis of the plot with quadrupled E was streched twofold, such
that the oscillations could be compared directly. After time stretching the
(E = 4 MPa, τE = 0.02 s) plot coincides with the (E = 1 MPa, τE = 0.04 s)

the curve s 7→ ϕel(s) and adapted frame R̂el = (e2× ∂sϕel)⊗ e1 + e2⊗ e2 + ∂sϕel⊗ e3 of
an inextensible Euler elastica, which may be computed analytically in closed form in terms
of Jacobian elliptic functions and elliptic integrals (see Love, 1927, ch. XIX §260–263) or
(Landau and Lifshitz, 1986, ch. II §19).
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plot, surprisingly even throughout the whole nonlinear range. Since the
oscillation period T of the four times stiffer (E = 4 MPa) beam is twice
smaller than that of the softer (E = 1 MPa) beam, this suggests that the
damping ratio varies proportional to the ratio τE/T . Again this would be
the expected behaviour in the linear regime, but is observed here in the
nonlinear range as well.

For small amplitudes, the oscillation period may be estimated as T ≈
(2π/3.561)L2

√
ρA/EI using the well known formula for the fundamental

transverse vibration frequency of a cantilever beam obtained from Euler–
Bernoulli theory (see Craig and Kurdila, 2006, ch. 13.2, Ex. 13.3, eq. (8)).
Inserting the parameters assumed above, we get T ≈ 1.81 s as an estimate,
which correponds well to the time intervals of approximately 1.8 s between
successive maxima shown in Fig. 5 that are also observed throughout the
range of geometrically nonlinear deformations. For linear vibrations, damp-
ing ratio values ζ ≈ 1 correspond to a critical damping of the vibrating
system, while values 0 < ζ � 1 indicate a weak damping. According to
that, the values ζk observed in our experiments are in the range of weak
to moderate damping, and are well approximated by the empirical formula
ζ ≈ 1

π
τE/T , such that critical damping of transverse vibrations would be ob-

served at a value of τE ≈ πT . This provides a rough guideline for estimating
the strenght of damping, or likewise an adjustment of the retardation time
τE relative to the fundamental period T , if the Kelvin–Voigt model is utilized
to provide artificial viscous damping in the sense of Antman (2003).

Corresponding experiments for axial or torsional vibrations are limited
to the range of small vibrations amplitudes, similar to the ones shown by
Abdel–Nasser and Shabana (2011), as for large amplitudes one would in-
evitably induce buckling to bending deformations, such that all deformation
modes would occur simultaneously, which greatly hampers a systematic in-
vestigation of different damping effects in the geometrically nonlinear range.
Nevertheless, experiments at small amplitudes are helpful to determine the
ranges of weak, moderate and critical damping for the respective deformation
modes, quantifyable by explicit formulas similar to the one given above for
the case of transverse vibrations. These could then be used e.g. to adjust
damping of different deformation modes to experimental obervations.

We also made a basic validation test for our discrete rod by comparing
simulation results against those computed with Abaqus for a full volumetric
model (3D) of the rod geometry. Although Abaqus does not readily provide
a Kelvin–Voigt model, one may emulate it by adapting the parameters of
a standard linear solid (SLS) material such that the latter approximates a
Kelvin–Voigt solid. Fig. 6 shows that our model accurately reproduces the
Abaqus 3D results.
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Cosserat rod KV parameters: ��, � /  Abaqus 3D SLS parameters: ��, � ≫ ��, �

Figure 6: Damped non-linear bending vibrations of a clamped cantilever
beam: Benchmark test simulations against Abaqus (3D) with a standard
linear solid (SLS) material (plotted as dashed lines, approximately coinciding
with the solid ones obtained with our model).

6 Conclusions

In our paper we presented the derivation of a viscous Kelvin–Voigt type
damping model for geometrically exact Cosserat rods. For homogeneous and
isotropic materials, we obtained explicit formulas for the damping parame-
ters given in terms of the stiffness parameters and retardation time constants,
assuming moderate reference curvatures, small strains and sufficiently low
strain rates. In numerical simulations of transverse vibrations of a clamped
cantilever beam we observed a weakening influence of geometric nonlinear-
ities on the damping of the oscillation amplitudes. We also found that the
variation of retardation time and bending stiffness has a similar effect on the
damping ratio as in the linear regime.
Acknowledgements: This work was supported by German BMBF with the
research project NeuFlexMKS (FKZ: 01|S10012B). The Abaqus simulations
shown in Fig. 6 were contributed by E. Santana Annibale.
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A Measuring 3D strains and stresses for rods

From a mathematical point of view, the tensor Ĉ may be regarded as the
fundamental quantity to decribe the shape of a body, as it corresponds to the
metric which determines the shape up to rigid body motions, provided that
certain integrability conditions (i.e.: the vanishing of the Riemann curvature
tensor) are satisfied. Other strain measures may be obtained as invertible
functions of Ĉ via its spectral decomposition. As a supplement to the brief
discussion given in section 3.1, we mention a few alternatives to measure 3D
strains and stresses used elsewhere in connection with geometrically exact
rod theory.

A.1 The Biot strain and its approximation

In the case of small strains, the Biot strain tensor defined as ÊB := Û−Î, with
the right stretch tensor Û given implicitely either by the polar decompostion
F̂ = R̂pd · Û of the deformation gradient, or as Û = Ĉ1/2 in terms of the
right Cauchy–Green tensor, is likewise an appropriate alternative choice of
a frame–indifferent material strain measure. Due to the algebraic identity
Ê = 1

2
(Û2 − Î) = 1

2
(Î + Û) · ÊB the Biot and Green–Lagrange strains agree

up to leading order for small strains, i.e.: Ê ≈ ÊB holds whenever Û ≈ Î.
One might argue that for small strains it is preferable to use ÊB as a strain

measure, as it is linear in Û and therefore a first order quantity in terms of in
the principal stretches, different from Ê, which is quadratic in Û. However,
while (18) provides a kinematically exact expression for Î + 2Ê = Ĉ = Û2,
a comparably simple closed form expression for Û itself is not available. In
general the tensor Û has to be constructed via the spectral decomposition of
Ĉ (see below), which in 3D cannot be expressed easily19 in closed form.

Only for special simplified problems, like the plane deformation of an
extensible Kirchhoff rod as discussed by Irschik and Gerstmayr (2009) and
Humer and Irschik (2011), it is possible to derive simple, kinematically exact
closed form expressions for Û and R̂pd by inspection of the deformation
gradient: In this special case, or likewise in the more general case of twist–
free spatial deformations of Kirchhoff rods (i.e.: extensible Elastica), H =

H3 a
(3)
0 holds due to Hα ≡ 0, such that the exact expressions R̂pd = R̂rel and

Û = Î + (H3/J0) a
(3)
0 ⊗ a

(3)
0 may be read off directly from (16) due to the

uniqueness of the polar decomposition.

19Whereas analytical expressions for the eigenvalues of a 3D symmetric matrix are
provided by Cardano’s formulas, we are not aware of any simple closed form expression
for the eigenvectors.
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Spectral decomposition of the right Cauchy–Green tensor

The spectral decomposition Ĉ =
∑3

k=1 λ
2
k Nk ⊗ Nk of the right CG tensor

(Gurtin, 1972, 1981, see) is given in terms of the eigenvalues λ2
k ≥ 0 and

the corresponding triple {N}k=1,2,3 of orthonormal eigenvectors solving the

eigenvalue problem Ĉ ·Nk = λ2
k Nk with Nk ·Nl = δkl. The spectral decom-

position of ÊB is constructed from the same eigenvectors and the principle
stretches λk =

√
λ2
k as ÊB =

∑3
k=1(λk − 1) Nk ⊗Nk.

In the special case discussed above, the spectral problems for Ĉ and Û =
Ĉ1/2 become trivial: One eigenvector of Û is given by a

(3)
0 with eigenvalue

(1 +H3/J0), any vector located in the cross section plane orthogonal to a
(3)
0

is also an eigenvector with eigenvalue 1, and the eigenvectors of Ĉ are the
same, with squared eigenvalues (1 +H3/J0)

2 and 1.
Also in the more general case of Ĉ given by (18) with a non-zero projection

H⊥ := a
(3)
0 × (H × a

(3)
0 ) = Hα a

(α)
0 of H onto the cross section with norm

H⊥ := ‖H⊥‖ = (H2
1 +H2

2 )1/2 an analytical solution of the spectral problem is

possible: By inspection N3 := H×a
(3)
0 /H⊥ is found as one of the eigenvectors

with eigenvalue λ2
3 = 1. The eigenvectors

N1 = cos(φ) h⊥ + sin(φ) a
(3)
0 , N2 = − sin(φ) h⊥ + cos(φ) a

(3)
0

are located in the plane orthogonal to N3 spanned by the two orthogonal
vectors h⊥ := H⊥/H⊥ and a

(3)
0 . The remaining 2D spectral problem in this

plane may then be solved analytically by a Jacobi rotation that diagonalizes
the matrix representing Ĉ w.r.t. the rotated basis {N1,N2}. The roots of
the characteristic polynomial yield the pair

λ2
± = 1 + E33 ±

√
E2

33 + (H⊥/J0)2

of eigenvalues with E33 = H3/J0 + 1
2
(H/J0)

2 (see (20)).

The condition NT
1 · Ĉ ·N2 ≡ 0 provides the equation

(H⊥/J0) cos(2φ) + E33 sin(2φ) = 0

that implicitely determines the angle φ. The spectral problem for the mod-
ified tensor Ĉ′ = Î + 2Ê′ given by (24) is solvable by the same proce-

dure: N3 = H × a
(3)
0 /H⊥ remains an eigenvector with shifted eigenvalue

λ′23 = 1− 2νE33, the likewise shifted eigenvalues λ′2± of Ĉ′ are given by

λ′
2
± = 1 + (1− ν)E33 ±

√
((1 + ν)E33)2 + (H⊥/J0)2 ,

and the angle φ′ is implicitely determined by

(H⊥/J0) cos(2φ′) + (1 + ν)E33 sin(2φ′) = 0 .
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Approximation for small strains

These considerations show that, although a kinematically exact closed form
expressions of ÊB or Ê′B for deformed configurations of a Cosserat rod
(H 6= 0) may be obtained, these consists of algebraically rather compli-
cated expressions in terms of the components of vector H/J0, compared to
the relatively simple formula (18) for the Green–Lagrange strain. Other-

wise, we may consider Û ≈ Î + 1
2J0

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
as an approximate

expression for the right stretch tensor of leading order in H/J0, because its
square agrees with the exact expression for Ĉ up to terms of order O(H2/J2

0 ).

Therefore, we obtain ÊB ≈ 1
2J0

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
as an approximate ex-

pression for the Biot strain, which reduces to (19) for J0 ≈ 1 and provides an
alternative interpretation of (19). The solution of the spectral problem for
the approximate Biot strain tensor consistently yields the same eigenvalues
and eigenvectors obtained from the formulas given above by inserting the
small strain approximation E33 ≈ H3/J0.

Similarily we may use R̂pd(ξ1, ξ2, s, t) ≈ R̂rel(s, t) to approximate the ro-

tational part of the polar decomposition of F̂, which altogether yields the

approximation F̂ ≈ R̂rel ·
(
Î + 1

2J0

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

])
of the deforma-

tion gradient. Insight into the precise nature of this approximation may be
obtained by considering R̂pd = F̂ · Û−1 with F̂ given exactly by (16) and Û

approximated as mentioned above. Decomposing the tensor H⊗a
(3)
0 into its

symmetric and skew parts and neglecting terms of order O(H2/J2
0 ) one may

derive the approximate relation R̂T
rel ·R̂pd ≈ Î+ 1

2J0

[
H⊥ ⊗ a

(3)
0 − a

(3)
0 ⊗H⊥

]
,

from which we obtain the error estimate ‖R̂pd − R̂rel‖ = O(‖H⊥‖/J0). This

implies that the error of the approximation of F̂ suggested above is of the
same order.

A.2 The material strain vector and the Biot strain

Following Kapania and Li (2003), Mata, Oller and Barbat (2007; 2008) use
the spatial vector quantity

(F̂− R̂rel) · a(3)
0 =

1

J0

R̂rel ·H =
1

J0

Hk a(k)

with F̂ given by a kinematically exact expression for the deformation gradient
of a Cosserat rod equivalent to (16) to measure the strain at the individual
points of a cross section. Its material counterpart J−1

0 R̂T
0 · H = J−1

0 Hk ek
as well as objective rates of both vector quantities are then used by these
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authors to formulate inelastic constitutive laws for their rod model on the
3D level, which are required for a subsequent numerical evaluation of the
spatial stress resultants and couples of the rod in its deformed configurations
by numerical integration over the cross section areas.

Following our discussion of the Biot strain and its approximation given
above, one recognizes that the strain measure used by Mata, Oller and Barbat
(2008) likewise may be interpreted in terms of an approximation of the Biot
strain via

F̂− R̂rel ≈ F̂− R̂pd = R̂pd · ÊB ≈ R̂rel · ÊB .

Using F̂ − R̂pd as a strain measure is directly related to the geometric idea
to quantify the strains caused by the deformation of a body by the deviation
of a deformation mapping to a rigid body motion, as discussed by Chao et
al. (2010). For a given deformation gradient F̂ with positive determinant,
this deviation may be measured by the distance of F̂ to the group SO(3) of
proper rotations defined as minR̂∈SO(3) ‖F̂ − R̂‖F , where ‖ · ‖F denotes the
Frobenius norm. It can be shown that the minimum is actually reached for
the unique rotation R̂ = R̂pd provided implicitely by the polar decomposition

of F̂, such that minR̂∈SO(3) ‖F̂ − R̂‖F = ‖R̂pd · (Û − Î)‖F = ‖ÊB‖F holds
due to the invariance of the norm under rotations. Altogether these consid-
erations, combined with the approximation R̂pd ≈ R̂rel, provide a geometric
interpretation for the strain measure considered by Mata, Oller and Barbat
(2008) and its relation to the Biot strain.

To compare the strain measure proposed by Mata, Oller and Barbat
(2008) to our approximate strain measure given by (19) we consider F̂ =

R̂pd · Û constructed from R̂pd ≈ R̂rel and Û ≈ Î + 1
2J0

[
H⊗ a

(3)
0 + a

(3)
0 ⊗H

]
as suggested previously in accordance with the small strain approximation
ÊB. This leads to the (spatial) vectorial strain quantity20

(F̂− R̂rel) · a(3)
0 =

1

J0

(
Hα

2
a(α) +H3 a(3)

)
,

which differs from the definition chosen by Mata, Oller and Barbat (2008)
by weighting the strain vector components Hα related to transverse shear
and twisting by a factor 1

2
relative to the component H3 representing normal

strains goverened by extension and bending.

20One obtains exactly the same result if one adds the modification Ê′ = Ê −
νE33

[
Î− a(3) ⊗ a(3)

]
according to (24) to the strain. This shows that measuring cross-

sectional strains in terms of a vector quantity as suggested by Kapania and Li (2003) and
Mata, Oller and Barbat (2008) is by construction insensitive to lateral contraction effects,
which on the contrary are accounted for by our energy based approach.
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A.3 The Biot stress and its approximation

In some works dealing with geometrically exact rods, e.g. in the articles
of Irschik and Gerstmayr (2009) and Humer and Irschik (2011), 3D stress
distributions within cross sections are analyzed in terms of the (unsymmetric)
Biot stress tensor T̂B := R̂T

pd ·P̂ = Û·Ŝ, which is related to the (true) Cauchy

stress σ̂ via the co-rotational stress tensor R̂T
pd · σ̂ · R̂pd = J−1T̂B · Û. The

stress tensor T̂B as well as its symmetric part T̂
(s)
B := 1

2
(T̂B + T̂T

B) are both

work–conjugate stresses related to the Biot strain ÊB, as both yield identical

virtual work expressions due to the identity
[
T̂B − T̂

(s)
B

]
: δÊB = 0.

Small strain approximations of these stress quantities are obtained by
substituting Û ≈ Î (implying F̂ ≈ R̂pd and J ≈ 1) into the various transfor-
mation identities for the stresses as given above. This yields the set of ap-
proximate relations T̂B ≈ R̂T

pd · σ̂ ·R̂pd ≈ T̂
(s)
B ≈ Ŝ, which are valid to leading

order, analogous to the approximate relations ÊB ≈ Ê for the corresponding
strain quantities. The approximate stress relations (21) are obtained by the
additional approximation F̂ · Û−1 = R̂pd ≈ R̂rel, likewise valid to the same

order, which effectively amounts to applying the approximation F̂ ≈ R̂rel

(implying J ≈ 1) within all transformations of stress tensors.
In summary, due to the assumption of small strains, the Biot and 2nd

Piola–Kichhoff stress tensors approximately coincide to leading order (i.e.:
T̂B ≈ Ŝ). Moreover, both stresses correspond to the approximate co-rotational
stress tensor R̂T

rel · σ̂ · R̂rel given by the components of the Cauchy stress

w.r.t. the approximate material basis (i.e.: Gk ≈ a
(k)
0 ≈ Gk) provided by the

reference frames R̂0(s) = a
(k)
0 (s)⊗ ek of the undeformed rod.
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